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SUMMARY 

The purpost of thlo paper 1B to fonnulate a 

number of significant mathematical problems 

which have arisen In connection with the theory 

of scheduling, and to dlscuab the methods which 

have been devised to treat these problems/yA 

brlel bibliography Is appended. 
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KATHEMATICAL ASPECTS  OF aCKEDULINO THEORY 

by 

Richard Bellman 

Introduction 

The purpose of thlo expoeltory paper Is  to describe a number 

of repreeentatlve problem!  In the  field of scheduling which will 

furnish »ome  idea of the types  of mathematical questions which 

confront us  in this domain.     In doing so we  shall  touch upon eome 

of the analytic and computational  techniques which have been 

utilizeo to date  to treat these problems,  and  thus  unavoidably 

display the  deplorable state of the art. 

There  is  little point at  this  stage of development of the 

theory in attempting to give any precise definition of what  we 

mean by  a  "scheduling"  problfm,   since any definition which can 

include  the  spectrun of prublems arising from all  phases of 

economic  and  industrial  activity,   and from parts  of mathematics 

itself ranging  1 rom algebra and  topology to  analysis and mpthema- 

tical physics,   will necessarily be  sufficiently vague  to be  fairly 

uselesu.     We  can,  however,  make  the following general  remarks. 

In characterizing a physical  system,  we may  begin with a 

phenoraenological  ppproach:     a  certain cftuse produces a  certain 
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tffoct, or, alttmrntlvely, t certain input produces a certain 

output. Itme* as a first approach, we use the traditional "black 

box" concepti the physical system is regarded as inexplicable in 

its workings, and its mechanism is taken to be completely sealed 

from view. We agree to consider only the "response curves". 

Schematically 

Input Output 

As we beeome more ambitious, we begin to peer into the 

murky confines of the black box, and our next step is to divide 

the original box into a set of small boxes in the following way 

Input Output Input — Final 
Output 

We now have a multi-etage process. 

A  further degree of sophistication yields more complex block 

diagrams,  ouch ar 
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Input1 

\ 

/ 

Input2 

/ 

\ 

Output. 

Output2 

Output 

\r 

Output 
/ 

flnai 
Output 

Eventually we may be forced to consider even more complicated 

olrcultß  Involving "feedbacks •': 

Input, ♦Outputs 

Feedback 

-»Outputs     7    —^ Final 
Output 

Classical physics,  as well as classical economics,  is con- 

cerned with the general problensof determining the output of a 

system as a function of the input, and of determining the structure 

of the syLtem.    This is an inverse problem of most interesting 

type.    We observe some inputs and some outputs and it is up to ua 

to wield Occam's razor so as to deduce the structures that explain 

the observations in the most esthetic fashion. 

Simultaneously with g neral problems of the type discussed 

above»  we meet the problems of control.    Starting with a fixed 

structure«  we wish to regulate   ;he inputs and outputs s»o as to 

achieve some desired state of the system.    Itase problems combine 
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all  the difficulties of the problem of the previous stage with 

the additional complications presented by this new optimization 

problem.    On the other hand, we nay note,  that in return the 

optimal system will possess certain simplifying properties. 

i 
Continuing in the direction of controlling the system,  let 

us suppose that we have the pover to alter the basic structure 

of the system in various ways.    We can interchange the position 

of various boxes,  bypass others,   introduce new boxes,   and so on. 

The problem is now to determine the structures which are optimal 

accordlnr; to various  criteria of efficiency. 

Problems of the  last two types we call  "scheduling problems". 

The  first type,  difficult as it is,   has been intensively studied 

In recent years,   and a number of mathematical technlquaa has been 

devised to treat these questions with some degree of sucoess. 

The structural problems involving combinatorial considerations 

have only recently been studied in an Intensive manner.    They in- 

volve mathematical difficulties of the highest order even in what 

sss« to be the a lap last nates.    Thss« art the probltaw ws shall 
•f -            - - -     

* focus upon In the following p*gss. 

We have  spoken above of input—output curves,   tacitly assuming 

6  deterministic  situation where  the  output  18 a  fixed   function of 

the  input.     In many  situations,   a  convenient mathematical  device 
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t f«r by-patilnft layiorance is to assume that the output la atochaa- 

,tlo. In ■«no catei» o.g. itatlitloal moehanlce, thlo sinpMries 

tho problem) in othor caio» - e.p;. asaombly line production. It 

greatly complicates It. 

Finally, in our hlerarehy of problems, lot us mention one 

further stage. We took it for granted in posing the problem of 

determining optimal arrangements of blocks that we knew the re- 

pponse curves, the outputs as functions of inputs. This Is some- 

tines net true. In some situations we must slmultaneou ily determine 

response curves and optimal structures. Since the optimal struc- 

ture depends upon the response curves, and the Information we obtain 

concerning the response curve depends upon the structure we assume, 

we see that thlo type of operation la quite involved. 

Prooesses of this type we «all "learning prccesseB' .  They 

arise in connection with the dealer of experimente ani in the 

theory of sequential analysis. 

Since it is impossible in a survey article of even this size 

to gfve any adequate coverage of all or even of some of the moat 

premising aopecls of this fascinating: and fundamental field, we 

have compromised by diacassinp a very few topics in small detail 

and by referring briefly to a multitude of others, with a 

blbliocraphy for the interested reader. 

Further references to these Interesting proceases may be found In 
F. Bellman, "A problem In '.he Sequential Design of Experiments", 
RAND Corporation, Paper, P—^66 • W*, and R. Bellman, T. E. 
Harris, and H. N. Shapiro,  Studies in Functional Equatl ns 
Occurring In Decision Processei'1, RAND Corporation Paper, P-^S?, 19^2 
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In Part I we shall conolder a number cf simple prototype 

problems aBßoclatcl with multl—ataRe production proceseea, and 

various matnematloal modelo and -ncthodo which have been uand to 

treat thoee problems.  In paßBlni% '^c •shall note the connection 

between these problems and the problems of organization theory» 

problems encountered In the theory of switching, and the con- 

struction of computing: machines, insofar as these are all problems 

of determining optimal structure. 

Part II Is devoted to survey of some of the work that has 

been lone on transportation problems In connection wlti. deter- 

ralnlnP" most efficient routines.  The Hitchcock-Koopmans problem 

is typical of the questions that arise. 

Many of these problems can be treated by techniques devel- 

oped in the topolc^ical theory of graphs and networks due to 

Konig, Menger, and others, which In turn grew out of the work 

on electrical network theory by Klrchoff. 

Iterative techniques for solving various classes of these 

problems have been ^iven by M. Flood and A. Boldyreff.  In par- 

ticular, the new technique of Boldyreff, the "floodinf;" technique, 

seems to have great possibilitlec in connection with many similar 

types of problems.  Linear programming techniques are also 

applicable in majiy cases. 
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The thlixl part !• devoted to a short dlsouosion of "smoothing' 

problems of various types. Here we shall meet the "caterer' problem 

and the "optimal Inventory" problem as representative problrriB in 

that area, and discuss some closely associated control problems 

ooourring in engineering control. 

In Part IV, we mention briefly some scheduling problems 

arising in computational analysis. Here we have been quite ar- 

bitrary in our choice, and any expert on the field can readily 

add a se«r« mar« ef vita1 quaetiens. 

Part V is devoted to a brief survey of some appUcations 

of the Uieory of linear programming to the field of scheduling theory. 

Finally, in Part V we do some crystal-^azinc and dlscuas 

various parts of mathematics which we feel w' 1 have to be in- 

tensively cultivated before essential prog' as can be made in 

the field of scheduling theory. 

We have omitted any detailed di. -.ssion of the lower level 

aoheduling processes, such as those which occur in multi-stage 

productive processes, allocation and investment processes, the 

calculus of variations, the theory of multi-stage gaires, and 

generally any topics which can be treated by mathematical tools 

of a fairly established type. In a sense then, we are beln? 

masochistic and deliberately restricting ourselves to those 

fields where we must plead nul contendere'1. 
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Part  I 

Aüßtmbly Line and Related Protlems 
■ 

r 

II.  Preliminaries 

In this part of the paper we shall consider some oroblema 

arlolnf: from the study of multi-stage production proceaoes. 

The first problem we shall consider Involves a two—atage 

production process in which we have a number of books In manu- 

script form which must be printed and bound.  «Ve wish to deter- 

mine the order of procesLlng the books which minimizes the total 

time required to complete all the books.  Two jolutions will be 

presented, the original one due to 3. Johnson, based upon an 

explicit for.nula of inLe-iest in itself, and a solution based 

upon the furctlonal equation approach of the theory of dynimlc 

programming. 

Continuing in this direction, we shrll consider the analogous 

three-stage process.  Formidable difficulties appear in this case, 

and there is at the present no solution for the general case.  This 

sad statement will appear repeatedly in the lines below. 

The correspondinf, expHclt formula of Johnson for the three- 

stage process may be used to obtain a jontlnuous version of some 

nar'cular cases of Importance.  In the continuous case we can 

derive a very simple solution which throws some lio;ht on the dis- 

crete prjblem. 
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Followlng this «• shall conBlder eom« natural extenelons of 

tM elmply-formulated probltme mentioned above. Thaoe prob lerne 

are cloeely related to probleme In crpanlzatlon theory of the typ«» 

foimilated by J, Marehak, [7], and these In turn are connected to 

the theory of switching, to the theory cf automata, and all elmllar 

problems Involving the construction of complicated objects from 

simpler components, [%J , [lj . 

The last section Is devoted to the "assignment" problem. 

This Is a simpler problem Involving the maximization of a function 

of permutations*, and may be treated by two methods, due to Kgervary, 

£5], and von Neumann O**] .  Here we meet the fundamental technique of 

Imbedding permutation matrices in the semi-group of doubly—stochastic 

matrices. 

12.   The Book-binding Problem 

Let us begin by considering the following simple problem. 

We pos&ess one printing press, one binding machine, and tf.e manu- 

scripts of a number of possibly different books.  Assuming tnat 

we know the times required to perform tne printing and binding 

operations for each book, we wish to determine the irder In which 

the books should be processed in order to mlnlml/e the total time 

required to turn out all the books. 

This is a problem in rearrangements, :-r permutations, which 

In any particular case can conceivably be determined by a direct 

•  In the sense that It has been effectively solved, while the 

others have not been so far. 
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enumeratlun of  poBBlbllltlea.     Leet anyont  too  blithely  refer to 

modern  computing macnlnee,   let  uo  quote  some   flguree. 

The number of poeelble arrangements  of  ten different  Items 

is 

(1} 101   - 3,620,000    , 

rfhlle the number cf pc^ 1.1-  rran^ements ci twenty different 

Items Is 

(2)       20! - 2,432,902,008,17*,640,000  . 

To Klve some Idea of the magnitude cf this number, let us 

merely observe that at one sorting per mlcrcsecond an enumeration 

of tne 201 possibilities would require well over a half a million 

years.  Clenrly we must use some native "inwlt". 

§3•   Lemmas of o. Jolmson 

Let us Introduce some notation.  Let 

th 
(ij      a. - time required to print tne 1^ book, 

b. -• time required to bind the 1— book, 

for 1 - 1, 2, ..., n, wnere n Is the number cf different books. 

We wish to determine the arrangements of the books which 

yield the minimum time required to print and bind «11 the books. 

It Is assumed that the printing will precede the binding In each 

bcok. 

The  first   result we  shall   require  Is 



Lemma  1.    To obtain a minimal  ordering,   it  iji sufficient  to oon- 

aider that  the  boo',:o  ire procvauea  in  the  oarag order throu^n loth 

machineB. 

A possibility vrhlch cannot be diacounted without  investigation 

la that  it may oe more efficient  to feed the books  into  the binding 

machine in some order different  Orora that used on the printing; press 

As we  shall  see below,   this result concerning  identical  ordering 

carries over to the  three-stage process,  but not to four-stage 

processes. 

Let us begin by taking the items  in chronological   order.   I.e. 

the 1— itam in the  1— position,  and derive an expreaalon for 

the total time required to complete the proceaa. 

Define 

(2) x. - inactive time on the aecond machine, the blndinp; 

machine. Immediately before processing the 1— 

item. 

In many cajes, of coarse, x. will be zero. The total  idle tlm^ 

on the second machine is the sum 

(3) In " ? , xl 
1-1 

n 
and thus tho tota] time required for the process Is I  • 1      b.. 

n * -1 

It   follows  that we  may  take  I    as our measure  of  the efficiency 
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of a scheduling of operations, and that it is this quantity which 

we wish to minimize. 

Schematically, 

a       a       a 
—     = h  f- 

xl     bl  x2        b2  x3 
 ♦ ♦ ■♦ ♦—h 

An important result for our purposes is 

Lemma 2. 

n u      u-1 
(4) I„ = 2  x. - max (£  a, - Z  bj 

i-l 1  l^n i^l 1  i-1 1 

Proof; We have 

(5) x1 - a1 

x2 - max(a1 + a2 - b1 - x1, 0) 

whence 

(6) x1 4 X2 - max(a1 + a2 - b,, a^^) 

Similarly 



3       2       2 
(7) x3 - max(Z  a1 - Z  

bi " ^  xi» 0) 
1-1     l^l     l-l 

3 3      2     2 
Z  x, - max(l  a. - Z  b,, Z  x ) 
1-1 1     1-1 1  1-1 1 1-1 1 

3      2     2 
- max(Z  a. - Z  b., Z  a. - b., 0) 

1-1 1  1-1 1 1-1 1   1 

It li clear now how the proof proceedo by Induction for n > 3. 

M.  The Reault of 3. Johnaon 

The problem of determining the optimal order Is equivalent 

to determining the arrangement of the n Items which minimizes the 

expression for I given In (3.i*)« We thus have a numerical func- 

tion defined over the permutation group of order n, and we wish 

to determine the minimum of this function. 

The tolutlon Is given by 

Theorem 1. TTie optimal ordering Is determined by the following 

rule:  Item 1 pre<*«»des Item J 1£ 

(l)     mlnCa^ b^) < min(aj, b^ 

If there Is equality,   either ordering Is optimal,  provided  that 

it la consistent with the definite preferences. 

Por Johnson's derivation of his result and the remainder of 

the proof that  this criterion yields  the absolute minimum,  we refer 

to his paper«   [5].    We   ihall give another derivation below. 
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The Importance of this result realdes In the fact that It 

shows that In this problem the nunlmvim tlma may be fcund by 

determining, the effect of the Interchange of any two neighboring 

items.  This result is not true in general and accounts for the 

difficulty of the multi-stage problem for more than two stages. 

13*  An Rxample 

Lot us now Illustrate the simple way in which this criterion 

may be applied.  We follow the steps given below: 

1.  List the a. and b. in two vertical columns 

i ai bl    1 
1 

2 

• 
|          • 

• 

n 

a2 b2 

bn 

?.       Determine the minimum of all the a. and b.. 

3.  If it la an a., place the corresponding item first 

k.       If it is a b., place the corresponding item last. 

5.  Cross off both times for that Item. 

6.  Repeat the steps on the reduced set of (n-l) items 
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7.  In cas« of tits, order the itene with emalleat lubicrlpt 

flret. for the take of deflnitenese. If a tie between a4 

and b., order the item according to the a-rule. 

To llluatrate the met.iod, consider the following example 

1  1 al 
bl 

1   1 4 5 

i    2 4 1 

3 30 4 

4 6 30 

5 2 3   1 

The rule yields (5# 1» ^$  3# 2) as the minimal order with a 

tota? time of 4? units, and 4 units of ld3e time.  For the reversed 

order, the total time is 78, the longest time. 

§6.  An Alternate Derivation of the Decision Punction 

Let us now givj another derivation of the decision function 

given above in (4.1) using the functional equation approach of the 

theory of dynamic programming, [l]. It has the merit of yielding 

this function without the use of the explicit formula, given in 

^.4) above. 

Let us define 

(l) f (a^b^ag.bg,.. .^»b^,t) • the time consumed in processing 

the n Items, when the second 

machine Is conmltted t hours 

ahead, and an optimal policy Is 

emplo: ec^. 
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lf the  first  Item is procesaed first,  w« have 

(2) fCßj.bj^ßg^V ",'CV "V'   t^   ' 

a^f C OfO,a2,b2,... »a^bjj,  b1-Hnax(t-*1,0) J     . 

Chooslrif1; the  second  Item to follow,  v/e  obtain 

(3) f (a1,b1,a2,b2#. ...^»b^,   t)   - 

a1fa2ffC0,0,0,0,a3,b3,. ..,aKfbN,g(a1,blla2fb2, t) J  , 

where 

(k) p:(a1,b1,a2,b2, t) - 

b2+max[] b1-a2>max(t-a, ,0), 0] 

On the other hand. Interchanging the orders, we obtain 

(5) f(a1,b1,a2,b2,...,aN,bN, t) 

G2 + a1-»-r|l0,0,O,O,a3,b3,.. .,aN,bN,?'(a2,b2,a1,b1, t) ]]  . 

It follows from this that the order of operations which minimizes 

the new t—term Is optimal.  Hence we choose the order which yields 

the minimum of ^(a,, b,, a0, b2, t) and ,q(a2,b0, a,, b,, t). It 

Is not Immediately obvloun that this choice will be Independent 

of t, and It Is actually quite surprising that this Is so.  We have 

(6) c(a1,b1,a2,b2,t) » b2 max[[ b^^maxlt-a^O), 0^] 

- bs+b0-a2+max [|max(t-a1,0),  a^-b.^] 

« b^^-a^maxQ t - a,,  0,   a2 - b, ] 

- b14b2-a1-a2-nnax[I t, a,,  a,-t-a2- b2J 
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It follows from this that regardless of the value of t, the 

order of operations which yields the mlnlmun of max C a,^ ♦Sj-bg ] 

and max C ^g**!4^"^!-^  cannot Increase the total time, pnd may 

decrease It. 

It Is easily seen that this criterion is equivalent to 

Johnson's criterion above. 

J7.  The TTiree-stage Process 

Let us now consider the three stage process obtained from the 

previous two stage process by the addition of a third required 

operation» which we can  think of as the typing of the manuscript. 

We now have n books In manuscript form which require successively 

typing« printing and binding.  Let a-, b., c. represent the 

respective times required by the 1— book for each of these 

processes. 

The first result we require is 

Lemma 3« To obtain a minimal ordering, It 1_8 sufficient to con- 

sider the case where the booke are processed In the same order on 

the th~ee machines. 

A double application of Lemma 1 yields this result. 

The example 

1 »1 bl cl di 

1 3 3 3 3 
2 3 1 1 3 



of two Items going through a four-«tage proceei shows that uniform 

ordering le not unlveraally valid.  It Is easy to verify that In 

this case the optimal arrange.nent changes In going from the second 

to the third stages. However, the ordering on the first two 

machines and the ^.aat two nuichinea nay always be taken to be the 

s'une regardless of the number of stages. 

Let us now present a formula for the total idle time on the 

third machine similar to that given above for the two-stage pro- 

cess. Let 

(l)     y « the idle time on the third machine immediately 

preceding the processing of the i-j— item. 

Schematically 

^1 ^ **  ,  '3  + 

b   x   b2   x3 
i 1—^H—--*—-—h^f 

yl Cl   y2 I i M ~ 

The same t^-pe of argumentation as above y' -Ids the formula 

Lemma ^. 
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(2) 
n 

y -  max  (H ^ K, ) 
1     ^ivfr 1-1 

where 

(3) H 
u-1 

b, - v       1   "   1  ' v  1-1  1   1-1  A 

u       u~l 

u  1-1 1  1-1  1 

v - 1, 2, . . ., ..  , 

u - 1, 2, .. ., n 

Ai yet, no one has been able to uae this formula to derive 

the optimal ordering for the three otage problem. As we shall 

■ee from the dlacuaalon of the continuous version below, *   e 

general solution ruust have a quite complicated form. 

§8.  A Contlnuoaa Approximation 

In view of the lac'c of success In treating the general 

problem» It seems worthwhile to consider irlous special cases 

In the hopes that the solution of these may throw light upon the 

general case. 

Let us consider first, to Illustrate the method we shall 

employ, the particular case where we have two stages and only 

two types of Items, each occurring In large quantities.  As an 

approximation to the expression 

u 
(1) 

u-1 
S(u) -2  a1 - Z  b 

1-1 1 = 1 1 

we ahell  consider the   Integral 
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(2)        i(u) - y;u (a(t) - b(t))dt 

As an analogue of the arrangement of these n  Items of only two 

distinct types,  we shall consider a characteristic function,  4(t), 

defined over the  interval   [0,T],  which is to say a function ♦(t) 

with the property that 

(3) ♦(t)   - 1 for tcS,  a subset of  [OfT] 

- 0 for t  in the  complement of 3. 

Since there are only two types of items,  a(t)  and b(t) are 

determined by the relations 

(4) a(t)  - a^ ♦ a2(M) 

b^c)  - b^ + b2(M) 

We now wish to determine 4(t)   so as to minimize the funo- 

tional 

(5) I(T)  -    nax    [   /;u (a(t)  - b(t))dt ] 

subject to the conditions 

(6) a.      (^(t)   - 0 or 1    , 

b.       ^ 4(t)dt - k  < T     . 

The last condition is the continuous analogue of the oorv- 

dltlcn that k of the itemn are of the first type and n - k of the 

second type. 



Uilng {*),  th« problem ±B that of detcTnlnlrv. 

(7) mm    max     Qa    >Ca 4dt ^ ßu 1 

wh«r« 

(8) a.      a - (a1 - a2) ♦ (b2 - bj) 

b.      ^ - (a2 - b2) 

It is «aty to see that a solution is given by 

(9) « > 0:   ♦(t) -0 ,   O^t^T-k 

4(t) - i ,  T - k < t <; T . 

a < 0:   4(t) - 1 ,   0 ^ t ^ k 

4(t) - 0 ,   k < t ^ T . 

We see  that the  form of the solution depends upon only the 

ordering of the quantities a,  - b.   and a2 - b2f  which  Is  precisely 

what we might expect.     A similar solution Is obtained  for any 

number of distinct types of Items,  see   [?] . 

§9        Continuous Version-three Machines 

Let us now discus? the continuous  version of the  three-mac line 

or three stase-process,  again for the  case of two types of  Items. 

As  the continuous  analogue of the   Idle  time on the  third machine 

we have the  functional 
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(1) T(T)   -     max      I J™ (a(t)-^(t) )dt *    /;v (b(t)-o(t))dt ] 

-      m*       [a   ^ fit > ßu +   » /"v fit > 6v 1     , 

where 

(2) a(t)   - a^ ♦ a2(l-^)f   b(t) - b^ + b2(l-^) 

c(t)   - c^ -  c2(l-^)     . 

and 

(3) a - a1 - a2  f b2 - bj 

ß - a2 - b2 

8 - b2 — Cp 

We  -vlah to determine the minimum of I- for all 4 subject to 

the  conditions 

(4) a.       ^(t)   - 0 or 1     , 

b-  yoT ^ ■k • 

As we  shall see below the minimum over this class of functions 

may not exlat.     Let u^  then consider the more extensive class of 

functions  satlsfylnp,  (4b)  and  the weaker condition 

(5) 0 ^ 4(t) i 1    . 

The solution to this problem Is contslned In 



Thtortm ^.    The minimum value of I  la 

(6) V(k,T)   - max  [0. Äk  f 6T,   (QW-J)1< +  (B>6)T "]     . 

A ninimizxng 4 i» givn by 

(7) ♦•(t)  -kA       £or        O^t^T. 

In general,  the »olution Is non-un 1 que. 

The proof,  which is quite simple, nay be found  in  [2]. 

The particular solution given above,  4**   involves mixing 

which in the discrete case is impossible, although we can always 

approximate to it.    Since the solution la non-unique in general, 

it is possible  that in many cases the solution will have the 

simpler form 

(8) 4(t)  - 1    , 0 ^ t <> k    . 

- 0    , k < t ^ T    . 

which corresponds to a very simple solution in the general case. 

As we shall see below we can find values of the parameters 

for which the solution cannot have this simple form, and, as a 

matter of fact, for which the solution Uven above Is the unique 

soli 'ion. 

The importance of this result is that It chows that the three 

stage process presents a genuinely difficult problem. 
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§10.     ExAriplg of Unique  Solullon« 

Let uo  take V./T  ■•  1/2,   BO that we may  take k » 1/2 und T «  1 

Choose 

(1) a, 

a» 

2     , 

2    , 

b1   - 3    , c1  - 1    # 

b1  - 1    , c1  - 3    • 

Then 

(2) a - -2     , ß - 1   ,    «r - 4    ,    6-2 

nence 

(?) V = max (0, «k > ST,   (af5)k 4-  (^6)T) 

» mar.  (0,  0,   0)   - 0    . 

Thua,   If ^(t)  1B a mlnlmlzlnp: function we must have 

CO max      fa    /*u ^dt > ßu ^ y f? (^dt + 5v l   - 0 

which  for  the set of parameters chosen above  reads 

(5) max r -2 y;u fit. u t u y;v ^t - 2v 3 - o 

For all u and v  In the  ranF:e 0 ^ u    i v       1 we must )iave 

(6) -2 yju ^dt  ^  u 4-  4 y^v fit - 2v  - 0 

Settlnr, v -• u the result Is 

(7) 2 fo    ^ i  u 

for 0 <> u <; 1. 

•  Due to Oliver ÜrcBB 



On the other hand, aoU.irw v • T • 1, and ualrig the relation 

(Ö)      f^  ♦dt  k - 1/2  , 

we obtain from (^ the condition 

(9)      -2 y^u 4dt * u ^ 0  . 

Comparing (0 and (9), we see that we muat have equality 

Prom this we see that ^(t) ■ 1/2 for almost all u, which lo to 

oay the eolutlc-. is unique in the set of Lebcague Intes^rable 

functions satisfying the constraints. 

$11.  Stochastic Versions 

Let us now consider the case in which the processing times 

are stochastic rather than fixed parameters.  In otivr words, each 

item has associated with It a set of distributions for the times 

required on the various machines. 

The problem is now that of determining arrangements which 

minimize the expected value of the total time required to process 

all the books, or some other mean of the total time, nnatever the 

difficulty of the deterministic versions we have discussed above, 

the stochastic version seems to transcend then.  Nothing la known 

about the solution even in the two stage pro ess. 

Since the total time will be a nonlinear function of the 

individual processing times, it is clear that a knowledge of 
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•-•xpec:e(J v.ilu< n of lndlvlcli.il  procnr.nlaH; times wHl  not  be  sufficient 

to determine the minimum total expected  time. 

This problem  Introduces some Interesting questions  concerning 

the   "stability"  or  ' atlffnesu'   of a scheduling policy.     An ordering 

which minimizes  the expected total  time may very well permit of a 

large variance.     Consequently,   for many purpeses a  "looter"  solu- 

tion with tTiore  flexibility and slack,  which Is comparatively un- 

affected by minor variations,  may be more desirable. 

Althouc.h these  1 leas «».re,  of course,  wtll-known In practice, 

a precise mathematl ja"'   formulation seems difficult. 

|12.     Queuing Theory 

If wc fix the order and fasten our attention "pon the dis- 

tribution of Idle times, the distribution of waiting times, and 

slnllar questions,   we enter the domain of queuing theory,   see 

[6]. 

In this  connection,  we would like  to point out that the 

explicit formulas of Johnson rnay be  of some utility  in determining 

limiting distributions. 

Il 1.     Kxtenslons 

Although   1*. may  aeen quite academic   to discuss extensions 

wren  the a'mplest  problems defy anal'-ils at the moment,   it   Is 

actually worthwhile  to scan the horizon if only for the  sake of 

inspiration. 



P »v 1 

Tn rtallntlc problems we will  be d«alinp; vlt\. procejses  In 

which there are many machlnea ol each  type at each 8tar:e.     A  first 

question thai arlaee  is  that of our policy of feedlnc;  Items  Into 

the machines at any particular stage.     For example,  we may ret-aln 

a rigid order,  so that   In the ca^e of three machines,   the  first, 

fourth and seventh  Items,  and BO forth,   P;O to the first machine, 

the aecond,  fifth and eighth cio to the  second machine and  so on. 

Or we may use a first—come  first—serve principle and a"1 locate 

each new item to the machine which la  free,  or committed  for the 

least tine ahead. 

The determination of a feeding policy  is part,  of course,  of 

the general  scheduling problem, but  it will be simpler to  solve 

scheduling problems of this  type if, arbitrarily, we restrict our- 

selves  to certain types of oub-po^lcies. 

If many of the  proceaseo are   Interchangeable,  although not 

all,   w« have the  Important  problem of determining the arrangement 

of the  stages. 

We may also conslaer ourselves  to have available a semi- 

fluid   labor force  which  can be assigned   In  various  conblnatlona 

to man  the ruAchlnes at   various sia^es,   thereby decreasing  the 

processlnf time at  that  stage.    T^c quejtion  is now that of 

determining  the  optima-   partitioning, of  the   labor  force  among 

the  various activities. 

Further,  more detailed discussions  will  be found  In  Snlveson, 

[9].    L10L  and Vasunyl,   [llj,   [l?j ,   [l3J • 
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Plnallv  there  Is  the  ovtrall   problem of allooatlng monty 

for the purchase of various types of machlnea and various catagories 

of labor.     It   la eaay to aee  tnat we  can construct  hierarchies of 

problems of increaalnr orders of difficulty.    We can,  however,  ob- 

tain approximat« solutions to the  larger problems by simplifying 

the behavior of the c9mponent parts,  with the result that from a 

certain stage  on,   the solution of the overall problems rroiy be 

simpler,   if  less exact.    This  la,  after all,   the usual technique 

employed  in  the treatment of the phyalcal world. 

• 14.    Organ izati.on Theory 

It  la  clear tha*:  In conslderln*?; the general  problem of 

arranging oomblnations of men and machinee to perfonn certain 

multi--component tasks,  we are encroaching upon the domain of 

organization theory. 

The mathemat Leal problems encountered here are of precisely 

the same general nature as  those discussed above,   and abstractly, 

there  Is no dAfTerence.    For  those  Interested in some of the 

questions  in  this  field which h?ive been treateu  recently,  we 

refer    o the wor>. of J. Marschak,   [?] ,   [8],  on the  theory of 
teamö and similar problema. 

A particularly  Interesting  set of problems arise  In connec- 

tion with the dcalgn of automatic control circuits,   computing 

machlnea and  related mechanisns.     The mathematical   techniques 

employed here   range  over Boolean  algebra,  n—theraatlcal   logic. 
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topology and other regions of abstract mathcraatlcö which, at first 

glance, would seem far removed from applications.  For a ^Iscustslon 

of the "switching" problem, see Hohn [4]; for a discussion of the 

automaton problem, see /on Neurearn, ft3 . 

$15. The Assisnwnt Problem 

In the sections above we have attempted to detemlne the 

minimum over all permutations of n objects of a wSrtaln function 

associated with these permutations.  As we know, the group of nt 

permutations on n objects is equivalent to tho group of permutation 

matrices, P, of the representative fonn, 

(1)        / 0   1   0   ...   C 

1   ...   C 

0   ...    C 

characterized by the property that there Is precisely one non-zero 

element In each row and column. 

Consequently, In place of maximizing over all permutations, 

we can think of maximizing a function f(P) over all matrices P. 

The simplest such function Is a linear function 

(2)      f(P) - tr (A?)  , 
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n 
wnei^ tr (B) • 1  b.., the num of the diagonal elemtnta uf a 

1-1 ll 

matrix B. 

ThlB function Httually occurji In connection with an Important 

problem, the "asßlgnmen" proLlem", w^ilch reade as follows:* 

"Given n men and n Jcbt> with the utility of the aBBlgnmer*-. of 

tne i—• man to the ,—• Job equal to ^..i 1»J ■ i» ^» •••# n, deter- 

mine tne allocation of aealgnments which raaxlml^ea the total 

utility. 
M 

Crudely we ?ee that we have n! posolbllltlee to contemplate. 

There are two ways of overcoming this difficulty.  The first le 

due to von Neumann, ^Jl] , who converts the problem Into an n4" x ?n 

game which Is a generalized version of "hide-and-seek".  The 

second Is due to ^ervary, L3J » ^nd Is based upon some work of 

D. KonlK In the theory of graphs. 

Tne basic principle Involvea In each Is the fact that we can 

Imbed the permutation matrlcee In the continuous set of doubly— 

stochastic matrices of order n, I.e. matrices P - |p*.) charac— 

terl;:od by the properties 

(3)  a.   0 < p^ < 1  , 

n 
b.   Z  p, . - 1  , 

'=1  ^ 
n 

c .   Z  p. . ^ 1 
1-1  1J 

i 

•    Some  very  Interesting generallzaMons  of  these problems,  dealing 

with  teams,   have  been  fomul&ted  b/ L.  Shaplay ,   (unpublished). 
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and that the permutation matrices ar- the extreme el^mentn of this 

convex set, a r^-ult due to G. BlrkhulT.  Another prooT le con- 

tained In von Neuir^ »n, g.^ . 

Other problems Involving maximization over the set of   permu- 

tation matrices arise An  various parts of transportation tneory. 

We mention tne "travelling salesman" problem, and a problem of 

Beckmann and Koopmans wnlch requires the maximization of tr (PAPB), 
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Part II. 

Trannportatlon Problems 

%1.       Introduction 

A  lar?;« and  Importar.c claaa of problems with strong topo- 

logl^al  overtoneo arlae  from the determination of efficient trans- 

portation achedules for busea,   trains,  airplanes,   cargo ships,   and 

so on. 

Since the subject Is a vast one, with most of what Is known 

to dato In readily available papers, we shall content ourselvea 

wluh a brief reference to the work on the Hltchcook—Koopnana 

transportation problem, which Is repreuentatlve of the type of 

question that arlaea, and then dlscusH the queatlon of determining 

the capacity of a rail network.  TMa problem is particularly 

jnteroatlng since It may be approached by meana of the theory of 

grapha, using the results of Menger, or by means of linear pro- 

gramming, or by nvaana of varloua iterative techniques auch aa 

the "flooding" technique of 3oldyreff. 

§2.  Tht Hitchcoo«c-y.copmAns Transportation Probl— 

Suppose that we have M ports cortelnlng cargoes and N pert» 

ae deatlnatlcna cf t^ese cargoee. 

. J - 1 
1 . 

1 - M . 
J - N 



Let  el       be   tr.e ' an ♦-   bttweeu  the   1— carv^  pert  and   J— (Jeellna- 

tlon,   and  let  x. ,   be  tlie  cargo  transmitted  between  these  tw^  ^orta 
i j 

The c >Bt ol' transmitting thin cargo In taken U be x, A. ..     ABHa'nt» 

that we have an amount, c, ,, of carg^ at the 1—- p( it, and a r^qvilr-e- 

ment r. at tue J— port, with 

(X)      1 c, - Z r  , 
1  1   J  J 

and that It le desired to transmit all tl.e carp,' at a mln'-nur, 

total cost. 

The matnematlcal problsn Is that of minimizlnfr tf.e linear 

form 

(?)       I     c1!^!. 

subject  to   tne  constraints 

■1J 

M 
(3)    «•      ^      x, ,   -  r. 

1-1 
N 

J-l        J 

c.       x^  ,>  0 

A thonugh discussion of an Iterative technique for solving 

this problem is Riven by Flood, [3], and a discussion of related 

classes of problemfi if contained In Koopmano, [7j, and In Beci-onann, 

McQuire, an*'1 Winsten, [l] . 

|3.  211 i Simplified Transportation Network 

Suppose that we have an Idealised network which can be 

represented schematically by diagrams of the following type 



Tne v^rt^ce» repr«8«nL termlnale and the connecting arcs 

lepieeent rail linee Detxeen these tenr.lnftla.  The arc connecting 

the 1—■ terminal to the J—■ terminal In aoelgned a numerical 

quantity, R "capacity", a, , whlct. ^e c^nBlder to be the mftxlmum 

number uf care It can tranamlt In unit 'Ime, and the 1— vertex 

la aaslgnea a number, t. , tr^ maximum rate cl flu«* tnrough tne 

terminal In unit time. 

An Important quantity associated with a network cf this 

type le tne maximum rate uf flow from C tc T In unit time, cr, 

more generally, from any vertex to any ^ther vertex.  That tne 

problem la ncn—trivial le due to tne fart that bottlenecks may 

develop at various Junctions If the outgoing lines h-.ve smaller 

capacity than the Incoming lines or If the terminals cannot 

handle maximum Inco.ilng and outgoing traffic.  The problem Is 

that of determining P systematic procedure for ascertaining the 

maximum rate of flow from 0 to T ynd the allocation of cars wnlcn 

yields tnls maximum rate. 

fk .       Tc polemical Approach 

As has happened so frequently In the paac, a mathematical 

theory which treats prot.ems of this genre Is already lr existence. 



It la the theory of ^ra^ha,  an outgrowth wf the electrical netwcrk 

theory of Kirohoff.  The particular reaulta required are due to 

Mengtr [8], with the application to railway networkß lUKgeoteJ by 

A. Hoffman, and worked out In detail by Boldyreff, h-backer 'i:.<i 

othera. • 

l5«  Linear PT-c^ranunlng 

Since the problem of deteiTnlnlng the maximum rate i f flow 

may be formulated aa a maxlmlzLtlon of a linear function, namely 

the rate of flow to T from the Immediately adjacent terminals, 

subject to the Input—output relation» and the capacity reatralnts, 

It Is clear that the theory of linear Inequ-il It lea LT linear pro- 

gramming la applicable.  It has be.>n ahonnby Kord and Pulkeraon, 

[*], that the results derived from Mender's theory may be obtained 

In this way from the duality theorems of linear programming. 

56.  The Flooding Tecnnlque 

Since tne maximization problem la derived from a dynamic 

process with certain characteristic features, It le to be expected 

that we can find an lljratlve scheme of solution which will make 

use of these features and therefore be simpler to use thoi. any of 

tue standard algorlttass of linear programing. 

A particularly Interesting technique which seems to have 

many wider applications la the "flooding" technique recently 

developed by Boldyreff, which we snail describe briefly. 

•  A very Interesting paper by W. Prager, "On the Role of Conges- 
tion In Transportation Problems", Brown University (19^5). has 
Just appeared showing that a very natural nonllnearlzatlon leads 
to a unique solution of the Hitchcock—Koopmans problem. 
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toe Bt^rt ut I rom ' Ly routl.i^ irftlnn /t muxlmvin cs^fl^lty 

along Ifi» liner» efnanntlng Vr* n.  u.  il r'n-r, :ie<» tfrriln^l w* may 

oi may nut encounter n botLlffie'K.  11" •*»* *r,>.  )unter no bottle-- 

neck, K« continue In tnle fashlon upln^ tf# maxlTum n\unber of 

trains Available and r- utln^ In a rixr-l fanhl^n If we nnve H 

choice, »». ►•. maxlmam capacity to uppermost ^Ine 'ind continuing 

clockwlae 'n 11.lo I'aulilon.  IT we enccunter a bottleneck, we ure 

the rr^.xlnu^ allowable number cf trains and continue thie prcceBS. 

Having /t,ne through! the whole network In this way, we .iow 

remove the bottlenecko one at a time by w^rxlng backwards either 

from T ,r from the stages closest tc 0. 

We see that the method poasesBes the esaentlal features of 

the "relaxation" method which is widely used In applied mathema— 

tlca.  Although no proof has been given of the convergence of 

this tecnnlque as yet, there seems to be little doult that it Is 

valid.  A complete discussion of trie technique together with 

examples will be found In a forthcoming paper by Boidyreff, L^J • 

It Is WLithwhlle noting that tnere Is a str^nf, anaUgy 

between a railway netwerk and a production network and :hus that 

this technique may be equally useful In estlmatlr^ tne poten- 

tialities of industrial networks. • 

•  H. Pulkereon has shown that some structural theorems for 
partially crdered sets, due to H. P. Dllworth, Ann.  f 
Math (19^0), may be derived from Menger's theorems. 
A. Hoffman and G. Dantzlg have given another prrof based 
upon the duality theorem of the theory of linear Inequalities 



Thtrt '»re a nunber of lrit«r*»ötlng an-i Im; riant mathamatlcal 

Probleme conctrntd ulth the tranemlnslcn < f power from ne source 

to ancther, ami with the Interconnection of tranemlBol n ayotems. 

Let uo rel'er the IntereatM reader to 

ü. Kr'o'n, Tens rial Analysis of Integrated TranamlsBlon I'.yoteDB, 

I, II, III, IV, Vol. 70, 71, AIEE PrcceedlngB. 

A. P. Gllmm, P.. Habermen, L. K. Klr^h^ieyer, H. W. Thomas, 

Automatic Digital Computer Applied to Generation Sche^ul- 

ling, Paper ^4-276, AIEK Meeting, June 21-LJ^, 195^. 

, Lobs Formulae 

Made Easy, Paper ^y-ZO?,   AIEE Meeting, Tune 1^-19, 1953 
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Part III 

Snoothlntr ProMemo 

^1.   Prelininarlea 

In thlo part of the paper we ahall dlacuBB a ^laaa of problema 

which are occaalonally cabled 'amoothing' problema.  The general 

problem hao the following character: we wlah to maintain a ayetem 

In a given state, with, ponaltlea for deviations from this 8ta:e. 

In aor.e cases, the penalty is the sane regardleaa of the direction 

of deviation; in other cases, wo have one type of penalty for 

overahootlnr the requirements, and another type of penalty for 

not being able to meet the requiremento. 

Wc shall discuss none sample problema of this type, arising 

from fcononlc and indunt.-lal oltuatlons, and then dlacuso some 

control" problema arlr.lnc; in engineering practice. 

$2.       An Industrial Smoothing Prob1en 

let  us suppose that at any time t v/e have a have a etaff of 

employees capable of tumlnp; out a certain quantity of work x(t), 

and committments requiring a quantity r(t). In -eneral, the 

function r(t) will be oscillatory as a function of time. 
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r(t) 

We shall assume that al all vlme8 we are required to have 

x(t) 2  r(t)# v«hlch is to aay we are required to meet our committ- 

ments come what may. 

If x(t) exceeds r(t)f we consider ourselves to be losing an 

amount of money in excess wages proportional to (x(t)-r(t))dt c 'er 

the interval (t,t-Klt).  However, if we decrease x(t) to the level 

of r(t), we are faced with the prospect of having possibly to in- 

crease x(t) if r(t) increases. This oannoc be done without cost, 

and we shall take the cost of doing this proportional to dx/dt. 

Assuming that it coste ua nothing to decrease x(t), the cost of 

changing the level of labor supply over th«» Interval (t,t+<it) will 

be taken to be proportional to 

(1)      max (dx/dt, 0)dt  . 

The total coot over an interval   [0,T]   can then be taken  to 



be 

(3)      J(x) - y^T [(x(t)-r(t)) ^ a Max (dx/dt, 0) Jdt 

where a is some positive constant. 

The problem la now to choose an absolutely continuous x(t) 

which minimizes J(x) while satlnfying the requirement x(t) ^ r(t). 

The solution turns out to have a quite simple form» see i^j. 

§3.  Discrete Version 

If we now take time to be measured In discrete units, the 

analogue of the exprer Ion In (?.?) Is 

N 
(1) J^xV - Z   [x(k)-r(k) > a Max (x(^l)-x(k). 0)]  . 

J        k-1 

The constraint Is now 

(2) x(k) I  r(k)  . 

The solution to this problem Is similar to that o;lven for the 

continuous version, see Karlln [8], 

§^.  Expansion Limitation 

An Ihterestln? version of the above problem is one in which 

we do not allow arbitrarily raplr! Increase in x(k) or x(t). Thus 

for the discrete case we may Impose a condition of th« type 



(1) x(k4l) ^ Xx(k)     . 

or 

(2) x(k+l) - x(k)  ^ b    . 

A probltm of the  flrat kind has b—n cr««t«d by Baldwin and  Shepnard, 

In  an unpubllnfied  work. 

13.       Tht Caterer Problem 

Let us now state another cmoothlr^, problem  in the   fonn t:". ven 

by W.   Jacobs. 

'A  caterer knows  that  In connection with the neais  he has 

arranged to serve during  the next r. days,   he will require  r. 2 0 

fresh napkins on the   J— day,   j  -  1,   2,   ...,  n.     Laundering nor- 

mally takes p days;   that  Is a soiled napkin sent  for  laundering 

immediately after use  on the J— day  la  returned  In time   to be 

used again on the  (j*p)— day.     However,   the  laundry also has a 

higher cost  service  which returns  the napkins In q \ p days  (p 

and  q  Integers).     Having no usable napkins on hand or  In  the 

laundry,   the caterer will meet his early needs by purchasing 

napkins at a cents each.     Laundering costs b and c cents a napkin 

for the normal and high cost service  respectively.    How does  the 

caterer arrange matttrs  so as  to meet his needs *nd minimize his 

total outlay  for the  n days? 

The solution for the case where  q - J>-1  is given by Jacobs 

in  [7]. 



16.      The Optimal  Invtntory Problem 

The preceding problema have been of determlnletlc type.     Lot 

us now consider a etochastic  version. 

The situation is at follows.    At various specified times,  we 

have an opportunity to order suppllee of a certain set of Items, 

where the  cost of ordering depends upon the number ordered of each 

Item,  and where  there may or may rot be some fixed admlnlBtratlve 

costs which are  Independent oi* the number ordered.     At various 

other times,  demands are made upon the stocks of these Items.    Tne 

Interesting case Is where the demands are not known In advance, 

but where we do 'mow the Joint distribution of demands.    The In- 

centive for ordering lies In a penalty which Is assessed whenever 

the demand of an Item exceeds  the supply.    Different penalties are 

levied in different fields of activity. 

We wish to determine the ordering policy which minimizes the 

expected cost of the  total process. 

Here  Is a case where we have one type of penalty for being 

unable to  supply the demand and different penalty for being over- 

stocked.    This  last penalty may be expressed In terms of frozen 

assets.   In storage cost,  etc. 

The problem was first formulated by Arrow,   Harris and 

Marschak   [l],  and has been subsequently treated by Dvoretzky, 
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Kiefer  and Wolfowitz,   [6j ,  Heliman,    [?] ,   md Bellman,   (illckeberg 

and QroBb,   [•♦j . 

|7«       Learning ProceB8C9 

In formulating the problem above, we have asaumed that we 

kne.* the distribution of damand. In many caoee this Is not true, 

and we hav^ the additional problem of determining the probability 

distribution and making decinlonn at the same- time. A proceae of 

this type we call a "loamlnf* proccsa", cf. out- dlscuoalon In the 

Introduction. 

Problcia  of  thla  typo arlno ".en4   fi'eqv^-.'itly   Ln  .'.ul l:t ic^: 

Inveotl^at .on '^hero   they  have  T'. von  rlae   to   the  t.^iory  of  se- 

quential analyslB of Wald. 

An  Intereotln?  survey of this   'cneral   area  lo  contained   in 

the paper of RobMns,   [9]. 

^8.       Control  Processca 

Let us  close  this part with a brief description of  the   typeo 

of inathenallcji"!  problems arlsln?  in  the  thoory of control processes 

Let ua  consider a physical,  economic,   or engineering  system,   v/Jiose 

sta:e  at any  "in^  la determined by the  vector x(t).     If   left  to 

Itaelf,   Wc ays^era will  be determined  by  the  linear differential 

equation 

(1) dA/dt  - Ax    , x(0)  - c    , 

where A Is a constant matrix and 0 Is some Initial value. 



Lel  UB  auppoB«,  however,   that  we wRnt  the  Bystem to behave 

In a different  way,  one  Bpeclfled  by the  vector y(t).    To  force 

the  pyBtfm   Into   thlB desired   atate,  we mußt  Introduce  some  ex- 

ternal   Influence,  which we  call   "control". 

r'or our purposes we aesume  that  this  external   Influence 

manifesto   Itself  by way of an  Innomogeneous  tern,   a   "forclnp;" 

term,   s^   that   (Ij  above  becomes 

(2) dx/dt   =•  Ax   f   f(t)      , x(0j   -   c      . 

As usualf   It  ousts us  something  to exert  this  contrc1.     In 

determining   .he  amount  of  control   we will  exert,   we must  balance 

the cos'   o*'   control against  the  cost of deviation of  the  syatem 

from  Itß   ic^iied  state.    Depending upon the way  we measure  these 

v&r*   •..     coßtB,   we obtain  various   classes  of mathematical  probleme.0 

Problems  of precisely similar mathematical   type  arise  in 

mathematical   economics  in  connection with reinvestment policy. 

Here  It  is   a  question of determining the  rate at  which profits 

should  be  put  back  into  a  buslnesR  so  ao  to maxlmir»  the  total 

profit  we  obtain over a  given period. 

For other aspects  of  control   proceeses  w«   refer  to  tne  book 

by N.   Wiener,   [lo] . 

• See, R. Bellman, I. Gilcksberg and 0. Gross, "£jme Variatlonal 
Problems In Lhe Ttieury of Dynamic t'rograjriming", Rene? oonte del 
lalermo,    (to  appear),   Froc.   Nat.   Acad.   £cl..   Vol.   39   fl9^)' 



Part IV 

Computational Froceisee 

|1.  PreliminarioB 

In diicussing scheduling procossaa aasoolatod with tha use 

of computing machines we are entering a field of great Importance 

where little has been done in comparison to the lar^e n» nber of 

Important and difficult problems remaining. 

We shall make no effort to cover the vast area of problems 

encountered in determining efficient coding procedures, but rather 

mention briefly some problems of particular irtereet from tne 

standpoint of scheduling theoi-,   First, we ehp.ll consider a 

problem concerned with the evaluation of polynomials posod by 

Ostrowski. This is a particular case of the general pr-oolem of 

determining uniform procedures for computing square roots, solving 

polynomial equations, and so on. 

Then we shall discuss the sorting problem.  Here we are 

given a set of items in sorfie Jumbled array and we wish to arrange 

them In some assigned order, say alphabetically, or chronologically, 

or with respect to other properties.  A particular case of this is 

tne problem of determining the maximum of n quantHles, which arises 

xn computing the solutions of the functional equations occurring In 

the theory of dynamic programmin;'. 



P-651 

§2.       Honier' o  Hule 

If we wish to calculate  tae value or the  polynomial 

(i) f(-)  - aoxn   •  a^""1   ^   ...   ♦  a^^   .  an 

for a particular value of x, we can do It in the followlnK un- 

Inspix-ed fashion.  We flret calculate the powers or x, namely 

x , x i ...» xn, requiring n—1 multiplications, and then compute 

the rroducts, SQX11
, a^x1^^, ..., a ,x, n additional multiplica- 

tions.  Having performed these 2iv-l multiplications, we now re- 

quire a additions to complete the evaluation.  rrTiu8 we require a 

total of 2rv-l multiplications and n additions, fol lowing this 

procedure. 

The^e are many shorter raethoda.  One method, which ie usually 

called Hornor'u rule, or synthetic division, traploya the sequence 

of polynomials 

(2) f'x^x^ " aox/ f alx ~   ' " * + ^ 

com-iöcted by the recurrence .-elation 

(3) fk(x) - x f^^x) f ak . 

It is easy to see that fn(x) computed accordino; to this algorithm 

requires only n Tialtiplicatlons and n additions. 

It seems Intuitively clear that no method can improve upon 

this, but the proof seema difficult.  See Ostrowski, [2j. 
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f3»      Univtrml Algorithma 

Th« problem we hmv« posed above  is a simple example of a class 

of problems that we meet In coding for high speed computing machines 

Various criteria are employed to measure the efficiency of a 

coding procedure.    We may wish  to minimize the possibility of error, 

mlalffllze the  computing time,  minimize the memory  requirements,   and 

so on. 

There is a vast literature on these topics in connection with 

solving systems of linear equations, systems of differencial equa- 

tions, partial differential equations and so on. 

§k.      Determining the Maximum of n Quantitiea 

An Interesting function of n quantities  is  the maximum 

quantity,     ?he use of computing machines in determininc the 

maximum pf a given number of quantities is extremely  Laportant 

in connection with functional equations of the type 

(1) f(x)   -    max    [ g(y)   > h(x-y)  +  f(ay b(x-y)) ] 
0/y<x 

which arise in the theory of dynamic programming, see Q] . 

§5.  Sorting 

Determining the maximum or minimum of n quantities Is a 

special case of the problem of sorting n quantities according to 

some preasslgned ordering relation. 



Thrrp are really many special claseoe of problemo of this 

type.  For example, one problem Is that of detemlnlng a uniform 

procedure which will work for any glv«n set of quantities.  Another 

problem 13 thai of detsrmlnlng a sorting procedure which will 

minimi:'.? expected sorting time when we are r.lvcn the Items one 

at a time or in small batches and the Information that there la 

a trlven distribution governing their or-d-»rin3. A further problem 

i.i that or simultaneously ordering and determining the distribution 

in we 'o along, which Is to say a learning process. 

A dlecusslon of related protlens Is contülned In Seward, [jj , 

^here a nv^mber of further references mav be found. 

■ 



Part V 

Applications of the Theory < f Llnenr F,r( grammlnK 

^1.  Intrcductlcn. 

In the previous chatters, we hwve discussed a nurr.t-er of 

different CIHSSCS of scheduling processes together with various 

analytic and computational techniques which may be utilized 

to treat there problems to a greater or lesser degree.  In M.ls 

chapter our theme la the theory of linear programming.  We sh.ll 

Illustrate by means of a number of examrlep chosen from llfferent 

fields how wide Is the range of application of this Important 

mathematical tool. 

The theory of linear programming has as Its central purpose | 

the problem of obtaining toe maximum or minimum <  f tne linear form 
n 

(1)      L(x) - I   c.x. 
1-1   1 1 

subject to the series of constraint» 

(?) n v/ L ax     >b.   l-l,?(...,m. 
* • 1       ^ «J   o * 

The  theory  of  nonlinear  programming   Is   concerned  with  the 

cor espcndlnt' priblem  f' r  ncnllnear  functions.     However,   this 

study  has  not  achieved   the   same  sti.ge  of  advancement  as   the 

linear   theory,   for obvious   reae  ns,   and   hence   we  shall  not 

discuss   It   here.     The   Interested  reader may   const'lt  Kuhn  and 

Tucker, I 1)   | • 

The   classical theory   of   Inequalities,   BP   devM   ; ed   Uilrty 

to   fifty  years ago by  Dines,   Parkas,   Motzkl^, :Stleinke^   and     thers, 

furnlsries  a  nomber of  elegant   theoretical   results,   tugether  with 
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computatlonal  meth^de.     The  easentlal   Aim of  the  newer   theory of 

llne«r programming   la   to dlacover  and   apply  rapid  computat 1< nal 

algorlthma which  will  yield  the  numerloal  BclutUn  uf  prot iems 

of   tne above   type  of   large dlmenalon  either by  hand   er machine 

computation. 

The moat  useful   and  flexible,   In   the  sense   of   being  *ldel> 

applicable,   algorithm devised  to date   la  tie  "simplex"  method  of 

U.   Dantzlg,   together with  its modifications and  extenalona  ty 

Beale,   Champa,   and   Cooper,   Dorfman,   Lemke,  and  Dantzlg  himself. 

"0  llluatrate  trie  range  of  application of  theae   techniques, 

«e   shall   conalder  a   number cf   problems   In some  small   detail. 

Theae  Involve  the   routing of  aircraft,   the determination  of  ♦"he 

number  ;ind  arrangement     f  toll   collectors  at  trldges,   the   scheduling 

of  military  tanker   fleets,   netwcrk   problems,   production  Brroothlng 

problems,   tne   "fixed   charge"   problem,   and   finally  some  examples 

Involving uncertainty.     These   laat   twc ,   however,   can  only  be 

treated  In  very   special  cases,   and   at   the moment  are  a   challenge 

to   the   Ingenuity  of   the mathematician. 

Q?.     Prjduction  Smoothing. 

We  have  dlacusaed  a  few  smoothing   prcblema  above.     Let  us 

now  consider one   that  may  be  formulatea   is a  linear  programming 

problem.     A  single   Item  Is  to  be  produced   »ver a  given  number of 

time  perlcis  to  satisfy  certain  requirements  at  each  of   theso 

periods.     We  wish  to   produce  thla   Item  ac as  to minimize  the  total 

coat  which  la  compoaed  of  costa  of   production,   costs  of  atorajre, 

and   costs  for  change   In production   rate. 

To  fomulate  the  problem mathematically,   let  T be   trie  total 
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number of  time periods   And  define 

(l) rt  "  r*Qulr*rnen^  ftt  time   t,   «sei med   known. 

xt  ■ quantity  produced  over  the UrrK   period 

yt   " xt-»-l~xt  ^ 0'   the  Increaee   In  production  rhte   at 

time   t. 

Let 

(?) X.   ■£*♦■   "  the   total   production   from  t  - 0 tc   t   -   1 

H.   ■ir.   -  the   total   requlrenent   over  the  period   t   -  0 

to  t   -  1,   with H     -  0.     Then  the excen8   of  accumulated  pr< 1uctl.>n o ' 

over   accumulated   requlrementa  up  to  time   1   1B  given  by 

(3) u1   - uo   *  Xj   -   R1   >  0, 

where u  Is a given constant, the excees production nt the elart 

of the process. 

To express the coete, let 

(4) c. - the cost of producing each unit In the period 1-1 to 1, 

d. - tne cost of storlrg each unit of excess u. for  ne period, 

e. - the cost of Increasing production rs.t^ one unit 

per unit time at time 1. 

The problem Is then to minimize the total cist jf tne process, 

T 
(5) I   (c.x -Kl u *e yj 

1-0 

subject to the constraints 

(6) («) Z H>     Z r 
t-1  L ~ r-l  L 

(t) x1•yi,^i > o. 

In   their paper,     r      ,   of   Part   III,   Dsntzlg and   Johnson   exhlMt 

a  rapid  graphlcai.  method,   Involving only   Intersections  and 

rotations  of  straight   lines,   which  seems   to   require  only a   few 

Iterations.     See  also  A.   J.   Hoffman and   W.   Jacobs,[ 12) . 



C<3.  TralTlc Delay Ht To 11 boothe. 

An Intereotlng problem In the general theory of queuing le 

treated by L. C. Edle In ' IC i.  It concerns the collection of tolls 

at Port Authority tunnels and bridges In Net» York City.  The 

Port Authority desires to handle traffic with the minimum number 

of toll collectors that Is consistent *1U both adequate service 

to the public and a sufficient number of relief periods for the 

toll collector.  These relief periods are required slr.ce tne 

work Is continuous and exacting.  We then have the usual conflict 

between economy nnd service. 

Having determlr.sd the traffic characteristics by obaervatlon 

over a period of time, tdle reduced the problem to one of 

scheduling.  The solution obtained theoretically was found In 

actual practice to be very satisfactory. 

At the suggestion of E. W. haxson, the problem was tackled 

by 0. Dantzlg, 5 •  His fonr.ulatlcn of the problem leads to the 

problem JT  determining the -nlnlmum of L(x) subject to tne 

restrictions 

(1) 
m 
Z   a, ,x1 > t.,, 1-1,?,.. ., m^l4 
1-1 

1 '1 c. 

x1 > 0, 

where the ecsentlal feature of tre problem Is that the a., are 

either C or 1.  As a consequence of this, prot lerne of moderate 

slzf can often be solved by hand computation In a few hours, 

usli^g tne dual simplex technique.  Thr observation that tr.e 

problem Is a variant tf a transportation-type problem, seei 6 1» 

enables large systems "o   be atlved rsptldly with the aid of 
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computing nachlnvs. 

^U.  Schtduling a Mlirtary THnker Pl»»t. 

In u  prtvloun chapter we mention««! the HItchcock-Koupm*nfl 

traneportttlon problem, ani noted the fact, that Independent formu- 

latlone and computational schemea had been ^Iven by a n>imber or 

different people.  A degenerate form of the tranapcrtat1 -n problem 

1B the assignment problem, which han been treated by the almplex 

method In * piper by Votaw and Orden, •••' l6j# 

An Intereptlng appllcatln of the Koopmana—Dantzlg approach 

to the general transportation problem, using the simplex metr.od 

of computation, Is contained In a paper by M. M. Flood,  ^M. 

dlscuesing the scheduling of a mllltury tanker fleet. 

Another discussion of t'r;e problem Is contained In a paner 

by 0. H.  Dantzlf, and D. R. Fulkere^n, 9 , where they show that 

fairly large problems of this nature can be solved by hand compu- 

tation requiring only a lew Iterations.  An alternate computational 

echeme had previously been given by Robinson an 1 *'HlBh,llf 

M similar problem occurs In connection with the routing 

aircraft where there are a number of altern«tlve routes, a nu>.. 

of different types of aircraft, and different payloads anl traffxc 

en different routes.  For a cMacusBlcn of this problem see, 

fc5.  Fixed Charge Problems. 

In the previous section» we have dlscueseJ a number of problems 

which can be resolved rerdlly using the computational methods of 

linear progrh....mlng.  Let us now present some problems which are 

either Intractabje or can only be handle-i In Sfeclnl cases. 
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Consldtr tht folloM.ng situation.  We have a factory containing 

m  dlfftrtnt tnachlntc each capable of performing any of n dlatlnct 

operations. Let h. . denote the time consumed by the J— machine 

performing the 1— operation on a unit quantity of iroodB.  Let 

Xj, denote the quantity of goods on which the 1— operation Is 

performed by the J— mathlne, and b. the total qunntlty of goods 

which require the 1— operation. The fcllowlng relations are 

sat! sfled 

n 
(1)      ^2  x-, - b., 1-1,?,...,m, 

J-l  lJ   1 

b. x, , > 0. 

Let us assume furthermore that  there  la a  constraint on  the 

total  man hours available  for the J  machine;   I.e. 

m 
(?) Z       h^j Xj. < c.,   J-l,2,...,n. 

The most efficient operation Is taken to be the choice of the x- . 

which minimizes the tctal ^o<Bt of operation, 

m    n 
(3)      L(x) - Z    Z   fiixii- 

1.1  j-i  iJ U 

In this formulation^the  problem falls  within the domain of 

linear programming. 

Let  us,  however,  now assume that  there  Is  a  fixed  charge,   k. ., 

for preparing the  J— machine  for the 1— operation,  regardless 

of the  length of time that  the machine  Is  used.    The total  cost 

Is now 

CO LI ,(x)" L ^^ij^i^v] 
whefe (^ (x) Is the discontinuous function defined by the conditions 
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(5) Mx)  - 1.  x > 0 

-  0,   x  - 0 

The problem of minimizing  tht   total   coat,  SB given  by   {k) 

1B  ont that at  the moment  eecapee any of the  known efficient 

oomputatlonal  algorithms.     It  1B   interettlng  to note,   however, 

th'il  the  special   caee where k. .  • k may be treated  by  an  extension 

of  the conventicnal   techniques,   see  D nlzlg and Hirsch,* 

A similar difficulty arises   In  the  "optimal   Inventory"  problem, 

where  the  k. .   correspond  to paperwork  or "red  tape"   costs  In some 

oases and  to physical  set-up costs  In others,   see | 2  {» MJ. 

§6•       Convex  Functions and  Uncertainty. 

Most problems  Invoking uncertainty or stochastic  processes 

lie outelde the  range of  linear programming teohnlques.     In some 

cases they  can be  treated  by  '.he methods of dynamic  progra-tnlng, 

see| 1 1,  where  further references may  be founc,  nnd   In most cases 

they remain unsolved. 

There are,   however,  a  class  of probleme  Involving uncertain 

demand which  lead  to  the problem of minimizing a  sum of  the form 

n 
(1) M(x)   -    Z tAx.) 

1-1       l     1 

subject to linear constraints, where the ^U) are cenvex functions 

of the x-, or alternatively, of maximizing the sum when the 

f (x) are concave functions. These can be treated by linear 

programming techn^ues If we approximate to ^.   (x) by a step 

function. Details may be found In \ ^ ji: 1 7 '. 

Let us consider a simple example Involving uncertain demand, 

•The Fixed Charge Problem, RM-IJÖ^, RAMD Corporation, 195^. 



occurring In th« «Alriut-<rok'i .g Industry, which leads to a problem 

of th« abovs type,  bach year, the walnut crop oonsljts of walnuts 

of different grades, say 01,0t,...,0  In quantities q t .qa, • • • ,()>• 

Using various quantities of each grade aasortments of wahuts are 

out together for commercial sale.  Let us assume that there are 

N different types of packets selling for prices Pi,Pa,.. ,PN 

per packet respectWely.  If we assume that there are fixed demands 

for these assortments, d  for the 1— assortment, then the problem 

may  b« formulated vary easily as a generalized transportation problem. 

Let 

(2)      Xj. - the amount of the 1— grade of walnuts that Is 

used to make up the J— aesortment. 

Then we have 

N 
M I  x, 1 < g1 , x  > 0 

The number of packets of the 1— kind that can be put t< gether Is 

(»)      uj - Mln xj, 

where u. satisfies the restriction 

(5)     uJ$dj. 

The *otal profit Is 

N 
(6)      P - I  u^. 

J-l 

The problem of maxlrlzlng the profit can be received numeri- 

cally using the standard technique«. 

Consider, however, the ciae where the demand la uncertsln. 

In this case we may assume that, on the basis of experience, we 
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can predict th« ilstrlbutlon ^f clemÄnd for each t^p« of aaiortrntnt.• 

Let iO. (z ) be the dlatrlbuMon function for the demand for 

the 1— packet.  If u, packete nre madejthe expected  profit 

will be 

(7)      Pi ^     idQ^z) > p1 Uj (/\        d01(z) 

Hence the total expected profit la 

(b) 
N 
2   p1 ^(uj 

where 

a^ 
(9)      ^(u) -(/J  zdQjl /• ) > u ^  dQ(z) 

- u *iP        (z-u)dO(z) 
^ c 

It 1B easy to aee that each ^,(u) la a concave function.  Hence 

the Approximation method uaed above may be employed. 

A problem of similar type, arising from the problem of 

allocötlcn cf e carrier fleet to ulrllne routes to meet an uncertain 

demand la treated by 0. Dantzlg ln| 7 • 

Let us mention In passing that maximization of expected 

profit may be undesirable If there Is a considerable risk Involved. 

We may prefer a smaller expected profit and a smaller risk, or 

a amaller variance. An Interesting discussion of this geneial 

problem Is contained In Markcwltz,; 14'. 

•This muüt be taken cum gran' Balls. 



Part VI . 

Cryotal Oazlng 

|1.  Introduction 

In the previous parts, we have uxaralnod a number of problems 

of various types and discussed a number of mathenmtlcal techrilques 

that have been employed to handle these problems.  In thle part we 

shall turn the spotlight on a number of regions of mathematics 

which we feel muat be intensively explored before we can hope fü 

master the flel'J of schedjling theory. 

Taking subject! in no particular order as far as priority 

or importance or difficulty are concerned, we shall discuss the 

extreamm properties of functions defined over dlocontlnuoua 

groups, non-classloal aspects of the calculus of variation«, 

non-commuta*"ive stochastic processes, non-markovlan processes, 

and iterative tec^miquen. 

Each of these topics is woll worth studying In Ita own right 

apart from any possible applications.  However, It Is probably as 

true here as in other parts of mathematics that the best entry to 

s new field is by way of an Important and natural physical problem. 

Scheduling theory contains an abundance of these, almost all diffi- 

cult and challenging. 
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§2.  hxlrnni^i PrQj>rrt.it»n of Functlone on DiacontlnuouB Qroup» 

The claünlcal problemo In varlatlonal .inalyola may bo handled 

uniformly by the principle of contlnuoua variation of the Indepen- 

dent variables in the neighborhood of the extremum. In many of the 

Probleme we have dlacuaeed above, au for example the aaaembly line 

problems of Part I, we are confronted by the problem of maximizing 

over the set of all permutations on n object».  Here the ceneept 

of contlnuoua variation la niaaing, and this accounts for a great 

deal of the difficulty of the problem. 

It would seen therefore that a study of the extremum properties 

of functions defined over discontinuous groups Would have Inter- 

esting and important consequences for scheduling theory, and that, 

conversely, a good point to begin this study would be In connection 

with the permutation group on n objects, the fundamental group of 

scheduling theory. 

S3.  Norv-olassical Calculua of Variations 

As we have aeon In Part I, the contlnuoua versions of some 

problems Involving permutations lead to varlatlonal problem« over 

the space of characteristic functions. 

Problems of this type are not amenable to the classical 

varlatlonal techniques and require new techniques. A particular 

problem which has mt been previously treated, and which arises 

in the study of production processes involving mutually exclusive 



opir»iuloiiH,  la that of dotertnlnlng Ui« txtrcaa of 

(i) J(*) - fj ru,. ^ »   ♦ • • 4k. t)dt 

Z k,   « T 
1     i 

whore the ♦.(t) art subject to the constraints 

(2) a.  0 £ ^(t) i  1 . 

b.  y^T *1(t)dt - k1  , 

o.  i1(t)4J(t) - 0     for 1 | J  . 

froblems of this type arlee  alBo In  the theory of multi-stage 

produotl>n processes involving mutually exclusive activities,   [2]. 

J4.      Non-cownutatlve Stochastic Processes 

The olaaaical theory of probability la occupied almost ex- 

clusively with the study of coimnutatlve processes,   in the following 

tense.    Let  x.  bt t sequence of vectors .itvlng a common distribution. 

and let 

(1) 
N 

N       i-1    I 

The clattloal limit theorems,  such as the central limit 

theorem, are concerned with the question of determining the 

aaymptotic diatributien of various functions of z^. 
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If we consider z*. to reprtsent the state of a physloal system 

at time N, the x. represent certain random disturbances of the 

system.  In writing z». as a sum of these disturbances, we are 

tacitly assuming that tnese disturbances commute as far as their 

effects are concerned, i.e. their order of occurrence of no im- 

portance. 

In many situations, this is not true.  Consider, for example, 

a system whose state at any time is specified by the vector x. 

Let an event correspond to a transformation of this system Into 

another vector x' and let the transformation be a linear one. 

Then x* - X,x, and If the events are stochastic the matrix X, Is 

a stochastic matrix.  The result of n successive events will be a 

stochastic vector x given by the relation 

where the X. are stochastic matrices. 

'Rie problem of determining the limiting distribution of the 

vector x given the distribution of the random matrix X. seems to 

be a very difficult one which has been discussed up to the present 

in very brief detail, cf [l] . 

The difficulties of queuing theory are in a large part due 

to th* norv-corarautatlve aspects of the problem and the resultant 
V 

non-linear functions which occur. 
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15«  Norv-IUtrkovlati rroo#i>aet 

Consider a aequ«nce of random variables /*«}» where 1 - 1, 2 

The three moat Important typea of aequencea which have been atudled 

to date are aequencea of Independent variables, Narkoff prooeaaea, 

and stationary processes.  In eaoh of these cases, the sequence 

possesses a special structure vfhlch enables us to bypass any 

necessity for the complete paat history of the sequence. In pre- 

dicting the behavior of future elements In the sequence. 

In scheduling theory, however, and In many other stochastic 

processes as well, the structure Is more complicated. We must 

study various classes of stochastic sequences '< ere the distribu- 

tion of x. depends upon Us distribution of al. tae preceding; x*. 

Posed in this way the problem Is too broad, and it would seem 

that ones again the best approacn to an extenalcn of the preaent 

mathematical theory lies in a study of the natural problems 

which arise from queuing theory, scheduling theory, and related 

fields. 

§6.      Further Applications of Game Theory 

As ws noted In 113 of Part I, the solution to the assignment 

problem, which crudely requires nl calculations, can be obtained 

2 
aa the solution to an n x2n game, which is an enormous decrease 

in dimensionality for large n. 

, • • • 



^ 

An Important probltm wMoh t.inmedl*toly ■pringt  to mind 1« 

that of catalo^uinp; the clasMi of problem» involving peututationi, 

or more generally variation  3ver the elementB of a dlacrat« group» 

which can be  transformed Into two-parson games cf lower dimensions. 

An interesting problem which   includes the scheduling proolema 

discussed in Part I  is that of determining the minimum over all 

permutations of  t\ e  x.   of the function 

n 
(1^ f(x)  - max Z     a. .x. 

i     J-l    1J  J 

§7.  Iterative Techniques 

It ' n intuitively clear that each problem that arises will 

have certain characteristic features which can be utilized to 

ap^ed the computation of a solution. This is one of the advan- 

tages of considering problems arising from the physical world. 

Of all the universes within pencil reach of the mathematician, 

the real one is the most likely to furnish important, interesting 

i nd tractable problems. 
» 

Essentially,  the argument goes that whatever exists cannot 

be too complicated,   if viewed properly.    This, of course,  is an 

article of faith and not to be interpreted too literally. 

The idea of exploiting the  intrinsic structure of a process 

is the guiding concept of the theory of dynamic programming. 



Similarly, in «mploylng the alfrorlthm of the 'eimplex method", 

0. Danzig has introduced many devices to take account of dynamic 

processes.  The "flooding technique" of Boldyreff ID another 

example of an iterative technique particularly adapted to the 

problem it treats. 

A certain amount of compromise must always be made in 

formulating comp\ ting procedures.  If we arc Intereaicd in codla^ 

for modem high speed machines, v/e want fairly uniform procedures 

so that receding will not be necessary for every new p'oL^err. that 

conies along. On the other hand If an appropriate nodiricution, 

or an entirely new method, can save an appreciable amount of tine 

on problems of a special but important type then it Is worth 

employing. 

A great deal of work in this direction has been done In 

connection with solving syntemo of linear equations and in solving 

polynomial equations.  However, very little has been done from the 

purely abatract point of view of classifying structural propcrtlee 

of processes end correlating them with appropriate computational 

techniques. 
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