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T7 point-eource, spherical shock wrve moving into a constant density,

7-lav gas is considered in the limit of infinite: shock strength fro. tw n

point of view of the Richt'myer-von Seumann viscosity technique. A si.x.-

larity solution of this problem is shown to exir. and is obtaiiad for

various boundary conditions with 7 1.4. The solutions are obtaiwd ana-

lytically in that part of the flow field not L-Nolvin,4 viscosity, and nurmr-

kally in the other prsrts of the flow field. It i found that whereas all

discontinuities of the physical pareaneters are removed by the viscosity there

remain disecntinuities in the slope* of these paramters at the shock-front.

It is indicated, moreover, that the complete f2ow field depends upon the form

and mgnituda of the viscosity. "4

The existence of shock waves in n hyd dynawic lov field introduces

free-boundary discontinuities into the physical paramters of the syste,:..

Such discontinuitiee cause considerable analytic as wll as niinrical compli-

eations for the treatment of hydrodynanic problem. A nmows for avoiding

these difficulties, particularly for nurrical calculations, has been devMloped

by Rlchtmyer and von Neumnn). They obsered tht t addition of a

(1) R. D. Richtmyer and J. von Neummn, Journ. of Appl. PIhy. 21 23' (1950).

particular viscosit.. -like ter-- into the hydrokn& ic equntions could lead to

This work was spoanaored by t.he U. S. Air Furce.
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continuous shock-flow fLelds in which the discontinuities at the shock wave
.7

. were removed and replaced by a region in which the physical paramters

.x changed rapidly, but smoothly. Moreover, the change of the physical param-

A#;' etrs tbrougb this transition region was, for plane flow fields, in sgree-

ment with the RAnkim-Hugoniot relations.

Richtzur and Yon Neumann obtained an analytic solution for flow field

. i ncluding the artificial viscosity only for a plane shock wave. In the present

, ~ discussion, it is shown (using the viscosity technique) that in the linit of

infinite shock strength, a point-eoure spherical shock flow has a similarity

" solution for a 7-law gas. The latter has been obtained by nuuerical and

4 analytic integration of the ordinary differentil equations resulting from the

slnilArity of the flow.

An important consequence of the similarlty solution described here Is

that it reveals tnat tnough the discontinuities of the physical par'eters am

;. removed fror the flow field, the rates of change of these parzeuters have dis-

,i continuities. Moreover, the fl w field itself is -odified by the viscosity,

approching the Taylor(2) strong-shock field only in the limit of vanishi

(2) G. I. Taylor, Proc. Roy. Soc. 201, 159 (1950).

viscosity. -

I

When the viscosity terr suggested by Richtmyer std von Neumnn is in-

cluded into the hydrodynaric equations for a spherically syrm*tric flow in a

4 7-lay medium, tLe hydrodynamic equations in Elerian form becoze

~(1)

• . 5~ru pa
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)2+ U T 7 2-(- ) (3)

where p is the static pressure, p the density of the medium, u the material

velocity, q the srtificial viscosity, and (r,t) the space-time Mulerian coor-

dinates. The caloric equation of state of the nedius is assumed to be

a- aP/(7-10 1 ,(4)

vhero a is the internal energy per unit nass and 7 > 1. The adiabatic equa-

tion of state is assumed to be

/p7 -O(S) , (5)

where a($) is a function of the entropy 5 only. The quantity q in Sqs. (1) -

(3) is the viscosity term. That dependence of q on p,p, and u which prohibits

discon,inuities in the physical pareaters is not uniquely prescribed Dy

Richtnyer and von Neumann. The form for q adopted for the present discussion

io consistent with their %quirerents and is

qw K' pr 2 C~u (6)"~if

The arguments presented here are not restricted to the form of q in Eq. (6),

but can be generalized to inmcude other possibilities. However, some of the

detailed rilts depend upon the specific form of q which is used; in particular,

not all foris for q adtit of similarity solutions.

The possibility of a similarity solution of Eqs. (1) - (3) and (6) is

suggested by the celculations of Taylor(2) or the point-source, strong-ehock
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problem, in which the shook is treated s a discontinuity. It may be ob-
I. :served from sq. (6) that the Taylor q-4ations and the present ones are iden- 4

tical in the region betwen the origin and the Taylor shock-front since q - 0

in this region, as follow from the property > 0 for the material velocity

P behind the Taylor strong shook. This observation indicates that the Taylor

similarity variablos may be suitable also for the present problem. Thus the

,; -Eqs. (1) - (3) and (6) are examined for a similarity solution of the form

0

u(r,t)(9

, ( ) ,(8

. where x r/R, P is a function of time only, which at present need have no

,' relation to the shock position, p is an arbitrarily prescribed constant with '

the dimnsions of density, and a and j are constants yet to be determined. To ,

" simUplify the subsequent calculations the result 2 a , which may be easily

} derived from the arguments to follow, is assumed without proof. The expres- -.

sions in Eqs. (7) - (9) are now substituted into Sqs. (1) - (3) and (6),

' using the relationships, which result fromI the change of ludsendent variables

4from (r,t) to (x,t),

,.. where -dR dt. Equation (1) then beco--s in terms of the nev variables
whr• 1 t.Euto 1
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-CI ii-x0hi +4' + 0', (10)

where the prime indicates differentiation with respect to x. The quantity g

is related to q by the equation

K2  2$''.' IL. Uri

vhich ariwis directly from Eq. (6) using Eqs. (7) - (9). If, now, it is

assumed that

Ra i - A,a constant , (12)

then Eq. (10) beomes ina ordinary differential equation in the independent

variable x, namely,

-A + +¢, f 0€ (13)

Quite aimilary, Bls. (2) and (3) become, respectively,

-Ax' + +0 +, 2t . 0 (14)

x

and

- A 2a f + (04x)f 7 -?f+_ 1) g (P _Ax), n . (15)

The constant a is determined by requiring a constant energy in the hydrodynamic

flow. If E is the total energy, then

4w1r 2 dr (pu2 /2 + pi-1)

ODO
which become in tene of the present simil a rity variables

0

Since R is a function of time, this equation requires that ai 193.
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If rv dimensionless quantities

f L.
S2' A

A A

an introduced in'to Eqs. (11) and (13) - (16), these equations read

( -x)* 2 - 0 (14s)

3- +' :-xl, ( x)F 0'. (15')

and
00

E~a4~pA 2  I x dx(s' 2 2F7l i'z s ° AX dX( 12, .,"7-1) (1.68)
0 $

The existence of a solution of Equations (13') - (15') for a diverging flow

from a point source with a shock-discontinuity at x - 1 has been demonstrated

by Taylor. But for such a diverging flov > O, to that G - 0, a0 therefore

the Taylor solution constitute* also a solution of the present problem in the

region from x - 0 to x - 1, where R Is identified with the position of the

Taylor shock-rfont. In the Taylor solution the quantities F, and * at

x - 1 are consistent with the Rankine-Hu6oniot conditions for a strong ohock.

The presence of viscosity removes the discontinuities in the physical quanti-

ties and consequently, the ankine-Hugoniot conditions have no special signifi-

canee ir the viscosity fornnalism. However, if the vioccelty is to leave the

flow field unaltered, then the Rankirn-Ruoniot conditions should apply across

the shock-transition region vbarein the viscosity is effective. In a similarity



2-3-55
-7-

problem of the present type it is clear that this situation Is not possible

since the vidth of the transition region will be a constant with respect to
r

the similarity variable x - L- . The transition region viil thereforc -on-

tain an riount of mas given by

m(r,t) . x r" r2dr p(r,t)

which in terms of the similarity variables is

u(r,t) -4gpR 3  x dx *(x)

The limits of integration are fixed by the width of the transition region

and depend, consequently, only upon z. The tize dependence of R given in

Sq. (12) LIqles then that the mass, m(rt), within the transition region

varies with tinw. For the validity of the Rankine-Hugoniot conditions across

the transition region, m(r,t) would have to be a constant, but this condition

has been proved to be violated. This impossibility of zeetz; the Ptankine-

Hugoniot conditiona, is, of course, a property of the asurmd type of simi-

larity exMressed by Eqs. (7) - (9) as well as of the specific form for q of

Eq. (6). The restrictions on the form of q leading to the Rankine-Hugoniot

coiitimoc are still not known in general and certainly need further explore-

tion.

Before studying the behavior of the differential cquations, it is con-

venient to forzulate the boundary conditions which these equations must sat-

isfy. Naely, all physical quantitiee must be bounded and continuous. While

the artificial viscosity is not a physical quantity, the spirit of the

Richtnyar-von Neumann forro-lisr requires treating it as such and therefore q

is also assumed continuus. For the presently considered diverging flow-

field, the physical quantities must satisfy the additional conditions that in

the neighborhood of x 0, 0 0, F > 0, G - 0, and t > O, wid in front of ths
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flow the ndium is undisturbed so thet 1 ,F >, GiO, Gand is a con-

stant. Fron Eq. (7) it is readily observed that the similarity of the flow

raquires F 0 for large x in the undisturbed mealum.

The tratamnt of Equiations (Ii') and (13') - (15') will be divided into

the consideration separately of the regions wherein the viscosity is absent

and wherein it is present. The region without viscosity Vill be treated first

and will be solved analytically. The region with viscosity will then be ex-

plored end joined on by numerica.l integration to the rest of the flow-fisld.

From the boundary cordtims for the diverging flow-field, it follows

that in a neighborhood of x - 0, the gradient of the velocity is positive and

theforef the viscosity tjrm G is sero. The equatiome defining the flow then

Sim3plify to

(-10 + x 0 + 00+ + 0 (17)

2-)' +L- -0 , (8)4

-3 + (- x)? - (-x)t =0 . (19)

These equations admit of a straightforward analytic integration. Thus by

dividi Eq. (18) by, (0 - x) and by adding the result to Sq. (19), after

dividing the latter by F(O - X),

."(7 .) + (x- +) 0
X 0 x

This equation integrates directly to

24 r

t .,'hA.\ '(20)x (x - =7- (o

A ,eond integral of Sq*. (17) - (19) W be obt.aimd by rltiplying. S. (17)
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with # and by adding to Bq. (19) aultiplied by 7. BI"lUyin the

result with the &M of Sq. (18) gives

d z2

Integration of this equation, using the condition 0 0 at x 0 yields

#12)
(0-(X- ) +-,0 . (21)

Alternatively, this equation is an inuediate consequence of the conservation

of energy if this conservation is expressed in integral form. Finally the

third integral is obtained by direct substitution of Bqs. (20) and (21) into

l 1,. (17) - (19). Thus, first eliminate F' and*' frm Nq. (17) using Eq,.

(18) and (19)h then T

xpressing t ad F in term of 0 and x gives for 0

, € 27(7-l(I27-) 3o = -=- . .... --,,(23)

7(7+1) 2(7+1) + 2

This Is a standard homoneous equation and readily Integrated giving

x:)b ((24)
/5 (137,2-77 *)/ 5 (7+1) (37-1)

Eql. (0),(21) and (24) constitute a conplete analytic solution of the

differential equations, E45. (17) - (19). Siwe F and * are intrinsically

positive, the constant a of Sq. (20) is positive.



The behavior of the flow-field In the present region is def i.e4 by

.... I fixing the tvo arbitrary integration constants a and b. These are in turn

Sspeeif1.d by requiring definite values for and F at a prescribed position

x. It Is clear therefore that the lqs. (17) - (19) deeeribt a two parazter

i, farily of flov-fields. No further restrictim of these parameters Is poWi-

ble before discussing the region containing viscosity.

Only the properties of the present solution relevant to the viscosity

fornalism will be considered. FTirst, sie -0 at x = 0, 74. (24) requires

that at x 0. 8olvin . (21) for - gives

x 1

moand, reover, frorL the positivity of F and*, this equation show that

< <
Cozibinig 1(25)

Combining Eqs. (24) and (25) leads to the restriction

-u-s l (26)= 7 x

.4.SUsing this equation with Aq. (23) It Is show ixnndiately that

> 0 , (27)

U for all x > 0 provided that the physleal retuim ent 7 >.1 is not. This

tl result is established by observing first that at x - 0, W and > 0.=x
If e is to violate 2. (27) there must exist a point at vhleh - 0.

t But this is possible only If9 27(7-1) - 3(27-) + 3 -0

Arl



Solving this eqstion for - ylalds

It may be 4emnstrated analytically from this expfresion or siply by plot-

t In the two roots as a function of 7 that for7 > 0

ht thi result Implies that for no value of in the allowd range ex-

pressed by At. (26) does - 0.

Uote the viseoty term of S. (11') rsins zero so long as 0 > 0,

there is no way for the viscosity to enter enept by the introdution of

disooatImAties in the slopes of the physical quantities. This indicates a

deftelnsey of the viscosity formalis wbich in raesrical aplications assume

contimlty not only of the physical quantities themselves but also of their

slopes.

IV. IMZ FW-IM. ITU X20 '"

From the above arumnta It ha been established that Ers. (13') - (15')

are solved by a Taylor-type solution in the region x .0 vherein 0 - 0. But

In order to introduce the viscosity it has been proved ncessary to admit dis-

contin ous slopes. The position at which the discontinuities are located my

be presribed arbitrarily &a x a 1 sine, this affeets only the mmgtudo of R

which is at present arbitrary and fixed only after specifying the constant A.

The p"oben remaining is then the solution for the region x >, 1 in whieh the

viscosity is effective. This region comprises the transition from the contin-

uous flow-field to the undisturbed medium in front of the flow. For this

region 0 nd therefore Eq. (11') my be written
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At the coneetion point, x - 1, G - 0,as required by continuity of the

physical quantities and therefore 0 at this point. This in turn deter-

mines the wmnituda of the Juxp in the slope , vhich combined with the

differential equations prescribes the hs of the slopes of 1, * and G.

The solution of N.. (Ii") and (13") - (15' for the transition region

=wt meet the boundary conditions that for sufficiently large x, the medium

Sis unetured so that -0, F 0, G -@ 0 and is a constant, and for

x - i the solution aees with the solution for the region x - 0 to x - 1,

wherein O0 = . It my be show quite generslly by a eriesexpnsion for

large x that all solutions of 24. (11") awd (13') - (15') vhbc extend to

infinity behave asMtotically as

f
-. , -- , G goa ()

0x

where f ;o it o , and 1 are constant@. This result may be verfied

by direct substitution into the basic equations. This, of course, establishe

that the medium in front of the shock-tranaitioc region Is undisturbed and,

moreoer, is at sero pressure, vhich i lies zero temperature. However, not

every solution extends to infinity wr is physically admissible since 0 , F, G

eaad* m.st be everywhere positive In order to correspond to a diverging flow-

field with posltive pressu re and densities. It may be shown that the physicaily

admsiible soautions would extend to Infinite x. For admIssible solutions,

the values of the quantities 0 ,, Osnd* at x - I st be restricted. To

examine this restriction, It is obeerved first that certain restrictions on

thoese quantities already exist. Newly, 0 - 0 at x 1 1. Also

7"
(F*w +2 0) 0 (29)

01
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oratx -

r (io) ( 7 + 1 02 )O (30)

Eq. (29) follow$ frog Eq!. (13') - (15') and 3. (28) by a derivation com-

pletely Xa100118 to that leading to Sq. (21)) and Eq. (30) is a consequence

of 0 - 0 at x - 1. TFIaly, it is observed fro= Tqs. (11") and (13') - (15')

that al solutions Vith the Seim values of Ft, O*/# and 0 at x - 1 lead to

the &aze AmtIons Y{3 , nd Q(x). Since G - 0 at x 1 ad

Eq. (30) rolates 7/* to 0 at X 1, the only independent degree of freelon

remainitn for the choice of the quantities at x - 1 with which to obtain en

admissible solutiwn is the specification of 0 at x 1. That, in fact, a

eholce of o can be Made which leadS to an admissible solution has rit been

established anslytiesaly. However, a Convincing demonstration of the eis-

tenoe of such a eholce Is provided by the explicit numerical solutions lis-

cussed in the next section. It may be considered proved, therefore, that

Eq@. (11") and (130) - (15') ad-it of solutions which consist of a contin-

uous bydrvdynanic flow from x -a 0 to x - 1, and which exhibit a continuous

transition region (*x.t fr slope discontinuities) from the flov conditions

at z - 1 to an %adisturbed medium at tero prosetre for large x.

T. gUIgA= AND DISCiMION

To ape"ify the diverging flow field the constants a and b of Eqs. (20)

a:d (24) (which are equivalent to o (1) and 7(1)/*(1)) and the constant A of

Aq. (12) mAt be fixed. The energy I of Eq. (16') fixes one relationship

uiwggpt these constants and the speification of the density of the undis-

turbed mdium ftim another relationship. Finally, the requirerent of a

physieally admissible solution lIn the transition region fixes the last constant.

In the lit of vanishing vicosity, K e 0, the solutions, of course, becone

Idantinal vith the familiar -trong-shock flow fields with a Junp discontinuity

-9 %- ..
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at th shoek front, x-.

To illustrate the behavior of the present similarity problem, the solu-

tics of Eqs. (11') and (13') - (15') vith 7 - 1.4 were obtained from Nqs. (20),

(21) and (24) in the reion without viscosity and by numerical integation

using the Run-Mitta method in ths viscosity region. For K 0 0, that is,

no vicooity, the boundary conditions (1) - 2 F(l) -2 and *1

define the solutin which is shown in Fi. 1. This is Just the solutio ob-

tained by Taylor. In addition three non-zero values of K vere ueed, namly, I

K 0.00349, 0.0349, and 0.349. 1rgures 2 - 4 show the solutions for the

< <diverging floy obtained from Eqs. (20), (21) and (24) in the region 0 - X - 1

and obtained by numerical intogration of Eqs. (11i") and (13') - (15') in the

regi x > 1. In tables I - IV, th solutio for the" four values of K are

tabulated. The values of the integral of Eq. (16') for these eases are

- 0.423 for K 0.00000

a o.6 for K 0.00349

- o.642 , for K - 0.0349

a 1.650 , for I-0.349

A o risc of these solutions with the Taylor oolution, provides an

indlcation of the influence of the viscosity on the flov-fielA. In partioular,

for the Tylor problem, o is the density of the udisturbed mediur and *(1)0

is the densit) of the shocked medium. These densities should be compared with

*(oo)0 ° and (1)o0 of the presnt proble, which am the densities of the un-

disturbed and shocked medla, respectively. The ratio of thee* densities is

6 for the Taylor problem, but for - 0.00349 it is >.693, for X 0.0349 It t
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4.05, and ftr K - 0.39 it is 1.137. fTe ue of the viwsosity formalism is

Aen from these ratio, a el1 as from the omplete solutions in Tables I

IV, to introduce ousMrablo modificaticm of the flo-field for larM K, but

negligible as s for e~ll K.

The iaWMrtant *ona*qtW* of the esent dis uslon is the quantitative

estimate of the influin e of the visaeity on the flov field. ?erhaps as

8sMI Ifcant is the proof that the viscosity technique may poseess the defi-

cleny in spberical flow fields that the physcal parametrs have discortin-

umm slopes at the shock-transition region, even though these parameters are

coatinuous. Thus the vausl numerice.1 integration of lqs. (1) - (3) and (6),

carried out by replacing thesoe equations with dife"nee equations, cannot

lead to a solution of the differentlal equatios if the slope discontinuities

are disegarded. It would appear therefore that them discontinuities should

lead to inescuraeies in numer1cl a plinations of the viscosity technique,

which ignore them. However, frcn H. Broe' ( 3 ) remults on the numerical

(3) H. Brod., to be published.

integration of the hydrodynamic Ns. (1) - (3) using the viscosity technique

for a spherical exploeion, Lt appears that any errors from this source are

probably uniqcortant. This conclusici should be qualified somewhat sinae in

Broda's integration, the radius to the transition region was large and the

nalotborhood of the shook-front was approximately planar so that any discon-

tinutles would be small. Moreover, the form of viscosity used by Brode

differed from the presant one, although the form which he used also suffered

from wt leading to a oonatant mss, within the transition region.
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Captions for F lao a

7 iur I - Solution for K- 0

Figure P2 - Solution for X - 0.0034~9

Figu~re 3 - Solution for K - 0.0349

F1iue 4 - Solution or K -0.3 4 9
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3 Toble ! I Solution for 1 - 0

A F
.LO. .00L .305

- .1", -3.01 -003 - 305

b o316 .Oh .JD5

.. 0 .030
• .00 .305
.5w ME .01h .305

-54 -387 .01d00
.560 .i01 .00L .)0

.60 .1j8 .05 .316

.00 .03 .132 .313

.7O .519 .165 .316

.7oo .53h .W6 .3

.678 .567 .316 .330

.609 .06 .37-

.6O .71M. 1.600 A0
*737 k.10 .10

•9 7 .3%.169 .536

95 T-7 5h t .5 .550t

,96 .760 1.706 ,5
.9/0 .76 .385) .51

.96L T73 -OW.59
.98 .77, 3.59£ .617

o976 7 - 3.79. 3..7 9
• .80 .799 r L.066 .65L

.91o .05 P1.377 .70

.968 .T1 L. 9 .735

.9' .819 5.103 .765

.99 .860 5..57 .79

._33 6.76 .333 O.UOO
As.
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Table It . sojution for 9 o 0.)0349
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,i L03. 3 .318

.LO .31.6 .X4 .318
.A3 .M36 .o .319

* A L 1I4I .s .319
.0.358 .010 .319

.5x .37f .01L .319

.". 540 .317 .019 .319

.560 .hc1 .oLS .319

.US .L3 .03)
',.60o .430 .042 OW

.64j0 .4.59 W 1 U1

.660 .171 .086 .30.

.6 Am .105 .34

4700 I .503 .136 3
7W .519 .1L69 .330

.* .53 . Lo .333
.76o0 . .21 .33

TF40 . 56 7 .3 1h . ,~
• 0 0o . 5 8h . ej -.1• 3 r]

• 8A.D .60 .199 .361

.860 .6w0 .778 .390

.8.) .661 .QI .h11

.900 .Sh 939

.709 1 .615 .06
19M 76 .. 148 .50.7

.AI .71 L.78 .5ho' " ob .?7 .. 5,O : .'553

F-0 .95L .753 i.570 1 .567
.956 .759 L.73 .58L

.960 .765 s-913 .5"9

.968 .778 3.61
35 .965 .; i.5 1,

M96 TOO 1-809 *6.

• " . .)t .17 5.u5 .1

1.000 .3E 6.000 .5k 0.000
' i0000h .,T5.6". .819 .o3at

' .Ooe .815 5.59 .7h, o097

1.00k .5. .61A .179

1.o0o1 .?72 L.503 .5, A0
// zooz .hI 3."8 .Au .3)1

,.Oo .706 3.51 •.35k •385

1.00 .366 3.165 .k6 .A,6

1.0032 .6.3 ,.531 U3 •039

1.0036 .575 ,.51 .013

1.0o6I-g Ui.ou6 .11,, 1.i99 .r,8 .179"- 1.0078 .W37 1.85 .00 .180
1.0076 .370 1.663 .016 .105
1.0056 .069 1.539 .001 .0
1.08.1 .0119 1.100 I .000 ..63
i .oo64 I "k I. 319 .013 .",0

• ,. 0c, m .1 77 1. 4 7 .O B •179
1- . 07 2 .137 1. as .OO .139

1.008h .o 1.16 .000 .045

1.009 .010 1.063 .000
1.oo96 .001 1.055 .000 .001
1.0100 .001 1.054

_* ...--
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FMMESJ Table INI s solution tor K - 0i039

.u.1,00 .117.0k.3
.301 .003 AV3

.h11O .31'; .OU5 •0
.1,60 .-DO .00 131
.,40 .3h1 .009 .131
.5uo .358 .011 .',61
.5w .37k .017 .L31
.560 .357 OU L31
.560 .11 .019 AAf5
.580 .1,15 .038 .h3k
.606 .,430 .0h9 .433

60L .lI .46"1 .433.640 L59 -4o .35

.660 .L3 .L .2 .L73

.700 .503 .160 .L. U

.71TO .513 .L7 .0111h

.760 .S19 .306 .,53

.780 .565 .379 .460

.800 .58. .68 .h69
* .8 .600 .57Q .1h80
M0 .611 .717 .195

. 60 .637 .893 .511
, .MO .657 1.118 *5Yi
gowc .679 1.1... .569
• .703 1.805 .610

.91.o .?a L.35 .665

.gh. -733 E.676 .679
• Lhf .739 E.61F .693
.95. .7b11 fL.770 .708
.956 .750 S-936 .7'b

.90:756 3,111 .7
.,. ... - 91 [ ,'/'3 ,.'.!..x - i*

3" .7W181..a. 9 7 6 ! 7 o3 . 9 7 8 I. .
.60 .786 1 . .3 .87
.98L1 .79L L.533 -973
.968 .799 1.650 .90
.996 .91E 5.590 ,965;

1000 .618 6.000 1.000 0.000
1.1 .81o 5.921 .90 .099
i.0c .790 5.;65 79L P-,
1.Olk .761, c.093 . 6 ":c 0361
1.016 .731 L.598 .51.7 .68
LOW .69. L.130 .1,16 .57
1.okh, .6hp 3.7v9 • ..3 .596
-.00. .001 3.31k . .5 .619
1.03k .';1 "O7 .187 06LO
1.u36 •503 L.758 .140 .6 0
1.05O .. 751 .. " 30 .571
1.07. .0 00 1.336 .073 .139
1.006 03h0 .173r .061 .o,7] ." 97 .o h .035 I LO

.0 09 1.17 .00-3 •361
.LO3 1.0 .310 .301.,6 !. . 16 1 1 7 17 . . 9 Lh 3

1.068 .143 1.l,8 .005 .139
1.07- .089 1.611 .0o .1391 07t .60 1 .567 .001 ,95,.W .037 1-53"2 .DO .659i.UAII .(,19 1 .507 .,00 .5 31
-.088 . X)7 1.h149 ,%OO Q¢I
1.09k .001 1. lit QW .001

1.100 1.80 .000 .0001.l 0,:w¢:I • . 0 0 , 0



Table VI~ Sol'U1 f,3 9 0.C3.49
-1").' . "+. I

.1 .AO7 .0O 1.165

.to .301 .005 1.165
LhO .315 .00 1.165
.L60 .3E9 .010 1.165
.a0 .3/, .o1L i.165
.500 .35a .LO 1.165

52 3k.026 1.166
.560 .386 035 1.166.560 .ohl .066 1.166

.580 .IJ.5 .060 1.167

.600 • 29 .077 1.168
6w .lAl .0 1.170 t

0660 ,}73 .156 1.17L
.680 .687 .199 1.177
.700 .5k .A8 1.181
.$o .517 .308 1.186

.70 .531 .381 ".19
o ' .760 .547 . 69 1. o

.780 .5/5 .576 1.111
.800 .578 .705 1..."
,SE0 ,59b .l 1. kw
.840 .610 1.O52 1.
.560 .627 1.255 l.1.87
,860 .645 1.57n 1.
.900 .66hk 1.90 1.36k
.92D .68h 1375 IOW
.91 .705 L,.96 6.),A,
•9s .709 3.078 1.
•9ho .713 3.213 1.57

0 1 .95f .718 3.366 M
.956 •7k. 3.521 1.r53
.960 .7E7? 3.&M 1.571

,*, ,,5- .6L 0732 3.860 1.593
.968 .736 b.o4 1.611

.?6.9 1.6)8

' ".9?6 .756 L,.IA 1.z662

-. .. . ., .., 1 6 7
I+

1.000 .777 6.000 1.8W00 o.,o0

1.040 .753 6.55h 1. 18 0.683

1.030 .73 7.301 1.064,
1.110 .667 7.369 MO7 1.679
1.160 .617 7. .9b .618 1.967
I. u0 .1,65 7.150 .J,75 ,IL
1 .. j .51k 6.973 .16r - C,
116, o h6i 6.786 ..79 L .,.
1.320 .U1o 6.601 .11 191
i. 6c .)61 6.1,.3 .. ? ,.o9o
1. ?,, .31h 6..$6 .115 1.95o
1.bl.O . 70 6.103 .093 1.78s

1. ~ ~ .aLke 5-96ka .058 1.503
IX 5-3 .. OZAI .11 1i ,S<).15:5 5.7.9 .Olt: 1.188

1.600 .1U3 5.631 .016 ,085

1.680 .070 5.75 .005
1.7k0 .059 5.515 .003 .;,,
1.760 .032 5.366 .001 .301
1.80 .019 5.31 .001 .1 ,1
1.8hO .009 5.301 .000 .091
1.880 .00& 5.,-75 .3o .03o

1.9k0 ODO0 5.1.75 .000 .0M0
k.g0o .000 5.75 .000 .0

I>oooo5,7 . .o


