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SUMMARY

The purpose of this paper is to formulate a
number of significant mathematicel problems
which have arisen in connection with the theory
of scheduling, and to discuss the methods which
have been devised to treat these proLleme{ ) A

brief bibliography 1s appended.
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MATHEMATICAL ASPECTS OF SCHEDULING THEORY

by
Richard Bellm&n

Introduction

The purpose of this expository paper is to describe a8 number
of representative problems in tre field of scheduling which will
furnish some idea of the types of mathematical questions which
confront us in this domain. 1In doing so we shall touch upon some
of the analytic and computational techniques which have been
utilizea to date to treat these problems, and thus unavoidably

display the deplorable state cf the art.

There 18 little point at this stage of development of the
theory in attempting to give any precise definition of what we
mean by a "scheduling”" problem, since any definition which can
include the spectrun of problems arising from all phases of
economic and industrial activity, and from parts of mathematics
itself ranging from algebra and tcpology to analysis and methema-—
tical physics, will necessarily be sufficiently vague to be fairly

useless. We can, however, make the following general remarks.

In characterizing a physical system, we may begin with a

phenomenclogical epproach: a certain cause prcduces a certain



P-651
—2-

effect, or, alternatively, a certain input produces a certain

output. Thus, as a first approach, we use the traditional "black
box'" conocept: the physical system is regarded as inexplicable in
its workings, and its mechanism is taken to be completely sealed
from view. We agree to consider only the 'response curves'.

Schematically

Input ——> ? —> Output

As we beeome more ambitious, we begin to peer into the
murky confines of the black box, and our next step is to divide

the original box into a set of small boxes in the following way

Input — | 7 —» Output —»| 17 l —>» Input - —>» ?7 | —» Pinal
s Output

We now have a multi-—stage process.

A further degree of sophistication ylelds more complex block

diagrams, such ar
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Inputl t:mtput.1 —»| ? |—p Output
! ! Pinai
/ | ' _ P Output
v | /
Input2 O\ltput2 —» I -=p» Output

Eventually we may be forced to consider even more complicated

oircuits involving "feedbacks":

In;mt1 —_— ? ]oOutput»Eil-;Outputy ?7 |—= Final

— Output

-r Feedback

Classical phyzics, as well as classical economics, is con—
cermed with the general problemsof determining the output of a
system as 2 function of the input,and of determining the struocture
of the syLtem. This is an inverse problem of most interesting
type. We observe some inputs and some outputs and it is up to us
to wield Occam's razor so as to deduce the structures that explain

the observations in the most esthetic fashion.

Simultaneously with g _.neral problems of the type discussed
above, we meet the problems of control. Starting with a fixed
structure, we wisch to regulate ‘he inputs and outputs %0 as to

achieve some desired state of the system. These problems combine
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all the difficuities of the problem of the previous stage with
the additional complications presented by this new optimization
problem. On the other hand, we may note, that in return the

optimal system will possess certain simplifying properties.

Continuing in the direction of controlling the system, let
us suppose that we have the pover to alter the basic structure
ol the system in various ways. We can interchange the position
of various boxes, bypass others, introduce new boxes, and so on.
The problem is now to determine the structures which are optimal

accordinr to various criteria of efficiency.

Problems of the last two types we call "scheduling problems”.
The first type, difficult as it is, has been intensively studied
in recent years, and a number of mathematical techniques has been

devised to treat these questions with some degree of sucocess.

The structural probleme involving combinatorial considerations
have only recently been studied in an intensive manner. They in-
volve mathematical difficulties of the highest order even in what

seem t0 be the aimplest nases. These are the preodblems we shall

o —

- i R e

focus upon in the following piges.

We have spoken above of input—output curves, tacitly assuming
& deterministic situation where the output is a fixed function of

the input. In many aituations, a convenient mathematical device
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\for by-passing ignorance is to assume that the output is stoachas—
Htie. In some cases, e.g. statistical meehanics, this simplifies
the problem; in other caser. e.pg. assembly line production, it
greatly complicates it.

Pinally, in our hierarehy of problems, let us mention one
further stage. We took it for granted in posing the problem of
determining optimal arrangements of blocks that we knew the re-—
bponlc curves, the outputs as functions of inputs. This is some-
times net true. In some situations we must simultaneouily determine
response curves and optimal structures. Since the optimal struc--
ture depends upon tnhe response curves, and the information we obtain
concerning the response curve depends upon the structure we assume,

we see that thio type of operation is quite involved.

Proocesses of this type we call "learning processes’ . They
arise in connection with the desicn of experiments and in the

theory of sequential analysis.

Since 1t is impossible in a survey article of even this size
to g!ve any adequate coverage of all or even of some of the most
promising aspecis of this fascinating and fundamental field, we
have compromised by discussing a very few topics in small detull
and by referring briefly to a multitude of others, with a

bibliography for the interested reader.

Further references to these interesting processes may be fcound in
R. Bellman, "A problem ir _‘he Sequential Design of kxperiments",
RAND Corpcration, Paper, P—586, 1954, and R. Bellman, T. E.
Harris, and H. N. Shapiro, "Studies in Punctional Equati ns
Occurring in Decision Processes”, RAND Corporation Paper, P=382, 19c2,



P-651
—He
In Part I we shall consider a number ¢f simple prototype

probiems associated with multi-stage production processes, and
various mat.ematical models and methods which have been used to
treat these problems. In passine, we shall note the connection
betwern these prolLlems and the problems of organization theory,
problems encountered in the theory of switching, and the con—
struction of computing machines, insofar as these are all provlems

of determinin- optimal structure.

Part II1 1s dnvoted to survey of some of the work that has
been done on transvortation problems in connection wit: deter—
mininge most efficlient routings. The Hitchcock-Koopmans protlem

i3 typical of the questions that arise.

Many of these problems can be treated by techniques devel-
oped in the topolc¢zical theory of craphs and networks due to
Konig, Menger, and others, which in turn grew out of the work

on electrical network theory by Kirchoff.

Iterative techniques for solving various classes of these
problems have been siven by M. PFlood and A. Boldyreff. In par-
ticular, the new technique of Boldyreff, the "flooding" technique,
seems to have grecat possibilitiec in connection with many similar
types of problems. Linear programming techniques are also

applicable in many cases.
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The thi:d part is devoted to a short discussion of "smoothing"
prodblems of varieus types. Hore we shall meet the '"caterer  problem
and the "optimal inventory" problem as representative problems 1
that area, and discuss some closely associated control problems

oocourring in engineering control.

In Part IV, we mention briefly some scheduling problems
arising in computational analysis. Here we have been quite ar-
bitrary in our choice, and any expert on the field can readily

add a seere mere of vital! questiens.
Part V 13 dévoted to a bdrief survey of some applications

of the theory of elnoar programming to the field of scheduling theory.

Finally, in Part V we do some crystal-cazins and discuss
various parts of mathematics which we feel w* 1 have to be in-
tensively cultivated before essential prog' ss can be made in

the fleld of scheduling theory.

We have omitted any detalled di. ‘ission of the lower level
scheduling processes, such as those which occur in multi-stage
productive processes, allocation and investment processes, the
calculus of variations, the theory of multi-stage gares, and
generally any topics which can be treated by mathematical tools
of a fairly established type. In a sense then, ;e are being
masochistic and deliberately restricting ourseives to those

fialds where we must plead 'nul contendere'.
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Assembly Line and Kelated Protlems

$1. Preliminaries

In this part of the paper we shall consider some oroblems

arisinc from the study of multi-stage produccion processes.

The first problenm we shall consicer involves a two—stage
production process in which we have a number of books in manu—
script form which must be printed and bound. dJe wish to deter-
mine the order of procescing the books which minimizes the total
time required to complete all the booxs. Two 3olutions will be
presented, the or:glnal one duc to S. Johnson, based upon an
explicit formula of 1lnteest in ltself, and a solution based
upon tne furctional equation approach of the theory of dynamlc

prosramming.

Continuing in this direction, we shrll consider the analogous
three—stage process. Formidable difficulties appear in thls case,
and there is at the present no solution for the general case. Tr.is

sad statement will appear repeatedly in the lines below.

The correspondins explic't formula of Johnson for the three—
stage process may be used to obtain a continuous version of some
nar.‘cular cases of importance. In the continuous case we can
derive a very simple solution which thiows some lieht on the dis—

crete problem.
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Following this we shall consider some natural extensions of
the simply-formulated problems mentioned above. Thase problems
are closely reluted to problems in crganization theory of the type
formulated by J. Marshak, (7], and these in turn are connected to
the theory of switching, to the theory (f automata, and all similar
problems involving the counstruction of complicated objects from

simpler components, (&), (19.

The last section is devoted to the "assignment" problem.
This 18 a simpler problem involving the maximization of a function
of permutations®, and may be treated by two methods, due tc igervary,
(3], and von Neumann (}4]. Here we meet the fundamental technique of
~mbedding permutation matrices in the semi—group cf doubly-stochastic

matrices.

§2. The Book-binding Problem

Let us begin by considering the folluwing simple problem.
We postess one printing press, one binding machine, anc t!.e manu-
scripts of a number of possibly different booka. Assuming tnat
we know the times required to perform tne printin; and binding
operations for each book, we wish to determine the (rder in which
the books should be processed in order tcu minimize the tctal time

required tc turn out all the books.

This is a problem in rearrangements, or permutations, which

in any particular case can conceivably be determined by & direct

* In the sense that it has been effectively solved, while the

others have not been sc far.
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enumeration of pussibilities. Lest anyone tco blithely refer to

modern computing macnines, let us quote scme f'igures.

The number of possible arrangements o ten different items

is

(1) 10! = 3,620,800 ,

while the number cf pc. ' .. "rransements c! twenty different
items 18

(2) 20! = 2,432,902,006,176,640,000 .

To give sume idea of the magnitude of this number, let us
merely observe that at cne sorting per micrcsecond an enumeration
of the 20! poussibllities would require well over a half a million

years. Clearly we must use some native "inwit".

§3. Lemmas of 5. Juhinson

et us introduce some notaticn. Let

1 4
(1) 4y = time required to print tne 131 book,
b1 = time required toc bind the 133 book,
for{ =1, 2, ..., n, where n 18 the nuumber of different books,

We Wwish to determine the ‘rrangements of the books which
yleld the minimum time required to print and bind all the books.

It 18 assumed that the printing will precede the binding {n each

DCOK.

The first result we sholil require is
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lemma 1. To obtain a minimal ordering, it is gufficient to con-

sider that the bools are processed in the same order througn toth

machines.

A possibility which cannot be discounted without investigation
is that !t may ove more efficlient to feed the books into the bvinding
machine in some order different “rom that used on the printing press.
As we shall see below, this result concerning identical ordering
carries over to the three-stage process, but not to four-stage

processes.

let us begin by taking the items in chronological order, i.e.
the 1EE {tem in the 129 position, and derive an expression for

the total time required to complete the process.
Define

(2) X, = inactive time on the second machine, the binding
machine, immediately before processing the 132

item.

In many cases, of course, Xy will be zero. The total idle ¢tim:

on the second machine is the sum
n

(3) I =% x
1

n

and thus th: total time required for the process !s In o = h,.
l_l .

It follows that we may taxe In as our measure of the efficiency
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of a scheduling of operations, and that it is this quantity which

we wish to minimize.

Schematically,
a a a
—1 2 i
i xl 4 bl 4 ‘2 . b2 Ax3A
L4 h g v v v v

An important result for our purposes is

Lemma 2
n u u-1

(4) I -2 x, = max (z a, -Z b,)
i=]) 1du¢n  1=1 {=]

Proof: We have

(5) xl =~ al

whence
(6) x, + x, = max(a, + a, - b,, al)

Similarly
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(7) Xy " max(Z a
i=]

3
v pax(Z a
1]

3
- max(Z a,
1=1

[N

3
z X
i

-

|
M MY M
o

It is clear now how the proof proceeds by induction for n ) 3.

L L The Result of S. Jornson

The problem of determining the optimal order is equivalent
to determining the arrangement of the n items which minimizes the
expression for In given in (3.4). We thus have a numerical func—
tion defined over the permutation group of order n, and we wish

to determine the minimum of this fynction.
The tolution 1s given by

Theorem 1. The optimal ordering 1s determined by the following

rule: 1item 1 precrades item J 1if

(1) min(aio bJ) < min(ajn bi)

If there 18 equality, either ordering 1s optimal, provided that

it 1s consistent with the definite preferences.

Por Johnson's derivation of his result and the remainder of
the proof that this criterion ylelds the absolute minimum, we refer

to his paper, [5]. We 3hall give another derivat‘on below.
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The importance of this result resides in the fact that it
shows that in this problem the minimum time may be fcund by
determinin,; the effrct of the interchange of any two neighboring
items. This result is not true in general and accounts for the

difficulty of the multi-stage problem for more than two stages.

$5. An Example

Let us now illustrate the simple way in which this criterion

may be applied. we foliow the steps given below:

1. List the a, and b1 in two vertical columns

1
i a1 b1
l al b1
2 82 b2
__n an bn
2. Determine the minimum of all the a, and b

i 1°

3 If it i8 an a place the corresponding item first.

1.
4. I 1t 18 & bl’ place the correspending item last.

5. Cross off both times for that item.

6. Repeat the steps on the reduced met of (n-1) items.
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s In case of ties, order the items with smallest subs~ript
first. for the sake of definiteness. If a tie betweer a,

and bi’ order the item according to the a-rule.

To 1llustrate the met.aod, consider the following example

1 a, b,
1 4 5
2 L 1
3 30 4
4 6 30
2 2 3

The rule yields (5, 1, 4, 3, 2) as the minimal order with a
total! time of 47 units, and 4 units of idle time. PFor the reversed

order, the total time is 78, the longest time.

§6. An Alternate Derivation of the Decision Function

Let us now giveg another derivation of the decision function
given above in (4.1) using the functional equation approach of the
theory of dynamic programming, [1]. It has the merit of ylelding

this function without the use of the explicit formula, ¢iven 1in
\3.4) above.
Let us define

(1) £(a1sDys85,05, 00 stysby,t) = the time consumed i1 processing
the n itens, when the second
machine is comitted t hours
ahead, and an optimal policy is
emplo; eqd.
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If the first item !s processed first, we have
(2) I‘(al,bl,nz,b?,...,ah,‘JN, t) -
alu’[ 0,0,8,,b5, -+ s8y, by, blm(Hl,O)j p
Choosing the second item to follow, we obtain
(3) £(ay,Dy,85,05, 000080y t) =
al+a2+r[ 0,0,0,0,33,b3....,aN,bN,g(al.bl,az,bz, t)
where
(u) p;(allblna?lb2n t) L
b +max[ b -a,+max(t-a,,0), 0] .
On the other hand, interchancing the orders, we obtain
(5) £(a)0b1585,05, 0008y bys t)

a *a1+r[:0,0,0,0,33,b3,...,aN,bN,g(a2.b2,al.b1, t) ]

2

It follows from this that the order of operations vhich minimizes
the new t—term is optimal. lence we cl.oose the order which yields
the minimum of g,(al, byy 25, by, t) and g(ae,be, 8y, by, t). It
is not immediately obvious trat this choice will be independent

of t, and it 18 actually quite surprising that this is so. We have

(o) g(al,bl,ag,be,t) a bz«mx{:bl—aa4-max(t—~a1,0). 0]

b, +b,—8,+max Emax(t—al,o) » 8,—by b

= by+bya,—a,+max[ t, a,, a,+a b, ] .
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It follows from this that regardless of the value of t, the
order of operations which yields the minimum of max [al.a1¢a2-b2]
and max [32.l1ﬂ2—b1] cannot increase the total time, ~nd may

decrease 1it.

+t 18 easily seen that this criterion is equivalent to

Johnson's criterion above.

§7. The Three—stage Process

Let us now consider the three stage process obtained from the
previous twn stage process by the addition of a third required
operation, which we can think of as the typing of the manuscript.
We now have n books in manuscript form which require successively
typing, printing and tinding. Let a,, bi' Cy represent the
respective times raquired by the 132 book for each of these

Jocesses.
The first result we require is

Lemma 3. To obtain a minimal ordering, it is sufficient to con-

sider the case where the booke are processed in the same order on

the Eﬁ"ee machines.

A doutle application of Lemma 1 yields this result.

The example




3

of two items going through a four—stage process shows that uniform
ordering is not universally valid. It is easy to verify that in
this case the optimal arrangenent changes in going from the second
to the third stages. However, the ordering on the first two
machines and the .ast two machines may always be taken to be the

same regardless of the number of stages.

Let us now present a formula for the total idle time on the

third machine similar to that given above for the two—stage pro-

cess. let
(1) y, = the idle time on the third machine immediately
preceding tle processing of the 135 item.
Schematically
a a a
— —+ e ., 2 +
b X. b p

—_— 2 3

okl I Yo

| 4 A v v

The same type of argumentation as above y’ :1ds the formula

Lemma 4.
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(2) ; (
2 lZ Yy, - max H + K.)
1=l 1 lﬁuSVSn E 4
where
v u—1
(3) Hv &4 :‘: bl - E c4 » vV = l, 2' e s e g w. »
1] el °
u u-—1
Ku-z al—z bi » U-l, 2' ...,n
i=1 i=]

As yet, no one has been adble to use this formula to derive
the optimal orderinz for the three stage problem. As we shall
see from the discussion of the continuous version below, * e

generzl solution nust have a quite complicated form.

§8. A Continuous Approximation

In view of the lacct of success in treating the cenersal
problem, it seems worthwhile to consider arious special cases
in the hopes that the solution of these may throw light upon the

general case.

Let us consider first, to illustrate the method we shall
employ, the particular case where we have two stares and only
two types of items, each occurring in larfe quantities. As an
approximation to the expression

u-1
- Z b
1=1

u
(1) S(u) =% a

11 !

1

we shell consider the intecral
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(2) I(u) = /’3“ (a(t) - b(t))de

As an analogue of the arrangement of these n i{tems of only two
distinct types, we shall consider a characteristic function, ¢(t),
defined over the interval (0,T], which is to say a function ¢(t)

with the property that

(3) é(t) = 1 for teS, a subset of (0,T)

@ O for t in the complement of 3.

Since there are only two types of items, a(t) and b(t) are

determined by the relations

(4) a(t) = a,¢ + a,(14)
blt) = b1¢ + b2(1-¢)

de now wish to determine ¢(t) so as to minimize the funo—

tional

(5) (T) = e C A" (a(t) = b(t))at ]

subject to the conditions

b. ﬁ’r ¢(t)dt = kx < T

The last condition is the continuous analogue of the oon—
diticn that k of the {tems are of the first type and n — k of the

second type.
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Ueing (4), the problem .s that of determining

(7) nin 02321‘ [a /;d ¢dt + Bu ]

where

(8) a, a= (al - 32) + (by - by)
. P = (a2 - b2)

It is easy to see that a solution 1s given by

(9) a>0: 4(t)=0 , 0t{T-k
#(t) =1 , T-k{t{T

a ( 0: ¢(t) =1 , 0{t(k

$(t) =0 , k Ct (T

We see that the fomm of the solution depends upon only the
ordering of the quantities ay - b1 and 8, - b2, which 18 precisely
what we might expect. A similar solution is obtained for any

number of distinct types of items, see [°].

89 Continuous Version-three Machines

Let us now discuses the continuous version of the three-mac.iine
or three stage—process, again for the case of two types of {tems.
As the continuous analogue of the idle time on the third machine

we have the functional
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_Do_
T) = C /! ~b(t))d vV (b(t)—(t))ar
(1) T(T) OS:ZJ‘:ST Sl (a(t)-b(t))dt + /77 (b(t)—(t))ar ]
e L e SRR /C S RIST

where
(2) a(t) - al‘ + 32(1—‘)9 b(t) - b1¢ + be(l-ﬁ) ’

C(t) C cl‘ i 02(1—‘) ’
and
(3) a = a; -8, + by - by

B = a5 - b2

¥ = b1 - b2 + ey = €y

b = b, — ¢,

We 41sh to determine the minimum of I, for all ¢ subject to

the conditions

(4) a. ¢(t) =Qor 1 ,
b. (;Tédt-k .

As we shall see below the minimum over this class of functions
may not exiat. Let ue then consider the more extensive class of

functions satisfyinr (4b) and the weaker condition

(5) 0 5 é(t) !

The solution to this problem is contained in
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Theorem 4. The minimum value of T is

(€) V(k,T) = max [0, ¥k + BT, (a+¥)k + (R+5)T )

A minimiz.ng ¢ is given by
(7) ¢*(t) = k/T for O0t(T

In general, the solution 1is non—unique.

The proof, which is quite simple, may be found in [(2].

The particular solut.on given above, ¢*, involves mixing
which in the discrete case is imposs.ble, although we can always
approximate to it. Since the solution is non—unique in general,
it is possible that in many cases the solution will have the
sizpler fom

(8) ‘(t)'lo ostsko
-0 , k<t T ,

whioch ccrresponds to a very simple solution in the general case.

As we shall see below we can find values of the parameters
for whicl: the solution cannot have this simple form, and, as a
matter of fact, for which the solution 7iven above 18 the uninue

sol. .ion.

The importuance of this result is that it shows that the three

stage process presents a genuinely difficult problem.
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§10. Example of Unique Solutione

Let us take k/T » 1/2, 80 that we may take % = 1/2 and T = 1.

Choose

(1) a, =2 , b, =3 , ¢, =1 ,
a, - 2 , b1 -] , ¢y = 3

Then

(2) a=-2 , B =1 , ¥=4 , 6 22

iience

() Vv - max (0, 8% + 5T, (a+¥)k + (p+5)T)

= MAY (O, O, O) £ O .
Thus, 1if ¢(t) ie a minimizing function we must have

(4)

OSEZ:ST [aﬁu 6dt+£3u+8ﬂv ¢dt + bv | = O

which for the set of parameters chosen above reads

(5) max 'E—2Au¢dt+u+uﬂvﬁt—2v]-0

Oguivil

7 7/

Por all u and v in the range O ; u v {1 we must have

(6) éﬁuédt+u+kﬁv‘dt—2v-0

Setting v - u the result is

(7) 2 /ol 4t Su o,

s/

for O S u < 1.

®* Due to Oliver (Gross
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On the other hund, secttinc v « 7 -« 1, and using the relat!ion
p\ ‘ ’
(8) v/; odt - x - 12
we obtain from (9) the condition
U,

(9) -2 /7 4dt s u g0 .
Comparing (7) and (9), we see that we must have equality

(10) v/gu édt = u/2

Prom this we see that é(t) = 1/2 for almost all u, which is to
say the solutic-. is unique in the set of Lebeague integrable

functions satlsfying the constraints.

$11. Stochastlilc Vers'ons

lLet us now consider the case in which the processing times
are stochastic rather than fixed parameters. In other words, each
item has associated with it a set of distributions for the times

requised on the various machines.

The problem 1s now that of determining arrangements which
minimize the expected value of the total time required to process
all the books, or s&me other mean of the total time. wnatever the
difficulty of the deterministic versions we have discussed above,
the stochastic version seems to transcend them. Nothing 1s <nown

about the solution even in the two stage pro-ess.

Since the total time will be a nonlinear function of the

individual processing times, it 18 clear that a knowledre of
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sxpec.ed values of tndividut! procecsing times will not be sufficient

to determine the minimum total expected time.

This problem introduces some interesting questions concerning
the "stabillity” or "stiffness’ of a scheduling policy. An ordering
which minimizes the expected total time may very well permit of a
large variance. Consequently, for many purpeses a 'looser’ solu-
tion with rore flexibllity and slack, which is comparatively un—

affected by minor variations, may be more desirabdble.

Althouch these idieas rre, of course, well-known in practice,

a precise mathemati:a' formulation seems difficult.

$12. Queuing Theory

If we fix the order and fasten our attention ''»on the dis-—
tribution of idle times, the distribution of waiting times, and

similar questions, we enter the domain of queuing theory, see

(6]

In this connection, we would like to point out that the
explicit formu:las of Johnson may be of some utility in determining

1imiting distributions.

$1<«. LIxtensions

Althourh 1. may secem qultec academic to discuss extensions
wren the a'mplest problems defy anal+sis at the moment, it 1is
actually worthwhile to scan the horizon 1if only for the sake of

inspiration.
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Tn reallintic problicms we will Le dealing with proceises in
which there are many machines o! each type at cach stare. A firat
question tha. arises is that of our policy of feedins items into
the machines at any particular stage. Por example, we mey retain
a rigid order, so that in the case of three machines, the first,
fourth and seventh items, and so forth, go to the first machine,
the second, fifth and eisghth co to the second machinec and so on.
Or we may use a first—come first—serve principle and a'locate
each new item to the machine which i8 free, or committed for the

lJeast time ahead.

The determination of a feeding policy is part, of course, cf
the general scheduling problem, but {t will be simpler to solve
scheduling problems of this type 1if, a:'bitrarily, we restrict cur-

selves to certain types of sub—po.ilcles.

If many of the processes are lnterchangeable, although not
2ll, we have the important n»roblem of dete:mining the arrancement

of the stages.

We may also conslder ourseives Lo nave avallable a semi-
f1uid Yabor rorce which can be assigned {n various combinations
to man the machines at varicus stages, there!'y decreasing the
processines time at that stage. The question 13 now that of
determining the optima: partitionin, of the lavor force among

the various activities.

Purther, more detalled discussions will be fcund {n Salvescn,

(9], (10], and Vasunyi, 111, (105, (13].
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Pinally there {s the sverall problem of allocating money
for the purchase of various types of machines and various catagories
of labor. It is easy to see tnat we can construcet hierarchies of
problems of increasinrs orders of difficilty. We can, however, ob-
tain approximate solutions to the larger problems by simplifying
thie behavior of the camponent parts, with the result that from a
certain stage on, the solution of the overall problems ~ay be
simpler, if lesas exact. This is, after all, the usual technique

cmployed in the treatment of the physical world.

$:4. Organizatlion Theory

It is clear tha* in considerine the zeneral problem of
arranging combinations of men and machines to perform certain
multi-comnonent task:z, we are encroacnhing upon the domain of

organization theory.

The mathematical probvlems encountered here are of precisely
tne samne feneral nature as those discussed above, and abstractly,
there 1s nc difrerence. For thoge interested in some of the
questions in tnhis field which have been treateu recently, we

refer o the worv of J. Marschak, (7], [8], on the theory of
teams and similar problems.
A particularly interesting set of problems arise in connec-

tion with the dcecoign of automatic control circuits, computing
machines and related mechanisns. The mathematical technlquea

employed here rance over Boolean alzebra, n«thematical loglc,
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topology and other regions of abstract mathematics which, at first
Zlance, would seem far removed from applications. Por a discussion
of the "switching" problem, see Yohn [4]; for a discussion of the

automaton problem, see son Neumarn, [J9.

615. The Assignment Problem

In the sections above we have attempted to determine the
minimum over all permutations of n objects of a cartain function
assoclated with these permutations. As we lnow, the group of nl
permutations on n obJjects is equivalent to the group of permutation

matrices, P, of the representative {cim,

(1) 0 1 0 0
0 ) 1 . 0
1 0 0 0

characterizad by the property that there is precisely one non-zero

element in each row and column.

Consequently, in place of maximizing over all permutations,
we can think of maximizing a function f(P) over all matrices P.

The simplest such function 18 a linear function

(2) t(P) - tr (AP)
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where tr (2) <« 2 U the sum Cf the diagonal elements of a

matrix B.

This function actually ccecurs {in connectioun with an important

problem, the "assignmen’ protlem", which reade as follows:®

"Given n men and n Jcbn with the utility of the assignmer® of

th

tie 132 man tc the _— Job equai to ¢ 1, =1, 2, ..., n, deter—

1’
mine the aliocation of assignmente which maximices trhe total

utiliey.”

Crudely we see that we have n! possibilities to contemplate.
There are twc ways ¢f overc:ming this difficulty. The first {s
due to von Neumann, ﬁﬂ. who converts the problem into an n2 x 2n
game which 1s a generalized version of "hide—and-seek”". The
second 18 due tc =gervary, [}], anc i{s based upon some work of

D. Konig in the theory cf graghs.

Tne basl: principle involved in each is the fact that we can
imbed the permutation matricee in the continuous set cf doudly-
stochastic matrices of order n, i.e. matrices P = )p’J) charac—

terized by the jrouperties

(30 a. O, <1,

* Some very interesting generaliza'ions of trese problems, dealing

with teams, have been formulated by L. Shapley, (unpublished).
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and that the permutation mutrices ar« the extreme elements of this
convex set, a rr-ult due to G. Birkho!f. Another proof s con-

tained in von Neurn .n, 8.

Other problems involving maximizatlion over the set of permu—
tation matrices arise ‘.1 various parts of transpcrtation tneory.
We mention tne "“travelling salesman” problem, and a problem of

Becimann and Koopmans whilch requires the maximization of tr (PAPB).
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Part II.

Transportation Problens

€l. Introduction

A largze and importarc class of problems with strong topo—
logical overtones arise from the determination of efficient trans—
portation schedules for buses, trains, airplanes, cargo ships, and

80 On.

Since the subject 18 a vast one, with moat of what is mown
to datc in readily availlable papers, we shall content ourselves
w.ith a brief reference to the work on the Hitchcock—Koopmans
transportation probtlem, which 18 repreventative of the type of
question that arises, and then discuss the question of determining
the capaclity of a ra!l networx. Tnis problem {s particualarly
interesting since {t may be approached.by means of the theory of
graghs, using the resuvlts of Menger, or vty means of linear pro—
eramminc, or by maans of various i{terative techniques such as

the "flooding" technique of Boldyreff.

§2. The Hitchcoou-Xcopmans Transporvation Problem

Suppose thet we have M ports containing cargoes and N porte

as Jdestinaticns <! these cargoet.




e
’ +
Let diJ be e "an'e betwee: ti.e 133 cHrye poert and J~3 destina—
ticn, and let Xl' be the cargc tranamitted betlween Lhese tw. jorts.
V]
The c¢H8l ! transmitting this cargce 18 taken t. be xijd'J' Assune
that ~e have an amount, c¢,, of caryg . 1t the 1£D pert and a require—
ment rJ at tne jEQ port, «ith
(1) Le =2ar, ,
v
1 J

and that it s desired to transmit all tte cargc ut a4 min’'munm

total coet.

The matnematical problen 18 that of minimicing tue linear

form
: M, Nk
2) b3 d o a Xl
TG el

sub ject tc the ccnstraints

( M
3) a. o X = r,
{el 1) J
N
b. Z Xy = ¢
C. 11J 2 C

A thorcugh discussion of an {terative technique for solv'n-
this problem is given by Flood, [3], and a discussion of related
classes of problems ‘r contained in Koopmans, [7;. and i{n Bec:mann,

McQuire, an® Winsten, [1].

$3. On a Simplified Transportation Network

Suppose that we have an idealired networs which can bhe

represented schematically by dlazrams of the followinrs type
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Tiie vertices represent terminals and the connecting arcs
represent raill lines vetween these terminals. The arc connecting
the 1£L terminal Lo the JEQ terminal 18 assigned 8 numerical
quantity, a "capacity", By which we consider to be the maximum
number of cars it can transmit !{n unit ‘ime, and the 1ED vertex

{s assignec a number, Li' tre maximum rate c! flow through tne

terminal in unit time.

An impcrtant quantity assoclated with a network ¢f this
tyje 18 the maximun rute of flow from ¢ tc T {n unit time, cr,
mcre generally, frcm any vertex to any other vertex. That the
pvrcblem {18 nin-trivial is due tc tne fact that bottlenecks may
develop at various Juncticns if *he outgoing 1lines h-.ve smaller
cajpacity than the incoming lines or {f the terminals cannot
handle maximum inco.ing and outyocing traffic. The problem 1is
that of determining » systematic procedure for ascertaining the

maximwn rate of flow frcm U to T and the allocation of cars which

yleids tnils maximum rate.

hu. Tcpclcegical Approach

As hag happened so frequently in the pasi, a mathematical

theory whicnh treats prot _.ems c¢f this genre is already ir existence.



It I8 the thecry of graphs, an cutgroath of the electricul networy
thecvry of Kirchoff. The particular resulta required are due to
Menger Dﬂ, witnn the application to ratlway networks suggestel by
A. Hoffman, and worked out In detail by Boldyreff, L bacxker i

others. *

§. Linear Prc_ramming

Since the provlem of determining the maximum rate f flow
may be formulated as a maximizution of a linear function, namely
the rate of flow to T from the immediately ad'lacent terminals,
subject to the input—output relations and the capacity restraints,
it {8 clear that the thecry of linear inequ2lities cr linear yfrc-
gramming is applicable. It has heen shownby Ford and Pulxerson,
[h], that the results derived from Menger's theory may be obtalned

in this way from the duality theorems of linear programming.

$6. The Plcoding Technique

Since tne maximization problem is derived from a dynamic
process with certaln characteristic features, it le tc be expected
that we can find an iiorative scheme of sclution which will make
use of these features and therefore be simpler to use thou any of

the standard algorithms of linear programuing.

A particularly interesting technique which seema to have
many wider applicationes 18 the "flooding" technique recently
developed by Boldyreff, which we snall desacribe briefly.

* A very interesting puper by W. Prager, "On the Role of Conges -
tion in Transportaticn Problems", Brown University (1955), has

Just apreared shcwing that a very natural nonlinearization leads
tc 4 unique solution of the Hitchcock-Koopmans problem.
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we Btart ~ut from ¢ vty routl .y "ralus 1t maxinun capnr ity
blong Lhe lines emanatlinyg 'ron o, WLoencr new terminal we may
01 mmay notl encounter o bottlerecx. [f we escunter nu bottle—

neck, we continue in tnis fastiicn usiny tre maximum number of
trauins avallable and rutineg in a {ixed fashl ' n If we have a
ciioice, e, y. maximun cayacity to uppermcst ‘ine 1nd contiruing
clockwise "n Lhis fashicn. It we enccunter a bottleneck, w~e ure

tie maximum allowable number o f trains and continue the preocess.

Having ~one throupyh the whcole netw .r« 'n this way, we aow
remove the bottlene:xs cne at a time by wierking backwerds either

frem T or from the stases closest to O,

We see that the method possesses the essential features of
the "relsxatiocn”" method which 18 widely used in applied mathema—
tics. Althcugh no proof has been given ¢f tne convergence of
thieg tecnnique as yet, there seems to be little doult that it 1is
valid. A crmplete discussion of the technique together with

-~ -

examples will be fcund in a4 florthcoming pajyer by Bolidyref!l, (2].

1t 18 ~wcrtnwnile 1.oting that thnere 1¢ a strong analcgy
betweern a rallway netwcr« and a prcauction network and thus that
this technique may be equ2lly useful in estimatirg tie polen--
tialittes -t industriil networks. *®
* K. Pulxkerson has shown that some structural theorems for
rartially crdered sets, due to K. P. Dilworth, Ann. ' f

Matn (19%0), may be derived from Menger's theorems.
A. Hoffmar and G. Dantzig have given another pr-of based

upun the duility theorem of the theory of linear inequalities.
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There are a number . f interruting anit im; rtant mathematical
problems concerned with the transmission «f power {rcm ne scurce
to ancther, and with the i{nterconnection of transmissin syotems.

Let us refer tne interested reader to

G. KrUn, Tene rial Analysis of Integrated Transmiasicn Lystems,
1, 11, 111, IV, Vol. 70, 71, AlEZ Prcceedings.
A. P. Glimm, R. Haberm=n, L. K. Kir~hmeyer, R. W. Thomnas,
Aut omatic Digital Comjuter Applted tc Generation Schedul-

ilng, Paper £4—-276, AIEE Meeting, June 21-C-, 1354,

, loss Fernulas

Made Easy, Paper -3-209, AILr Meeting, .June 1513, 195'.
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Part III.

Smoothinre Pro!lema

§1. Preliminaries

In this part of the paper we shall discuss a .lass of problenms
which are occasionally called smoothing' problems. The general
problem has the following character: we wish to maintain a system
in a rliven state, witl. penalties for deviations from this sta:e.

In sor.e cases, the penalty 18 the same recardless of the direction
of deviation; {n other cases, we have one type of penalty for
overshootinc the requirements, and another type of penalty for

not beling able to meet the requirements.

We shall discuss come s!imple problems of this type, arising
from economic and Indusnt.lal s!tuations, and then dtscusc sone

control’ protleme arisinc in engineering practice.

$2. An Industrial Smoothing Problen

let us suppnse that at any time t we have &« have a s-aff of
employeces capable of turning out a certain quantity of work x(t),
and committments requiring a quantity r(t). 1In -eneral, the

function r(t) wil! be nscilllatory as a functlon of time,



r(t)

We shall assume that at all *imes we are required to have
x(t) > r(t), which te to say we are required to meet our committ—

ments come what may.

If x(t) exceeds r(t), we consider ourselves to be losing an
amount of money in excess wages proport.onal to (x(t)-r(t))dt c rer
the interval (t,t+dt). However, if we decrease x(t) to the level
of r(t). we are faced with the prospect of having possibly to in—
crease x(t) if r(t) increases. This cannut be aone wi-hout cost,
and we shall take the cost of doing this proportional to dx/dt.
Assuming that it costs us nothing to decrease x(t), the cost of
changing the level of labor supply over the interval (t,t+dt) will

be taken to be proportional to
(1) max {dx/dt, 0)dt .

The total cost over an interval [0,T] can then be taken to



be
(2) J(x) = /;T [ (x(t)-r(t)) + a Max (dx/dt, 0) Jdt
where a {8 scme positive constant.

The problem 18 now to choose an absolutely continuous x(t)

which mininizes J(x) wnile satisfying the requiremenit x(t) ) r(t).

The solution turns out to have a quite simple form, see |4 j.

§3. Discrete Version

If we now take time to be measured In discrete units, the

analogue of the expres lon in (2.2) is

N
(1) J{x} - }r: , [ x(k)-r(k) + a Max (x(k+1)-x(k), 0) ]

The constraint 1s now
(2) x(k) 2 r(k)

The solution to this problem is similar to that c¢iven for the

continuous version, see Karlin (8].

§4. Expansion Limitation

An interestine version of the above problem is one in which
we do not allow arbitrarily rapid increase in x(k) or x(t). Thus

for the discrete case we may impose a condition of the type



(1) x(k+1) ¢ Ax(k) ,
or
(2) x(x+1) = x(k) ¢ b

A problem of the first «xind has been Geated by Baldwin ard Shepnard,

{n an unpublisled ~ork.

$5. The Caterer Problem

let us now state another smoothirn, noroblem {n the form . !ven

by W. Jacobs.

"A caterer mows Lhat in connection with the meals he has
arranged to serve during the next r. days, he will require rJ 20
fresh napkins on the J%% day, § =1, 2, ..., n. Launderins nor-
mally takes p days; that is a solled napkin sent for laundering
immediately after use on the JEE day 1s returned in time to te
used again on the (J‘p)EE day. However, the laundry also has a
higher cost service which returns the napkins in q ¢ p days (p
and q i:utegers). Having no usable napkins on hand or in the
laundry, the caterer wi{ll meet his early needs by purchasing
napkins at a cents each. Laundering costs b and ¢ cents a napkin
for the normal and high cost service respectively. How does the

caterer arrange matters 8o as to meet his needs and nminimize his

total outlay for the n days?

The solution for the case where q = p—1 18 given by Jacobs

in [7].
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§6. The Optimal Inventory Problem

The preceding problems have been of deterministic type. Lot

us now consider a stochastic version.

The situation is as follows. At various specified times, we
have an opportunity to order suppiies of a certain set of items,
where the cost of ordering depends upon the number ordered of each
item, and where there may or may rot be socme fixed administrative -
costs which are independent 0. the number orderad. At various
other times, demands are made upon the stocks of these items. The
inte~esting case is where the demands are not known in advance,
but where we do 'mow the joint distribution of demands. The in—
centive for ordering lies in a penalty which is asseaged whenever
the demand of an item exceeds the supply. Different penalties are

levied in different flelds of activity.

We wish to determine the ordering policy which minimizes the

expected cost of the total process.

Here 18 a case where we have one type of penalty for being
unable to supply the demand and different penalty for being over-—
stocked. This last penalty may be expressed in terms of f{rozen

assets, in storage cost, etc.

The problem was first formulated by Arrow, Harris and

Marschak (1], and has been subsequently treated “y Dvoretzky,
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Kiefer and Woltowitz, (6], Bellmun, (2], and Bellman, Glicksberg

and aross, (4.

67. lLearning Processes

In formulating the problem above, we have assumed that we
kne.« the distribution of damand. In many cases this is not true,
and we have the additional problem of d:termining the probabllity
distribution and making decisions at the samc time. A process of

this type we call a '"learning process , ¢, our discussion in the

Introduction.

Problems of thias type arice mo3%w freguedtdy 1o o8t igtical

investicat'ion wheroe they have ~'ven rise to Lie Uhzory of se-—

quential uanalysis of Wald.

An interestinz survey of this -eneral orea !9 contained in

the paper of Rob>'ns, [9].

$8. Con‘rol Processes

Let us close this part with a brlef description of the types
of matnematice? problems arisin- in the theory of control processes.
Let us conalder a physical, economic, or enginecring system, whose
stace at any “ime- is determined by the vector x(t). If left to
itself, tte gya.em will be determined by the linear differentlal

equation
(1) dx,’/d'. [ AX ? X(O) a C »

where A {38 a constant matrix and ¢ is some initial value.
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LLet us suppose, however, that we want the system to behave
in a different way, one apecified by tne vector y(t). To force
the aystem into this desired state, we must introduce some ex-—

ternal influence, which we call "control".

FOr cur purposes we assume that th's external influence
mariiTests {tself by way of an innomogenecus term, a "forcing"

term, sc that (1) above becomes
28 adx/dt = Ax + C(%) x(0) = ¢ .

As usinl. 1t costs us scmetring to exert this contrcl. In

det. rmining .he amount of control we w!ll exert, we must balance
the cus' ~* contrul against the cost of deviaticn of the system
from ite lesired state. Depending upon the way we measure these

var' . cuets, we obtain various classes of mathematical prcblems.*

Problems ~f precisely similar mathematical type arise 1in
mathematica. ec.nomics in ccnnection with reinvestment pulicy.
Here 1t 18 a question of determining the rate at which profits
should be put back into 2 business so us to maximize the total

oprofit we cbtaln cver a given period.

For other aspects of control processes we refer to the book

by N. Wiener, [10].

* See, R. Bellman, I. Glicksberg and C. Gross, "Some Variational
Problems in the Tnecry of Dynamic Prcgranming”, FRend conte del
balermc, (t> appear), Proc. Nat. Acul. Sci., Vol. 39 71953).
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Part IV

Computational Proocesses

¢1. Preliminaries

In discussing scheduling processes associated with the use
of computing machines we are entering a field of great importance
where little has been done in ocomparison to the large n nber of

important and difficult problems remaining.

We shall make no effort to cover the vast area of problems
encountered in determining efficient coding procedures, but rather
mention briefly some problems of particular irterest from the
standpoint of scheduling theo:, First, we shell consider a
problem concerned with the evaluation of polynomials posed by
Ostrowski. This is a particular case of the general procbiam of
determining uniform procedures for compu.ing aquaie roots, solving

polynomial equations, and so on.

Then we shall discuss the sorting problem. Here we are
glven a set of items in some Jjumbled array and we wish to arrange
them in some assigned order, say alphabetically, or chronologically,
or with respect to other properties. A particular case of this is
tne problem of determining the maximum of n quant‘ties, which arises
.n computing the solutions of the functional equations occurring in

the theory of dynamic programmin..
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§2. Hormer's Hule

If we wish to calculate tie value of the polynomial

(1) () = aoxn : alxn—l ... v a

for a particular value of x, we can do it in the following un—
inspired fashion. We first calculate the nowers o x, namely
xd, x3 S eele xn, requiring n—1 multiplications, and then compute

the products, aoxn, alxn—l, 5 ops 0 X, n additional multiplica-

&1
tions. Having performed thecse 211 multiplications, we now re—
quire n additions to complete the evaluatioen. T™hus we require a
tocal of 2n—1 multiplications and n additions, following this

procedure.

L

Thee are many shorter methods. One method, which 1s usually
called liorner's 1ule, or synthetic division, employs the sequence

of polynomials ,

e k-1
(2) fk(x) - a X+ ayx coe bl
connected by the recurrence .elation

(3) fk(x) = X fk_l(x) oy

It is casy to see that rn(x) computed accordineg to this algorithm

requires only n multiplications and n additions.

It seems intuitively clear that no method can improve upon

this, but the proof seems difficult. See Ostrowski, [2].




F-051
—t 7=

$3. Universal Algorithms

The problem we have posed above is a simple example of a class

of problems that we meet in coding for high speed computing machines.

Various criteria are employed to measure the efficiency of a
ocoding procedure. We may wish to minimize the possibility of error,
minimize the computing time, minimize the memory requirements, and

80 On.

There is a vast literature on tnese topics in connection with
solving systems of linear equatlions, syatems of differential equa-

tions, partial differential equations and so on.

4. Determining the Maximum of n Quantities

An interesting function of n quantitiep is8 the raxinum
quantity. The use of computing machines in determining tie
maximum 6f a given number of quantities is extremely l.portant
in connection with functional equations of the type
(1) f(x) = max [ g(y) + hi(x-y) + flay b(x=y)) ]

0<y<x

which arise in the theory of dynamic programming, see (1.

$S. Soc,ting

Determining the maximum or minimum of n quantities is a
special case of the problem of sorting n quantities according to

some preassigned ordering rejation.
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There are really many special classes of problems of this
type. For example, one problem is that of determining a uniform
procedure which will workx for any given set of quantities. Another
problem 13 that of determining a sorting procedure which will
minimirze exnected sorting time when we are griven the items one
at a time or in omall batches and the information that there is
a miven distiibution coverning their ord~rin~. A further problem
is5 that of gimultaneously ordering and determining the distribution

15 we o alon’, which 18 to say a learninz process.

A diecussicn Of related prcoblems 18 contulned in Seward, [j],

~hiere a number of further references may be found.




Part V

Applications of the Theory ¢f Linear Programming

gl. Introduction.

In the previous chajters, we have discussed a number of
different classes of scheduling processes tcsether with vari us
analytic and computational techiniques which mAay be ut!{lized
to treat there problems tc a greater or lesser deygree. In *t:iis
chapter our theme 18 the thecry of linear pr gramming. we 8h.ll
illustrate by meana of a number of examrieg chousen from “ifferent
flelds how wide 18 the range cf application of this {mportant
matnhematical tool.

The theory of lineuar jrcgramm!ng has a8 1ts central purpose
the problem of ubtaining tne maximum cr minimum ¢ tre [inear form

n

1) L(x) = 2
( (x o eaKy

subject to tnhe series cf constraints

n
(2) °J a, X >¢b {«l,?,...,m.
Jel YT

The theory of rnonlinear programming {8 concerned with the
cor espcndiny jrotlem fcr nocalinear functions. owever, thls
study has nct achl!eved the same st.ge of advancement as t!e
linear theory, for obvicus reas ns, and hence we stull not
discuss it here. The interested reader may consuvlt Kuhn and
Tucker,\ 13 ‘,

The classical theory of tnequalities, aar cdevel red thirty
to fifty years agc by Dines, Furkas, Hotzki&,’Stikae, and - thers,

furnishes a number of elegant thecretical results, togetier witp
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computational methods. The essential aim of the newer theory of
linear programming 1s to discover and npply rapid computaticnal
algorithms which will yleld the numerical scluticn of protlems
of the above type of large dimensicn either by hand or machine
computaticn,

The most useful and flexible, 'n the sense ¢! beiny widel)
applicable, algorithm devised to date 18 tie "simplex” method of
G. Dantsig, together with {ts modifications and extensions ty
Beale, Charnes, and Cooper, Dorfman, Lemke, and Dantsig himself.

fo {llustrate tre range of application of these techniques,
we shall cons!ider a number ¢f{ problems {n socme small detatll.

Thece {nvclve the rcuting of aircraft, the determ!inaticn of the

number and arrangement ' { tcll collectors at tridges, the scheduling
f military tanker flieets, netwcrk protlems, production smiothing

prcblems, tne "fixed charge" problem, and finally scme examples

involving uncertainty. These last twc, lLowever, can cnly be

“reated in very special cases, and at the moment are a challenge

to the ingenuity of the mathematician.

q2. Producticn Smoothing.

-

We have discussed a few smcothing prcblems above. Let us
now consider one that may be formulutea 18 a linear programming
prcblem. A single item is to be produced nver a given number of
time pericis to satisfy certain requirements at each of these
periods. Wwe wish to produce this item sc as to minimize the tctal
cost which is composed of costs of producticn, costs of stcrage,
Aand costs fcr change in production rate.

To formulate the problem mathematically, let T be the total
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number of time periods and define

(1) . ® requirement at time t, assimed known.

-3
[}

b
[ ]

quantitv produced over the Wm. period

Ve ® Xpo1 Xy 2 U, the increase in production rate at

time ¢t.
Let
(2) X, =Ix, = the total production from t = 0 tc t = !
Hi -Zrt = the total requirement over the pericd t = ¢

to t = 1, with RO « O. Then the excens of accumulated prctucttio.n
over accumulated requirements up to time 1 18 given vy

(3) up =ug e X - R1 > 0,

O =

where u is a given constant, “he excess producticn at the start
of the process.
To express the costs, let
(4) ¢y, = the cos*t of producing each unit in the rerfct 1-1 to 1§,
d, = tne cost of storirg each unit of excess Uy or ne period,

i

e1 = the ccst of increasing production rete one unit

per unit time at time 1.
The prcbiem is then tc minimize the t.tal ccst Of tne process,
T
(5) %-o (cyxy+d,u ve,y,)

sub ject to the constraints

—

)|
(6) (8) ) xt > r
t-l T'l

In their paoer, l'_J, of Part III, Dantzig ard Johnscn exhibit
a rap!id graphica. method, involving cnly 1intersections and

rotations ¢f straight lines, which seems to require only a few

iterationa. See also A. J. Hoffman and w. Jacobs,[l?}.



3. Traffic Delay at Toll Buoths.

An interesting problem in the xeneral theory of queuing 1is
treated by L. C. Edle 1n{ lfi. It concerns the collection of tolls
at Port Authority tunnels and bridges in New York City. Tre
Port Authority desires tc handle traffic with the minimum number
of toll ccllectors that 1s consietent wit}l botl. adequate service
to the public and a sufficient number of relief periods for the
tcll collector. These relief periods are required sirce tne
work 1s ccntinuous and exacting. We then have the usual conflict
between economy and service.

Having determired the traffic characteristics by observation
over A period of time, tEdie reduced the problem tc one (f
scheduling. The solution obtalined theoretically was found in
aétual practice to be very satislactory.

At tre suggestion of E. W. taxson, the problem was tackled

by G. Lantzig, 5}. His formulaticn of the protlem leads to the

— -)
problem >f determining the mninimum of L(x) subject to tre

restrictions
;m
1) )X a, X, D b,, 1t=1,2,..., msld
ST 22
{@l *- :
Xy > O,

where the esceentisal feature ¢f *re rrotlem {s trhat the 81J are
either  ¢cr 1. A8 a cunsequerce «f this, jrctlems ¢f moderate
size can often be sclved by hand computation in a fees lLours,
using tne Adual simplex tecthnique. The observation that tre
problem 1s a varlant (f a transportation-type protbtlem, seoi 6l.

enables large systems *O te sclved rapidly with the ald cof




computing machines.

Q4. Scheduling a Military Tunker Fleet.

In &« previous chapter we mentioned the Hitchcoeck-Kooupmans
transportaticn problem, and noted the fact that independent formu—
lations and computattonal schemes had been given by a number nf
different peuvple. A degenerate form of the transpcrtat!on j;roblem
is the assignment prohlem, which has been treated Ly the simplex
method In a paper by Votaw and Urden, son'[ﬁj,

An intereeting applicaticn of the Kuobmana—antztg approac!
to the general transportaticon protlem, using the simplex metr.cd

of computation, {8 ccntained in a paper by M. M. Fl.od, 11,,

discussing the scheiuling of a military tanker fleet.

Ancther d!scussion of te problem 18 contalnedi in a paper
by G. B. Dantziy ancd D. R. Fulkere\n,‘ g-y where trey show tliat
fairly large problems of this nature c;n be solved by hand compu-

tation requiring only a {ew {terations. An alternate ccmputaticnal

scheme had previously been given by Roblnson ani aalsl.,| 1¢

A similar prcblem occurs in connecticn with the rcuting
alrcraft where there are a number ©f alternative routes, 1 nu:.
of different types of aircraft, and different paylcads and traff.c

cn different routes. For a discussicn <f this procblem aee,[r

|

95. Fixed Charge Problems.

In the previous sections we have discussed a number of prchlems
which can te resclved rersdily using the ccmputst.onal methods of
linear progra.ming. Let us now preseat aome problems which are

either intractable our can only be handled in sfectal cases.
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Consider the follow.ng situation. We have a factory containing
m different machines each capable of performing any of n distinct
operations. Let h1J denote the time consumed by the JEE machine
performing the 1-"'-E operation on a unit quantity of eocds. let
‘13 denote tne quantity of goods on which the 122 operation {s

performed by thre JEE mathine, and b, the total quantity of goods

1
which require the 132 operation. The fcllowing relaticne are

satisfiled

n
(1) a I x,,=b,, 1=1,2,...,m,
J

o 1 1°

Let us assume furthermcre that there is a constraint cn the

total man hours available for the JEE— machine; 1.e.

(2)

«1,2,...,Nn.

»M3

P h1J x1J < cJ, J

The most efficient operation is taken tc be the choice of the xiJ

which minimizes the tctal cost of operation,

n

m
(3) 260 = %-1 ?.1 (iniJ.

In this formulation,the problem falls within the domain of
linear programming.

Let us, however, now agsume that there is a fixed charge, kij’
for preparing the JED machine for the 155 operation, regardless

of the length of time that the machine is used. The total coat

is now )
m n \
(4) L(x) = }1:-1 3.-1 (c”xumu g(x“) 3

where ¢ (x) 1s the disconiinuous function defined by the conditions
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(5) f(x) =1, x>0
«w 0, x =0

The problem cf minimizing the total cost, as given by (4)
is one that at the moment escapes any of the known efficient
computational algorithms. It is interesting to note, however,
thnt the special case where kU e K may be treated by an extension
of the conventicnal techniques, see Drntzig and Hirsch, * :

A similar difficulty arises in the "optimal inventory" problem,
where the k, , correspond to paperwork or "red tape" costs in scme

1
’ [}J

cases and to physical set—up costs in others, oco[‘z

§6. Convex Functions and Uncertainty.

Most problems invaving uncertainty cr stcchastic processes
lie outeide the range of linear programming techniques. In some
cases they can be treated by ‘he methods of dvnamic programing,
aoe{ 1}, where further references may be founc, and {in most cases
they remain unsolved.

There are, however, a class of probleme involving uncertain

demand which lead to the prcblem of minimizing a sum of the form

(1) M(x) - by (x,)

M3

-]
subject to linear constraints, where the @1:x) are ccnvex functions
of the Xg» OF alternatively, of maximizing the sum when the

pi(x) are concave functions. These can be treated by linear
programming techn.jues if we approximate to ¢1'(x) by a step
function. Details may be found in \M}rt 7 ’

Let us ccnsider a simple example involving uncertain demand,

*The Pixed Charge Problem, RM-1283, RAND Corporation, 1954.
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ooccurring in the walnut—grov! ,g industry, which leades to a problem
of the above type. Each year, the walnut crop consists of walnute

of different grades, say G,,0p,...,0, in quantities Q1sQas-- Q-

k
Using various quantities of each grade asssortments of wahuts are

out together for commercial sale. Let us assume that there are

N different types of packets selling for prices PisPases 4Py

per packet respectively. If we assume that there are fixed demands

for these assortments, d, for tle 139 aasortment, then the problem

1
may be formulated vary easily as a gsneralized transportation protlem.

Let

(2) X = the amount of the 1£E grade of walnuts that 1e

1J

nsed to make up the Jﬁn arsortment.

Then we have

N
(3) I Xy < Bys Xy 20
J=l
The number of packets cf the 1£E xind that canr be put tcgether is
(%) uy = Min Xy
where uJ satisfies the restrictiocn
& ..
(5) u, < d,
The ‘otal profit 1is
N
P = X u .
(6) = 4Py

The problem of maxirizing the profit can be resclved numeri-
cally using the staniard techniquee.
Consider, however, the case where the demand is uncerta:.n.

In this case we may asoume that, on the basis of experience, we
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can predict the distribution of demand for each tyhe of assortment.®
Let dOi(z ) be the distribution furction for the demand for

the 1Ell packet. If Uy packets are made,the expected. profit

will be
)“1 , ©

(7) Py ({ 246G (z) + pyu, ¢/ " 46, (z)
Hence the total expected profit ias
( y (u,)
8) b p u

2oy yluy),
where

u a
(3) ¢, (u) =/ 240,( 2 ) +u ‘/& da(z)
u

- u *(/qc (z=u)dG(z)

It 18 easy tc see that each ﬁi(u) 1s & concave function. Hlence
the approximation method used above may be employed.

A problem of similar type, arising from the prcblem of
allocaticn c¢f & carrier fleet to airline routes to meet an uncertain
demand is treated by G. Dantzig 1n{~7J.

Let us mention in passing that maximization of expected
profit may be undesirable if there is &8 considerable risk involved.
We may prefer a smaller expected profit and a smaller risk, or
a smaller variance. An interesting discussion of this gene:al

problem 18 contalned in Markcwite, j4i.

-

*This must be taken cum gran. salls.
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Part VI.

Crystal QGazing

$1. Introduction

In the previous partas, we have c¢xamined a number of problems
of various types and discussed a nimber of mathematical techniquecs
that have been employed to handle these problems. In this part we
shall turn the spotlight on a numbeir of regions of mathematics
which we feel must be intensively explored before we cun hope *o

master the field of schecduling theory.

Taking subjects in no particular order as far aa priorily
or importance or difficulty are concerned, we shall discuss the
extremum properties of functiona def‘ned over discontinuous
groups, non—classical aspects of the calculus of variatlons,
non—-commuta*ive stochastic processes, non-markovian processcs,

and {terative techniques.

Each of these topics 18 well worth studying in its own right
apart from any possible applications. Fowever, it 1s probably as
true here as in other parts of muthematics that the best entry to
a new field is by way of an important and natureal physical problem.
Scheduling theory contains an abundance of these, almost all diffi-

cult and challenging.
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§2. bxtrcmum Properties of Functions on Discontinuous Oroups

The classical problems in variational analysis may be handled
uniformly by the principle of continuous variation of the indepen—
dent variables in the neighborhood of the extremum. In many of the
problems we have discussed above, au for example the assembly line
problems of Part I, we are confronted by the problem of maximizing
over the set of all permutations on n objects. Here the ceneept
of continuous variation is missing, and this accounts for a great

deal of the difficulty of the problem.

It would seem therefore that a study of the extremum properties
of functions defined over discontinuous <roups would have inter—
esting and important consequences for scheduling theory, and that,

conversely, a good point to begin this study would be in connection
with the permutation group on n objects, the fundamental group of

scheduling theory.

§3. Non—classical Calculus of Variations

L3 we have seen In Part I, the continuous versions of some
problemg involving permutations lead to variational problems over

the space of characteristic functlons.

Problems of this type are not amenable to the classical
variational techniques and require new techniques. A partiocular
problem which has nht been previously treated, and whicihh arises

in the study of production processes involving mutually exclusive
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opsrutions, is that of dectermining the extrema of

(1) J(¢) = /;T £(0,0 €50 -o0 &, t)at

where the ét(t) are subject to the constraints

(2) a. 0 () S ,

b. /;T oy (t)dt =k, Lk e T
o. 61(c)‘3(c) -0 for 1 ¢ J .

Problems of this type arise also in the theory of multi-stage

productisn processes involving mutually exclusive activitien, [2].

§4. Non—commutative Stochastic Prccesscs

The classical theory of protability is occupied almost ex—
clusively with the study of commutative processes, in the following

sense. lLet \7 be a sequence of vectors naving a common distribution,

and let
(1) 3
1 Z, = 2 X
N 1=l 1

The classiocal limit theorems, such as the central limit
theorem, are cencerned with the question of determining the

asymptotic distributien of various functions of Zy:
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If we consider 2y to represent the state of a physical syetem
at time N, the X, represent certain random disturbances of the
srystem. In writing zy as a sum of these disturbances, we aro
tacitly assuming that tnese disturbances commute as [ar as their

effects are concerned, i.e. their order of occurrence of no im—

portance.

In many situations, this is not true. Consider, for example,
a system whose state at any time is specified by the vector x.
Let an event correspond to a transformation of this system into
another vector x' and let the transfurmation be a linear one.
Then x' = xlx, and {f the events are stochastic the matrix xl is
a stochastic matrix. The result of n successive events will be a

stochastic vector X, given by the relation

(2) xr‘ - &x,o_l s 06 xlex
where the X1 are stochasti:c matrices.

The problem of determining the limiting distribution of the
vector X, given the distribution of the random matrix x1 seems to
be a very difficult one which has been discussed up to the present
in very brief detail, cf [1].

The difficulties of Queuing theory are in a large part due

to ths non—<commutative aspects of the problem gnd the resultant
Y
non—-linear functions which occur.
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5. Non—Markovian Proceases

Consider a sequence of random variabloo.(x%}. where { = 1, 2,
The three most important types of sequences which have been studied
to date are sequences of independent variables, Markoff processes,
and stationary procesgses. In each of these cases, the sequence
possesses a special structure which enables us to bypass any
necessity for the complete past history of the sequence, in pre—

dicting the behavior of future elements in the sequence.

In scheduling theory, however, and in many other stochastic
processes as w(ll, the structure is more complicated. We must
study various classes of stochastic sequences v e¢re the distribu—
tion of Xy depends upon trs distribution of al. vue preceding xJ.
Posed in this way the problem is too broad, and it would seem
that once again the best approach to an extension of the present
mathematical theory lies in a study of the natural problems
which arise from queuing theory, scheduling theory, and related
fields.

§6. Purther Applications of Game Theory

As we noted in $15 of Part I, the solution to the assignment
problem, which crudely requires n! calculations, can be obtained
as the solution to an n2x2n game, which is an enormous decrease

in dimensionality for large n.
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An important preoblem which ‘mmediately springs to mind is
thet of catuloguing the classes of prodlems involving perautations,
or more generally variation jver the elements of a discrete group,

which can be transformed into two—person games ¢! lower dimensions.

An interesting problem which includes the scheduling problema
discussed in Part I is8 that of determining the minimum over all

permutations of the x, of the function

i
(1) (x) :
1. f(x) = max Z a, X
i 4=1 137

§7. Iterative Techniques

It '8 intuitively clear that each problem that arises will
have certain characteristic features which can be utilized to
speed the computation of a solution. This is one of the advan--
tares of considering problems arising from the physical world.

Of all the universes within pencil reach of the mathematician,
the real one is the most lfkely to furnish important, interesting

tnd tractablie problems.

1)

Fssential.iy, the argument goes that whatever exists cannot
be too complicated, if viewed properly. This, of ceurse, is an

article of faith and not to be interpreted too literally.

The idea of exploiting the intrinsic structure of a process

is the guiding concept of tne theory of dynamic programming.
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Similarly, in employing the algorithm of the "simplex method",
@. Danzig has introduced many devices to take account of dynamic
processes. The '"flooding technique’ of Boldyreff is another
example of an iterative technique particularly adapted to the

problem it treats.

A certain amount of compromise must always be made 1in
formulating compiting procedures. If we are interested {n codinr
for modern high speed machines, ve want fai.:ly uniform proceduren
8o that recoding will not be necessary fo: every new p-oblert that
comes along. On the other hand if an appropriate modification,
or an entirely new method, can save an appreciabdble amount of time

on problems of a special but important type tnen it 18 worth

employing.

A great deal of work in this direction has been done in
connection with solving sysatems of linear equations and in solving
polynomial equatiuns. !lowever, very little has been done from the
purely abstract point of view of classifying structural propcrties
of processes end correlating them with appropriate coputational

tecshniques.
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