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SUMMARY

The general problem of a marksman versus a mobile
target, with a time lag in the e gunngr's information .
as to the target's poaition,-appéero~£h—m‘ny~guiae’f
in-—many-sttuations. -1t -1s -a-elaseie—nilitlery—probiem;
Formulated in terms of game theory, the desiderata
are: llow should the target best maneuver tc confound
prediction of his position? How and when should the
marksman make this prediction? What hit probability
is to be expected when both participants behave
optimally?

usses this general class of problems

on one which seems to be the simplest

that 1s not trivial. Nevertheless

In two previous papers devoted to

est strategy and value of the game

the emphasis 1s on the marksman.

He has no optimal strategy, but does have an ideal

strategy with the property that every near optImal —

strategy is close to it. He also has a class of
assive g%ctrategiea such that if and only if he

7obeys thelr dictates will he either come within € -

of the best hit probability or else always remain

in a position where it is possible to do so. ( r_

This paper di
and then settl
possible exampl
it 1s difficult.
it, the evader's

P-b42
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THE PROBLEM OF AIMING AND EVASION

Rufus Isaacs

1, Introduction

One of the most classic of military problems is: how best
to alm at a moblle target which is deliberately maneuvering so
as to confound prediction of his position. The answer must be
sought 1n the theory of games, whence we consider simultaneocusly
the apposite question: how best should the target maneuver.

Such antagonists appear in a great variety of situations.
They may be sniper against infantryman, antiaircraft gun against
plane, bomber against ship. Whatever be their nature, the crucial
feature these situations have 1n common 18 8 time lag between the
detection of the target and the arrival of the projectile. This
lag may be composed of a number of summands such as the delay
between detection of the target and aiming of the firing device,
and the flight time of the projectile itself. DBut this decomposi-
tion does not concern us here; 1t suffices to consider the time
lag as a whole.

The theory of games warns us to expect mixed strategles
from both participants and a modicum of common aense confirms
the warning. When a player of & game employs a mixed strategy,
it means that he does not make his decisions in accordance with
any predetermined, certain plan, but invokes a certain amount of

randomness. A game theoretic solution prescribes not the dictates
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of behavior but their exact probabilities so as respectively to
minimize or maximize the probability of a hit. It is clear that
this will be the case in the present type of problem. For if the
target were to follow any proscribed, certain plan, it would
plainly be a ruinous policy as soon as the gunner became aware
of it. Likewise any fixed policy of the gunner would enable the
target always to escape once he learned it. Then our goal 1is
optimal mixed strategies or policies of best regulated randomness
for each player.

So far as we imow, this entire fleld is virtually virginal.
We do not claim any deep inroads here. We deal with a single
problem, described below, which is the simplest nontrivial one
we could devise, yet which embodies the features discussed above.
It 1s but the first rung of the ladder.

The circumstances that led to this problem, we think, are
instructive. Originally this was its guise.

A battleship in midocean is aware of an enemy bomber's
presence, but the plane 1s too high for precise detection. The

ship is interested only in not being hit; it has no offensive

means. The plane has one bomb and we suppose — to avold extra-
neous factors — that the bomber's aim 1s excellent. The battle—
ship knows this, but knows nothing about when or where the bomb

will be dropped until after detonation. It 18 tc maneuver so as

to minimize the hit probability. We suppose that 1ts only kinematic
restriction is that it travels with a fixed speed v. There is a

time lag T between the bomber's last sighting of the ship and
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detonation. Thus the bomber must aim at an anticipated position

of the ship.

Game theory attempts to answer the three intersticlial questions:

How best should the battleship maneuver? (Optimal
strategy of player I)

when and where should the bomber strike? (Optimal
strategy of player II)

what 1s the hit probability when both players use

best tactics? (Vsliu® of the game)

If at a certain time the ship 18 sighted at a certain position,
then when the bomb strikes he may be located anywhere in 8 disk of
radius vT. To minimize the chance of an immediate hit, the ship
should be at all points of the disk with equal probability.' For
if he favored one portion of the disk, by bombing thereat the
plane scores a disparately high hit probability. But there 1is
only one path — a straight one — by which the ship can reach a
peripheral point and many by which he can reach a given interior
one. Thus to achleve equiprobability, the ship's mixed strategy
must attach an unduly high probability to straight paths. But
plainly such a course 1s detrimental to future positions. For
if the bomber waits a little and observes this straight path
tactic, nothing could be easier than an extrapolation and a

certain hit. In other words, if the shlp attempts equiprobability

*

For peripheral positions we should make a correction 1if
we take any inaccuracy cof bomber into account. We will
not do so here.
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at one instant he renders his later distributions extremely
unequal. The battleship must compromise between present and
future and seek a probability distribution which, although it
is 88 near uniform as possible, can be maintained indefinitely.

As simple as this problem sounds circumstantially, it is
difficult technically. To gain a foothold, we simplified 1t
further. We made the ocean one-dimensional and discrete. That
is, we supposed the battleship to be located on one of a long
row of points and at each unit of times he hops to one adjoining
one, enjoying the sole choice of a right or left Jjump. The time
lag was to be an integral number n of time dnitl, or — the
same thing — of Jumps. This is tantamount to saying that the
bomber knows all positions of the battleship which precede his
present one by n Jjumps or more. If n =1, the bomber knows all
but the most recent of the ship's positions and there are but two
possibilities for that: one space to right or left of the last
observed one.

This case — n=1 — 18 trivial. The ship makes each decision —
left or right — by the toss of a coin. The bomber can bomb at any
time and when he does he also decides between the two possibpilities

with a coln. Then the value of the game (hit probability) is 1/2.

(For the game theory tyro only.) If at some time, the ship

elected, say, the prcbabilities: Left: .6; Right: .4, the

bomber need only wait for this time and bomb on the 1v.ft;

then hit probability = .6. Similar considerations hold

vice versa. Thus the unique optimal strategies require
ecisions on the parts of both players.
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Our intention was now to take upn = 2, 3, 4, <+« and, from
the knowledge zained, proceed to the continucus case. Thence, we
hoped to restore planarity to the ocean and spproach practicality
by more realistic assumptions about the ship's kinematics, accuracy
of the bomber, number of bombs, etc.

But the case of n = 2 proved to be an incubus. A considerable
amount of effort by several people was expended before its shell
began to crack. Thls paper will be the third one devoted to 1it;
see [i, 2]. We can _.xpect the general class of aiming—and-evasion
problems to be more difficult than anticipated, but by no means
hopeless.

We have been occupled with a subject we call differential
games, with pursult games &s one of its more cogent applications.

A drawback 1s the difficulty of hendling cases where the information
of the players 18 incomplete. It 18 our hope that the present
problem will adumbrate techniques in this field 2lso, and we are
thus guided in our nomenciature of the players:

P, the pursuer, bomber, or marksman

E, the evader, battleship, or target.

We cite one innovation of technique that appears to be of some
generality in games like the present one which admit of a "stationary"
or steady state character. By this we mean that after a full cycle
of moves (usually one by each player) the game is either terminated
cr a situation recurs which resembles a fresh start of the game.

An initial move of one player is replaced by a chance move with a
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preassigned probability x. Then for each x we have & n~w game
and the value of this game we denote by g(x). Often the
resemblance Jjust mentioned becomes an identity except for

the value of x, which circumstance enables us to write a
functional equation satiasfied by g(x). For a simple example
of this method — the initial one for us — see our paper [3]
dealing with a recreational game.

In the previous two papers [1, 2], dealing with the current
game, E was eaccorded this treatment of having his initial move
"chancified." Here we shall do the same for P. These alter—
native possibilities present a curiocus duality of techniques
whose interrelationships may bear interesting fruit.

But methods later! Let us now return to ca;e of n = 2 —
our subject proper. The course of E can be shown conveniently

on the diagram of Pigure 1. His starting point 0

is O and on his first move he travels to either
d or e. If he went left to 4, on his second
move he may go to &8 or b and so forth.
Always P knows E to be at one of three
positions; if he was last observed, say,
at d, and P wishes to fire he will do 4
so at one of £, g, or h. Fig. |

The same dilemma of present or future
benefits that beset the battleship also confronts E, but we are
now in position to examine matters more succinctly. If E is

concerned only with a single instant, his best and safest course




is to make the three probabilities of where he will be when

under fire each equal to 1/3. For then P spots him with
probability 1/3 and this 1s clearly the lowest value E can

can hope for. Let us suppose E 18 gulded by this consideratlon
alone.

On the grounds of symmetry, we suppose E to make his first
cholce (d or e) with probabilities 1/2.. To cause the probabilitles
of being at &8, b, or ¢ to be 1/3, E must make his second move with
probabiiity 2/3, 1/3, 1/3, 2/3 as marked on Figure 1. If E is at
d he must similarly equalize his chances of arriving f, g, or h.
Mis determines some of his third move probabilities; they are
a61lso marked on the figure. DBut the probabllity b-to-h 1is 1!
Thus, should E reach b via d, P can fire then and, by splitting
his target cholce between J and k, score with probability 1/2
or more.

Let us endeavor to find a less ambitious but more enduring
strategy for E. We may expect that in such a strategy each
decision will depend on prior moves. A3 E's course more than
two moves ago 18 known to his opponent, it 1s reasonable to
suppose that this dependence will not reach very far back. Let
us suppose the choice depends on the previous move only. Pre-—
cisely let E move in the same direction as his last move with
probability 1 — x and let him make a turn with probabllity x.
This strategy i1s certsinly stationary; it is expounded in

Figure 2, which diagram applys tc¢ any position except the

*

The symmetrization 1s not necessary. The reader can verify
that our reasoning holds whatever the initial probability.
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B
one at the very outset. Then the probabilities
of £'s reaching 1, 2, or 3 are respectively
A X
2 ;
(I—X) )u\'/
‘/"f X ol=%
X 1 N\
;s (1) s 5
x(1-x) Fa |

/
In accordance with the tenets of game

theory, we presume that P will elect the largest of these three

quantities. The best possible x for E 18 then that value which

renders the maximum of the three polynomiais (1) a minimum.

Plots of (1) are sketched in Figure 3 with maximum overscored.

It is minimum at V, a root of
X = (qu)2 . (2)

Then

v-l—ﬁ; - 382 .- . (3)

_/TWE¥ This number 1s also the probability
;féﬁﬁé"ﬁ?f qig:; E's arriving at points 1 or 2 and
- pa L xiliﬂ 80 is the payoff when E plays as
Fig 3 Just described (we grant P sense

enough not to fire at 3).
It turns out that V is actually the value of the game and

the strategy Jjust described, which we henceforth denote by M,
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18 the optimal strategy for E and indeed the only auch.' On the
other hand, it turns out that P does not possess an optimal
strategy, the situation being thus: for any & > O, there is a
(mixed) strategy for P which assures him of a hit with proba-
bility > V — €, but no strategy insures V. A strategy of this

type will be called a near optimal strategy or ant-strategy.

These results are not easy to prove. They are the subjects
of papers [1, 2]. Dubins deserves the honor of priori:y. His
paper came to our attention some months after its publication.

By this time a RAND version was ready for the press; the work
was done independently and the methods differed enough to warrant
a second treatment.

Neither paper gzave a near optimsl strategy for P in the
sense of furnishing him explicit playing instructions. As this
facet of the prcoblem is of obvious importance in more realistic
versions, we present a third approach which stresses this aspect.

On this topic we shall later obtain the following results.

In the next section our game will be imbedded in a family of
games. For these games P has what we term an ideal strategy.

It 1s for most of the family not an ¢-—strategy, but it is true
that every t—-8trategy 18 nearly the ideal strategy, the nearness
increasing with the smallness of t. We also delineate a class

called passive t—strategies. For each £ and each play of a

* We complete the definition of M. On his very first move
E may elect any probabllity p such that V < p <1 -V,
It 18 easy to verify that P can still attain at most V.
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game these impose well-defined restrictions on each move of P
such that:

If he conforms he will either attain a hit probability
exceeding the value (the best possible) —¢ or he will always
be in position where, with proper subsequent play, it will be
possible for him to do so. But if ever he violates the
restrictions, E can prevent him from coming with ¢ of the value.

The ideal strategy i1s a passive t—8trategy for every ¢.

2. The "Chancified" Games

We say P plays an a-strategy when the following holds:
Let a = 1/4/5. Whenever P

decides to fire he wlll aim at the }af
leftmost [rightmost] of the three K/, p.!

points where E may be with proba- //fg\\ .t>;\\
bility a if Eis last observed move g 23}’/ o

was left [right] and he aims at the
center point with probablility 1 - a.
To act at the very opening of the game, P must supply E with a
fictitious preceding move. See Figure 4, where the dotted line
i the (possibly fictitious) preceding mcve. We will motivate
this concept in Section 7.

We coln two families of new o
games. For the game F_, we amend - «////
our original rules:

There 18 a fictitious minus-— Po! ho)

first move, say, from the left, and
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P 1s constrained to play an a-strategy. The opening move is
chancified; P is impelled to fire with a preassigned probability

r. Also Z 18 obliged to make his first move to the left. (See

Figure 5.)

The game Hr is the same except that
E makes his first move to the right.’ r g

For Fr’ let

A
f(r) = sup inf (payoff) 7
A A
which inf extends over all strategies of
Fig 6

E and sup over those of P. Or, to put it
otherwite, f(r) is the upper bound of all
hit probabilities that P can attain in the game Fr' no matter
how skillfully he is opposed.

Let h(r) be defined analogously for H_.

We shall obtaln a pair of functional equations for f(r), h(r).
Here we shall do it heuristically.

Let P elect the firing probability ¢, to be fixed later, for
the second move of Fr' If E's second move 18 leftwards, P fires
at him with probability r and then hits with probability a. If P

does not fire, the situation 18 tantamount to the commencement of

the game FC. Assuming that P also strives toward his upper bound

* The reader may ask: Why does the chancifylng process
lead to two families of games and consequently two
functional equations? It need not; see Section G.
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when playing this latter game, the hit probability under tnese

circumstances 1is
ra + (1-r)f(c) . (&)

If E chooses rightwards for his second move, the hit probabllity
is 1 — a if P fires immediately. If P does not, he 18 faced with

the game Hc. Thus the chance of a hit 1is
r(l-a) + (1-r)n(c) . (5)

Now we suppose E adroit enough so that his left—right choice
selects the minimum of (4) and (5). Then P, to play well, should
pick ¢ with the intent of making this minimum as large as possible.
Thus

ra + (1-r)f(c)
f(r) = sup min . (6)
0gegl r(l=a) + (1-r)h(c)

Similar considerations applied to Hr lead to

(1-r)fr(a)
h(r) = sup min . (7)
0¢ d<1 r(l=a) + (1-r)h(d)

The functions f(r) and h(r) appear to be extraordinarily
complicated. It seems that the interval O ( r <1l is to be
divided into infinitely subintervals with the functions

possessing distinct analytic expressions on each. Furthermore

to ascertain these expressions appears bafflingly difficult.
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This amazing complexity is disconcerting when we bear in mind
that we are still dealing with but one of the simplest versions
of our problem.

We have computed plots of £ and h which appear at the end
of this paper. These were executed with naive computational
techniques out with enough care so that, 1f dats 1s take from
the plots, they will fulfill the functional equations to within
the 1imits of graphical accuracy. There are also plots of the
c and d which furnish the maxima.

One would hardly suspect the involved character of f and h
from their innocent looking graphs. Are we to conclude that there
is some simple but closely approximate method of treating the
present class of problems? We do not know.

RAND Report RM-1385, A Game of Aiming and Evasion: (General

Discussion and the Marksman's Strategies 13 a mathematically more

scrupulous version of the present paper. In 1t a number of
properties of f and h necessary for our work are rigorously
proved. We list them below. If the reader accepts our plots
as close depictions of the functions, moat of these properties
will appear obvious. The above report also contains a rigorous
derivation of the functional equations (6) and (7).

In the report it is shown that all solutions of (6) and (7)
are continuous. Then the sup appearing on their right sides may

be replaced by max.
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We introduce the numbers

R, = 2V, Ry, =V

1 2

and use R to mean Rl where we are speaking of Fr or f and Rz

when speaking of Hr or h. WwWhen r . R' and only then the

functions are linear; in fact

The largest maximizers here are

S(r) = mn | 1R L6

d(r) = min I:-];gg I{_r' ’ 1]

but these are not unique, as shown by the shaded portions of

plots ¢ and d. Remark that

-O-(Rl) = a(.\z) =2 Rl .

More interesting is the range r < R. Here the maximizing

c and d are unique for each r and will be denoted by c¢(r) and

A(r). They are cantinuous and
c(r) < Ry » d(r) < R, -

Further f(r) is 4ecreasing and h(r) increasing. when
¢ = ¢(r)[d = d(r)] the two lines on the left of (6)[(7)] have

| equal values.

] »
The case r = 1 corresponds to certain firing and so no

significance then attaches to ¢ or d.
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At r = O, f and h are differentiable and

£'(0) = A =1— 2a

h'(0) = =B =— 2921 |

Further c(0) = 0, c¢'(0) exists and = V. For O ¢ r ¢ r, < Ry,
thers exists k = k(rl) such that c(r) < kr.
We shall not use any of these results until Section U4,

It 18 clear from (6) and (7) that

n(r) < f(r) . (O<rgl) (8)
Also
f(c)
f(0) = h(0) = sup min = sup h(c) (9)
c h(c) c

and we will denote the common value of these four quantities by U.
Consider the game like Fr or Hr except that the compulsion

of E's first move 18 waived. E will exploit his new liberty in

favor of a low payoff; from (8), the sup inf of the new game 1is

h(r). Now put r = 0. This means that P can't fire on the first

move and 8o the game virtualily starts from the second. It 18 thus

equivalent to our original game in all ways except P's conatraint

to an a-strategy. Its sup inf 1s clearly U. Hemark th-t the

election of an a—strategy is at P's disposal; thus, in playing

the original game, he can always attain a hit probability arbi-

trarily close to U.
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In the next section we prove that U > V. As we already

know that E, by playing M, can attain a payoff < V, we conclude

that ¥ ia the value of the game.

3. The Value of the Game

We find
Q = JHLET oo LV

and 8o U > a implies U > V, which cannot be. Hence U ( a.

Let  be the set of all pairs a, b such that a > O and the

inequalities
f(r) > U + ar (10.1)
h(r' > U - br (10.2)

hold for all suffioclently small positive r. Note b > O or else

sup h(r) would exceed h(0), contradicting (9).
r

Lemma 1. Y 18 not vacuous.

Proof. It contains the pair % (a=U), a. For, 1f r > O,

we put ¢ = O in (6) and then d = 0 in (7):

{fu+(l—r)u 1
f(r) > min = ra+ (1-r)U=U+r(ay)>U+x(a=U)r
r(l—a)+(1-r)u
(1-r)U
h(r) > min a U ~-1rU >U -—ar .

ra+(l-r)U
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Lemma 2. If 8, bt‘?} 8o does a', b' where

8" =1 -a-U - ¢ (l-2a) (11.1)
b' = — (1—a—U) 4 8_35 (1=a) . (11.2)

Proof: Let R be the set of all r for which (10.1) holds.

In (6), 1f we restrict the range of ¢ to R, the sup cannot increase;

then we may make replacements from (10).

ra + (1-r)(U+ac)
f(r) > max min . (12)
CER r(l=a) + (1-r)(U—bde)

The two lines on the right are equal when ¢ = Col

r l-2a

¢o " I=r a+b

As the upper line is &an increasing function of ¢, and the lower
one decreasing, o furnishes the max providing coeR. But such
is the case when IEF , and hence r,1is positive and sufficiently

small. When ¢ = ¢ the common value of the two lines in (12) 1s
b
U+r[l—aFU—m(1—2a)]=U+a'r.

Treating h(r) analogously leads to

d = r l-a
o T=r a+b

h(r) > U-r [-l+as+ 2e (1)) = U - b'r

* The underlying idea is due to Cliver Gross.




for r positive and small.

Finally

a' >l -a-U=-(l-2a) =a-U > 0.

Lemma 3. U 2 V'S

Proof. Suppose U ¢ V., We will show that 1f we start with

any member of‘ifand construct a sequence of them by repeated

applications of Lemma 2, we will be led to one with b ¢ O.

This absurdlty gives our result,

Let a, b, a', b' be as in Lemma 2 and

K = 2 K! & e
a7b FTIET

Addition of the equations (11) gives

b'
KT-B'+b'=GK

while (11.2) ylelds

Kt = g& . -Ll—c—g%jKL;—a) - $(K)

We show that iterstion by ¢ will ultimately lead to &8 K ¢ O and

thus a b < O.

First, if K > 0, then

#(K) < K.
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For (15) is true for sufficlently small positive K (then
g(K) < O < K) and B0 a violation of (15) would imply a K,

such that
g(K,) = K,
or
ak? - (1-a)K_ + (1<) = O . | (16)
But the discriminant of this quadratic 1is
(l—a)2 - ba(laU) = 2 — 6a + 4alU = La(U- ZEQE) = 4a(U¥) < O

Secondly suppose, starting with any value, all the iterates
of ¢ were positive. By (15) they are decreasing and so converge.

he limit would be a root of (16).
Thecrem 1. The value of the game 18 V.

Proof. As in the last few paragraphs of Section 2.

Corollary 1.1. U = V

Corollary 1.2. [or each £ > O, there 1s an t—strategy for P

which 18 an a-8strategy.
This corocllary solves half the problem of the marksman's best
strategles. We now know how he is to aim; the remaining question

is when 18 he to fire. For a further discussion of the a-strategies

see Section 7.
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The work of Scarf and Shapley in [4] tells that E has an
cptimal strategy for all r for both Fr and Hr and that these
games have values. It follows, frow the general princlples of

game theory, that the values must be f(r) and h(r).

4, The Ideal Strategies for P

We deal with the games F_ and Hr‘ They have the advantage

5
of reducing P's decisions to choices only of when to fire. As
discussed earlier, his near optimasl strategies for these games
suffice Lo yleld at least some such strategies for our subject
game. Wwe will see later that this yleld is more consummate than
at first appesrs.

Assume f(r) and h(r) have been ascertained. How do the)
function in determining P's strategy? Consider P's situation
in a play of, say, Fr' He has noc chclice as to his first firing
probability, it being r (which we shall also call ro). The
derivation of the functional equation (0) makes it plausible
that his next firing probability will be a value of ¢ which
furnishes a maximum to the right side. Select such a value and
call it ry. Suppose E's next move 18 straignt. lhen, 1f P has

1

not yet fired, he 1s ncw faced with the game Hr . By the same
1

reasoning as befor , s sensible cholce for his next firing
probability will be s maximizing 4 of (7) with r = r,. Select
one such snd label 1is rs. Proceed thus. we will denote Lhe
strategies 8o generated (for H,  as well as Fp) collectively
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by Q. It is clear that if P has an optimal strategy it must
belong to Q. If he has not — as seems more likely — what
is the role of Q?

At the conclusion of this paper will be found plots of c(r)
and d(r), the maximizing ¢ and d of (6) and (7). Playing Q amounts
to successively iterating the ry from these curves using the c or d
one according as E's last move was a straight or a turn.

We now examine a typical play.' Suppose E g /
moves as shown in Figure 7 and that P plays Q,
obtaining the firing probabilities as shown.

n
T = 7 (1—rJ) 5
J=0

the probability that P has not fired at the
first n + 1 opportunities. For convenience,
we also define T_y as 1. Then the proba-—

bility of a hit in this play 1is

HN= (”-l)ro(l"“)* vorl(l-a)+u1r2(0) +72r3a+1r}ru(1-a)+ cee (17)

From the way in which the rJ were selected, we have

B Here and in later illustrations, E plays a pure strategy.
Such suffices, for if P can overcome all pure strategies
of E he can overcome a mixture.
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{f a+( l—r rl)
- f(r )
ro)h(ry) ©

(1 -r, )£ (r
- h(rl)
(l—a l—rl)h(rz)
(18)
l-r
- h(r2)
(1=a) +(l—r )h(r})
{~ a+ l-r r(ru)
min - f(ry)
r.(l1=a)+(l-r )h(ru) b

and with none but a Q strategy could these equalities be attained.
By a Judicious selection of one of the lines on each left side, we

obtain from (18):

ro(l—a) + (l—ro)h(rl)

v
-
)
-

A4
=F

——
"3

)
1 (19)

or earranged and multiplied by the vJ:
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n_lro(l—a) 2 n_lf(ro) = h(rl)
nox‘l(l—a) > h(r‘l) = nlh(x‘2)
(20)
o> uih (rz) = 1{2f(r})
wzr}a 2 Wy f (r‘}) - *n}f(ru)
The,Un below are the truncations of (17). From (20)
<j/o = ro(l—a) > f(r) - ~Oh(rl)
A 2 t(r) = apn(ry)
ﬂe . f(r) - 7;2f(r‘})
or in general
H L t(r) =u (f orh(r_,)) (21)

We now see at once

Thecrem 2. A sufficlent condition that a Q strategy attain

the best posasible value for P 1n a particular play is




p-642
—2U—

Um 7 = 0. (22)
n -

This condition will be met should any r, = 1 (certain

J
firing). Otherwise — as is well known — it 1s tantamount to
00
the divergence of 2 rJ.
J=0

Theorem 3. If P has an optimal strategy at all, 1t must be

a strategy Q.

Proof: Suppose P plays a strategy not Q. Then in at least

one of (18) the 8ign = becomes <. Let E move straight or turn on

¢ each move according as the upper or lower line on the left side of
the corresponding (18) is the smaller (either way in the case of
equality). Then in (19), > is replaced by = or <, with at least
one instance of the latter. Thus > is replaced by < in (21) for

all large n. .
Theorem 4. If r < R, then ? has no optimal strategy.

Proof. Let P play Q. For r < R, the signs ¢ of (19) become =

and the same is true (21). Thus (22) is a necessary as vell as a

sufficient condition.

Let ve take the case of Fr’ et £ make all straight moves.

Then

and 8o
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and so ZrJ converges.

For Hr' let E pick straight for his first free move. Then P
is confronted by Hrl with ry < Rl, and we revert to the preceding
case.

Theorem 5. If r > R, then any strategy Q is optimal.
Proof. Here rJ 2R and so 213 diverges.

Remark. The most efficient strategy Q utiliszes the functions
¢(r) and d(r). If r > R, 1t 18 not hard to see th;t finitely many
iterations, at each stage by one or the other of these functions,
will lead to an rJ = 1, thus terminating the play.

If r = R, Corollary 9.1 shows that - Ry If E makes 3ll
straight moves henceforth, all the remaining rJ B Rl‘ This is the

only instance where Q is optimal, yet cannot be made finite.

-

The role of Q now emerges. Aside from the uninteresting cases
of larger r, Q is unique and not optimal, and indeed there is none
such. If P deviates appreciably from Q, the inequalities, which
at least some of (18) become, will be severe. Their compensation
by (19) can be frustrated by E, because his moves decide which
line on the left of (18) 18 to be effective. The result will be
a payoff appreciably defective. We draw the following rough con-—
clusion (these ideas will be dissected with more precision in the

next section):
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In general P has no optimal strategy, but any €¢—strategy

must be close to Q, the closeness increasing with the smallness

of €.
It seems apt to term a strategy with this property an ideal

strategy. A precise statement is made by Theorem 7 below.

5. The Passive t-3trategles

The case r = O 18 really our desideratum, for as we have seen
in Section 2, 1t is, aside from the restriction to ac—8trategies,
the original subject game. The strategy Q for it leads to the
vapid situation: &8all the rJ = O; P never fires.

We now turn to €—strategies, taking some positive £ as given,
with P seeking a payoff > V —¢t. The € gives him license to depart
from the sterillity of the all zerc rJ. Thus it is that we find
use for Fr and Hr with r , 0.

Our procedure is a recurrent one, somewhat like that of the

last section. But not only will P ascertain an rJ from rJ, but

+1

also an EJ+1 from EJ. This EJ is that circumscription on the Jth

move permitted him by the preassigned t = EO of the outset.

Let n, be E's Jth move (J = 0, 1, 2, -+ 80 taken that m,

is the preassigned move indigenous to the game); mJ = g@lther
"Straight" or "Turn." The quantities r, =T, Eo = &> 0, and
m (deciding between F. and Hr) are given at the outset, At a
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later stagze, these will be kncwn (of course, assuming P has not

yet fired):
m_, m, , m,
r, Ty
EO’ E]_) ) EJ .

It 1s now time for P to select rJ+l’ we will gay he 18
playing a strategy QE 1f he does 80 as follows for each J . O:

1) If ry 2 R, he plays a 3trategzy Q from this point on.
Here . means Fl if mJ w88 Straizht and R2 if mJ was Turn.

20 I r, < R he picks Ty, 80 that, if m, was Stralght

)£ (

r.,a+(l-r

J i)
rJ(l—a)+(1—rJ)h(rJ+l)

min > f(rJ) = EJ (23)
and utlilizes a corresponding inequality, which the reader will
readily infer, if mJ was Turn.

I P has not yet fired, E now picks mJ+l'

If Case I held, P will have nc need of further EJ, but if
II held, ¢t must be defined. Suppose, for example, mJ+l was

J+1
MNurn. hen we take

te1 ™ h(’5+1) - h(c(rj)) * I:%' y (24)

There 18 an analogous equation for easch of the other three

possibilities cf m m

J' I+l
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he cycle is ready for repetition.

We must show that this process can be effected. First,
the EJ obtained will always be positive. In the inastance
displayed above ((23) and (24)), we know from the functiocnal

equation that
ry(1—=a) + (1-ry)n(c(ry)) = £(ry) . (25)

The combination of (25) and (23), using the lower line on the
left, will show that the right side of (24) is positive. If
Eo > 0, by induction, all the fj appearing will be positive.
We observe that if Case I arises once, it does 30 thcre;fter.
Finally, we see that an rJ+1 can always be found satisfying
(23)(or its asnalogue), for c(rJ) 1s one such.

We now turn to the.ﬁh, the hit probabilities for a finite
segment of initial stages, and handle them as we did in the
previous section. Like (17) we find

, n-—-1

A(n—l - JEO "J—l I‘J (26)

a

J

where aJ is a, 1 —a, or O according to the values of the pailr
mj' mJ+1. If we suppose that Case 11 has held thus far and
proceed in a8 manner similar to the derivation of (21), we obtain

148_1 - [r(r) or h(r{] - € — nn_l{lfn(rn) or hn(rn)] - Eq}. (27)

Recall that P's objective 18 to cbtain a payoff exceeding

the first two terms on the right of (27). what (27) states is
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this: If the play is interrupted so that P is confronted with

F or H_,
Tn Tn

in the new subgame a payoff exceeding its value less En.

he can attain his cbjective according as he obtains

From the initiation the reader had in the last section, he

should have no trouble in completing the proof of

Theorem 6. Let P play Q¢ . If at any time Case I arises,
then P will attain his objective; if it does not, P, after any
finite number of moves, will be in a position such that it 1is
possible for him to attaln his ocbjective. On the other hand, if
at any time, when faced with Case II, P selects his firing
probability in violation of (23), then E can prevent him from
attaining his obJjective.

This theorem exposes the nature of Qi' We, of course, suppose
r < R. Then, as long as Case II persists, we have seen that P 1is
compelled to abide by QS in order to play an ¢-strategy. But the
latter desideratum is by no means guaranteed. For example, we
see that Q is a strategy QE for every £ > O. But we know Q 1s not
optimal; hence it is not an t—strategy if € is sufficiently small.
On the other hand, as long as P adheres to QE he is safe, in that
he has not forfeited the possibility of exceeding (value -€) as
the payoff.

His situation is much like that of a person asked to select
the terms of infinite serles one at 2 time 1in such a way that the

series converges. After each individual selection the possibility
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of convergence has not been destroyed. But this does not mean
that the entire aggregate of selections will spell convergence.

We term a strategy with the above properties a passive
E-strategy.

We conclude with a sharp statement that Q is an ideal
strategy but omit the proof. 1In case r > R the strategiles Q
(and only they) are actually optimal and nothing more need be
sald. We assume r < R. In this case we know that Q is unique.

We wish to establish a measure of the closeness of two
strategies. Suppose E adheres to some pure strategy in a
particular play. Any mixed strategy U of P will result in a
sequence of firing probabilities {ro =T, ry, Iy, ---}. For a
second strategy U', let the sequence be {ré =Tr,=r, ri, ré, -"}.
We define

d (U, U') = max r, -r!
02 1) = max ey -]

and Dn(U, U') by max d over all pure strategies of E."

Theorem 7. Given r < R and one of Fr' Hr' as well as an
integer n > O and $ > 0, then we can find € = Z(S, n) so that
if U is €-strategy for P with € < € then

D (Q U) < 6.

% Of course, we need ccnsider only E's first n moves.
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6. The €-Strategies; The Unsolved Margin

We know that for P to play an f-strategy with a small € he
must remain in the vicinity of a strategy Qe' But exactly how
this should be done is still an open question. The following

theorem and more particularly its corollary offer a lead.

Theorem 8. An €—strategy can be executed in a finite g

number of moves.

Proof. If r > R, Q¢ = Q and we know the latter terminate
in finitely many moves. If r < R, the €-—strategy begins with
Case II and is thus QE' If it switches to Case I it can be
terminated. If not, we see by (27) that P'can exceed eo(r) -¢
only if for some n, en(rn) - & < 0. But this means the desired
hit probability has been achieved in finitely many moves. Thus
the ensuing rJ are irrelevant; we can take one of them = 1. (This
strange situation can happen. For example, 1t happens at the very
outset if € is taken absurdly large.) The only remaining case —
the rJ stay Rl and E plays all straights — seems unimportant.
No doubt, P can increase Rl a mite and take a small loss (< €)

in payoff.

Corollary 8. Every play in which P employs an t-strategy
can be culminated with an rJ =1,

A necessary condition for a strategy QE. not to stagnate then

is that we find some means of avoiding persistenly small rJ.
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To see what happens should the rJ(and also the EJ) remain
small, we might use linear approximations of f and h. From
Section 2 these turn out to be

f(r) =V + Ar

h(r) # V - Br .

The expressions on the right actually are formal sclutions

to the functional equations with the maximizers

c: V IEF
d: 2 o .

(The first of these 1s corroborated by Section 2.)

However, we will linearize to the full and use

e(r) 5 Vr
d(r) = 2r .

Let 7J be c if -J = Straight and 4 1if nJ = Turn.

Now the basic inequality (23) of Q¢ condemns T to an
interval containing 7J(rj)‘ We know that use of 7J(rJ) itself
for rJ+1 is Q and not even close to optimal. In fact it fails
because the ry can remain small (Theorem 4 and its proof).
Therefore it seems sensible always to take rJ+1 the part of
the prescribed interval lying to the right of 73(’4)' Let kJ
be the fraction of (rj+1’73(’3))/(?J+1'73(r3)) where FJ+1 is
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the right boundary of the interval. The task of P reduces to
selecting the k;' Using the approximations (30) and (32), the
governing equations are found to be

k
= byr, ¥ .

Ty €

gy = (L4ky(1dy,0)) €

where bJ =V 1if “; is straight and 2 if nJ is turn. We start
with a given small ros Eo and compute the later ones recurrently
by (33), each time selecting kJ(O < kJ < 1). At the same time E

is selecting the m,. when we apply (33) B, Wy, cec, By is

nown, but not nJ+1. Thus the value of bJ+1 is unknown when

k. is chosen. In brief, the order of choices and computations

J
is

m, T Eo - glven
k° chosen by P
r computed
m, chosen by E (deciding bl)
El computed
k1 chosen by P
r, computed

ete.
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Ihe problem: To devise a scheme for selecting the kJ 80

that no matter how E picks the m the r, will not remain small.

J? J

We have been unable to solve 1it.

At the lesast, the solution will point the way to t—strategies.
Ver& likely, after developing some results that would furnish
bounds to errors arising from (30) and (32), it would actually
supply the £-strategies. There exists an exact version of (33),
but, due tc the complicated nature of f and h, it would be
difficult to write the right sides explicitly. Remark that

our previous results guarantee that the problem has a solution.

T. Motivation for the u—etragggiea

Let us consider a miniature game in which P has but one

chance to fire and three choices of where to aim. He uses a

/
7/

/
1-8 N\ 0
P
16 9)9/' 16
o
a b ¢
Figure 8.

mixed strategy taking a, b, ¢ as the probabilities as shown in

Figure 8. As for E, he makes Just two moves and each of thease
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: with probability © for a turn; he does nought but select ©.
There is fictitious move preceding the first so that straight
and turn may be distinguished there.

The payoff 1s

a(1-0)2+ eb + 6(1-0)c .
§ The computation is ocmitted, but the solution is

opt. strat. for P: a = a, b=1-a,c=0
opt. strat. for E: 0=V

Value: V .

It follows that if in the original game we wish to fix the
aiming probabilities at all, they can only be fixed at the values
above. For otherwise E could find a © in the little game render-—
ing him a payoff < V. In the original game, then, E could play a
strategy like M but using this © instead of V and attain the same
payoff.

Let us bear in mind that generally the parameters entailed in

an t—strategy are not sharply 4elineated. For the player may choose

to play an t'-strategy with ¢' < €. He can exploit the margin
in payoff by slight alterations in the quantities he controls.
Applying this principle to our case, we see that ® will have
f¢-strategies that are not a-strategies but close to o-ctrategies.
Has he any that are not close? If the answer is no, as seems

1ikely, the following conjecture seems reasonable.
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Conjeciure — Q 18 an 1deal sirategy not only among the

a-3tracegies but among all the strategies of P,

8. The Truncated Versions

We can apply a technique here that proved useful in [2];
we amend the rules by requiring that P can fire only on the
first n moves. 'he max min func-ions will be replaced by
rn(r) and hn(r). The functional equations (6) and (7) beccme
recurrence relations; we affix to each f or h the subscript
n + 1 when it appears on the left side and n when 1t appears
on the right. We may take fo(r) and ho(r) as 0; all the
functions sre then determined recurrently.

We may proceed as in [2]. The truncated gsmes fall under
the general tenets of game theory and we know at once that
both players have optimal strategies. 'The functions fn(r),
hn(r) increase with n, for P can apply an optimal strategy
for the cese with a sm2ll n to the case with a larger, fillling
in the residual moves arbitrarily. The proof of Lemma 5’ is
easily modified to show that the rn(r) and nn(r) are equi-
continuous. Thus the fn(r) [hn(r)] converge uniformly to
£(r) [n(r)].

One conclusion 1is evident:

Theorem 9. An t-satratezy can be found which terminates

in n moves, the n depending cnly on ¢,

*»

of RM-1385




9. The General "Chancified” Game and Functional Equation

We now relinquish P's constraint to a-strategies. We
chancify as follows: P shall fire initially with probability r
and his aiming probabilities shall be as shown in Figure (8).
As before, a fictitious pre-—initial move is requisite. It is
required that E make his initial move straight (to the left in
Figure 8). The max min (or value) we denote by g(r, a, b).

7/

Ve
7

s

a l-a-b b

Figure 9

If we demand E make a turn initially, the cori*sponding
function is ¢(r, b, a). The functional equation for ¢ is
derived along lines we have seen before; it is

ra +(1-r)g(c,x,y)

g(r,a,b) = max min
e,X, ¥y r(l-a—b)+(1-r)g(ec,y,x)

Here the maximizers are of course subject to

0<e<l, x 20, ¥y20, x+y<1.




The connection with our earlier work lies in

f(r) = ¢(r,a,0) , h(r) = ¢(r,0,a)

and in these spec'al cases (34) reduces to (6) or (7).
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