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GPHERICAL SHOCK WAVE

Richard Latter
The RAND CQorporstion, 8ants Monica, California

ABSTRACT

Thz point-source, spherical shock weve moving into a constent density,
y-lev gus is considered in the limit of infinite shock strengtn from cwhr
point of viev of the Rishtmyer-von Newaenn viscosity technique. A simi-

larity solution of this problem is shown L0 exis: and is obtained for

various boundsry conditions with 7 = 1.k, The solutions are obtained ana-

lytically in that part of the flow fileld not involving viscosity, and nuuer-
ically in the other prrts of the flow {ield. It iy found that vhereas all
discontinuities of the physicnl parazeters are removed by the viscosity there
remain discontinuities in the slopes of these paraneters at the shock-front.
It 1s indiceted, moreover, that the complete flow f{ield depends upon the form

and megnituds ol the viscosity.

I.  INTRODUCTION

The existence cf shoek waves in a hyd Jdynaric flov fisld introduces
Iree-boundary discontinuities into the physicel parareters of the syster.,
Such discontinuities cause considerable analytic as well as numerical corpli-
cations for the treutment of hydrodynenic problems. A means f{or avoiding
these difficulries, particularly for nurericul calculations, has been devaloped

by Richtryer and von Ne\mnn(l). Thev observed that tae addition of =

(1) R. D. Riehtmyer and J. von Neumenn, Journ. of Appl. Phys. 21 237 (1990).

particular viscosit.-like ter: into the hydrod ua ic equations could lead to

This work was sponsored by the U. S, Alr Force,
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eontinuous shock-flow filelds in which the discontinuities et the shock wvave
vere rencoved and replaced by a regior 1n which the physicel parameters
changed rapidly, but smoothly. Moreover, the change of the physical param-
eters through this transition region wes, for planc flow fislds, in agree-
ment with the Rankine~Rugoniot relations.

Richtxyer and von Neumann obtained an analytic solution for flow fleld
including the srtifiecial viecosity only for a plane shoex wave. In the present
discussion, it is shown (using the visecosity techalque) that in the limit of
infinite shock strength, s pointesource gpherical shock {low has s similarity
solution for a 7-law gas. The latter has been obtained by numerical and
analytlc integraticn of the ordinary differential equetions resulting from the
sinilarity of the flov.

An irportant consequence of the similarity solution described here is
that it reveals tnat though the discontinuities of the physical paraicters are
removed fror the flov field, the rates ¢of change of these parameters have dis-
continuilics. Moreover, the flow field itself is zodified by the viscosity,

approeching the Taylor(g) strong-shoek fisld only in the limit of vanishing

(2)  G. I. Taylor, Proc. Roy. 8oc. 201, 159 (1950).

viscosity.

II.  FORMULATION

When the viscosity teru suggested by Riehtmnysr and von leumann is ine
cluded into the hydrodynaric equations for a spherically syrmetric flow in a

7-lav medium, the hydrodynamic equations in Bulerian forn become

Boud ..l dpw )
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% 4 10 % = -9 % + ";‘2‘-1" ’ (2)

§g§m§m(g%gg) (5

vhere p is the static pressure, p the density of the medium, u the material
veloeity, q the artificial viscosity, and (r,t) the space-time Pulerian ccore

dinates. The caloric equation of state of the nediur is assumed 10 be

¢ = pf(r-l}p , (%)

vheare ¢ is the internal energy per unit mass and y > 1. The adiabatic equa-

iion of state is assumed to be

Pi,pT = o(8) , (5)

vhere o(8) is a function of the entropy 8 only. The quantity q in Rqs. (1) -
(3) 1s the viscosity term. That dependence of q on p,p, and u which prohibits
discon“inuities in the physical parsameters is not uniguely prescribed by

Richtrmyer and von Newrann. The form for ¢ adopted for the present discussion

is consistent vith their "oquiremntu and is

q-%l‘?oregu;:igﬂ -%\ (6)
\\ /I

The arguments presented hore are not restrictad to the forr of q in Rq. (6),
but cen be generalized to include other possitilities. However, some of the
datailed results depend upon the specifiec form of q vhich is used; in particular,
not all forrs for q adrit of similarity solutions.

The possibility of a aimilarity solution of Egs. (1) - (3) and (0) is

suggested by the calculations of Tuylor(a) cn the point-source, strong-ehock by




‘}."'..‘?? '{;;’,;;‘ilu ‘;"Jﬁ'fig»«%g'\(‘ :

Qv
s 8

s
E53

2B 1 s s ndse

)
““a

.
£ o™

&, 3-; ’);
M‘h}(‘" '«”

T
X3
. -‘E:ﬁf:"

PRV

«

.
> -
e X Y

Y

o~

- r.. A:"}x-

ke

“3“" R

,
- .
™
s

’ 4
Pl T
B . T R

A e
D L el
‘z.‘ “. -
. e PO T -

35

R
<

af@
I

y
&

[%

hd .
- ey
R N R
| . *
rﬁﬁé&.éﬁ%ﬁ?

AC T

-y
-
o

Ay
b

e e .Q-\,},’i'g"_ P =N P 'f
CoA '.'é. YA f‘%ﬁn' }Jx

problem, in which the shoek i3 treated as a discontinmuity. I¢ mey be ob-

served from Bq. (6) that the Taylor equations and the present ones are iden-

© tieal in the regicn between the origin and the Taylor shock-front since q = 0

in this region, as follcws from the property g > 0 for the material velocity

behind the Taylor strong shoek. This observetion indicates that the Taylor

similarity veriables may be suitsble alsc for the present problem. Thus the

Eqs. (1) - (3) und (6) are examined for a similarity solution of the form

rat) . fix
o) .oy, (7)

elmt) .y ()

o

’ (8)

u(r,t)

1t N (9)
Ra

. where x = r/R, R is a fumction of time only, which at present need have no

~ relation to the shock pesition, P is an arditrarily prescribed constant with

the dimensions of density, and O snd f are constants yet to be determined. To
slipplify the subsequent calculations the result 8 = 2a, which may be easily
derived from the arguments to follow, is assumed without proof. The axpres-
sions in ¥gs. (7) - (9) are now substituted into Egs. (1) - (3) and (6),

using the relationships, wvhich result f{rom the changs of independent variables

from (r,t) to {x,t),
3 3 =
$-x-F%
) 1 9d
X " T &

vhere f = 4R dt. ZFquatfon (1) then beco~~s in terms of the new variables

2-3<55
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b PR-xg R + 48 + -f-:-f;ﬁf-u o, (10)

vhere the prims indicates differentiation with regpect to x. Ths quantity g

is related to q by the equation

L . Kz 2 ] t - ] \3 Y
o ;}{5 vx° 8 ¢ l & ) géal ’ (1)
\
vhich arisss directiy from Bq. (6) using Xqs. (7) - (9). If, now, 1t s
assumed that
R - A, a constant , (12)

then Eq. {10) becowes an ordinary differential equation in the independent

variable x, namely,

-A(w+x¢-)+¢¢e+ﬁ-§-ﬁ'—=o : (23)
Quite similarly, Bqs. (2) and (3) become, respectively,

SAxV by v a2 B Lo (14)
and

chant s (goaor - LRENE (o a0 (15)

The constant @ is determined by requiring a constant energy in the hydrodynamie

flow. If E is the total energy, than

o .
2 = bn 5 rlar (pua/e + phel)

o

vhich becomes in terms of the present similarity variables

2 "o

oo ”
E = by 53;— g x dx (‘yp’a,e + rh-1)) . (16)
R

o

Sinse R is a function of time, this equation requires that a = 3,2,
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If nev dimensionless quantities
£ ' L b
F= G = and d =
are introduced into Eqs. {(11) and (13) - (16), these eguations resd
G"'g: 12*%..(" '! - ?' » (ll')
. P ' -
. M | L | 1400
-%?¢x? 4:? +!-—;-q—t0 ’ (13*)
: : 1
(?-x)t°+tt' v2y g =0, (14¢)
cF e (G B (0 Ly v a0, (15*)
and
a0
B - b p_ A7 S 2 ax(v}Pe e 1) (169)
(o]

The existence of a solution of Bquations (13') - (15') for a diverging flow
from a point source with a shock-discontinuity at x = 1 has been demonstrated

by Taylor. But for such a diverging ﬂw% > 0, sq that G = O, and therefore

the ‘Mfaylor solution constitutes alsc a solution of the present problem in the
region from x = 0 to x = 1, vhere R is identified with the position of the
Taylor shock-front. In the Taylor solution the quantities F, } and y at

x = ) are ecnsistant vith the Rankine-Bugonioct conditions for a strong shock.
The presarce of viscosity removes the discontinuities in the physical quanti-
ties and consequsntly, the Rankine-HBugoniot conditions have no special signifi-
cance ir the viscosity formalism, However, if the viscceity is to leave the
flow field unalterad, then the Rankine-Bugoniot conditions should apply across

the shock-transition reg’~n viwrein the viscosity is effective. In a similarity

A, 4

PR Y
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problem of the present type it is elear that this situation is not possible
since the width of the transition region will be a constant with respect to

the similarity variable x = %— . The transition region will therefore con-

tain an amount of mass given by

o(r,t) = b gradr o(r,t) ,

vhich in terme of the similarity variables is

u(r,t) = lupoR3 Sx? ax ¥(x) .

The limits of integration are fixed by the width of the transition region
and depend, consaquently, only upon x. The times dependence of R given in

Eq. (12) implies ther that the mmes, m{r,t), wvithin the transition region
varies vith tims. Yor the validity of the Rankine-Hugoniot conditions across
the transition region, m(r,t) would have to be a constant, but this condition
has been proved to be violated. This impossibility of meeting the Ra.nkinc.-
Hugoniot conditions, is, of course, a properiy of the assumed type of simi-
larity expressed by Bgs. (7) - {9) as well as of the epecific form for q of
K. (6). The restrictions on the form of q leading to the Rankine-Hugoniot
conditions are still not known in general and certainly need further explora-
tion.

Before studying the behaviqr of the differential cquetions, it 1g con-
venient to formulate the boundary conditions which these equations mmust sat-
isfy. Nmnely, all physical quantities rust b bounded and conticuous. Whils
the artificisl viscosity is not a physical quantity, the spirit of the
Richtmyer-von Neumann formalisr. requires treating it as such ani therefore g
is also sssumed continucus. For the presently considered diverging flow-
tisld, the physical quantities muat gatisfy the adlitional conditions that in

themighborhoodofxvo,LnO,F>0,Ga0, and ¢ > 0, and iu front of the
!
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' flov the medium is undisturbed so that ¢ = 0, ¥ 20, G = 0, and ¥ is a con-
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stant. From Bg. (7) it is readily ocbserved that the similarity of the flow s
raquires ¥ ~ O for large x in the undisturbed msdium.
The treatmsnt of Bquations (11') and (13%) - (15') vill be divided into
» the considerstion separately of the regions wherein the viscosity is absent
and wherein it is present. The region without viscosity vill be trested first
and vill be solved analyticslly. The region with viscosity will then bs ex-

plored and joined on by mmerical integration to the rest of the flov-fisld.

11X, TR PLOM-YIKID WITHOUT VISCOBITY

From the boundary couditioms for the diverging flow-fisld, it follows
that in a neighborisocd nf x = 0, the gradient of the velocity is positive and

therefore the viscosity turm G is sero. The equations defining the flov then

sinplify to
-(§?+19")+?§'*% s0 (17)
(¢ -x) ¢ +yo » 2v;~ -0, (28)
-3+ (6 -x)P -z{—(?-x)viao . (19)

These equations admit of a straightforward analytic istegrstion. Thus by
dividing Bq. (18) by y (o - x) end by adding the result to Eq. (19), after
dividing the latter by F(o = x),
(o]
"-(7-1)L+u+iao o
¥ " X

X -0

This equation integrates directly to

Xlx-0) Lyaa . (20)
¥
A seecnd integral of Egs. (17) - (19) may be cbtained by multiplying Bq. (17) "
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vith ¥ and by sdding to B. (19) multiplied by Fl.T . 8implifying the
result with the aid of Eq. (18) gives
r . =
%&- x° {,?. (x-6) (;%.%-v {“)} -0 .
Integration of this equation, using the condition f = O at x = O ylelds
B 1 -
Fo-(x-¢) Gepsgve) -0 . (21)

Alternatively, this equation is sn immediate consequence of the conservation

of energy if this conservation is expreseed in integral form. Finally the

third integral is obtained by direct substitution of Egs. (20) and (21) into

Bgs. (17) - (19). Thus, first eliminate F' andy * from Bg. (17) using Egs.

(18) and (19); then
Y go(x-o)‘-*ﬂ-?‘l-)
? 7 - (x - f_}) ;

-4

. (22)

?

Expressing v+ and F in terms ofbandxgivu foro
27(7-1)(§ 3(27-1) L 3

; (23)
7(7+1) (\g- 2(rs1) s+ 2

-

Te 'p
JERS-

This i{s a standard houmogeneous equation end reedily integrated giving

0 (7-1)/(27+1)
= -

I~

' (24)
1 1R/S - (1372'77‘12)/5(27+1)(37-1)

1
:3 x TR
Bgs. (20),(21) and (24) constitute a coeplete analytic sclution of the

differential equations, Egs. (17) - (19). Since F and ¥ are intrinsically
positive, the constant a of Bg. (20) is positive.
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P The behavior of the flov=field in the present region is defired by
T fixing the two arbitrary integration constants & and b. These are in turn

spacified by requiring definite values for * and F at a prescrided position

x. It 4s clear therefore that the EBqs. (17) - (19) deseribe a two paraneter

farily of flow-fields. No further restriction of these paraneters is possi-

Wm*.»
0 e e G
i A

i,
N

ble befors discussing the region containing viscosity.

T,

NIN T e ;\"-uumﬂ‘ RL Y S
E - ey S A e g
= 2 .

o, 25 )

Only the properties of the pregent solution relevant to the viscosity

e

e e

forsalisn vill be considered. First, since ; =0at x w0, Eg. (24) requires

that é = % at x = 0. S8olving BMy. (21) for % glves

PR il o

f b2 b
i _l(1 - %)
4 -1 2\x/tt " x
%’g‘} Y - 57- X -
¢ e
4 x "7
;.
%# and, moreover, fror the positivity of F and? , this equation shows that
‘.3“ -
. i ?
i 1e_ ¢
fsﬁ; Y x o (25)
55;’ Combining Eqs. (2k) and (25) leads to the restriction
1
L )
i Ls2¢
Z% =323 maQy, 5?.-1- ) . (26)
§4
't Using this equation with By. (23) 1t is shown Lrmediately that
¥ 6 >0 , (1)
§
g
g% for all x > 0 provided tbat the physical requirement 7 > 1 is met. This
17 .
i} result 1s established by observing first that at x = 0, -3- - % and k - -}> 0.
AR ‘
iy K ' T
i g, If then % is to violate Mq. (27), there must exist a point at whieh Q = Q.
% i
‘% But this is possible only if

2 \
27(7-1) (é) - 3(27-1) -gw 3= .

-
T L
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S8olving this equation for s yields

Kiro- ¢
L
!
Y
|3

It may be deponstrated snalytically from this expreassion or simply by plot-

ting the two roots as a function of?Y that fary > 0
/L) > .M(L) <l
\x/, 7 3T Ty

But this result iwplies that for no valus of

Ki-o—

in the allowed range ex-
e
pressed by By. (26) does ¢ = O.

Since the viscosity tarm of Ny. (11') remins zero sc long as L‘ >0,
there is nc way for the viscosity to enter except by the introduction of
discoatinuities in the slopes of the physical quantitiss. This indicates a
deficiensy of the viscosity formalism vhich in mmserical applications assumss
econtimufity not only of the physicsl quantities themselves but also of their

slopes.

IV, _ THE FLOM-FIRLD WITH VISCOSITY

Prox the above arguments it has been established that Kgs. (13') - (15¢)
are #0lved by & Taylor-type solution in the region x > O vharein ¢ = O, But
in order to introduce the viscosity it has been proved necessary to admit dis-
continuous slopes. The position at vhich the discontinuities are located may
be prescribed arbitrarily as x = 1 since this affects only the magnitude of R
vhich is at present arbitrary and fixsd only after specifying the eonstant A.
Tha probler remaining is then the solution for the region x > 1 in which the
viscosity is effective. This region comprises the transition from the contin-
uous flow-fizld to the undisturded zedium in front of the flow. Yor this

region é' 2 0 and therefore g, (11') mey ba written

i

, P
A LT R
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é o - & \E \ (11'*)

At the gomnestion point, x = 1, G = 0, as required by eontinuity of the
physical quantities and therefore ¢ = O at this point. This in twrn deter-
aines the mgnitude of the Jump in the slope § , vhish combined vith the
differential equations prescrides thse Jusgps of the slopes of F, v and G,

The solution of Rgs. (11't) and {13?) - (15') for the transition regiocn
mugst meet the bandary conditions that for sufficiently large x, the medium
1s undisturbed so that § = 0, F 20, G = O and ¥ is & constant, end for
X = 1 the solution agrees wiih the solution for the region x = 0 to x = 1,
vherelin G = 0. It may be shown quite generally by a seriss expansion for
large x that all solutions of Bqs. (11°'') and (13} - (15') which extend to

infinity behave asymptotically ss

- b by &, ¥
10 o 1l
s xE ) xs » xs » o 5 s

vhemfo,fo,go,vo,mdvlmcmmu. This result may be verified

by direct substitution into the basic equations. This, of course, establishes
that the medium in front of the shogk-transition region is undisturbed and,
moreover, is at sero pressure, vhich implies zero tempersture. However, not
every solution extends to {nfinity nor is physically adwissible since ;: » ¥, G
aad¥ mst bte everywhere positive in omisr to correspond to a divorging flow-

fisld with positive pressures and dengities. It may be shown that the physically

 admissible solutions would sxtend tc infinite x. For admissible scluticns,
. the valuos of the quantities 9 , ¥, G and¥ at x = 1 must be restricted. To

. examine this restriction, it 1s observed first that certain restrictions om

these quantities alresdy exist. Mamely, G = O at x = 1. Also

P+ g-(x-9) (Gp+gt ¢ =0 (29)
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or at x ~ 1
ré-(l-?)(-;{.p%m?)-o : (30)

Eq. {29) follows frox Xqs. (13*) < (15°) and Eq. (28) by a derivation con-
pletely saalogous to that leading to Bq. (21); and Eq. (30) is a consequence
of ¢ »0at x= 1. Finally, it is cbssrved fron Egs. (11'*) and (13?) - (15')

that all solutions with the same valwes of ¥, 9, G, v and ¢ at x = 1 lead to

thmﬁmtiom:ix;'g{%, %g}, andé(x). Bince G = 0 at X = 1 and

Bg. (30) relates F/v to 5 st x = 1, the only independent degree of freedon
remaining for the cholise of the quantities at x = 1 with which to obtain an
admissidle soluticn ia the specification of © at x = 1. That, in fact, a
choice of 0 can be made vhich leads to an edmisgsible golution has not been
established anelyticelly. Howswver, s convincing demonstration of the exis-
tence of such a ehoice is providsd by the explicit nuwerical sclutions dis-
oussed in the next section. It may be congidered proved, therefore, that
Eas. (11°') and (13*) - (15') admit of solutions which consist of a contin-
uous hydrocdynamic flov from x = 0 to x = 1, and vhich exhibit & continuous
transition region (vzcept for slope discontinuities) from the flowv sonditions

at X = 1 t0 an undisturbed medium st zero pressure for lerge x.

V. RESULTS ARD DISCUSSIOX

To specify the diverging Zlov field the constants a and b of Eqs. (20)
and (2h) (vhich are equivalent to o (1) and F(1),¢(1)) and the constant A of
By. (12) wuet be fixed. 'The energy K of Kq. (16°) fixes one relationship
snongst thepe constants and the specificetion of the density of the undis-
turbed mediuwn fixas enother relationship. PFinally, the requirersnt of a
physically admisaible solution §n the transition region fixes the lagt constant.
In tho limit of venishing vieecsity, X » 0, the golutions, of course, become

fdentirel with the familisr siromgeshock flow fislds with a Junp diggontinuity
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To illustrets the 2ehavior of the preesert similarity problem, the solu-

tions of Eqs. (11') end (13') - (15') with 7 = 1.k were obteined from Xge. (20),

(21) end (2b) in the region without viscosity and by numerical integration

using the Rungs-Kutta method in tha vigcosity reglon. For X = O, that is,

no viscosity, the boundary conditiovs f (1) « 2 (1) = __2_{ and ¥(1)= Z%

7y 7+
dsfine tha golution which is shown {n Pig. 1. This iz Just the solution ob-
tained by Taylor. In seddition three non-zero values of K were used, namely,
K = 0.00345, 0.0349, and 0.349, Pigures 2 - 4 ghow the solutions for the
diverging flov obtained from Eqs. (20), (21) and (24) 1n the reglon 0 S x = 1
and odbtainad by numeriscal integration of Egs. (11'*) and (13') - (15') in the
region x 2 1. In tables I - IV, ths solutions for these four valuss of K are

tabulated. The values of the integral of Eq. (16%) for thess cases are

.._‘._3 . 0.423 , for K = 0.00000
4Kp A"~
©
- Oo% ) fO!’ K fad 0-m3h9 ’
- 00&2 ’ fw l - 0.03"9 ’
L] 106” > for x - 0. 3“9 .

A coapariscn of these solwutioms with ths Taylor evlution, provides an

indigation of the {nflusnce of ths viscoeity on the flow-field. In partisular,

for the Taylor problem, P, 18 the density of the undisturbed mediur and v(l)po

is ths density of the shocked medium. These dengitias should be sompared with

v(oo)po and ¥ (1);3o of the pressnt problex, which are the densities of the une

digturbed avd shocked medis, regpeotively. The retio of thesee densities is

6 for the Taylor problem, but for K = 0.C0349 it s | .693, for K = 0,039 it 1g
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b,058, and for K = 0.3%9 it %8 1.137. The use of ths viecosity formalism is
seen from these ratics, as wmll as from the complets solutions in Tables I -
IV, to introduce considsrebles mdifiscatiom of the flow-field for large K, but
nogligidble changes for small X,

T™he iportant eoncequemds of the jwezent discussion is the gquantitetive
estimate of the {nfluemce Of the viegcsity on the flow field. Perhaps es
significont is the proof that the viscosity technique mey poseass the defi-
clency in epherical flow fields thit the physicsl parameters have disecontin-
uous slopes at the shosk-transition region, even though these parameters are
gootinuous. Tius the usual numerical integration of Mgs. (1) - (3) and (6),
carried out by replacing these equations with difference equations, cannot
lead to a soluticn of the differential equatic.s 1f the slops discontinuities
are disregarded. It would sppeser therefore that these discontinuities should
lead to {nascuracies in numerical applications of the viscosity techmnique,

vhich ignore therx. However, from H. Brodo'l(” regcults on the numerical

(3) H. Brode, to bs published.

integration of the hydrodynamic Eqs. (1) - (3) using the viscosity technique
for a spherical explosiom, it appears that any errors from this source are
probably unimportant. This conclusion should be qualified somevhat gsinse in
Brode's integrstion, the rudius to the transition region was large and the
noigkborhood of the shosk-front wvas approximately planar sc that any discon-
tinuities would be small. Horeover, the form of viacosity used by Brode
differed from the precent one, although the form vbich he used also suffered

from not leading to e ocnstant masa, within the transition region.
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