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SUMMARY

As interest grows')apidly in industry on the
potentialities of mathematidwl programming techrniques,
1t appears worthwhile to have a\paper devoted to some
of the more p:romising deVelopments which may speed up
the transition from interest to use. ‘Three topics;W
have been selected (in three sections that folilow)
vhich have recently come into prominence:-dumcertaipty,
combinatorial probhlems, and large scale systemgf\ &he
reader will find in the course of their discusslons
that & survey — tiiougl: perhaps not a systematlic
survey — has been made of current technlquea* in

the linear programming fleld,

*For consolldated sources on techniqu
programing, see [1], [}], [10], and |22
material see [3] and [13

5 in Jinear
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RECENT ADVANCES IN LINEAR PROGRAMMING '2\{ i

by
G. B. Dantziz*

I. UNCERTAINTY

In the past few months there have been important ccvelopments

that point to the application of linear prograrmliiz methods

under uncertainty. By way of background let us recall that

there are in comon use two escenticlly different t: pce of

scheduling applications—none designed for the short run and
those for tlie long run. In such applications the effect of
probabflistic or chance events 1s reduced %o a mininmunm. The

usual tecknique for doing thils 12 tec provide plenty of rat

in tre system. For exarple, corsumption rates, atirition rates,

wear—ou', rates arc all planned on the high eside. Times %o ship,

time to travel, times to produce are always macde well above

actual neecds. Indeed, the ontire system 1s put together with
plenty of slacl: and fat with the hope that they will be the

snock abocorbers which will pemit the sereral otJlectives and

timing of the plan to be executed in spite of unforeseen events.

*Material for this paper has been drawn from specches delivered
before The Instltute of Management Scilences, Pittsburgh meeting,
October, 1954, and the Symposium on Lineur Programuing, Washington,
D.C., January 2G, 1985, 4
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In the general course of things, long—range plane are f:requently
revised because the stochuastics elements of the probiem have a
nasty way of intruding. PFor thie reason also tne chief contri-
bution, if any of the long—range plan, is to effect an immediate
decision——such as the appropriation of funds or the initiztion
of an irportant developrient contract.
For short=run scheduline, many of the glack and fat

techniques of its long-=ranme bLrother are employod. ™o principal

differences are attention to detall and the short (ime—ioriron.

As loni as capahilities are well above requirermente (or demande)

or 1f the deminds can he shifted In time, this approazn pr2sents
no proi:lems; 1.e., 1t 13 feasible to impnleoment tho schedule

in detall. Howaver, where thers nra ahortages, the projdected
plan tased on such techniques may lead to 2cilonz far from
optimal, whereas these new rethods, where applicable, mar
result in concider2ble savines., T shall substantiate this
later by reference to a problem of A. Ferguson on the routing

of alrcralt.

Having reviewea the need for techniques that nore effectively
account for uncertalinty, let us turn our attention now to a
sequence of gsimple ideas that has recently culminated in thig
extension of Iiincar prozramming methods. 7o inttlute the
discussion, a special application of the "transportation"
problem will be described, Eib], [id], [}ﬂ. The RAND Corporation,

as you know, has extensive computing {acillities that are in

v
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constant use by the resezrch personnel. About (wo years ago
the author was consulted with regard to finding an improved
method for achedﬁling work requiring computation. The need
arose because the computation iacoratory's "customers," the
research people, were unhappy with tne long delays icenerally
incurred between the time a request for comnutation was received
and the $time thelr wbrk was corpleted. Tile¢ principal cause
cf dissatisfaction wae quite clear for there wis one project
that was both top priority and so laree in volurn that 3t
completely abeorbed the entire computing cupacity forr mary weeks.
Te research people, beinrs huvman, were no Jorrcer Interest.d
ir the computed answers to their problems when the computing
lab firally got arocund to them. |

In this exvample we hove a case where the priori*y rethod

cf scheduline 13 not necessarily the best.

oo ———— Ot

£
ese @ o=

In order to develop a more flexible declztasr wetl od thar
priority schaduling, a mndel was devised® 3n which the vailue
of a Job fell ofi the lonerer {ts r~ompletion dny wan delaved.

The final determination of the ontiamm zchedule—where ovtimum

*The Model of Ontimum Scheduling of Projeczts on Punch Car
Equlpment was aeveloped by Clifford Shaw ol RALD and the autho:,
and reoorted Joirncly before the RAND-U.C.L.A. Seminar on
Industrial Scnheduling 4n the winter of 195z (the latter,
incidentally, velns cne of the forerunners of The Inctitute of

Management Scler.ces).
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customers—depended on the solution of a teansportatlion prouviem

-

whose array 1a‘g1ven below:

Type 18t 2nd 3rd

Job 1

Laate o2 -~ e - i @ e o g s - —

Job week weok veel seel §| ilours|

Tétal Hours |

Avallabie | | n ”
I

~ e 3
| I
[ ] [ ] L ] Il
i I
| I
' i |.1
| I
Joh m ¥ b ¥ v | r
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where X, , 1¢ the hours (to bhe doterminced) nesipgned *o th
bl =4

in the weey.
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where c1J was the value to the customer per hour expended on
his project in the Jth week. Typically one would assign less

value per hour the longer the Job is delayed,® i.e., B

Cqy 2 C4p > *** 2 Cype

Now, in addition to these restrictions typical of a ?
transportation problem this application had the added wrinkle
that

0_(_)(1"5_&1‘1 g

which states that the hours assigned to 1th project in the Jth
veek cannot exceed aij' Typically, a1J = 4O hours meant that vt
only one person could be assigned to job J. The adding of

these upper bound restraints greatly enlarges the slze of the

problem if one proceeds in the usual manner of adding extra

*E
Wi

equations to reprecent these restraints, (1), [3), [&IJ, [5].

*The reader will recognize that putting the value on g per
hour basis rather than on a_Jjob completed basis 1s a dodge which ¥
an experienced formulator uses to get around indivisibilities “
that for the most part defy mathematical solution (see Section 11
on combinatorial problems).
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To illustrate, a problem with 18 projects and 10 weeks has a
total of 28 equations in 180 unknowns. Mowever, after the

upper bound conditions are added by means of the conditions
My Vg "N

(where y1J 18 a "slack" variable, [}]) the nuwer pf equavions
is 28 + 180 and the number ol unknowns 1s 2 x 100. The constants
‘1J are referred to as "capaclity restraints on routes."

It 18 not difficul: (as we shall show below) that the
enlarged problem is still a transportation problem, although
strangely enough x1J now 2ppears In three equatiocas. I toue,
the values of x1J in an optimal soclution will still turn out
to be integers if the hJ, ry and aiJ are integers. To siow this,
we will use Orden's transshipment device, [20]. The enlarged
transportation array below 1llustrates the cuse for =2, nsj3,

(the procedure is, of course, general):



-

]
213 Y13 X13

vwhere the variavles in the array sum across to the indicated row
totals and down to the indicated column totals.

This constitutes a formal proofl that capacity restraints
on routes do not alter the character of the problem. It is
; not recommendea as ;t stands as a short cut computational device.
Our purpoée now'is to show, however, that tiiis broblem can be
solved with only slightly more effort than the original trans-
portation problem without upper bounds. The procedure—referring
back to our original array 1s to divide the variables xiJ into
three classes:

(a) "vasic" variables (m+n—] in number) whose determinant
is ﬁbnvanishing;

(b) nonbasic variables at lower bound value (0);

(¢) nonbasic variables at upper bound vdlue (a.J).

.
o



P-652
b-12-55

Jcr cxample, in the origclnel array, we wy indica‘c tiusic
variables—by pultting a circle arownd them ag is ot'ien dore,

M1, [2); rnext, place an "upver bovnd" sybol Cor variables

at thoir upper bounds. Ti.e prices uy and vJ associuted witt

the equations are computec in tre usual manner, 1.e., gy + vJ = c1J
for all basic variables xij' The criterion for optimality for

such a gystem can be shown to be:

u, + v Z'CIJ for 2ll nonbasic varlubles at rower beund
value;
uy 4 VJ‘S ciJ for ali nonbasic varlabvles Y1J £ uprer
bound value.

If ary variable xU does not satisfy the avove optimality
criterion, an improved solution may be cotelnsd by increlsing
or decreasing 1t until some variable (pernaps itsell) citnerx
Lits a lower ov upper bound; it Is this variaile whicn 13
dropped out fron tiie basis.

The reason why this device works—and my remar<s now apply

to the most general linear prograrming problem and not just the

transportation type—is thia: The simplex method divides the
variables into two classes which are referred to as hzslc and
nonbasic. The nonbasic variables are customarily sot equal to
zero and a rule 18 given as to wien 1t pays to increase any one
of the nonbasic varlables from zero to the largest value poesibile

which preserves feasibility. A little refllection, 'owever, will

o) ¥
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make it clear that the nonbusic variables could lLave been at
any constant admissible value and the same rules woul? 2.1y
on whether it pays to increase thelr value a2nd, cof course, the
opposite rule appliies as to when 1t pays to decrease 1t. If
the relative cost factcrs (e.g., c1J - Uy - VJ) are othor than
zero, tnen depending on sign 1t will alwaye pay to Inecrease or
decrease the quantity of a varlable. ‘'lowever, if vhe vieriable
18 at elther end of its range of values 1%t may nov be posegible
te do this without losing feasibility. For a fuller account of
this work see [51 and the Charmes-Lorke narner .17,

Let us now lock at a cocond device that malces effective use
of this upper bounding technique. Let ug consider o situation
1 which the objective flunction, lustead of belng a lincar form

to be minimized, 1s of the form

n
(1) Z Q'J(XJ) = Min (Y.Jz\’))
J=1
where ¢J(xJ) 13 a convex fun:ctlon and x, a~e subject *o
J
i
(2) L g%y - by (1=2,2,...,m) .
J=1

’

'Conivex—8eparable” is the term usded ty Charres to descrive this

class of obJective forms, [+=II], also [5]. The trick he:e 1.
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te represent ¢J(x) as indefinite (not definite) integral which
is approximated by a sum over k fixed intervals.

To see this clearly, let us note first that any convex

function g(x) may be written

X
g(x) = /g (u)au
o

where g(x) convex means g'(u) 13 nondecreasing and that p'(u)
may be approximated by a histogram over some interval O ¢ u < ¢
where ¢ 18 some assumed very large upper bound for x. In order
to avold any discussion about how well the histopram f'lts g'(u),
which 18 not germane to what follows, we are actually aicuning

that @g'(11) has been replaced by 1 histogram.

. & d'(u)
e
24 ‘
s

| 7“1*1 | SAURL TRa :
- 1 ;
d €@y i

Here hy <744 follows from the convexity of g. We now repriane

'(‘L-l"tl?*"..*’u ;‘.i___

24
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where Ly are nounegative variacles and k is the f'ixed number of
intervals in which the range of x wag subdivided. It is easy

to see that

k
g(x) = Min T h,o, 0 <&y < ay
1

Indeed, 1t 1s clear that the minimum 1s attained Ly clioosiny
Al = a,, L;e = a5, - until the value of x is exceeded for
some 1 in which case Ai is set equal to tLiie residual. Thus
the effect of the 1inimization is to represent g(x) by the area
under the histogram up to x.

We now employ this approach to solve (1) and (2); the pro—
cedure is to substitute for variable Xy and ng in the linear

programming problem by

k
(3) X, = T Ly oL, 2 o el
el
and
e
() gylx,) = = hy By 0 < by < ay,

and noting that since a minimum for 3 dJ(xJ) 15 sought inm (1),

this implies that the values of AU satisfying (3) must, at the

minimun, satiafy : "n“A“ « Min.
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This manner of treating convex separable o! ‘cctive fuctions
appears Lo greatly increase the number of variolles w2itinut
inereacing the rumber of equationz. However, (t 13 the hwber
of equations that, as a rule, determines the work in the simplex
method. Moreover, 1t should %2 noted that thcre are nwnerous
short cﬁts possible due to the appearance of several columns
with identical coefficieats (except for the cost row) so that,
in fact, it is quite simple to rapidly solve cases involvine
a convex separable objective fomm.

Finally, let us turn to a protlem involvir  uncertalnt,.
For this purpnse let us consider by way of an exi~pie the cine
of a cannery that has severagl factories as sources ind 2 nurhber
of warehouses as outlets.®* The typlcal formulation leads tc a
trdangsportation provulem.

1

i
s Xy = 8y (ai = avallabiiity at 17 sourcce)
J=1

iy
- , ¥
b (b = requirements ut | couice)

J -

m n
Z L Cy Xy, = Min (04J = cost of stipping a untt
= o )
from i to }J) .

—— e o c—mo ——— . o = = ————p

For example H, J., Heloz menurastures vetcbup Ln G hall d

plants and distributes to some 70 warehouses scaliered througt.out
the U.S.; & description of ti:1g application by Hen?cr;on ang Schlall!
where the derands were acsumel known, 1s given in (17,
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Suppose, however, that the requirements at the j'°‘ source are
unknown but are given by some gort of a frequency distributic:. s
; Let uc suppose that for some destination thot A
j A
i
Z X4q ™ uJ
{ L Y]
{ .
, J is the amount assigned and vy .s the actual wmount deranded,
. which of course occurs latcr. Then the revenues wrict the .
']
company recolves will be »roportional to ﬁ
Al
Min(u,, v,).
J= d
It !5 clear that the cxpected revenues 2re 2 function of the 4
_ amount assigned, u. In Lact, 12 e 1ot plu,) ve the expected
> J
costc (1l.e., revenues, i negative) then
ro @»
g(u) = -~ a ' / ve(v)dy + v/ f(v)dv l
L v=0 veu -
vhere a 1s the factor of rroportionality ard f(v)dv 1s the a
rrobabllity density distribution of v. It is easy to see by
differentiating that ‘
(o §
(5) o'(u) = — / r{v)av
VJ X
o 8 '.Uu':c-‘ .."\f
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and hence the expected cost as a functlon of u 1s convex.*

Let us suppose in the warehouse probulem that 211 demands
at lestinations are subject to uncertalnty, and that the
ob jective 13 to arrange the shipments so tiat the total expected

costs are mininized. The mathematical problem the: becomes

n
Xgq = 8y (1¢1,2,...,m)

Jel

m

)Y Xqy @ Yy (4=1,2,...,m)

i=1

where now the expected costs are glven by

N
D cijxij + z ¢‘1(uJ) - Mip
| J=1

and ﬂj(uj) are convex functions giving the expectel revcnues

at J 1f uJ 1s assigned. From (&) it 1s clear that the derivative,
dj(ud), may be approximated by a histogram cttalned from the
cunmulative distribution of f(v) starting with + w. Accordingly,
we may approximate dJ(uJ) by cur second device and sec Shut we

can solve this problem as ¢ regular transportatlon prctlenm with

*Result due to il. Scarf, The RAND Corporation, sce [(].
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‘ upper bounds cn certaln varlables. From a practicel point of
view the work involved in introduclng uncertainty into a problem

of this type 1s only slightly greater than before. The resulting

allocations are often quite different. In the hypothetical
airline example considered by Ferguson and me, the savings in
expected costs over the earlier procedure reported in [Jl] wa.r
about 10%.*

For a more complete account of the application of linecr
! programning methodas to a class of rroblens involving uncertainty
| the reader 13 referred to [G].
1
1

. II. COMBINATORIAL PROZLEMS
i

Turning our attention riow to the application of linear
programming to combinatorial type proulems — the Cuture in
this area appear:s to vte less ~ertain. Recause of success .

'~$ with the "assignaent" problem®® and with large scale "travelins

salesman"*®*® problems it Jdoes seem to be worthwhile to try to

* *The paper on the extension of 111] to tue case of uncertalnty
! 15 under preparation.

i **The Assignment Problem 1u one of assigning optinally m nmer

to m jobs when the value of havine the 1=th man on the J-th joo 1is
inmown., It is & speclal case of a transportation problem discussed
earlier, [1b}, [ch, [2]; see alno Votaw=Ovder paper [23], and

i J. von Jdeuwnann |22].

see’he Trovelilng Sclesman Problem s one ¢f finding tac best orde:
tCc tour m citles 80 as to minimize total distance covered; see [Q].

&

‘I

.
L&}

-



P-652
§-12-55
-1~

find further use for sucnh methods in thils area.

It is Interesting to note that mathematiclans have been
looking over other branches of mathematics as well +1th the
hope that they may find sionificant applicatin.s of these now
methods. Qtners have been busy, not only enccuraging applications
in different branches of mathematics, but in Jdifferent Clelds

such as chemlistry, economics, engineering, e¢tc. as well. Perhups

one reason_ for human pregress ariges {rom the curiosity of man

to exploit every new tool.

el e St

An example that has recently received some attention 1s
one which was discussed by the author briefly in a course in
the Depurtment cf Agiricullure Graduate School a rumber of' years
ago. It concerns a clagsical problem of Chemical Thermodynamics:
Given any mixture of gases wider constant pres3ure ang temperatu:e
conditiong, 1t will eventually reach an equilibrium position;
problem — determine the amounta of various types of molecules
in the mixture when the equilibrium is reached. This tvpe of
problem can be represeriled in mathematical terms in the {orm of

a system of eqQquations.

AELYRER by (xJ > 0)
J

L Xy = %

5.‘3 log (YJXJ/X) = Min
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where xJ = pumber of molecules of the Jth type; a1J = number

of atoms of type 1 in a molecule of the Jth

type; b, = number
of atoms of type i; v, 1s a given constant. The form belng
o

minimized 18 called the free energy function. Chemists 30lve

gucli syrtems in a falrly efflcient way. They start out with
that comblnation of m—type molecules which form the major mole
fractions in the mixture. The {irst approximate solution can
be obtained by setting, as first estimate, the mipnor components
zero; from this {irst approximation of major components an
improved estimate on minor components can be made and the process
can then be repeated. Cl >mists are interested, however, in
being able to solve such problems without the assumea prior
knowledge of which combination constitutes the major components.
Recently, Selmer Johnson,® observing that the free energy
functicn is @ convex function in the number of molecules of
different types in the mixture, was able from this to set up
2 procedure tnat extended many ideas found in the separable
convex case discussed earlier to the case of a more general
convex function. His procedure, of course, 1s free of any
assumption about major components.
How, my cbjective in discussing this problem in tihls section
is simply to point out that therc is a combinatorial aspect
contained in every linear programming problem. Indeed, the

basic problem 1s one of selecting from tre class of extreme

*RAND Corporation paper in preparation.

o



-

ek o &

P-652
ot

poings of a polyhedral convex the one wiich maximizes a glven
linear form. The fact that there are procedures like the
simplex method which are fairly efficient in selecting such
combinations 1s the reason why it ic tried for certuin com—
binatorial problems. Indeed, it is just those protiems where
the extreme points of a convex can ?e identified with the
combinations of interest where th:is approach has paid off. 1In
the case of the traveling salesman problem it was necessary
to zc further and to find ways of removing extreme points of
a cenvex which could not be 1identified with tours. In the case
of the assignment problem this was not necegsary.

Let us turn to topology. Recently, Alan Hoffran*® was able
to use linear programming to prove an interesting theorem of

Dilworth on partially ordered sets—namely, that the maximum

number of elementec with the property that any palr of clements
in the subset are unrelated is equal to the ninimum numier of
disjunct chains covering the gset. Wrat he showed was that thics
thanrem was our old friend the «cuallty theocren of linear in-
cquallty thecry in dlsmulise, Srtimulated by tnls, voth lioflfman
and independently Fullersor (Jfoint with the zuthor), [0}, were
able to show that & theorem due to fullerson and Ford on
canurities in netwoilin wac 22l our 21d friend tre duality
theorer in disguise. Tuere 13 a close reiation between this

theorer: and i well-lmio'm theorem of Menger on graprhs. The

ellational Bureau of Standards paper in preparatlon,

- A, ol NF Ry ¥ 3
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Pulkerson-Ford, Max Flow Min Cut Theorem, [12], states that the
maximal flow hetween a fixed source and a flxed sink in a rnetwork 2
is equal to minimum sum of capacities on arcs whicih separate or ;
cut the source from the sink. ’
¥
v
“ (s,
e ol ™
/ b | \b . Max Flow = § .
s {" 5 H\_‘ 3 - s s
‘*-.._‘ 1'& __.fl "Men» vt = 5
} “"‘-.. ? .\'\. .-"If :
3
Alwmnst all ~cmbinatorial applications that 1 =m [amiliar ;.
‘3
with 4n this area depend on the integral '‘character «f the bhaglc ;
solutions of the transportation problex. Unless othar types 3
of rwtirlces can ve discovered with thie property for thelr d
basic solutions or at least for the optimal basgic solutiscns
(as in Marlowitz! Metol Procecs Model, [1€]) the potentinl R
develcpments in the combiretorizl fielc may be limited. 1 have ¥y
found one casc where the optimal values of varisbles were integers q:
in 2 linear programmingz problem which was 1ot of the transportation |
type in 2 puzzle which 1 recertly ran acroas. Jacobs reporte
that his "Caterer Model"* hac this property. This gives hope s
k|
that the fileld may net coon he sterile. "
}i’,
*The Caterer Problem conce:ns the sclieduling of purchases and ‘*‘_
laundering ot fresh naplins for & known future schedule of meals; ;
i1t ¢8 a paraphased aircraft spare engine problem, [15]. vl
e
“
A » .{:?';

o 2o il i P bath . s
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I1I11. SPECIAL METHODS FOR SOLVING LARGE SCALE SYSTEMS

The last section is devoted to a short plea that linecr
programmers pay greater attention to special methods for solving |
the larger matrices that are encountered 1in practice. With
regard to the possibilities of solving large scale linear pro-
grtmming problems, c¢1ye can sound both an optimistic and 5
pessimistic note. -The pessimistic note concerns the ability
of the problem fommulator, either amateur or professional, to
develop models that are large scale. The pessimistic note
aiso concerns the inability of the problem solver to compute

models by general techniéggs when they are large scale. If

this 1is 80, 18 not the great promise that the linear programming
approach will solve scheduling and long range planning problems
with.aubstantial savings to the organizations adopting these
methods but an 1llusion and a snare? Are the big problems
going to be solved as they have always been solved——by a detalled
systemn of on-;he—epot somevhat natural set of priorities that
resolve every possible alternative as it arises?

Let us consider a modest planner who 18 concerned with
the expansion of motor production—let us say a speclal type
motor that reqQuires a speclal type of steel and rmust use tools
fabricated from this steel and the tools which fabricate these
tools also use this steel. The toole that fabricate steel we

will call below steel capacity, those that fabricate tools —

» e {a
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it tool capacity, and those that fabricate motors — motor capacity. ,ié;
The planner is quite modest because he is willing to consolidate ‘
: | all of the multitudinous activities and items into tnese simple Y
} terms. The initial inventory must satisfy the first 5 equations 1
1 :
_r-‘ in detached coefficient form given in the tableau, while the outputs .
T from the activities in first time perlod must satisfy the next S J
}  equations.
Activitier (lst Poriod) Activities (2nd Pertiod)
Motors| Steel [Tool P;'J!L:xmss Cap. ,otomSteelhool Prul.jExcess Cap,
vy | . ., T e . HT
Y | lald | el elg] | |
. @ & [ ] ’l [ I o | & [ 'R S] 5 [®] 0 g
s E‘D ) z —~ il % ~ilalk ) : -' ? - b G | kb
2 - o S|lei~1c 13 ARSI o]l @jed! O
» S o Bl 5 0 '§ Qe 8 o Q Q| 3 ole|] @0 &
P L o9 Ll e e Q| 0| hie| b o A ICAREES
‘e Bl N M) |V {XE || X Dej NI D LW B » & | 2.
£ 1
Variabl 9L "
| arianas 2Ly hlﬁklﬁ"mﬁfl. T (o Y oL PPY Y o I
- ! 'h
. Initial Inverntories | , [
H | |
' Steel Cap, = h 1
\
4 Tool Cap, ) ! Aol o1 -
| { i
Motcr Cap, ® pl | ! bas
1 -
1
Steal Stocks e | g | -1 1| a" 314) ol
1
a8 Motor Stccks = |-l ! vl .
¥ L_i ! >
%_ = jv' Tui & : ?
- ! ' ! R
~ Inventory Ubalance i l 3
.0 {2nd pericd) | | |
¥ | %
a i f
- U l i'l A R 1 + 1
C = | P =) =X Alp |V +1 .
| i ¢
¢ s Pl | f =1 -} +1 .l >4
G = -1 a “d1ladar "
SHS | -1' - ! " !
2 e | | Syl | <%
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If the planner is interested in developing a program over
two years by quarters that meets a specified schedule of known
sales and creates the largest stockpile of motors for any
future sales that may develop, then the pattern of coefficients
in the tableau must be repeated for eight time perlods. I
we denote the upper and lower blocks by A and B respectively,

the model has the fom

10 x 8
.-A 1
B A
B A
(1) 5x 8 5 4
B A
B A
B A
B A

The resulting system of 40 equations in -g variahles with tre
objective to maximize a stockpl!le of motora can be sclvec 1in

a half hour on & modern electronic computer. Let this planner

now decide that his model 18 entirely too coarse and tial ne
rust plan by months, digatinguish two types of umotors and two
types of steel and our resultant system becomes 7 x 24, 14 x 24

or 1€4 x 330, At this size the computation would require ahoutl
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one woek using one shiift per day. PFror the viewpoint of the m
computer the planner is no l.onger' modest, llowever, for the Z;‘
planner 1t 18 clear that the so—called "detailed" nodel abcve ?
ie at best only useful as an over-all type of guide, but hardly E
detailed in a realistic sense.
Let me cite an example from another area — the problem of IR
routing cargo aircraft. Let the variable xljk represent the
number of aircraft of type k routed between city 1 and J. Let ¥
us distinguish between six types of aircraft, ten time periods, ""‘
and twenty citles. In addition, consider a second set of variables ‘Ef.;
yi‘“ which 138 the tons of cargo shipped tetween city 1 and J -
on the way to L. Our eqQuations become -
$?ﬂ
(2) '\T
Aircraft in = Alrcraft out: Y Xo gk T %40k (k-l,...,6)(c-l,...,30),.wr'
1 2

1
Cargo in = Cargo out: a g+ Zchk- Zyic‘-& b., (k=1,...,20)(c=1,...,20)
J i

o7t

Tarmge Cap. > Tonnage Req.: T )‘Uxidk - T Yigt (1=1,..., O)(J-l,...,20) .
Kk )

> e

an o

Plane Months Available: § 7 BygXgo = Py
1 )

As we see again such a system involving only a few cities, type

aircraft, and cargo destinations generate easily a system in
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1,000 equations in 10,000 wiknowns. Superficially, a veiy
discouraging situation.

Indeed, at the present time, it 18 possible to solve
rapidly problems in the order of a hundred equations. The
Orchard-Hays 701 Simplex Code, [19], has solved many problems
of this size with as high as 1,500 uniknmowns and machine times
of five to eight hours as a rule—all with excellent standards
of accuracy. However, it ig self-evident that no matter how
much the general purpose codes are perfected, they will be
unable to solve the next generation of problems which will be
larger in size.

However, let us note there has been prougress in this arca:
T™he excellent work of Jacobs cn the caterer probler, [15], and
the work of Jacobs, Hoffrmar, {14, Jotnson, [16], on the pro-
duction smootl.ing prcblem are examples of whnat ruy be done with
certain dynamic models with a simple 1cvpetitive structure.
Cooper and Charnes have employed 1n thelir work a nwiter of short
cuts thuat have permitted resolutlion of certaln iarge scale
systems. AL RAND we have found e!f'iclent ways to hand compute
generalized transportation problems, and Markowitz has prcposed
8 general procedure in this area that !s procdsing. ¥any mouels
exhlibit & bleck triangular structure and certala partitioning
methcls have beer. proposed which take advantapce of tnle Lype of

structure, [5].
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At RAND there 18 a special electronic computer code for a ~f
special type of problem called the "metal processing” model, » ;;g
. g

[18]. Mathematically, this may be described as a slightly .;23
‘generalized type of transportation model of the form ' ?5%3
4

o'd

J

m:&

¥

(3) inJ .bJ J=1,?,...,n w“-
*%

1

<
-

&
£ ¥ S

,
¢

‘4

where AIJ’ ay, bJ, c1J are known constants and xiJ > 0.

-
LR
2 i
b o
-

v ?

The special code (which only works for a particular choice

Fy

of cu) can work out solutions to a 300-equation system of this
type in about an hour.
Except in highly specialized models of the transportation

- t“-c

ot
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type or others where unusual characteristics can be taken
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advantage of, it 1s suggested for industrial applications that

every effort be made in the early stages to prepare a consolidated

A

version of a model. There are several reasons for this. In '33
the first place this effort results in a model which 1s often l
very useful in itself. Secondly, it provides an excellent *.z
X

dry run for methodology. In a word, it is better for adminis- ‘ig*é
. 5

trative and technical reasons to keep the model initially small. ¢
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Inevitadbly when the size of models does increase, there
are a nunter of devices that give promise of greatly reducing
the amount of compﬁtation. However, conslderavly rore resear
than has occurred to date is neceded. In the first place there
appears to be a8 number of important characteristics commonly
found in prectical models that need to he explcitea:

(1) Most factors in the coefficient matrix are zerc.

N (2) In dynamic estructuree the coefficients are often ti.
same from one time period to the next.

(3) 1In dynemic solutions the activities employed of‘en
persist from one period to the next.

(3) Transportation type submatrices are common.

Fod

(5) PBlock triangular submatrices are commor.

Block triangularity 13 one of the moet promising charactor—
¥ istics to exploit, [5]. When a matrix 1s composed largely of
Zeros where the zeros are in no obvious pattcrn, it is often
o practical to solve directly for the prices and the representations

of the vectors e¢ntering the basis rather than to solve for them
by means of the inverses of successive bases. The transportation
model 18 a classical case where this approach has paid off.

“4hen many variables have simple upper bounds, 1t 18 no longer
noéeaaary, as we have seen earlier, tc add one more variable

and equation for each such restraint. Instead, 1t 1s possible

to slightly modify the original simplex algorithm and apply 1t

to the system excluding the upper bounds.
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In many problems there are equations that may be considered

as forming & set of side conditions; for example, conditions
that capacity of certain machines 18 never exceeded or the
characteristics of a certain product (e.g., viscosity is within
specifications). In most problems only a small subset of these
"secondary" constraints are likely to be active, 1.e., at their

critical value—the others being well within capacities or

specifications. In guch cases it is recommended that the linear

programming problem be firat solved without regard to these
secondary constraints; then the system 1s enlarged to include
the secondary constraints and an initial basis is obtained by
augmenting the final basis of the smaller problem. This will
result in a basis in which rot all variables assoclated with
the secondary constraints are positive. However, in this form
the ‘dual simplex procedure of Lemke may be employed, [17].
Often in practical cases only & few iterations are nceded to
clean up the negative varisbles and obtain an optimum solution.

For fuller discussion of these possibilities see (o), (7).
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