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SUBJECY TO LINMAR COSSIRAINTS

Harry Markovits

lo m&tifa’ mm
Suppose that warieblee Xl,,xu are to be chosda subject to
lizear constreinmts:

i) Xaw Xy = b, L= Lpuee,m
2) zau XJZbi L= mel,...,m
3) %20 LI POPRP

whers 0 <m <m, 0 <N) <N and the mirix {s,,) i =1,...,m Mes renk
m, (othervise the system iz inconsistent or has at leest one redundant
squation). 'The payoff 1s s linesr function R = L r, X, vhose cosfficlests
rj are not knovn st the time the Xj ars chosen., The rd, r&ther, are

rondon verisbles with expocted values u, and coverisaces o, {incluiing

varisnsss o, = o"g). The expected velue of R is

L) RmZuJXJ

The varisnce of R i»
5) V¥ ai}la& xj X,

Supposs further that scms dscision-maker likes expscted payoff (B) end

dislikes variance of payoff (V). Our problem f{e to compute for the

decision-maker (o) the "efficient cambimntions® of B and ¥, 1.2., those

&
The writer has pariicularly benefited from discussions with Kenreth
Lrrow on the sublect matter of this paper.
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attitnadle: (§,¥) combinitions which glve minimw ¥ for given Eand
vakime § for given ¥ (e Figure 1); and {b) the potnte in‘the X spacs
sssociated with the efficient B,V mmum, f.0., m ot of ’
oiﬁcim x‘s.

¥igoe 1.

Rt
1
5

2 ,V cmbimtiom

A computing tcchniqm is presented {n ¢his pspm} for ganerating
the sbove efficient eats. An adsptation of this technique ean Yo used
for yroblems of maxiwlsing or minimizing quedretic forms {with the
"right® properties) subject to lineav constrelnts. \

The precticel yrodles which £iret suggested the above computing
pm‘blem‘m thet of selecting & portfoliaq of scourities. Here XJ' 18
the aisount 4nvested in the §°° sscurity; the by 802 o 8ve the expected
zeturns and covarisncez of returns fyem the varicus agcurities. Xu the
sixglest esse the constrednt sat 18 L X, » 1, X, > 0. A problem of

very sizilar stzucture enalyssd indspendsntly by H. 6. Houthekiowr,

ﬁmv wmez, *Pertfolio B2lseticn,” gm of FPireoce 1952,
"o Pormo Des Cownes D'Bazal,” Oihdors dn m & Beonsmateis 3.953.
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is that of Linding the expsrditure on various goods as a function of
incozs for an individusl whoge utility function 1s of the forau = L, Xé
P2 834 %y Xg- & problem of mexinizing & mnopolist'e quadretic profit
function subjeet to linsar constrainmts is pressuoted by Robert ﬁormn.’
Another problem of this gepersl charscter is that of mmximiging @

quadratic 1ikelihood function where there ig & priori infomﬁca con-
carping the welues of persmaters to be estimmted. Eow that rsasomably
converdient computing procedures axiet for such guedratic m'oblm we
sy bs permitted the hope that atill othsr classes of interdésting questions
can be reduced to this form. ' ‘ i
This paper ¥ill ddscugs only minimizstion preblems involving the
quadratic form 1L 0p5 X; X; ¥hose matrix (oy4) 1s positive semi-definite.
The reader should heve no &ifficulty in extending the resuits to mini-
migation problems involving L a, X, + XY 8 X xJ ¥here (a-“) is positive

geni-definits or maximigation prodlems wheve (ai 3) is negative semi-
deftnite.

2. ions

According to customary wosgs we say:
a) A set of poiuts (B) (In Buclidean n-space) is ccavex if
21) o 8 ant x®) o 8 sy » X2 4 (12) X®) ¢ 8, ror any 0 <2 <1,
b) A set 15 cloged if LyyoeerXseoe =y @A Xyyeei,Kipeeo €8
imply y e B.
¢) & funetion £(X) 1o convex over & set. § if XU ¢ 8, x\%e g
and K2 o (1) 27 e 5 1apy £ (0 2 4 (1) 8y < o2 4

(1) (22 for ar1 0 <1 < 1.

[
Application of Linzar Programming to the Theory of the Fiym, University
of &m@as, 1551,
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a)am@ummm&maﬁxm ¢ 5,
3(2) €8 amd & Xﬁ’) s+ (120) X@y 28 twply {2 Xu’} + {10} 3(2) } <
ae(xH) o (1) {8y 2or at1 0 < <.
The eet of points § which setisfy constraints 1), 2), end 3) is
& elossd, convex set. YVerisncs (V) is o pogitive semi-definits quadratic
form, L.e., %E g Xg % 2 0 for s11 (X,..-,%g)e It is also conves.

Tue coverience satrix (e, is non-singular if 24 coly Af V' is positive
daﬁni‘@?‘ {m., )}‘i; Oy x& B >0, of {%,. .,f,zg) $ {c,.o.,o)} waich

in turn 16 true if and ouly 42 V is strictly convex over tbe set of oll

#*
X.

et {X) > 0, for eil X, 1s dud to the Taot tiat V is the axpectss
valus of & square, E(r-Br)?, and therefore cannct do unegative, That

g;qﬁg 4 0 1if and caly if V i positive definite 15 & corollary of -

material found, €.§., in Birkhoff and Maclene, 4 Burvey of Nodern Algsbie
Chapter IX, particulerly eoetios 8, pp. 243867, ¥he LisLic

poaitive dofinitensse and seal:definitenzss for commxity w6y de sedn &s
flows: gt C = (‘aﬁ'}. fot ¥ and Y ve colusn vegtors; X' amd X' be xow

vectors. O is sysmetric so thet C= 07 and X'CY » Y'(X for any X,Y. We
vwiih to see tha {wplications of

(BVTex> 0
(2) XX = 0 G> X = O

for ths differerce ’
De ”{x 26X + (1)) mr} - {(w + {1-0)7") c(u?« (m)x)}
Bupanding ths cecond term and subtyacting we get

D o A1) . {xm - 2X0Y + YooY }

\u

- Maa) o f@re) ez}

Sesumptien (1) implies D > 0 for all X,Y. Assumpticns {1) azd {§) dcoly
D>C12 24 Y. Coavorcoly 42 D 45 positive for all X ¢ ¥, lottivz ¥ = 0
ve £ind X'CX > 0 for il & f 0.

=2 s o ok L e st T s gk s o b Mmoo o bl A, S it o, e e o e
""’30-&‘ A % .. TN, R ST ee T IR O LT e A - e e o
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Ye will sesume thet § is not vecuous. We will also assusa that ¥
is strictly convex over the set of X's which satiafy the equations

- I8
‘rhisassureaaus that V takes on & unique minimus over § aod that if

B = B ig atteinedle in B, then V takes on unique minimm over the set

8 N {Z 129313330}
Ifahmctioniacmxomautsitucmmrwwbétafﬂg
thevefore | g, | f O Liplies that V is strictly convex over {Zl'zmxjnbi
is= 1,...,3‘,;} . This is not a necessary cobditicn however. Hycosssyy .
and sufficient conditions on A and (uu) = C are dlscussad In the footnote.

“Since equations 1) have rank m , m verisbles and the m, oqustions
could be eliminmated (ss in footuots **) to leave & system vith B-my
verisbles .end (m-ml) + N, inequalities. V is strictly convex in these ]
N-ml varicbles and therefcre the sssocisted quatratic is positive dsfinite.
Let Y be suy point in the space of the N-m, varisbles sstisfying the*(in,-n,_) +
N, inequalities. The points which satisfy these ineguiities sui heve
V S V(Y) form a compect, comvex set. Since V is contimious it attaine its
pinimum at leest once ocn this set. 8ince it is strictly convex it attains
its minimm only once. The ssne srgument spplies if the constraint

L By XJ > °

18 added to the (m-ml) + K, inequslities.

MBu:ppx)sezx::“zl.. 8ince 81Oy ) hssmnkmlwmmu,
N

émlﬁ. . Zaml

after perhaps relabeling variables,

a.u?ml X ?1!“1*1"'?13 &1&

éﬂll. ) %lml \Xml ) érai_ml-a-].' * ’%lﬁ Xy

or A(l) Xu) 3 5(2) !(2> = b vwhere A(l) is nea oinsular. ¥Wa thus have

‘ gﬁgn."?

U Y s e b A, Ml 8. T . ks 3 e - e e 8 e oot i | T S bt b o VAR st 4 S S g 5 N e and v RO 7 4
¥ P B . - - B B N - . .- -
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3o memzmm»z ‘ |
mtmmmmwwaumgmtm%}ﬁtes

fin2ing alh (2,¥) efficient poimts. 4 Suppose 26 wished to minimies 'g

mbject to the equstions | : | ”:(f’
2% %y = by , S T Y

without regurd to the unequalities Band 3. & mwm condition

for & sieiwm is that X,... Xg be a'mtms %6 the L& Grangien

equeticgs, |

6) a*mggjxjgazxi !“ﬁ-i ! . o

3 l’eoc',s

Xf"ﬂ' = (A(n)"l'b - (?A(:"))"1 a2 2. We cen express ¥ 1n terns of
212) vy sbetitution, i.e.,

1) (1)- (1)-1 ,(2)
x-(ia)) . (&o ]'tr) ] (A IA ) 542
. ‘ \ 1)
vexa - ) 2D (f(“)) |

) [('b oyl (1) o) - (2% () (1)7 ‘ej g‘(l;-z,)“ é(l)oli::;x(a))

o (b' AQI) «l, 0) e (h( }’ ) a(ﬁ)ghfa)"\(l)'-l I) (Ai(k)”l .b)
0 Q

o g8 {(A(a)‘A(J.)al,g) ¢ @(1)-1 A(:a))} x(e)‘;

¥ ig etzictly corvex for all 3(2) 17 avd only i¢ the last (f.e., the gudratic)
| torm 16 ctrictly comvex. ‘This 1o ©o if ¢nd only i

( &gﬁ)t A(’n'l’ )¢ (a(l)"i ‘3(@) )
¢ , z

i5 pon-aingalog.

e e [N
RS L ®
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i.e.,
z
T & Oy Xy + Z{-r) ay =0 L N |
8) Za” Xy = vy 1ol,000m

Given ths zssumption thet V is strietly convex over {.Xﬂ @id XJ - ’a
1ad,0ee } 1t follows that

On ssa 011'8):1 se0 ;%11

0‘;1 Y O“P]_B vee Qﬁlx

Ell et m\‘w 0 s

amj‘l veo %150 ces

1s non-singuler. sm.nuwmmvmaénamwﬁm
ou & convex set, the unicue sclution to 7) svd 8) is this winfme,

Haxt consider the problem of minimiging V subject not oaly to 1)
but alse to the constradnt that 8 = By, &2

.

w

A PPN s « & G . - R v -

* BANK W ey - ey o

%
ItuluOthemmmm&awatoommmmthafmm%ofp, .

Suppose ©, >1. If g g\ 16 nmguartheraisavectar() () such

G0 0.0 e @ -6

Bincethemnkof&iamlthﬁmwnox"OwchtmtA'aoo,tmfore
v40n()) shore. ¥Y) = YIOX TR = (A2 = 0
Lot X bs eny potat in 8 = {X 'Axsb} E%%X'“(xl:"uzﬂ)

{fn. coztimed p. 8)
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¥
9) L . =%
1 L% T B

We mst distinguish 4wo cases

Gasz 1t Tos row veetor ( fyzeees pﬁ) can b ezpreszad as & linear
cosbination of the (aﬁ,...,s;m), i.e., thers exists orl,...,qnl such
that ,

[
. ¥ 5
N 3

10} (al)'"pqml) .
‘z‘llo e a!nl:é/

Caag 2: There does not exist such a linsgr corhination.

= (“l"“’ “H)

Aaiahwnbelw,“in&eelonlymvﬂm of 8, WB&E*, is
attaimvie. Therefore 1f we require B # ' no sclution can be found;
1f we voquire E = B equations, 7) and 8) give the minimm. In Case 2
the matrix

¥, cont'd. trom . T
'w ves

b (b]_; ’b’nl)
A(X+Y) v AX + O = b; therefore X+Y 48 in 8
¥(X) = X'CX
V(X+Y) = X°CX + 2X'CY = X'CX + 2XA'L = X'CX + 2"
v(1/2%2 + 1/2(%+Y)) = ¥(X + L/2Y)

s X'CX + X'CY

u X'CX + b")\

= 1/2 V(X) + 1/2 V(X+Y)

Thue comtradicitng strict convexity.

"If 0'A =y opd AX = b then B = i 'X = Q'AX = a'b




e O T, X [CPR p
- e - R et e e e

O ey

O m’u “mln By

°m'” °mﬁn G ¥ ¥

t&.c
)

?n.co&mll Oeee 0
a. amlﬂ O.N 0

\ Bl LR N ] m OOQO 0 o

is non-aingu]m'* and therefore the squations

Qess

n) Lo ,!:31‘4-2:(4.1)@ILJ Mg by = O J= Lyene,R
12) Zaij Xy = by 1w 1,00
13) Iy stx°

0, 1r

have a unigue solution which gives minimum V for the specified X .
we let Eo go from -oo to +oo the solution to 11), 12), and 13) traces

out & line in the (X,\) space. This line may slsc be described as the

salution to the following N + By equations in N + my + 1 unknowns:?

N ml
l"" Jnl Jk& 1313 -X.BpJGO J.l,ooa,n
1.5) z a-id XJ = bi i= l,ono,ml

or

16) Iloékxk:fz‘.(-xj) 854 ® by ¥y §=1,...,8
17) Zaij X, = b 1od,.e0,m

for -coSip S+ o

fact that

hsame proof 88 in the footnote on page 7 using the

(1) haarankml+l.
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Bince the matrix of equations 16) amd 17) is pen-siaguiar, given
our sssumption of strict comvexity, they have a golution for every |
valuz of hy whether we sre in Case 1 or Case 2 sbove. In Cese 1 the
values of X, ,...,%; do not change {caly the values of the A's change)
ag Ay goes ﬁ‘an-ooto+m.* I8 Cage 2 the X's as wvell ae the A's
ctange. In Case 2 we can define V(E) to be minimm ¥ as a function of
E. 2= g'% . ?’(x) mst be strictly convex; thersfore B incrsases
¥ith )y . In Secticn 1L we show that ¥(E) is a parabole.

k, Criticel Lines £(J3 ¢)

The set of points (X,\) which satisfy 16) and 17) will be referred
to as the criticsl line £ associated with the subspacs.

8= {x l 2“13 xJ = b, for i 1,...,»1}

Critical lines will also be swsocisted with certain other subspaces.

wt 331,0. .’XJJ

be & subsst of varisbles. Let

z@is Xj-bi is= 11,...,11

be a subset of the constraints 1) and 2) with the inequalities replaced
by equalities when 1 >m . Let d be the ordered set of indices

{11,...,11_} ; let § be the ondered st {31,...,3J}. ¥o will be
perticularly intareeted in s end gof the form

18) = 1,2,000,m, 1m1+1""'ix} vhere I > m,
19) ¢ {;’1""’31.' 8 +1,,...,R} where 0 <L <N,

T (1) () - v ()4

o (18) Cos) =) @ +9)

4
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Por ary indices ? @.mg. gatisfying 18) and 19) we define the submetrix

21) B\q’ =

also submetrices

(4
5 J [ ] * * o
’1 1 4y

) - ®
22 CH‘ : :
OJJ")_' “ . OJJJJ
039' A"SQ’
) M&} i AM 0

IfIam =0, 3 15 empty. In this csmee it will somstimes be convenient
to think of A.S(} &3 having no rows and J columns. To every (\9,})
catiafying 18) and 19) ve ussociate o subspace

8(8,§ ) = {x 1%y =0 for 3 £, Ag g * Bg}
Ir%} has 1o rowe this reduees to s(%) » {x {XJ =0 for J ¢ %»}
Since JJ and | catisfy 18) and 19) 8(3 ,g.) & B, Bines ¥V iz strietly

convex over B it is atrictly convex over g(\l,%)o
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é&} s & rank of I o less. 'if%% beg rank I thep the satblz

24) H‘g%_ - :%'? :&% ,
g
1s non-gingular. (Thie i3 & specisd. case of tha‘mpwiﬁaﬁ:wma in
the fuotuote on page 7 .) zsa&}mmmmrm@% is singuar,
for its last I vows are net indepsndant. For evary (,}) satiafyisg =
w)mw)mmadq’mmmw@mofm»m,w |
define the gritical lins 4 to be the sst of poiuts (%,,...,%;

Myoeeesdy) Which satiafy

%) X, =0 for § ¢ ?'

xiwﬁ for 4 4 3

X (3] 8
ol o Y. ) gl (
{og f 7o) 2% U

o
N
'

Bquations 25) mey be written ia the form

) 138%.}%)% - <L < o \
21) M %%t Byt b

Rquations 26) by themsalves er¢ the projection of :(-.9,9.) onto the
Z-space, As with 5 and 7 ve have two cozest

1) Caly coe value of B 1o obtsinsble in 8(J3, () ent the X-pro-
Jection 13 o point,

2) AL valucs of B are odtatmable ond the Xeprofoction 16 o i,
%iesiim ﬁetﬁemwxmm&(&,})maa%m'?fwm&,
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%) Ei -zt“ ZJ ,bﬂ- ia laoao,ﬂ
5
3v-2%8 ), L8,,%, =23, 0
2) n, =1/2 R I R
3 X
J
¥
= L G

kxk*gg‘ (M) wgy - wyig

Congtraints 1) and 2} state thet

Jo 9

E,20 foris Lyeeesmy
f:o !)i _>° 0 for i » %"l,oou,mo

: % Along any critical 1iue we have

X, = 0 gor § ¢
& = O for 4 e 2
i o= 0 for 1.4 3

Also, from 25), letting n°® be the {s,t)"" element of 145; we have

3 J
1) X, = & 2™, +f & &% 4
ds w1 L bl n 2
”“xg."ﬂx,;s‘n for 8 o 3,c00,7
32) A, = -‘LE. et m'ib g LN ‘e
i nel b hel n

=, +5u "g for 8 e 1,...,I
6 A

Rr P
PR



e et e v
A

Prom 28) snd 29) we have

B %y AT T e

(Z 38, PR3, iha’uh ) s

uaﬁ'e-aﬁxg

A corollary of the results of an importaut paper by Hulm snd
Pucker' is that @ sufficient conditicn for a point X o give miaimun
V¥ for a sst

8 A {x L g Xy 2 ;zo}

for goma 36 iz that

22 0 for § < W end in .
3) n20 for § ¢ § E

.20 for 1 § 3

M2 fari>mlm1n&

ond by > 0. If &y >0 the comstreint 1o effuctive; if %, vere increaced
an equally lov value of V could not be cbtained. X2 Ag = 0, the potnt
gives pintmm V 1o B, In either case ths point is efficienmt.

It will be comvenient ot times o cuploy the following yalebel

of varienlnas




v, ® xk forksl,...,ﬁl
36) Vk = r’k"ﬁl for k = Hl+l,oeoaml
‘V‘k o gﬁ.}k.‘@‘l fO?k” 21‘1'3’1,.-.,@1#!:\“?1
V. -
k" Mkeom -m-2  forked +m-m o+l
asla»am-ml
Also
37) K=, + 20 - 20,
and

38) X = {the set of k which identify the varisbles in

equation 30 )}

Thus on any critical line we have

39) v, = 0 for k ¢ ¥

and & point X is efficient if it is e projection of & point oa a critical

line with
ko) v, > 0 for k § X

or ~
41) V2 0 for k= 1,...,K

2o Intersections of Critical Lines; Non-Degenarscy Conditicns ;

In the computing procedure of the next saction we move along s

critical line until it intersacts & plene v = 0, k=1l,...,K. Then
either one rov and the corresponding column iz added to ¥, or one rov
and the corresponding colum is deleted from M. This ralces two
questions: {1) under what conditions will the matrix cbtained by such
odditions or deletions be pen-singular, end (2) how should the new




P-637
6-27-55
«16e

inverss be chtained? The letter questicn will not be dlscussed except
10 note that the possession of the old inverze is of grest velus in

-

ohtaining the new om.’
Concerning the formsr quastion, sippose Mo, with 3¢ satisfying
18) and 19), i# non-singular snd thus défines a criticel line & SBuppose
£ intsrsects (but is not contained in) the plane v, = 0, isksx. We
distinguish four cazes depanding cn whether v corresponds to an X, an 1),
chora ‘
1, The deletion of a werieble., Buppose g intersects & glwe

X, 20, J=1,...,K. Suppose that J is deleted from the set | leaving

J
the s2t 9»'. Is ’&9 o Don-ginguler? We mhy suypose without losz of

generality that J = Jl and that Qg?_my therefore be written

L2) A@% - (aAM_,)
o A
where @ is the column to be deleted, The matrix (1 o‘?&g) bas

either yank, T or I + 1. If it has rank I, then

Ge¢ Aop s

43) : 3
Y] »~ s
. JJ = M )
S
%
0
100660 Qoo O ¢

ia singular., In this case the equitions

% = ,
Thie iuvolvez procedures similar to thoze used in rexoving o
varizhie frem a rogrossion aealysis o nodifyinz e basis in linsor

paegrozdng, 0.8., 6o6 R. A, Plohor, Stotintienl Fathods for Fancareh
Uerkorg, p. 168, asA R. Defron, ActAVIEY ATsiyeis &f Proluction o

FKilccation, 10th £a., p. 358,
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A
°
X .
L) o hg - gi
s :
b

-
N

A3 & L
[ n

meimmmionevmmmwdwmﬁmo m:if%)MQm o

golution, 1.e., 2 2 intersects X 5, =0 (vut is not conmm in n),
1

M 18 non-singular asd the raok of C‘ Asg) 18 T + 1; hence the

rank of (A&Qﬁ> is st least I, Butthemxof( ) » the
00'.

rank of A&%45 Therefore the rank of ﬁ?’” is I end %9" is non-gingular.

2. The deletion of a constraint. Buppose 2 lmtersects {but is not
contained in) A =0 fori>mn. Vemyasssum i = i; and thad

"5) A\g(} =, A@:‘}'
ai

A"’S’ has rank I, A&,& haz renk I-l; therefore H&'% is non-singulay.

Addition of & variable. Contimuing the conventions uzed above,
= (I\% a). Tharefore u%, is non-

3.
N\
ir A&? has rank I, so mn\w,
singulsr.

L. Addition of & constraint. If ¢ intersscts but is not countaimed

in the plane %, = 0, 1 > m then

16) 4 Aoy ‘;33.

: A&s, 0 0
1 o 0 ¢ /

]
% (wnere a' 1o the row of coefficicuts of t.e new constraint) is mon-singulor.
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) A
Therefore (‘39') » &‘9"%’ bgs rank I ¢+ 1 acd ¥ is von-singuisr.
o
The tracing out of the efficlent set is simplied if certain Zaceidentd”
do zot ooccur. These sccidents are deseribed in the following “pom-
dogeneracy” conditions. Tos mext saciion of this peper presents &

coaputing procodure for deriving the set of efficient points when &)1

¢

rou-dogensracy conditions hold. In sections T-10 these conditions ere
veliaxed.
Conldition 1. Onr no criticsl iiae do w» have

V" Xy + Py dge O for k ¢ %

Condition 2, On any given criticsl line £ v do not have

vy "k,
..5;: - Ta: foz-mxl,lkevmavkl# of

avke‘;!a
Gonditicn 3. B 45 bounded from atove in 8.

We will let Ly stand for "the linear programming problem of md.miz&\
B subjact to conatraints 1), £), amd 3).

Condition b. Ly has & unique non-degenerate golution.
Confition b impiies condition 3.

- e i < otk W by S b r—— e

¥ st co-dftions L throvgh b ave sesieficd. Comditich
% dmpltes that ths optimm solution to Ly hast” |

%

“he following cxe covollnrdes of the bosis and icing thooress of
ilezay propormiing. £28, 0.8, Geores B. Duntsig, Alex Onden, Fhilip
Volfo, “Tha-Qonoraiicsd Girplos iathed for Hnindeies a Linzar Pora undor
Lizzar Incgeality Pootendets,® Dostfic Joured of Kathoraties, Vol. 3,
Ro. 2, duze, 1655. T -
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a) emctly n verisbles X, and §, are not at their lowar extrems ’
b) A\S(l) %(l) {wrere él) inciudes &1l i with ;1 » Q and }(l)

includes all J with xJ not st it lower limit) bhas rank equal
to the mmber of its rows

c) There existe "prices” p, snf "profitabilities” § 4 duch that

LT) p >0 if 51-0 for 1 = m+l,..em
) py=0 £ 5, >0 for 1 = m+L,.00,m
49) &, = L

3T7 MIPt B
50) Sjeo for § = B+l .., and for X, >0  J W,

51) 63<O forxJ-O J<H

The matrix
°%u) §0) A1) qie)
Aota) ¢fv) 0

is non-singuler and thus defines a critical line 5(1) along vhich

X 0 L oagad
53 My | FV) - ) : (iﬁ“*" e

52) ¥4y -

-X&(l) B&(l)

8ince - A;Q(l) 9(1’) ’pé_(l) @ 9?(1)’ if xo%,(l) K‘lu) satiefly 53) for
g = 0, then

i

1) /(2 ")
MR XOL YR SO ) AR WL B

k) M |0

feralla.&
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Thus 1‘1’) has

4 -
55) i) )&1) for all Ay
o
M) " A TR e
Prom U7) 41t follows that for sufficiently lerge g
x1>o fori.>nland1n\9ﬁ
ng = Zog B - By hy 4 ppyg)
56)
n Doy X - Loy 0 - (Tayy my ¢ udy

51) implies that for sufficiently large Ay ny >0 for § ¢ } Thus

for sufficiently large My L) satisries inequalities 0).
(a

Let Ay

plane 1, = 0 foraégorxisomrie& (The X and § do not vary

) be the largest value of x.n at which z( intergects &

along £ (3)) nxl )< 0 then X° gives ninimm V as vell as peximm E.
Buppose xél) >0, Non-degeneracy condition 2 tapltes £ intersects
onlyoneplmena-rOorl. -oatx‘ In the former case we @d4 j
to {; in the latter case ve delete 1 fram &, to form L(2) ;‘(e)

m v ¥atrix "‘al 4‘2) 9"3) is zZon-singulay uﬁ. aaﬁms e mtsm

1line l(a). Wrwammum “3 w O which '.'.u')
O

intersected at ).él). 0a 5(2) ve have &t "E = xg" H

A, >0 rora>mlanae~&(2)
579 nmy>0  for 3 4 9'(2)
5,50 rorid Nl

J
{x°>o for all othor § <K and e (L2
s Sh ¥

PRSP
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AB always x’3 s & 4 b).g slopz 2(2) . FNon-4sgeneracy condition 1 aspurses
0

b # 0. If b <O the projection of £2) voua ve eteictent for 1" 2h 20

whara ).* > ).él). This is impoasible.’ %m‘efo?e b >0 gnd z(‘?) is

efficlent for xg‘) > hg 2 082 e z.g Xéa) Similer remerks would
apply if z(l) first intersected )'i = O and 10 wag deleted from S,

0
)3(32) 15 the highest velue of Ay < xél) st which £2) intersects o
plane vy = 0 for k= 1,...,K. If this is an n, v again 6dd & § to ¥

It 4% isaxiwedeleteifrrm~9; 1fa‘§i,meadauo¢; 1 an X

ve delete J from } He form M(3) and 2(3) accordingly snd find X
This process is repeated until )y = O 1s remched. At each step (a) Mt )

is non-singular and if v, 1s the nev variadle (n, X, », or¥) which is

a
no longer constraived to be zero we have at 2(8°1)

58) v >0 for k f k, and ¢ £

v. =0
8

*%
By condition 1, b, # O along {8). We argue below™ that e eamnot
8

(s) (s-1)
have bvks<o' Sobvk8>0md 2 is efficient for )\ 2 2%

vwhere kés-l) > )ée). Bince there are only & finite nupbser of critical

¥
S8ince b # O the X-projection of the critical line is a lint ?ther
than a point. Alor% this line E increases with XE Ir "g > ).xl ware
l

feasible then £ > E = max B would be cbiainable, which is impossible.

* %
Ir vks is en X, or gi’bvka < 0 implies that there are two distinct

points which minimize V for some B > F(a"l) , which is impossible. This
arguzent also applies if Vi is a xi or n 3 unless the X-projection of the

new criticel line 1s a point. Im the latter case we note ifrom the Kuhn and
Tucker conditions) that ar efficient point gives minimum Q xE) =V - AgB

subject to 1), 2), and 3). Por fixed g, Q(xg) has s unique minixm?. §r
Vi <0 then two distinct points give minimm §(hg) for soms hy > A\l

(1)

23) <2

S

Ii

5 e v, (PN W
Fhe NS o ¥ e L et & Ty a2@ TN
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lires, and emch can satiefy inequslities 40) for only one segment
Lgs@iamgm&inaﬁmwmofawps‘

[, The Algorfths undsr Conditions 3 end b
Let us mow drop pon-Gegensracy corditions 1 and 2 but still

assume conditions 3 and 4. Ve will use techuiques amalogous to the

degeneracy-avoiding techuiques of linsar progmming,*

Por gvery musher ¢ we define & new problem F(e) as foliovs:

mmmmv(e)ezzowx x + L oy

J
subJect to
59) 2 aiJ xJ Lo bi + eR*i is= l,oou,ﬂl
&) E 31‘1 XJ zbi < emi ia= m1+l,$o:,m
é) x,20 d=1,000,0

. \

For sufficlently small e the unique, optimal besis of Ly is fessible
and, since it still satisfies the pricing conditions, is optimal.

*In lircar programming these technigues are gensielly not needed
in practics. In quadratic arditrery selection of v, = O
with b, <0 to go irco ¥ may (or way not) prove adsquate. In gmf
cage tﬁg degenerecy bandling techniquos arve available if nseded.
Bce CGeorge nazxtzﬁ.g& "Applicaticn of the Bimplex Method to & Trans-
portation Problem, Activit aralygiz of Profduction apd Allocation
P3alling C. Koopons, . Charoda, “Optiralidy spd hegonsrecy
in Léz;wr Progrozaiug,® Ecomtﬂc@, Vol. 20, Ho. 2, April, 1952,
P 2

FALS Q




o

P o

’ - - e
Nt oo S

. .
R T T N

P-637
6-27-55

As we will see shortly for sufficiently mmil e P(e) satisfies
non-degereracy conditicne 1) end 2). We will also see that for a
sufficlently saell e* the sequence of indices w?)“ associeted
with the critieal Limes 2%, umtty Ag = O is rosched, is the
saze for ell P{e) for ¢* > e >0, If we change indtces {(J () in
the seme sequence as P{e) for smell e, if we let \p dscrease along
any critical line vhen it can without vialating v, >0, until ve
reach )‘E = 0, then

8) uewmpéethmghaﬂnitemofamxsetuuch
asgociated with & non-singular M %, before we resch ’E = 0,

b) since v, >0 18 mmintained we have tlLe desired sclution

to the originel problem,
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£long eny criticsl line of P{e) we have

6@)‘(-3) . n‘;; (:&) i 3519.(‘;%). iy

. i :
s
or
63) 5 - gy, * Bn' Ag + fg nSt o7(B)
vhere H1) = 3y, £2) = dypee e, H{IN) w N4 4y
or
T e T MR
Simiiarly
ETRL VIR VIR, T Z Jrm o)

- ‘3,% + aua At p‘;"a (e)
5) § 0%, +8 re i‘ (e)¢eﬁ+i
SRS TR M BT, 73

“a%“ﬁﬁ,;’z*Pgt (o)
£6) '{gsaﬂ,g*ﬂn‘,*g-* Z o‘”e%ag(e)

- X aia‘pa‘i (e)*@

adﬂJ’%ﬁﬂJABépﬂJ(e)
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Consider the polyncedals:

o) pyyle) for § ¢ §
8) p,le) for i e
) Pg’i(e) for L § &
) pryle) tor J £ &

None of the polynomials listed above have all gero coefficients, and
no 4wo have proportiomel coefficients. PFor: exch polynomial of 69)
and 70) hes a term with & coefficlent of 1 vhich every other polyncmial
has with a coefficient of 2sro. This leaves only the possidilitiss that
some polynomial of 67) or 68) has all zerc cosfficiente or two of these
polynczials have proportiomal coafficients. Both thess poesibilities
imply that M 1s singulsr and are therefore impossible.

84ncs ka(e) has only a finite mmber of roots, for ¢ sufficiemtly
szall

p,,k(c) fo tor k ¢,

M) v = o + By Ag + pyle) moo< hy < oo
cannot be identically zero for k ¢ . The critical lins interascts
thapla.nevﬁsom

) age vy P
| kal avzzl
; and the plens

v, = 0 at
%
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5%.2 ﬁvkz
If, say,
<, <,
) "g"—"kl > =3 2
vkl vkl
thep for sufficiently small e
%> ¥
On the other band, since
p.,kl(e) - pvkz(e) 20 K,k X
has » finite mumber of saolutions,for sufficiently small e
e R
even if
% %
75) .g:]:- = ._B,..Ee;..
iy Vip
-2, (€)
As ¢ —> 0 the smllest power of e dominates; i.e., if, say, Xy
B,,kl

has an algebralcally larger ccefficient for the first power of @ then
k' >A" as e ~> 0. If both have the same coefficient of e then it is
the coefficients of ea thet decide. And so on.

Since there are & finite number of critical lines and s finite
mwber of planes Vi ® 0 there is a single ¢% such that for e* > e > 0

P{e) eatisfies non-degensracy conditicns 1) and 2); and the order
of the index sete (¢¢)° 1 the come for all such e.

The mm' are necded for othor purpozes end are thus available for

recolving dogonoracy prodlezs. The other coafficionts of ple) can be
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cagputed vhen nseded.

8. The Algorithm when Ly 1s Degsnerate but Unique

Suppose that the salution to LE is degenezate in that one o
more of the besis variables XJ or %1 i3 "gecidemtally® sero, btut is
unique ia that 6‘5 <9 toran.xd not in the basis D.ntlpi >0 for &ll
%, not in the basis.

The constraints of LB may dbe written az 3 system of equations
including the 5, as variebles:

76) B G) .

If B 1s the submatrix of optimal besis vectors end 1fxg_ aod 5 _
2
are the optiznl basis variedbles them the optimal solution is given
by
ml &) 5t

iz

vhile all other variables sxe zero. After we solve Ls ve may modify
it, forming Ls(e) as follows

78) B@)-b+§

.b+eol

for ¢ >0

R e &

2}
]

where ry i3 the sum of the 1t’h rovw of §

Then
79) X&(c) « s
5 (e)
K

O e ®

-
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(- < 4

§
¥

Thus the original optisal basis is still feasible and therefore
uniquely optimal {since it still sabisfies the pricing velationsbips).

Also for e >0
x&(e) >0 tor e ¢

31('3 >0 for i e 2 . s

BN L (%

a-;é(c) | ' ‘;@

as ¢ ~—>»0
mWw&mswmiutw&immmmlym&m;

unique axd non-doegenerats solution apply with essentislly no modifidation

1f Ly bas & unique but possibly degenerets solution if we let ¥{e) bs

L i
ain Vnm%xix“zé* X,
subject %o

80) Xam XJ » 'lz»1 ¢Ty e+ cmi*l for i = l.,...,ml

Zau XJ gbi +tr, e cm?'“'l for 4 » nvl,.“,n

The solution to L:(c) is non-Gegenerate for sufficlently emall e. Along
any critical line we now have

R
81) xdau%s‘vau’hgo-epﬁa(c) +(ha1m 'ti'b) e
o, R o,
82) xiﬁwa&%v&ﬂunhg'»epmg {e) -(hgl mW’h”rih) Y
| \

"%yt By v oy (o)
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J
83) “‘31 =agy + By iy +£1 aﬁ"’s %s(e) + i
= Ggy + Byy dp * Agy (o)
o
B ngmangeemyige T ooy gy (o)
X
-5 J*
gol ‘13" qma (e) + ¢
“aﬁj"'ﬁﬂaxg*qfiaie)

vhere the p (e) are as defined in 63) through 66). Bince mo pv(e) can
have gero coafficients ani no two cap have proportiomsl coefficients,

the sams is true of the qv(e).

9. The Algorithm vhen X% is not Unique

A non-degenarute optimal solution to 1.3 is uniqus 1f axd only if

85) 6J<o forxa not in the basis

Py >0 for Einotinthemu.

If Ly hes & degenerste solution and 85) doss not hald, then either the
solution is not untque or elge only ¢the optimmal btesis is not unigue. If
Lp does not have & unique solution ve must find tho point T which gives
atnizum V for £ = § = mx B. If only the optimal besis of Ly, is not
unique ve still must docide on the O} of ocur first criticel lims. Both
these problems will be recolved iu the scame mawmper. Qur procedure sy
ve considercd o2 a special case of either epproach 1 or approach & for
pinirdeing o quadeatic sublect to lixcor constraists desceribed in

goction 12.
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1% us creats & new linear prog

sing prohlen Z?(e) by adding
& constraint to and molifying ¢he form to be meximized in LE(c). The
equetion wo add is

5
86) ;fl by Xy - gguge‘»xﬁ?’pj»l)e

If we &34 5, to the optimm besis varisbles of iy(e) we hsve & feasivle
bagis comsponding'to e solution with

KJuxg-i-e Je(}'
n O s 1
- gi. 2’1+e fe
?g"

Next let us replesce the objective function E = & i X with & new one

88) ?a}lud X,

such that the solution in 87) is the unique optimm of Lp(e). This
mbedommﬂy-bymsi@nnguwspi>0toi§ﬁ,piao
forieﬁ—aam.lupg-o. Tlmnchommwtofvdsomt 6‘3-0
foraeg«»ma 6‘3<0wa¢}. Since L(e) has & unique non- |
dagepsrate solution we may use pethods alreedy describved to trace out
thcsatofpointswhiehmwmv(e)forgim?untilx?-().
If only & few bases are foasible for Iy(e), 1.e., if not too many beses
mcp‘timlforbs(e),l,wommmcmwcmy. At log @ O
oitherhaa0~0rlg>0. In the former case ve have arvived at a poiot
vith minirun V pof easisam B, In the lattor csge we have X end are
veady o tioes cut tho oot of effieiont L's. From this poind cn ws

mawao, 1.0., ¥3 Lonoro F corplotaly. mmaatkvuo,vkzaefw
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mké%Wmmduwlgumnweiﬁ%ructankuam
comtinue as in section 8.

10. The Algerithm, when Condition 3 doez not Hold

Y —

Hsiembmmdmommhoru&onwmb@use&tof@
the point X with minimom V. The efficient set can then be traced out
in the direction of incressing a.x Since there are only & finite
nrber of criticel lines end each critical iins is officlent &t most
once the efficient set is tracad out iz a fizite mmber of steps.

11, The 3et of Bfficient B,V Conbinations
Once the set of efficient X's 1 found the set of efficient B,V

combirations can be obtained easlly. The critical line of a subspace
in which more than ove value of E is obtaimsdle mey be expressed as
the salution to

89) 2' Uak xk + ﬂ‘)‘i).’i‘j 4 ("‘B) pJ - o} J e ?‘
%) I 8y X, = by, i1e S
91) ZMJ X -2

for ~00o<B < ¢ o0

If we let a’l be the inverse of the matrix XN in 80), 90}, 91) we have

= (1) - (3)

93) V= (X',-A%) gg) (’,f) - (0", v, Byt et (‘2)

from which it follows that along any such critical line V and B ere
related by & formuis of the form
9h} V=a+bB + @2.




Thug the set of efficisnt B,V combinations is plecswise paradolic,
iielmw,ormm&get,thevﬁmofﬁaml%attheenﬁpom
of sach of the pieces. We can also svaluste V st X.  ¥nowing V at
one value of B ant $¥ = b + 20 at two values of B ve cen solve for
the &, b, nd ¢ in 9%) for tha segaent fron B to £ - ¢;. FHavinge, B,
nndcwcaaevalmte?at§-elbymsof9¥). This provides us
with the valug of V at one velue of § on the segaent vhich is efficient
fromE - ¢ W0k - ¢, This, comioed with the values of g 8t two
velues of B, allows us to cbtain the &, b, ¢ of Ot) for this next
sepgment--and so on until we trece cut the set of E,V cosbinaticza.

12, Minimix [ tic

One of the ™vy-producte® of the calculation of efficient sets is
the point at which V is e minimm, i.e., w‘hare).zao. The computing
procedures described in sections 6 through X0 are anslogous to the
simplex msthod of linear prograzmming (s contrasted with the “gradient
methods® that have been suggestad for both linear and mon-linear pro-
graming). Both the procedure descrided in ths preceding section--
considered as @& wy of getting to mia V--and the simplex method require
a finite mwbder of iteratioms, each iterstion typically taking e ®Jump”
%0 & new point vhich is supericr €0 the old. Bach itexation makes use
of the inversa of & matrix vhich 15 a "slight® mdific?tion of the
mtrix of the previcus iteration. The success of the simplex method

=ing suggeats that it ray be desirable to uge &
variant of thz “eritical lina® mathod in the quedratic cues.

“2r ¥ doea not oxist we can evaluste V ot X and use the sans process
“in reverce.”
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| Cuy problem then is to minimize a quadratic
= V = 22, %) X, x‘j
subjectto coastraints 1), 2) sad 3). We wish to tranalste this imto

& problem of tracing out an efficient set. This may be done in severdl
Ways.

1. An srbitrary set of uy can be selected and the efficient set
traced out until )‘E = 0, The by should be selected so that the
®artificial® B has & uaique maximun,

2. Ax equelity, say,

5 "lJ XJ = bl
can be eliminated from 1). B can be defined as
| Bel 3 X

and the criticnlsettracedoutuntilﬂ:bl. Ifxnbliam&ched

| before AB = 0 the computing procedures of the last section must be
contimued into the region of LE < 0. ¥hile the points thus gepmerated

will not be efficlent--for they do not give max B for given V--thay

do give min V for given E. In particular they will errive gt {he point
of mwin V for

Eal 8y X, = by
3. An inequality, say,

Zam,jx,jzbm

can b2 eliminated from 2). B can be defined as

e e o e B s

EuZamij

W e oS

The efficiert set s traced oul until either B » bm or else )"E » J,

If the former happens first the coastraint is effective; if the latter
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bappens first the comstraint is ineffectiva., Iu elther e2sze the polut

associated with the first of thess Yo occur gives mim ¥ subject to 1),
2), and 3).
6 \
k. An initial guess Ko,...,X which stisties 1), 2), asd 3)
can be made amd by defined sc that, given these My Xo i8 erficient.
The efficient set can then be traced cut until Ay = O, To choose p'a

so that X 1o effictent choose arbitrery positive valyes of A (ed)
ard LE‘ Then choose My 80 that

’Zj = 0 for Z(s not at its lower bound

!5>0 for XJ at its lower bound

If x° is in the same subspace as the optimal salution, the latter ie
reached in one iteration.



