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SUMMARY

A problem proposed by A. Marshall in an
internal working papsr is solved in one
general case and discussed in another.

A STOCKPILING PROBLIN:
MATHEMATICAL TREATMENT

J. M. Danskin

§1. Introduction,

A. Marshall, in an intermal memorandum, has proposed various
stockpiling problems of which the present problem is the simplest. Indeed,
a complete solution is obtained only ir. a special case, which unfortunately
is not the case of greatest interest, Por this point, see §2. A partial
solution, that is, necessary conditions on the solution if there is one
(1f there is one it is unique), is given for the general case in §5. These
conditions must be the starting point for further researches in the general
case.

The problem is formulated in §2, discussed in §3. The results are
given 1in §i, the necessary conditions in §5. An interesting gensral mathe-
matical theorem, perhape new, formulated by the present writer for 1,1 and
generalised and proved in any Banach space by I. Glicksberg, will be found
in §7. In §8 we use the results of{? and a compactness argusent to prove
the existence of a solution in Case 7, The remainder of the paper {s occu-

pied with technical details.
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§7. The problem.

The problem is to maximize the functional

Qo
Fy) =/ P [x(t)]v(t)a

where

1) x(t) =X+ /W@t a
o]

and
™
(2) J/ y(t)yat ec .,
0

Here F and H are strictly concave and strictly increasing, H(u) g M for all u;
o o

C and M are constants; v(t) is decreasing andf r(t)dt = 13 v(t) > 0; x > O.
o

The functions y are assumed nonnegative. A measurable nonnegative function y

satisfying (2) is said to be in the classfs . A member ofgia called admissible.

§3. Discussion of the problem.

This problem arose as follows: it is desired to stockpile a certain
good for a certain contingency, the latter happening only once., The probability
that the contingency happens on (t,tedt) is given by v(t)dt., Production does
not depend linearly on expenditire, but rather in a concave way; i.e. marginal
production decreases with increasing expenditure. If gt is the time rate of
expenditure, the rate of production is given by H(z). The utility of a stock-

pile x {s given by F(x). Again the marginal utility decreases with increasing




Ls;u

stockpile size; P is concave. It is desired to expend C units of resources,
counted at present value, 50 as to maximise expected utility. Money accumulaves
at an interest rate a compounded continuously.

As proposed by Marshall, we understand that we intend to spend at time t af
s (present valus) rate y(t). Thus actual expenditure at time t is at the rate
I y(t)o‘t, and actual production H [:y(t)ft] . If the initial stockpile is X,
the etockpiie at time t is given by (1).

An oblection to Marshall'e formsulation may be made as follows,
As both F and H sre increasing, the prohlem is equivalenmt to the problea of
minimising C, considered as a function of y, for constant [(y). But it is
clear that we will not spend C. The comtingency will happen at some time t

o

and then we have

SO oy(t)a

o

(present value) resources left, It is a little unclear as to what it means to

ainimise C. If, however, we insert the factor

(3) u(y) = { w§)dsy ,

the problem uzkes more sense. u(t) is the probability that at time t the

contingency has not as yet happened. Thus, if we plan to spend at time t ai

the (presest value) rate y(t), we will spend at an expected rate y(t)u(t).
Thus what ve should minimise is the expected present value of the cost.




at

@ shoulc minimize

7 y(t)u(t)de y
Q

Hence ] prupose tlrat the problem be changed to read: -Axinize[“(y), where

x(t, {s given by (1), subject to the side condition

[0 0)
S oy(tu(t)dt =,

where u(t) is given by (3).

In the case that v(t) = ﬁo’ﬁt, of interest to Marshall, this problea
reduces to the problem proposed by him. Unfortunately, st present, it reduces
to a type we .re so far unable to solve, I shall discuss this point in the next

section,

The discussion in sections §i- 510 is all based on the problea as

formulsted by Marshall,

gb. The resulte, Discussion,

Case ], The function v satisfies
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In this case, there is an interval (O, t.o) and » positive comstant k,

such that
(1) 1Lt < tos yo(t.) satisfies the equation
(5) W [yo(t)d""] . x

.“{m'. E‘o(ﬂ] V(V)“

(11) ift >, 7.(t) =0 .

k and to are detarmined by the side condition (2) and by the equation

(58)  H'(0) = —¢ X :

(o o]
0 °\{‘ r[x (6)] v(v)ar
(o]

The problem of solving these rather complicated equations is not
part of our problem here. Purther progress will probably require special

aseumptions on F and H.

We observe that the solution yo(t) in this case 1is steadily de-
creasing and that it is comtinuous everywhere, including the point t.o s

This ie¢ proved in §9.

Case II. The function v(t) satisfies




Jv(pdr
t
for all ¢,

Practically nothing ls known in general for Case II. [t can be proved
that in tnis case the stockpile x(t) approaches infinity, so that yo(t) - if
there is a solution yo(t,_‘ — must be positive at arbitrarily large values of t,

The proposed modification given in §3 of Marshall's problem falls
into this category when v(t) = 8.-51. Then the problea cames down to one with
an interest rate of a + 83 and a contingency rate of 3. Thus (6) is always
fuifilled.

No results at all are known for the general case, except the following:
the solution is always unique, and if there is a solution it must satisfy the
necessary conditions of &5, Except in Case I, the existence of a solution has

rot been proved.

55. Necessary conditions

In this section we derive conditions, in the form of inequalities, which
y, satisfies if it ylalds a maximum to [(y) in the clase “J of adaissible
functions.

Let y_ be the maximizing function, and suppose that A is any other
element of :‘-_v: Let A\ be on the unit imterval. wWrite yx(t.) ° (l-x)yo(t) . ul(t).

Put

xx(t.f. - X ¢ { H ny(t)o "jdt’.




Put

[0 o)
iyl(x) - { F [_ﬁ(ta v(t)dt .

Evidently a neceseary condition that Yo yiald a maximun is that

3 .
» [, (N g O
x[yl ]x-o

for all ylé g. On differentiating and reversing the order of integration,

this ylelds:

a0

S Uy (e q (1) [yg(v) - yy(t)] at > 0

o

for all yleg, where we hive written

@
at 0 [
cyl(z) - {‘ P [z (7)) v(r)ac.

We now apply the Gibbs-Neyman-Fearson lemma (see [1] » P. 289 i

e get the

Necessary conditions: If y_ maximizes [ (y) in Lhe class 77 , there exists

a constant « such that, for almost all t,

(7! (1) 4L yo(t) > 0, then Wt [y (t)e] ‘Qy—km ;
o
K

(11) 4f y (t) = 0, then Ht [y (t)s“] <




§6. Adaition< necessary conlitions holiing in Case T.

If tne contingency it likely ‘o occur fairly scon, 1.e. Case I,

we are sble to obtain an estimute of kb vith the aid of this we prove in
<@
this section that there exist numbers t and Y, such that if Yo yields a
-

aaximum to[ (y in:":_: then y (t) <Y throughout and y (t) = O for t > t...
(o) 0 (o] =

First we turn to Qy (1). Since H(u) ¢ M for all n by hypothesis,

Dy
then for any ylé = e hive
(8) Xl(t.) 9 i‘ + Mt »
for all t. Hence
a X e
(") le(l) S { Fr(xeMt)v(t)dt .

The quantity on the right of (9) evidently does not depend on ylﬁg

Next we prove thit under the conditions of Case I the quant ity Qy (t)
1
is decreasing in t for every yl€ ,."?,. Jbserve that

Frix (t)]v(e) O

SR o T et
t t

throughout. Hence

F'Cxl(tﬂv(t)
a S a -8 .

{ Pi[x, (€)) v(T)dt

d
ET Dos :yl(tﬂ Eo=

winich holis also in the perner.l case.




It foliows that Qy ft) is decreasing in t, and also that
1

. (a-8)t
uyl('-) S Q’I(O). .

On observing that evidently

we get

(10) oy, () 3 Fr(o)ela )t

The right side of (10) is evidently indepenient of y, ¢ =
Now e can obtain a lower bound for k. It follows from (<) that

there is a set of positive measure on O , t ¢ 1 on which yo(t‘ < 7, Hence

for some t on CO,LJ we have

| _at” K
H(2c0) < Wy (tie™ |y 7o
Y,
Hence
[0 0]
(11) & > Wr(zce®)Q, (t) > H-(zco")e("'l'“: (1) o4 (ece®) [ Fr(Xemr vt e,
7o Yo )|

vrite



Thus we have ;rove! that n > K, > U, where ko is an absolute constant.

VY
o

serve tnat this estimite for k does not hold only in Case ], but

in general.

NOow pul

LS T }-:'Luir'(O)

3=a s
Evicus.y v U, Maiding w.e of (10), Lt follows easily that
"5
\y /t-) & H'({O ’
for all t t

I’
- . Now 35 .ppose y ¢ U for some t > t , where t does nol lie

{n the et Of mea:ure zerou for Jhich (7, Joes not hold. Then

X
t' - L]
'_v s {' ﬂt'
il )D(Y,)o _!
ACCoriin, iy - woul! !l ve
| L
[N o
X Nl7j ]
Wty (t OOL Ve
hut ~n and t eJt . i 2 A
: o ) ¥ t'(v), AN 80 we lLave a contraadiction, MHence
€
NE C R e t .

10




F-634

11

“e now establish tre existence _f in absolute constan* Yo suchn that

ggtﬁ S Yo throughout. Tare Yo so that
(12) HI(Y | @ —mpe

“ince «_ <« H'(L F'(U) there is obviously such as Y . Suppuse that at a point t
J

-~

satisfying (7) we Lave yo(t c Y. Then yo(t) > 0 and so
at K
e roe™] oy
1

Then

k X

0] e Pz gt

It follows that yJ(t) < Yoo N contradiction, This completes the proof of the

assertions in the first paragraph of this section,

§7. A thieorem on upper senicontinuity,

The result of thiy section is needed in the pruof given in 88 of

the existoence of a solution in Case I. ‘

Theorem: Any stronply continuous concase functional J oo A sanach space Lo

upper .emicontinuous with reipect tu we. converyence,




WS 12

:roor.,: Let {uS’ $€a be a “irected set of elements of the Banach space,

converging weanly tu an element U rut

= lim sup . j
b { .
§eon s

(el € > U, Trere is . cofinal =ubyet & of » such that {f §¢ "1 then

Let ) be the strunyg convex clusure Of 6y - Then by Macur's theorem (see [_'l] or
[_.‘J y Peo< , . is weakly cissed, Hence uOGD. Accordingly, LA is the strong

imit of a Uructed et of finite conve. cambinations of elements of Al‘ Hence

o
-~
&
-
s ]
-~
a
»

finite convex combination E )‘iuS Of elements of ”l such t hat
i

|otu) = 03 l\iusi) | g :

1t follows that

ok .J(Z\iuai;-fzzxi‘]ﬂ‘-é woo

)\

« tis arvitrary, 1t foll.ws that

e

as re ulred, Tis cwm;letar Lle Lroof.

. Forowrdi o Doam inser elf o

Te lickster,




We add a remark. We use this theorem only in the case where the
Banach space i{n 1,1 and the functional is an integral. In this case the result
follows from a theorem of McShane CZ]. we give the theorem in the present form

because of its intrinsic interest and generality,

§8. Ixistence of a solution in Case I.

In this section we will prove that in Case I there exists a solution
to the problem enunciated in §2. Discussion of the solution will be found in §..
Other cases are touched on in Q. and §10.

First we consider a restricted problem. Let E::' denote the class of
functions 1nE: which satisfy y(t) ¢ Y throughout and y(t) = O for t > t', Take
as the topology or:a-z;' the topology of the Banach space Ll For any fixed t,

the real -valued functional

- F t
x(t) = x ¢/ H[_;(?:)oa 14
o

is upper semicontinuous with respect to weax convergence onE;'. This follows
from the results ofS?‘md from the boundedness of H'(u). The factor .a?’imm_
duces no difficulty; we need only refer to tha definition of weak eonvergence

and the finiteness of the interval (O,t). It follows that the funct {onal

@
[(r) =/ rlx(t)]v(t)dt

(o]

is upper semicontinuous with respect to weak converygence on ‘:T"'. Ag"}. is
g
Y




compact (see ‘u_] , P 136 in the weak topology, there exists a maximm in

!
r-—yY .

Ubserve next that since F and H are strictly concave, there is a
*

unique maximum lnE;". Let y_ be the unique maximum lying inE; , where vt
and Yo are the quantities defined in B¢, °

Let now t' > t.', Y > Yo . Let y; be the unique maximum lying in
E;' . By an argument similar to that of 86, y; must satisfy the following

condition,

There exists a constant k, such that, for almost all t,

-

(1) 1t y;(t) Y , then H'l;;(t.)o“q,:

-e

< (11) H O« ’;(Y.)( Y, then HnEy;(t).Gt'] -

Kk
Q. u

o

(A1) if y;(t) «0 , then H'[};(t)eat’J <

~P

Assume for the moment that Y > <C. Then, as in §6, we obtain a set on

0 <t 1l 0f positive measure on which yo(t.) <20 g Y. As the estimate of
- Lt

g6 for :y'(l) clearly is not affected by the restriction t,oﬂY , the same

o
L will serve as served there. Now take Y, as before ((1l2)) . It follows
much the same as before that y;(t) < Yo throughout. In the same way as before,
'
it follows also that y'(t) = O for t > t.. Hence y' lies inE; . Hence it
fe} - (o] o

maximizes inz; « Therefore it i» identical with the unique maximum inE; .
0 o

Jbviously we may drop the assumption Y > <C. we have proved the following result:




L

Now we obtain an absolute upper bound for [ (y) for y&ZZ, in Case I.

Recalling (8), we have

xR [ o]
(13) F(y) </° P (XeMt)v(t)dt < F'(0) / (XeMt)v(t)dt,
[o] (o]

@

It follows easily from (4) that u(t) -f v(D)dT ¢ .'B‘; accordingly the right
- t
side of (13) converges. Hence it is the desired absolute upper bound,

Suppose that for some Yﬁ?- (y) > ﬂyo). Let yto be gotten from y
by putting y(t) = O for t > t, Then if t is sufficiently lnrgo,[_(yto) >[_(y°).
This follows from the bound (13) on [, PFix such a t,. Let Y be large. The
measure of the set of poinmts F.:o on (O,to) for which y(t) > Y may be made arbi-
trarily small by taking Y sufficiently large. Recalling the formula for x(t)
and the fact that H(u) ¢ M for all u, it follows that if Y is sufficiently large

and

t
o
v ) for cezr

o
Yy (t) =) ¢ t
T y o(t) for t‘!TO

then

t
Mrg) >y, -




t
7 () =y ’()
here

K'?-E-—>1.

o ° -
S yy (t)at
°

Then yleg:‘;, and [(¥y) 2 l’(::°) >[(y,)+ This is a contradiction. Accordingly,
for every y€ZT, [(y) < M(y,).

Hence y yields a maximum tol(y) for ye=/. This ch the proof
of existence in the Case ]I.

%9. The solution in Case I.

The form of the solution in Case I is given in S4, We shall prove
those statements here,

Suppose first that t'l and t, are two points at which (7) holds. Take
t, > ty. Recall that qyo(t.) is strictly decreasing. Suppose yo(tz) > 0. Then
yo(tl) > 0. For suppose yo(t.l) * 0., Then

H'[}o(tl).“lj = H'(0) > "'Eo('?).ctz:’ } q,kuz’ g Qy ! 11 :

a contradiction.

16
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Recalling that yo(t) =0 for t > " » the existence of a t, as
asserted in §4 follows.

yo(t) is obviously continuous for t § t.o « let us check continuity
at t = "o' Let

£ = 1lim sup yo(t)o“ o
t>t -

The limit is taken through points at which (7) holds. Then H'(Z) =

§.5
K

But on taking the limit from the right, we get H'(O)'W. Hence £ = O

o
o

as desired. We have also proved by this argument that k and t.o satisfy (5a).

§1C. TIhe solution in Case II.

As we have sald before, little is known in this case, We can prove
that if there is a solution the stockpile is unbounded,

In §6 we saw that the quantity k  did not depend on the Case (Case I)
under consideration:. However, the existence of a bound T, and an upper limit t.
for the lines used did depend on the assumptions of Case I. What was needed
there was that Q,o(t.) should be decreasing. Let us suppose the stockpile bounded.
Then it follows from (6) that Q, (t) 18 strictly increasing after a certain point.
From (7) it follows that y“(t')o"g is increasing also, This is a contradiction.

The reader is referred to H. xaln.ror various conjectures in this case

with specialized F and H and v.
!

The RAND Corporstion
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