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SUMMARY 

\i 

A 

The general problem of a raarkaman veraus a mobile 
target, with a  time lag In the gunn^p'» InfcormatXc;}  ^ 
as  to the  target'a position, iappeara Ih'niany giilBepK 
In many altuatlona,-   Xt la—a-olaaal^-iaiutapy-firo^ire«* 
Formulated In  terma  of game  theory,   the desiderata 
are:    How ahould the target beat manauver to confound 
prediction of his position?    How and when should  the 
marksman make  thla prediction?    What hit probability 
la  to be expected when both participants behave 
optimally? 

This paper discusses  this general claas of problems 
and then aettlea on one which seams  to be the simplest 
possible example that Is not trivial.     Nevertheleaa 
It la difficult. ,   In two previous papers devoted to 
It,   the evader's beat strategy and value of the game 
wtpa given.-^--Here^he emphasis Is on the markaman. 
He has no optimal  strategy,  but does have an Ideal 
strategy with the property that every near optlmar""^ 
atrategy.la cJ.ose to It.    He alao has a class of 
passive X^-ii'mbegles such that If and only If he 
obeya their dlctatea will he either come within t^ \ 
of the beat hit probability or else always remain 
In a position where It Is possible to do so. (  ) 
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THE   PROBLEM  OF AIMING  AND EVASION 

Fiufua  Isaacs 

1.     Introduction 

One of  the most  classic  of military problems Is:     how best 

to aim at a mobile   target which is deliberately maneuvering so 

as  to confound prediction of his position.     The answer must be 

sought in  the  theory of games,   whence we consider simultaneously 

the apposite question:    how best should the target maneuver. 

Such antagonists appear in a great  variety of situations. 

They may be sniper against infantryman,  antiaircraft  gun against 

plane,  bomber against ship.     Whatever be their nature,   the crucial 

feature  these situations have in common is a  time lag between the 

detection of  the  target and  the arrival  of the projectile.    TYils 

lag may be composed  of a number of summands such as  the delay 

between detection of  the target and aiming of the firing device, 

and the flight  time  of the projectile  itself.     But  this decomposi- 

tion does not  concern us here;   it  suffices  to consider  the  time 

lag as a  whole. 

ITie  theory of games warns u»  to expect mixed strategies 

from both participants and a modicum of common sense  confirms 

the warning.     When a player of a  game employs a mixed strategy, 

it means  that he does not make his decisions in accordance with 

any predetermined,   certain plan,  but  Invokes a  certain amount of 

randomness.     A game  theoretic  solution prescribes not   the dictates 
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of behavior but  their exact probabilities so as respectively to 

minimize or maximize the probability of a hit.     It Is clear that 

this will be the case In the present  type of problem.     For If the 

target were to follow any proscribed,   certain plan.  It would 

plainly be a ruinous policy as soon as the gunner became aware 

of It.    Likewise any fixed policy of the gunner would enable the 

target always  to escspe once he learned It.     Then our goal Is 

optimal mixed strategies or policies  of best regulated randomness 

for each player. 

So far as we know,  this entire field Is virtually virginal. 

We do not claim any deep Inroads here.     We deal with a single 

problem,  described below,  which Is  the simplest nontrlvlal one 

we could devise,  yet which embodies  the features discussed above. 

It Is but  the first  rung of the ladder. 

The circumstances  that led to this problem,  we  think,  are 

Instructive.     Originally this  was  Its  guise. 

A battleship In mldocean Is aware  of an enemy bomber's 

presence, but  the plane Is  too high for precise detection.    The 

ship Is Interested only In not being hit;  It has no offensive 

meana.     ihe plane has one bomb and we suppose — to avoid extra- 

neous factors — that  the oomber's aim le excellent.     Hie battle- 

ship knows  this,  but knows nothing about when or where  the bomb 

will be dropped until after detonation.     It Is  to maneuver so as 

to minimize  the hit probability.     We suppose that Its only kinematic 

restriction Is  thst It travels with a  fixed speed v.    There Is a 

time lag T between the bomber's last sighting of the ship and 
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detonatlon.     Thus the bomber must aim at an anticipated position 

of  the ship. 

Qame  theory attempts  to answer the  three Interstlclal  questions: 

How best should  the battleship maneuver?     (Optimal 

strategy of player I) 

When and where should  the bomber strike?     (Optimal 

strategy of player II) 

What  Is the hit probability when both players use 

best  tactics?    (Velu?  of  the game) 

If at a  certain time  the  ship Is sighted at a certain position, 

then when the bomb strikes he may be located anywhere In a disk of 

radius  vT.     To minimize  the chance of an  immediate hit,   the ship 

should be at all points  of  the disk with equal probability.       For 

If he favored  one portion of the disk,  by bombing thereat  the 

plane scores a dlsparately high hit probability.     But there Is 

only one path — a straight one — by which  the ship can reach a 

peripheral point and many by which he can reach a  given Interior 

one.     Hiua  to achieve equlprobablllty,   the ship's mixed strategy 

must attach an unduly high probability to straight paths.     But 

plainly such a  course  Is detrimental  to future positions.     For 

If the bomber waits a  little and observes  this straight path 

tactic,   nothing could be easier than an extrapolation and a 

certain hit.     In other words,   If  the ship attempts equlprobablllty 

For peripheral positions we should make a correction If 
we take any Inaccuracy of bomber Into account. We will 
not do so here. 
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at  one Instant he renders his later dlatrlbutlona extremely 

unequal.     The battleship must compromise between present and 

future and seek a probability distribution which,  although it 

is as near uniform as possible,  can be maintained indefinitely. 

As  simple as this problem sounds circumstantially, it Is 

difficult technically.     To gain a foothold,  we simplified it 

further.     We made the ocean one-diirensional and discrete.    That 

Is,  we supposed the battleship to be located  on one of a long 

row of points and at each unit of times he hops  to one adjoining 

one,  enjoying the sole choice of a right or left Jump.    The time 

lag was  to be an integral number n of time units,  or — the 

same thing — of Jumps.     This is tantamount  to saying that the 

bomber knows all positions of the battleship which precede his 

present one by n Jumps or more.     If n - 1,  the bomber knows all 

but the most recent of the ship's positions and there are but two 

possibilities for thst:    one space to right or left of the last 

observed one. 

This case — n-1 — is  trivial.    The ahip makes each decision - 

left or right — by the toss of a coin.    The bomber can bomb at any 

time and when he does he also decides between  the two possibilities 

with s coin.       Then the value of the game (hit probability) Is 1/2. 

(For the game theory tyro only. ;    If at sosie time,  the ship 
elected,  say,   the probabilities:    Left:     .6;  Right;     .4,   the 
bomber need only wait for this  time and bomb on the lf ft; 
then hit probability -  .6.    Similar considerations hold 
vice versa.     Thus the unique optimal strategies require 
50-50 decisions on the parts of both players. 
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Our Intention was now to take up n - 2,  3,  4,   •••   and,   from 

the knowledge gained,  proceed to the continuous case.     Ihance,   we 

hoped  to restore plsnarlty to the ocean and approach practicality 

by more  realistic assumptions about  the  ship's kinematics,  accuracy 

of  the bomber, number of bombs, etc. 

But  the case  of n »  2 proved  to be an incubus.     A  considerable 

amount  of effort by several people  was expended before  Its shell 

began  to crack.     Thla paper will be  the   third one devoted to It; 

see   QL,   2j .     We can  -xpect  the general  class  of almlng-end-evaslon 

problems  to be more difficult  than anticipated,  but by no means 

hopeless. 

We have been occupied with a subject we call differential 

games,   with pursuit games as  one of Its  more cogent applications. 

A drawback Is the difficulty of handling oases where  the  Information 

of  the players Is Incomplete.     It Is  our hope  that  the present 

problem will adumbrate  techniques In this field also,  and  we are 

thus guided  In our nomenclature of  the players: 

P,   the pursuer,   bomber,  or marksman 

E,   the evader,  battleship,   or target. 

We  cite  one Innovation of  technique  that appears  to be of some 

generality In games like  the present  one  which admit  of a   "stationary" 

or steady state character.     By this  we mean  that after a  full   cycle 

of moves   (usually one by each player)   the game Is either terminated 

or a  situation recurs  which resembles a  fresh start  of  the game. 

An  Initial move of one player is replaced by a  chance move with a 
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prcasslgned probability x.  Then for each x we have a nr^w game 

and the value of thla gase we denote by ^(x). Often the 

reaemblance juat mentioned becomes an Identity except for 

the value of x, which clrcumatance enables ua to write a 

functional equation satisfied by ^(x). For a simple example 

of this method — the Initial one for us — see our paper [3] 

dealing with a recreational game. 

In the previous two papers [l, 2], dealing with the current 

game, E «ras accorded this treatment of having his Initial move 

"chanclfled." Here we shall do the same for P. These alter- 

native possibilities present a curious duality of techniques 

whose Interrelationships may bear Interesting fruit. 

But methods Isteri  Let us now return to case of n - 2 — 

our subject proper.  The course of £ can be shown conveniently 

on the diagram of Figure 1. His starting point 

is 0 and on his first move he travels to either 

d or e.  If he went left to d, on his second 

move he may go to a or b and so forth. 

Always P knows E to be at one of three 

positions; if he was last observed, say, 

at d, and P wishes to fire he will do 

so at one of f, g, or h. 

The same dilemma of present or future 

benefits that beset the battleship also confronts £, but we are 

now in position to examine matters more succinctly.  If £ is 

concerned only with a single instant, his best snd safest course 

Fig, 
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la  to make the three probabilities of where he will be when 

under fire each equal  to 1/5.     For then P spots him with 

probability 1/5 and this Is clearly the lowest value E can 

can hope for.     Let us suppose E Is guided by  this  consideration 

alone. 

On  the grounds  of symmetry,   *e suppose E  to make his  first 

choice  (d or e)  with probabilities 1/2.       To cause  the probabilities 

of being at a,  b,   or c  to be 1/3,  E must make his second move with 

probability 2/5,  1/5,  1/3,  2/3 as marked on Figure 1.     If E Is at 

d he must slmllsrly equalize his chances of arriving f,   g,   or h. 

llils determines some of his  third move probabilities;   they are 

also marked on the  figure.    But  the probability b—to-h Is  11 

TTius,   should E reach b via d,   P can  fire  then and,  by splitting 

his  target choice between J pnd k,  score with probability 1/2 

or more. 

Let us endeavor to find a  less ambitious but more enduring 

strategy for E.     We may expect  that  In such a strategy each 

decision will depend on prior moves.     As  E's course more  than 

two moves ago Is known  to his  opponent.   It  Is reasonable  to 

suppose  that  this dependence will not  reach very far back.     Let 

ua  suppose the choice depends  on  the previous move  only.     Pre- 

cisely let E move  in the same direction as his last move  with 

probability 1 — x and let him make a   turn with probability x. 

This strategy is certainly stationary;   it  is expounded in 

Figure  2,   which diagram applys  to any position except  the 

The  symmetrizatlon  is  not necessary.     The reader can verify 
that  our reasoning holds whatever  the initial probability. 
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one at the very outset.  Ihen the probabilities 

of E's reaching 1, 2, or 3 are respectively 

(1-x) 

>     (1) 

x(l-x) 

In accordance with  the  tenets  of game 

theory,   we presume that P will  elect the largest  of   these  three 

quantities.     The best possible x for E Is  i:hen   that  value  which 

renders  the maximum of the  three polynomials   (1)  a  minimum. 

Plots  of  (1)  are  sketched in Figure } with maximum overscored. 

It is minimum at  V, a  root  of 

x - (l^cr . (2) 

Then 

V 2 -V? m 
2 

.302 (3) 

TYils number is also the probability 

E's arriving at points  1   or 2 and 

so is  the payoff when £ plays as 

Just described  (we grant   P sense 

enough  not  to fire at  3)« 

It  turns  out   that V is actually  the value  of  the  game and 

the strategy  Just described,   which  we henceforth denote by M, 
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18  the  optimal strategy for E and Indeed  the  only such.       On  the 

other hand,   It turns  out  that  P does not possess an optimal 

strategy,   the situation being thus:    for any   6 > 0,   there Is a 

(mixed)   strategy for P rfhlch assures him of a  hit with proba- 

bility > V -£,  but  no strategy Insures V.     A  strategy of  this 

type will be called a near optimal  strategy or an E.-stratesy. 

These  results ere not  easy to prove.     ttiey are the subjects 

of papers   [l,  2].     Dublns deserves  the honor of priori ;y.     His 

paper came  to our attention  some months after Its publication. 

By  this  time a RAND version was ready for  the  press;   the work 

was done  Independently and  the methods differed enough to warrant 

a  second  treatment. 

Neither paper gave a  near optimal   strategy for P In the 

sense  of furnishing him explicit playing Instructions.     As  this 

facet  of  the problem Is  of  obvious  Importance  in more  realistic 

versions,   we present  a  third approach which stresses  this  aspect. 

On  this  topic  we  shall   later obtain  the following results. 

In  the next  section our game  will be Imbedded  In a family of 

games.     For these games  P has what we  term an  Ideal strategy. 

It  Is  for most of  the  family not an £-strategy,  but It  is  true 

that every £-strategy Is  nearly the Ideal  strategy,   the nearness 

Increasing with the smallness  of £.     We also delineate a  class 

cslled passive 6-etrategles,     For each   i and each play of a 

* 
We complete the definition of M.  On his very first move 

E may elect any probability p such that V < p < 1 - V. 

It is easy to verify that P can still attain at most V. 
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game  theae Impoae well-defined restrictions on each move of P 

such  that: 

If he  conforma he will either attain a hit probability 

exceeding the value  (the best possible) -t   or he will always 

be  In position where,  with proper subsequent play.  It will  be 

possible for him to do so.     But If ever he violates the 

restrictions,  E can prevent him from coming with   t   of the value 

The Ideal strategy Is a passive t-strategy for every £.. 

2.     The  "Chanclfled" Gates 

We say P plays an a—strategy when the  following holds: 

Let a » i/v^*     Whenever P y 

decides to fire he will aim at the 

leftmost   [rightmost]   of the  three 

points where E may be with proba- 

bility a If E's last observed move 

was left   [right]  and he alms at the 

center point with probability 1 - a. 

To act at  the very opening of the game,   P must  supply E with a 

flctltloua preceding move.     See Figure  4,   where  the dotted line 

It  the   (possibly fictitious) preceding move.     We will motivate 

this  concept In Section 7. 

We  coin  two families  of new 

games.     For the game F  ,   we amend 

our original  rules: 

There is a fictitious minus- 

first move,   say, from the left,  and 
f- ig. D 
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P Is  constrained  to play an a—strategy.     Tlie opening move la 

chanclfled;  P la Impelled to fire with a preaaalgned probability 

r.    Alao S la obliged to make his first move to the left.     (See 

Figure 5.) 

lYie game H    Is  the same except  that 

E makes his first move  to the right. 

For Fr,  let 

f(r)  - sup  Inf   (payoff) 

which  Inf extends  over all strategies  of 

E and  sup over those of  P.    Or,   to put  It Fl^ 6 

otherwlee,  f(r)  Is  the upper bound  of all 

hit probabilities  that  P can attain In  the game P ,  no matter 

how skillfully he Is opposed. 

Let h(r) be defined analogoualy for H   . 

We  shall  obtain a pair of functional  equations for f(r),  h(r). 

Here  we  shall  do It heurlstlcally. 

Let  P elect  the  firing probability c,   to be fixed  later,   for 

the second move of F   .     If E's second move  Is leftwards,   P fires r 

at him with probability r and then hits with probability a. If P 

does not fire, the situation is tantamount to the commencement of 

the  game  P,.     Assuming  that  P also strives  toward his upper bound 

The  reader may ask:     Why does   the  chanclfylng process 

lead to two famillea  of games and  consequently two 
functional equations?    It need not;   see Section 9» 
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when pitying this  latter game,   the hit probability under these 

circumstances  Is 

ra + (l-r)f(c)   . CO 

If E chooses rightwards for his second move, the hit probability 

Is 1 - a If P fires Immediately.  If P does not, he Is faced with 

the game H .  Itius the chsnce of a hit la 

r(l-a) + (l-r)h(c) . (5) 

Now we suppose E adroit enough so that his left—right choice 

selects the minimum of  (4) and  (3).     Then  P,  to play well,   should 

pick c with the Intent of making this minimum as large AS possible 

Thus 

'ra + (l-r)f(c) 
f(r) -    sup      mln 

0^c<l |r(l-<i)  +  (l-r)h(c) 

Similar considerations applied to H lead to 

[(l-r)f(d) 
h(r) -    sup      mln J 

0^d<l r(l-a)  +  (l-r)h(d) 

(6) 

(7) 

The functions f (r)  and h(r) appear  to be extraordinarily 

complicated.     It seems  that the Interval  0 < r < 1 Is  to be 

divided Into Infinitely subinterva1 s with  the functions 

possessing distinct analytic expressions on each.     Furthermore 

to ascertain  these expressions appears  bafflingly difficult. 
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Thls amazing complexity la dlaconcertlng when we bear In alnd 

that we are atlll dealing with but  one of the almpleat veraione 

of our problem. 

We have computed plota of  f and h which appear at  the end 

of thla paper.     Theae were executed with naive  computational 

technlquea  out with enough care  ao  that,  If data  la  take from 

the plota,   they will  fulfill   the functional equatlona  to within 

the llmita  of  graphical accuracy.     Tliere are alao plota of the 

c and d which  fumlah the maxima. 

One would hardly auapect  the Involved character of f and h 

from their Innocent looking graphs.     Are we  to conclude  that  there 

la some  simple but  closely approximate method of  treating the 

present  claas  of problems?    We do not know. 

RAND Report RW-1)83,  A Qame  of Aiming and Evaeion;    Qeneral 

Diacusaion and  the  Markaman'a  Strategies is a mathematically more 

acrupuloua version of the present paper.     In it a number of 

propertlea  of f and h neceaaary  for our work are rlgoroualy 

proved.     We  list  them below.     If  the reader accepta  our plota 

aa close depictions of the functions,  most of  these properties 

will appear obvious.    The above report alao containa a  rigorous 

derivation  of  the  functional  equations  (6)  and   (7). 

In the report it la ahown that all solutions of (6) and (7) 

are continuous. TYien the sup appearing on their right sides may 

be replaced by max. 
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We introduce  the numbers 

R1   -  2V ,       R2 - V 

and use R to mean R,   where we are speaking of F    or f and R^ 
* 

when speaking of H    or h.     When  r ^ R    and only  then the 

functions are  linear;  in fact 

f(r)  - a ,   h(r) - a(l-r)   . 

The largest maximizers here are 

c(r) - mln  { ^^ ^ /*.   , 

Jr(r) - -in  [i=S   ■£? .  l] 

but  these are not unique,  as shown by the shaded portions  of 

plots c and d.     Remark that 

Ö(R1)  - Z{h2) » R1   . 

More interesting is the range r < R.    Here the maximizing 

o and d are unique for each r and will  be denoted by c(r) and 

^(r).    Ihey are continuous and 

c(r)  < R1,      d(r) < R2  . 

Further f(r)  is decreasing and h(r)  increasing.     When 

o - c(r)[d - d(r)]   the two lines  on the left of  (6)[(7)]  have 

equal values. 

The case  r - 1  corresponds  to certain firing and  so no 
significance  then attaches  to c or d. 
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At  r - 0,  f and h are dlfferentlable and 

f,(0)-A-l-2a 

h'(0)  - -B -- ^L   . 

Further c(0)   -  0,  c'(0)  exists  and - V.     For 0 £ r < i^  < R., 

ther« exists  k » ^(r,)  such that c(r) < kr. 

We  shall  not use any of these results until  Section 4. 

It  Is  clesr from  (6)  and   (7)  that 

h(r)  < f(r)   . (0 < r ^ 1) (Ö) 

Also 

ff(c) 
f(0)   - h(0)  - sup mln ^ - sup h(c) (9) 

c \ ^ (c) c 

and we  will denote the conanon value of  these  four quantities by U. 

Consider the game like F    or H    except  that  the compulsion 

of E's  first move la waived.     E will exploit his new liberty In 

favor of a low payoff;   from  (8),   the sup Inf of  the new game  Is 

h(r).     Now put  r - 0.     Tftls means  that  P can't  fire on the first 

move and  so  the game virtually starts from the  second.     It  Is  thus 

equivalent  to  our original  game  In all ways except  P's constraint 

to an o-strategy.     Its sup  Inf  Is clearly U.     Kemark th-n  the 

election  of an o-strategy la at   P's disposal;   thus.   In playing 

the original   game,  he can always attain a hit  probability arbi- 

trarily cloae   to U. 
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In the next section we prove  thtt U > V.     As  we already 

know that E,  by pitying M,   can attain a payoff < V,   we conclude 

that V  id  the value of the game. 

3.    The Value  of the Game 

We find 

.4^7 •   ? 

and so U > a Implies U > V,   which  cannot be.     Hence U < a. 

Let TP be  the set of all pairs a, b such  that a  > 0 and  the 

Inequalities 

f(r)  > U + ar 

h(r.>  > U - br 

(10.1) 

(10.2) 

hold for all sufficiently small positive r.  Note b > 0 or else 

sup h(r) would exceed h(0), contradicting (9). 
r 

Lemma  1. "^Is not vacuous. 

Proof.     It  contains  the pair ^ (a-U),  a.     For*   If r > 0, 

we put c - 0 In  (6) and then d - 0 In (7)s 

(W(l-r)U 1 
f(r)       mln < -  ra + (l-r)U - U + r(a-U) > U-»-4 (a-U)r 

lr(l-a)+(l-r)U ^ 

h(r)  > mln 
(l-r)U 

ra+(l-r)U 
U - rU   ;> U - ar   . 
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L«narna  2.       If a,   bt ^r,   so does a',   b'   where 

a i b 1 - a - 'J " 57F (l-2a) (11.1) 

b 
" (1-^U)   *  ä^F (1^)   ' {11-2) 

Proof;     Let R be  the  aet  of til  r for which  (10.1)  holds. 

In   (6),   if we restrict  the range of c  to R,   the sup cannot  Increase; 

then we may make replscements  from (10). 

fra +  (l-r)(U+ac) 
f(r)  > max min<( . (12) 

c£R \r(l-a)  +  (l-r)(U-bc) 

TTie  two lines on the  right are equal  when c  =- c   ; 

r    l-2a 
co " r=r a+F"  * 

As  the upper line is en increasing function of c,  and the  lower 

one decreasing,   c    furnishes  the max providing c0€R.    But  such 

is  the  case when ▼-—; *   ^nä hence r#is positive and sufficiently 

small.     When c - c    the  common value of  the  two lines in  (12)   is 

U + r  [l-o-U- g^ (l-2a)]   - U  -♦- a'r  . 

Treating h(r)  analogously leads  to 

d     =•    r    ^~CL 

o - T^r äTF 

h(r)   > U - r   [-1-KI+U+ -^ (1-a)]   -  U - b'r 

The underlying idea is due to Oliver Gross. 
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for r positiv« and small. 

Finally 

a» >l-a-U- (l-2a) - a - U > 0 . 

3.  U > V . 

Proof.     Suppose U < V.     We  will show that  If we start  with 

sny raamber of "^and construct a  sequence  of  them by repeated 

applications  of Lemma  2,   we will  be led  to one with b < 0. 

This absurdity gives our result. 

Let a,  b,  a',  b*   be as In Lemma 2 and 

K b 
a+F ' 

b« 
ar+ET 

Addition of the equations (11) gives 

ir • a* + b aK 

while  (11.2) yields 

K.   - ^ „ -(l-^J^K(l^) , ^(K) 

(1^) 

We show that iteration by ^ will ultimately lead  to a K < 0 and 

thus a b < 0. 

First,   If K > 0,   then 

*KK)  < K . (15) 
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For (15) Is true for sufficiently small positive K (then 

^(K) < 0 < K) and so a violation of (15) would imply a Kc 

such that 

*(K0) - K0 

or 

aK^ - (l-a)K + (l-a-U) - 0 . (16) 

But the discriminant of this quadratic is 

(1-a)2 - 4a(l-a-U) - 2 - 6a + 4aU - 4a(U- ^^L) - 4a(U-V) < 0 

Secondly suppose,  starting with any value,  all   ehe  iterates 

of  ^ were positive.     By   (15)  they are decreasing and eo converge. 

Itie limit woul^  be a  root  of  (16). 

Theorem 1.     The  value of the game  is V. 

Proof.    As  in  tne last few paragraphs  of Section  2. 

Corollary 1.1.     U -  V 

Corollary 1.2.     For each   E > 0,   there  is an ^-strategy for P 

which  is an o-strategy. 

Tills corollary solves half  the problem of the markaman's best 

strategies.     We now know how he  is   to aim;   the remaining question 

is  when  is he  to fire.     For a further discussion of  the a-«trategies 

see  Section 7. 



P-642 
-20- 

The work of  Scarf and Shapley in   [4j   tells  that E has an 

optlual  strategy for all  r for both F    and H    and  that  these 
r     r 

games have values.  It followa, frou the general principles of 

game theory, that the values must be f(r) and h(r). 

^  The Ideal Strategies for P 

We deal with the games F and H .  TYiey have the advantage 

of reducing P's decisions to choices only of when to fire.  As 

discussed earlier, his nesr optimal stracegies for these games 

suffice to yield at least some such strategies for our subject 

game.  We will see later that this yield Is more consummate than 

at first appears. 

Assume f(r) and h(r) have been ascertained.  How do they 

function in determining F's strategy? Consider P's situation 

In a play of, say, F .  He has no choice as to his first firing 

probability, it being r (which we shall also call r ).  Ttie 

derivation of the functional equation (o) makes it plausible 

that his next firing probability will be a value of c which 

furnishes a maximum to the right side.  Select such a value and 

call it r,.  Suppose E's next move is stralgnt.  Then, If P has 

not yet fired, he Is new faced with the game H  .  By the same 
rl 

reasoning as befor , a sensible choice for his next firing 

probability will be a maximizing d of (7) with r « r., .  Select 

one such and label Is r?.     Proceed thus.  We will denote the 

strategies so generated (for H as well as F ) collectively 
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min 

mln 

(l-r^fC^) 

r1(l-a)+(l-r1)h(r2) 

(l-r2)f(r3) 

r0(l-a)+(l-r0)h(rj 

- MrJ 

h{r2) 

(18) 

mln 
r3a+(l-r;5)f(r4) 

|r3(l-<i) + (l-r3)h(r4) 
f(r3) 

and with none but a Q Btrategy could these equalities be attained. 

By a Judicious selection of one of the lines on each left side, we 

obtain from  (18): 

r0(l-a) + (l-r0)h(r1) > f(r0) 

^(1-a) +  (l-r1)h(r2) > hi^) 

(l-r2)f(r3) > h(r2) 

r^a +  (l-r;5)f(rJ+) > f(r)) 

(19) 

oi     «arranged and multiplied  by  the v .: 
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7ror1(l-a)  > 7r0h(r1)  - v^hir^ 

0 > T/1h  (r2)  - 7r2f(r3) 

7r2r3a ^ ^2 f ^^ ~ 773f^r4^ 

(20) 

ITie//    below are  the  truncations  of   (17).     Prom  (20) 

$2 > f(r)  - 7,2f(r3) 

or in general 

^n £ f(r)  - ^n(f  or h(rn+l
)J   * (21) 

We now see at  once 

Theorem 2.     A  sufficient condition  that a Q strategy attain 

the best possible  value for P In a particular play la 
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Llm      TT     -  0  . (22) 

Itils condition will  be met should any r. - 1  (certain 

firing).     Otherwise — as Is well known — It Is tantamount  to 
oo 

the divergence of    Z    r.. 
J-0 J 

Theorem 3.  If P has an optimal strategy at all. It must be 

a strategy Q. 

Proof; Suppose P plays a strategy not Q.  Then In at least 

one of (18) the sign - becomes <. Let E move straight or turn on 

each move according as the upper or lower line on the left side of 

the corresponding (18) Is the smaller (either way In the case of 

equality).  Then In (19)# > 18 replaced by - or < , with at least 

one Instance of the latter.  Itius > Is replaced by < In (21) for 

all large n. • 

Theorem 4.  If r < R, then ? has no optimal strategy. 

Proof.  Let P play Q.  For r < R, the signs < of (19) become - 

and the same Is true (21).  Thus (22) Is a necessary as well as a 

sufficient condition. 

Let V4  take the case of F„. Let E make all straight moves r 

Then 

rj+i ■ o(rj) < ^j 

and so 
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In general  P hag no optlnal  itrategy, but any    ^-gtrategy 

muat be cloae to Q,   the cloaeneaa increaaing with the amallnesi 

of   £ . 
i ii 

It seems apt to term a strategy with this property an Ideal 

strategy.    A precise statement Is made by Theorem 7 below, 

5.     The Passive £-Strategies 

The case r - 0 Is really our desideratum,  for as we have seen 

In Section 2,   It Is,   aside from the restriction to a—strategies, 

the  original  subject game.    The strategy Q for It leads  to the 

vapid situation:     all   the r, - 0;   P never fires. 

We now turn to £—strategies,   taking some positive  ^ as given, 

with P seeking a payoff > V - f.     The  fc gives him license  to depart 

from the sterility of  the all  zero r..     Thus It is  that we find 

use for F„ and H    with r ^ 0. r r 
Our procedure is a  recurrent  one,   somewhat like  that  of the 

last  section.     But not  only will  P ascertain an r,  ,   from r.,  but 

also an  f. ,   from  €..     This  t. is  that circumscription on  the J 

move permitted him by the preasslgned   £ -   £of the outset. 

Let m, be E's  J      move  (J - 0.   1,   2,   •••  so taken  that m 

is  the preasslgned move indigenous  to the game);  m. - either 

"Straight"  or "Turn."     The quantities  r0 - r,   C    -   £ > 0,  and 

m    (deciding between F    and H  ) are given at the outset.    At a 
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later stage,   these will  be  kncwn   (of course,   assuming P has  not 

yet  fired): 

mo'   "^l"   '**'   m1 

ro,   r1,   ...,   rj 

It la now time for P to select r. , .  we will say he la 

playing a strategy Qr If he doea ao as followa for each J ^ 0: 

1) If r. > R, he playa a strategy Q from thla point on. 

Here R  means R, If m. was Straight and R0 If m. was Turn. 1 J ^ 2 J 

2) If r.  < R he picks  r.  ,   so that.   If m.  was  Straight 

fr a+(l_r   )f(r       ) 
mini   * J J+1 x f(rj -  i. (23) 

^J(l^) + (l-rj)h(rJ+1) J J 

and utilizes a corresponding Inequality, which the reader will 

readily Infer, If m. waa Turn. 

If P haa not yet fired, E now plcka n. ,. 

If Case I held, P will have no need of further i., but If 

II held, E. , must be defined. Suppose, for example, m. , waa 

Purn.  rhen we take 

Vi "h(rj+i) -h(o(rj)) +i^ • w 

Itierp   la  an pnalogcus  equation  for each  of   the   other  three 

possibilities   of m.,  m.   , . 
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Ihe  cycle la  ready for repetition. 

We must ahow that thla proceaa can be effected.    Flrat, 

the   t. obtained will always be positive.     In the Inatance 

displayed above   ((23) and  (24)),   we know from the functional 

equation that 

rjU-a)  + (l-rJ)h(c(rJ)) - f(rj)  . (25) 

Hie combination of (25) and (23), using the lower line on the 

left, will show that the right side of (24) Is positive.  If 

^0 > 0,  by Induction, all the C appearing will be positive. 

We observe that If Case I arises once. It does so thereafter. 

Finally, we see that an r. , can always be found satlafylng 

(23)(or Its analogue), for c{r.)  la one such. 

We now turn to the A. the hit probabilities for a finite 

segment of Initial stages, and handle them as we did In the 

previous section.  Like (1?) we find 

n-1 

^n-1 * *Q  Vl rJ aJ (26) 

where a.  Is a,   1 — a,   or 0 according to the values  of  the pair 

m.,  in«.T»     If we  suppose that  Case  II has held  thus far and 

proceed In a manner similar to  the derivation of   (21),   we obtain 

Recall   that  P's  objective  Is  to obtain a payoff exceeding 

the first  two terms  on the  right  of   (27).     What   (27)  states is 
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Itie  problem:     To devise a scheme  for selecting the k.  so 

that no matter how E picks  the m.,   the  r. will not remain small. 
J w 

We have been unable  to solve it. 

At  the least,   the  solution will point  the way to 6-etrategies. 

Very likely, after developing some results  that would furnish 

bounds  to errors arising from (30)  and   (32),   it would actually 

supply  the £-strategies.     friere exists an exact version  of  (33)# 

but,  due  to the complicated nature of f and h,  it would be 

difficult  to write the right sides explicitly.    Remark that 

our previous results  guarantee  that  the problem has a solution. 

7.     Motivation for the cv-otrategies 

Let us consider a miniature game in which  P has but  one 

chance  to fire and  three choices of where  to aim.    He uses a 

/ 

i-e 

Figure 8 . 

mixed strategy taking a, b, c as the probabilities as shown in 

Figure 8.  As for H, he makes Just two moves and each of these 
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Conjeciure — Q Is an Ideal  airaiegy not only among  the 

a—stracegieo but among all  the atrateglea  of P. 

8.     Hie Truncated Veralons 

We  can apply a   technique here   that  proved uaeful  in   [2J ; 

we amend  the  rule« by requiring that  P can fire  only on  the 

first n movea.      .lie max rain function»  will  be replaced by 

f   (r) and h  (r).     The functional  equations  (6) and  (7)  become 

recurrence relations;   we affix  to each f  or h the subscript 

n  ■♦■ 1  when It appears  on  the left  aide and  n when It  appears 

on the right.     We may  take f (r)  and h0(r} as 0;  all  the 

functions are then determined recurrently. 

We may proceed aa  In   [2],     The  truncated games fall  under 

the general  tenets  of game  theory and  we Know at  once  that 

both playera have  optimal  strategies.     The functions  f  (r), 

h  (r)  Increaae with n,   for P can apply an  optimal  strategy 

for the case with a  small  n to the case with a larger,  filling 

in  the  residual moves arbitrarily.     The proof of Lemma  5 is 

easily modified  to show that the fn(r)  and h  (r) are equi- 

continuous.    Thus  the fn(r)   [h  (r)]   converge uniformly  to 

f(r)   [h(r)]. 

One  conclusion is evident: 

Itieorem 9.    An €—strategy can be found  which terminates 

in n moves,   the n depending only on    f . 

*  of RM-I385 
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ITie  connection with  our earlier work lies  In 

f(r)  - ^(r,a,0)   , h(r)  - ^(r,0,a) 

and In these special cases (34) reduces to (6) or (7) 
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