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SUMMARY

'In a game of survival, two players with limited resources
play a-Zero—sumn game repedatedly untll one of them 18 ruined.
The solutiam o!f the survival game glves one a measure of the
value of resources in terms of survival probabilities. In this
paper the zero—sum game 18 expressed as a finite matrix, but
with (possibly) incommensurable entries; hence the number of
different distributions of resources that can occur during a
single play may be infinite. The existence of a value and
optimal strategles 18 proved, usi~g the theory of semi-martin-—
gales. A simple approximation to the solution 1s described, and

several examples are discussed. [
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ON GAMES OF SURVIVAL

Two gamblers, with limited resources of money, agree to
play and replay the same zero—sum game until one of them is
ruined. The ''game of survival" that results is similar in many
respects to the classic "gambler's ruin" problem, but there 1is
one important aifference: since the transition probabilities
are controlled by the participants, and not by chance, there
may be a positive probabllity of infinite repetition, with
neither gambler being ruined. Thus, to save oneself and to
destroy one's opponent are somewhat different objectives; in
fact, the optimal strategies and the corresponding ppobabilltiea
of ruin or survival will sometimes be found to depend on the
value assigned to the case of double survival.

In this paper we propose to 1nvestiga£e thoroughly those
ganes of survival where the underlying "money" game is given by
an arbitrary, finite matrix of real numbers. The existence of
solutions, and the extent to which they depend on the double-
survival paycff, are the central topics. OQur appro.ch combines
an analysis of certaln game—theoretic functional equations with
the theory of semimartingales. A number of examples, and methods

of constructing and approximating the solutinns, are also dis-

cussed.

Previous writings on tne subject include those of Be2llman

and LaSalle (3], Hausner [10], Peisakcff [11], and Bellman (1,2];

Portions of this paper were presented by the authors at a
conference on "Recent Developments i1 the Theory of Qames" in
Princeton, January )1 — Pebruary 1, 1955, and at a mecting of the
Mathematical Assocliation of America in Seattle, August 20-21, 19 .
The work was supported by the RAND Corporation and by the Office
of Naval Research ocontract Nonv—220(163 with the California Institute

of Technology.
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however, only certain special cases have 80 far been examined
rigorously. Usually, it has been assumed that the number of
accessible "states" (possible distributions of money during the
play) i1s finite. It should be remarked that under such restric-—
tions survival games become '"recursive games" in the sense of
Everett and the existence of a solution (assuming a constant
double—survival payoff) becomes a simple corollary of his result
[0]. Mentlon should also be made of the multi-dimensional

survival games treated by Scarf [12], =nd the somewhat similar

multi—component attrition games of Blackwell [4].

1. QENERAL INTRODUCTION AND EXAMPLES

Let ||a1Jl| denote the matrix of the "money" game, let R
be the sum of the resources of the two players, and let ro be

the first player's initial fortune. Then, 1 player 1 chooses

1k on the kth round and player I1 chooses Jk’ the new level of

player 1's fortune is gZiven by:

(1) r,=r +a, , K =1, 2, ...;

k-1 kYK

a formula valid 8o long as O ¢ Tr_1 < R. For C outside this

interval we define r = Ty_1? serving the formal purpose of

K
assoclating an infinite sequence {rk} with every play of the
game, whether it terminates or not.
If one of the players 18 eventually ruinea, the "utility"
payoff to player 1 can be defined:
0 ifr 0O

1 if r > R,
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where r = 1lim Ty . If both players survive indefinitely, the
payoff will be a number Q, which may be a function of the course
of play. Wwhen we are not considering special cases we shall
let Q be entirely arbitrary, assuming only O < Q < 1. The pay~
off to player 1l is taken to be 1 minus the payoff to player 1.

3hus, the survival game 18 completely speciflied by the five
elements: llaijll, P, Q R, and r,.

Assume for the moment that Q 1s a constant, and that the
value of the game exists for every initial state ry- Tken it
is easlly proved that the value 18 a monotonic increasing function

of ros and that it satisfies the functional equation:

(3) $(r) = val ||é(r+ay )], 0 <r<R,

with boundary conditions:

(4) $(r) = P(r) r <o, r»R.

Here "val" denotes the ordinary minimax value of a matrix game.
Even if Q 18 not constant, equations (3) and (4) play a

very fundamental role in the analysis. As we shall see in section

2 of this paper, there always exists at least one monotonic 80lu-—

tion to (3), (4). If this solution is unique, then the value of

the survival games exists and 1e¢ independent of Q. If the solu—

tion 18 not unique, then the value may not exist, and it is not

independent of Q if it does exlist.

[To illustrate: 4in the first example below, all
monotonic functions, and some others, are solutions of

(3). In the second example, any linear or near-linear
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function 18 a solution. In both cases the dependence
of the game on Q 18 intultively obvious, since both
players have powerful “decfensive" strategles that
prevent any action from taking place except on favor-—

able gro.nd. In the third

Example 1 Example 2 Example 3

example eauation (3) becomes trivial and irrelevant. ‘The
game turns entirely on the propertles of Q. An example

of QGale and Stewart [8] shows that the value does not

exist for certaln payoffs of the form Q = Q(il, Jo» 1), cos )
Whether such indeterminacy can ever occur when Q has the

form Q(ry, ry, ... ) 18 an open question.]

A mixed strategy in the survival game can be represented
as a probability distribution on 1 (cr J) for each round, as a
function of the past; this is the so-called '"behavior strategy"

form. We snall call a mixed strategy iocally optimal 1f for

every k the probabllities 1t prescribes for 1, (or Jk) tre
optimal in the matrix game Ilv(x‘k_l + aij)ll' v being the value
function of the survival gawe. Locally optimal strategies exist
whenevcr the value functlion axists, but they need not be optimal,

nor are optlmul stratesgies necessarily locally optlaual.
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[Thus, in example 4, consider the strategy that picks
i, =21f and only if r , > 1. It 18 clearly locally
optimal, since the value function is identically 1, but
it is not optimal Af R > 2 and Q < 1. Again, in example
5, the strategy that always chooses ik = 3 13 locally
optimal but not optimal if Q ¢ 1 and ro > 1. (In this

example the value depends on Q.) In example o, the mixed

1 1 -1\ 1 -1 1
—1J -1 1 - 1 1

0 0 / 1-*1 -1 v
Example Example 5 Example ©

strategy that prescribes the probabilities (1/3, 1/3, 1/3)
for 1 ir Jk—l = 3 and the probabilities (1/2, 1/2, 0) 1if
Jk—l = 1lor2, or if k = 1, 18 optimal for player I, but
it 48 not locally optimal, since it falls to take full

advantage of the occasions when player I1I makes the "mistake"

of playing | = }.]

A sexnlmartingale may be defined as a sequence of random

variables {xk} such that the conditional expectation of each

term is greater than or equal to the preceding term, thus:

o 5y o o) 2 5

A fundamental theorem ([5], page 324) implies that a bounded

semi-martingale converges with protability 1, and that 1its
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Iimit Xoo satisfies

E{xool xo} 2 x5 -
For our purposes, "bounded" can be taken to mean that the X,
themselves are bounded, uniformly in k, although the re;ults
stated are valid under much weaker conditims.

Let ¢ be any bounded solution of (3). We define a local
izgtrategz to be a mixed strategy that always prescribes optimal
probabilities for the games ||¢(x-k__l + a“)ll. Thus, in this
terminology, a locally optimal strategy is a local v—-strategy.

I1f player 1 uses a local ¢-strategy against an arbitrary strategy

of player 1I, then the 3equence {é(rk)} that 1s generated 1is a

bounded semimartingale. (Note that E{&(rk) | Ty _ys *oo0 ro} > é(rk_l)
implies E{é(rk) l ¢(rk_1), S ¢(ro)} > é(rkul), even though

¢ may not be one—one.) Hence we have convergence with probability

1, and

B {1tn #(r) | 7o} 2 d(xp).-

Now if ¢ satisfiles (4) as well, the left side of this inequality

can be expressed as

O.probd {I is ruined} + le.prob {II is ruined} + ©-prob {both aurvivn},

where © i8 some number between O and 1. Hencet

(5) prob {II is ru:lned} > ‘(ro) — ©°probd {both lurvive};

(o) prob {I aurvives} > é(ro) 4+ (1-@) prob {both aurvive}.

Thus, such a strategy for player 1 guarantees that he will survive

with probability > é(ro). If we could show that double survival

has probability zero, at least for some particular local ¢—strategy
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of player I, then it would follow that he can guarantee himself

an expected payoff of é(ro), or more, regardless ¢of the other's
strategy, and regardless of Q. A simllar argument for player I1I
would then establish the existence of a value and optimal strategles
for the survival game, independent of Q.

In attempting to carry out a proof om the above lines, one
might hope to start with an arbitrary local ¢—etrategy and (1)
use the known convergence of {é(rk)} to establish convergence
of {rk}; then (11) use the convergence of {rk} to srhow that the
game must end; all with probability 1. Unfortunately, neither
(1) nor (411) is unconditionally valid. 1In section 3 we proceed
by way of strictly monotonic approximants, for which (1) 1s
valid, and obtain thereby the existence of the value. In section
4 we obtain the existence of optimal strateglies by working with
a special class or "interior ¢-strategies,”" which make {rk} con~—
verge even when ¢ is not strictly monotonic. However, in both
proofs it is necessary to assume that none of the a1J is zero,
in order to make convergence of {rk} aquivalent to termination
of play (step (11)).

In section 5 we drop the zero—free condition on liaiji|,
and find that a value still exists 1f Q is sufficlently regular.
However, the value may depend or Q (see _.xamples i, 2, 5 above),
and the players may not have optimal strategles (example 7 below).
Our proof parallels the one in section 3 (strictly mono%tonic
approximants), but is based on a more complicated functional

equation, to be disoussed there.
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Pinally, in section 6 we will derive somc estimates for the
value function that hsve much in common with the well-known ap-
proximate solutions of the classic "gambler's ruin” problem.
They have simple analytic forms, in contrast to the sharpily
discontinuous nature of the exact value functions (see examples
8 and 9 below). The estimates become more precise if R 1s made
large compared to the aiJ’ and they give exact information if

the a are all 2 1, or £ 1 and 0. They also provide strategles

1)
that are approximately optimal.

It should be noted that seotions 3, ¥, 5, and 6 are essen—

tially independent of one another.

[In example 7, player 1 can win with probability
approachirg 1 1f he always chooses 1k according to the
distribution (1-¢§, 6-52, 52), #ith € small but positive.
However, 1f Q < 1 he has no strictly optimal strategy.
Example 8 i1llustrates in a simple way some of the pos—
sibilities for the value function v(r). Under optimal

play the first player's fortune describes a random walk

:i e 1 - 1 —2-Egy 2+t
Example / Example 8 Example 9

on (0, R) with +1 and —s having equal probability. The
value 13 Juat the jprotability of absorption at R. If

a 18 rational then the value 1is a finite step—function,
which can be determined exactly by solving a certain
system oI linear equations. But if a 1is irrational

(with R > 14a > 1), then the value function is
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discontinuous on a set of points everywhere dense in (0O, R);
it 1is strictly monotonic; and its derivative 18 almost every-
where 0. In example 9 the é.‘iJ are meant to be small pos—
itive incomensurables. We no longer have a simple random
walk as above, but 1t can be shown that for R = 3 the value
is constant in an interval slightly larger than (1, 2) and
has discontinuities everywhere dense in the rest of (0, R).
Whether the derivative vanishes almost everywhere in this

case is an open question.]

2. SOLUTIONS OF THE FUNCTIONAL EQUATIONS ,

A monotonic solution to (3), (4) can be constructed by an

iterative procedure. Define 60 by
o if r <R

bolr) =1, if r >R

and let ‘n - Tnéo, where the transformation T 18 gliven by:

val ||¢(r+aij)|| O0<r <R

(7) ™(r) =
¢(r) r <0, r >R.

It 18 clear that én can be interpreted as the value function of
the finite, truncated game in which player I loses unless he

succeeds in ruining his opponent in n moves or less.

LEMMA 1. The sequence {‘n} Just defined converges

pointwise to a monotonic solution of (3), (4).
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Proof. By construction, the fixed points of (7) are sol-
utions of (3), and conversely. Since T 18 continucus, 1t suffices
to show that 1lim ¢n exists and 18 monotonic. This is accomplished
by showing inductively that én(r) is monctonic increasing in
both n and r. The detalls present no difficulty whatever,
(Compare the much harder proof of lemmas % below.)

Let v, denote the limit of the ¢n, and let v, denote the

1
limit of the similar (descending) sequence Tn¢' , beginning
0

with the function

0 1f r <0

¢ \(r) =
C 1 if r>0.

THEOREM 1. If Q w O then the value of the survival
game exists and 1s equal to vo(ro). If Q=1 then the

value exists and 1s equal to vl(ro).
Proof. Player 1 can guarantee that

proc {II is ruined} D én(ro)

by following an optimal strategy for the nth truncated game (and

th

playing arbitrarily after the n move). On the other hand,

player Il can guarantee that
vred {'I aurvlves} > 1 - vo(ro)

by adopting a local vo-Strategy (see (6) above). But the payoff
of the Q = O game depends solely on whether player 1II survives

or not. Therefore vo(ro) 18 its value. The otner case 1is similar.
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Note that the proof provides &an optimal strategy for player
I1, but not player I, if Q = 0. The e. istence of this optimal
strategy, and of the value, could have been deduced from the
lower semi—continuity of the payoff, as a function of the pure
strategies (see [9)). A similar remark applies to the Q = 1

game .

THEOREM 2. If (3), (4) have a unique solution ¢,
then the value of the survival games exists and 1s equal

to ¢(r0), independently of Q.

Proof. As before, player I can ensure that

prob {II is ruined} > ¢n(r0) .
Similarly player Il can ensure that
probd {I 1s rulned} 21 - ¢;(ro) ;
But 1lim ‘n - vy = ¢ = vy = lim ¢r'1; hence ¢(r0) is the value of
the game,.
Note that this time we do rot obtain an optimal strategy
for either player.
The next lemma 1ldentifies v, and v, as the "extreme" sol-
utions of (3), (4); and incidentally establishes a converse to
theorem 2.

LEMMA 2. If ¢ is any solution of (3), (4) that is

bounded between O and 1, then v, < $ < vy

Proof. We observe that ¢0 < ¢, and that ¢n < ¢ implies

T&n < ¢. Hence Vo £ ¢. Symmetrically, vi2 $.

o
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COROLLARY. 1If the value function of the survival
game exists and is independent of ¢, then it is the only

sclution of (3), (4) bounded between O and 1.

The last provision is necessary, since "spuricus" unbounded
solutions do sometimes occur.
The next lemma shows that Vo and Vi usually have Jjumps at

0 and'R, and cnaracterizes the exceptions in terms of the matrix
oy, 11

LEMMA 3. (A) The following are equivalent:
(1) vl(r) is continuous at r = R;
(11) vl(r) = 1 for O <r <R;
(111) ||31J|| has a nonnegative row.
(B) T™he following are equivalent:
(1) vo(r) is continuous at r = R;
(11) vo(r) =1 for O <r < R;

(111) every set of columns of ||a1J||, considered
as a submatrix of IIaijll, has a nonnegative row, not
all zero.

Corresponding statements hola concerning continuity of

vo and vl at r = Q.

Proof. (A) Obviously (111) => (11) => (1). If (111) 1s

false there is a negative entry in each row. A strategy of

playing all columns with equﬁé/probabllity, on every move, gives
a

player 11 a probability > n of winning, if n is the number

of columns and a 18 the swallest ronzero laijl' This zives a
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positive lower bound for 1 - vl(ro), independent of Y and
makes v, discontinuous at R. Hence (1) => (111).

(B) Obviously (1i) => (1). If (411) is false there it a
set of 8 columns on which player II can distribute his choices
with cqual probabilities 1/s, giving him a probability > s Ve
of surviving. Hence vo(ro) 1s bounded away from 1 and v, is
discontinuous at R. Hence (1) => (1i1). Tc complete the proof,
suppose that (111) holds but not (11). Choose r® > 0 so that
vo(r') < vo(r'+a). Then vo(r') is strictly less than vo(r'+a1J)
whenever aiJ 18 positive. Let M be an optimal mixed strategy
for II ir the matrix game ||vo(r’+a1J)||; let S be the set of
columns J with hJ > 0; and let 13 be the nonnegative subrow,
not all zero, whose e¢xistence 1s asserted by (i111). Then

vo(r') < vo(r0+a18J) holds for J in S, with strict inequality

at least once, and
nJ vo(rO) < nJ vo(r'+alsj)

holds for all J, with strict inegquality at least once. Summing

over J, and recalling the optimality of 1, we obtain:

volre) < %:nJvo(rOwiSJ) < val ||v0(r0+a“)||.

But Vo 18 a solutlon of (3), making the first and last terms

equal. This contradiction establishes (iii) > (11).

CORROLARY. 1If

max min a < 0 < min max a
1 5 1] 3
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then cvery bounded solution of (3), (4) has jumps at

0 and R.

It may be of interest to describe some neur—cptimal strategles
for player I in the event that (1), (1i), (111) of (B) hold.
(Compare example 7 above.) Let S0 be the set of all columns;
let 10 be a ros nonnegative and not identically zero on So;
let S1 be the subset of SO on which aioJ = 0; and 8o on. Then

We have S ..)...‘DSp :)Sp = ¢, for some p (proper inclusion

0 +1
all the way), and morsover the 1gs =oes ip are all distinct.
Then 1t i1s easy tc show that the probabilities:

gi =1-—5,§11' E"E—z: s ey gi

- PV LP, }1 - CP’
0 P

p—1
all other 51 = O, 1f used repeatedly by ,layer I, guarantee with
probability > 1 -t that the first nonzero a,, to occur will be

v
positive. Hence player I wins with probablility > (l—E)—[-(R_PO)/a],

no matter what player II1 does. Tiuis bound goes tc 1 as € > 0.

3, EXISTENCE OF A VALUE WHEN ||ai || 1S ZERO—FRRE

This section will be devoted to the proof of the following

theoren:

THEOREM 3. If ll“1=|| i8 zero—tree, then the
o
value of the survival game exists and 18 independent

of the payoff Q assigned to nonterminating play.

During the proof w~e¢ snall W~or« w~ith certaln zeneralized

gurvival gam23, n:ving more gens:ral, bounded payo(f functions




P*(r). in place of the P(r) of (2). The other elements of the

game, namely ||a1J||, Q, R and ry, remain as before. The functional

equation (3) is still applicable, but with new bcundary conditions:
(Be) ¢(r) = P*(r) r <0, r >R,

LEMMA 4. Suppose that (3), (4*) have a strictly
monotonic solution ¢®. Then, 1if ||a1J|| is zero-free,
the value of the generalized survival game exists and 1is

equal to 6'(ro).

Proof. Let player I use a local ¢®-strategy and player II
an arbitrary strategy. Then {6'(rk)} is a bounded semimartingale,
and converges with probability 1. Because ¢* is strictly monotonic,
{rk} also converges. This means that play terminates, since, with

none of the 31J = 0, the 1limit of {rk} must be outside (0, R). Hence
K{P'(lim rk)} = x{¢:(nm rk)} 2 42(rg) .
A similar argument for player 11 completes the proof.
We shall consider functions P® of the following form only

(until section ©):

£ (r—R—A) if r o0
P*(r) = 1 + E(r~—R-A) if r > R,

where A = maxlaijl, and ¢ 18 a positive constunt. As e—> O these
functions approach P(r) from below. Imitating the conatruction of
section 2, we define ‘; = Tn¢6 shere T is the same transformation
(7), and 48 1s given by:

¢(r—R—-A) if r <R
{1+£(x\-&-A) if r >R,

If 1t exists, lim ¢2 18 obviously a solution of (3), (4*).
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LEMMA 5. If vallla“ll 2 0, and 1if v, 18 not con-—
tinuous at R, then for sufficlently small ¢ the sequence

{6;} Just defined converges pointwise to a strictly mono—

tonic solution of (3), (u4*).

Proof. To show that the limit exists we observe first

tnat

¢1(r) = vall|¢g(r+ay )| 2 vallle(rR-h+a, )|

e £(r—R-A) + E-val||31J|| > &(r—R—A)
= $olr)

1f 0 < r <R, and ¢I(r) - ‘dr) otherwise. Moreover, 63 2 ‘.n—l
implies §;+1 - TQ; > T‘;—l -‘6;. 8ince the sequence is obviously
bounded, 1t therefore converges. To show that the limit is
strictly monotonic we shall prove inductively that for £ suf-—
ficiently small the function ¢;(r) — £r is monotonic in r for

each n. This is trivial for &8; assume 1t for ¢% .. Case 1:

Take O < r ¢ 8 < R, Then we have:

be(r) — €ér = vel |[é2 ,(r+a, )—erf|

1)
< val ||¢5_1(s+alj)—cs||

- ¢2(8) — £s.
Case 2: Take r ¢ 0 <3 < R. Then we have:
$2(r) —ér = 2 (r) - ¢r
< ¢5_1(s) —~ €8

S d3(s) — &8

(using the tirst part of this pruof in the last step).
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Case 3: Take O < r <R (8. Note that ¢g < v, over the entire

range of interest (—A, R+A), and hence, by induction, that
¢a S Vo Since the latter 1s assumed discontinuous at R, we

can select & so that €A {1 - v4(R-). Then we have:

¢5(r) - €r < ¢5(R—) - éR
< VO(R-) - ER
<1 - €A~ ¢ER
- éa(a) — €8
(using case 1 in the first step). Tne other cases, namely
r<s<0, r{OCR¢s, and R r < s, are trivial. This
completes the proof of lemma 5.

Proof of theorem 3. There is no loss of generality in

assuming that valllaijll 2 0. The theorem is trivial if v, = 1
in (O, R); we may therefore assume (lemma 3) that Vo 18 dis—
continuous at R. Lemmas 4% and 5 now give us well—defined value
functions ¢* for our class of Leneralized games, for ¢ suf-—
ficiently small. As £-50 their payoffs P® converge uniformiy
to P, our original payoff function. It follows that lim ¢'(ro)
exists and is the value of the original game. This nigﬁlr is
obviously independent of Q. This completes the proof.

As yet we know nothing ahout the existence of optimal
strategles, unless Q w O or Qe 1. As example 4 showed, local
v—strategies need not be optimal. However, the local ¢$s—strategies,

for given §, are nearly optimal: 1t can be shown that they

guarantee an expected payoff within €(R+2A) of the true value.
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COROLLARY. If ||a1J|| is zero—free then (3),

(4) have a unique solution bounded between O and 1.

Proof. Theorem ) and the corollary to lemma 2.

4. EXISTENCE OF OPTIMAL STRATEGIES

In this section we shall find optimal strategles for both
players, under the assumption that llaijll 18 zero—free. The
strategies are locally optimal, with the added property that
they force play to terminate with probability one. Their
optimality 18 therefore independent of Q.

Let us first review some properties of matrix games. A

pure strategy 1s sald to be admissible if 1t appears with pos—

itive probability in at least one optimal strategy. We call

an optimal strategy interior if it lies in the relative interior
of the convex set of all optimal mixed ntratégies. Every matrix
game has at least one interior optimal strategy for each player.

For later reference we state two elcmentary facts:

(A) 1f valllbijll - V&1||01J||: with bij < Cy s
all 1, J, and if 1* and * sre admissible in ||b1J||

and ||01J|| respectively, then bi'J' = Ciege

(B) An interior optimal strategy "punishes'
every inadmissible strategy of the other player;
that is, if ¢ 18 interlor optimal and [* 18 1in—

admissible in ilbijll' then

’\{. ;1b1‘)0 > Val||b1J||°
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Returning to the survival game, we define a special class
of strategles for player 1. Let ¢é be a monotonic solution of
(3), (¥). Por each number c¢ for which the set C = ¢_1(c) is
not empty, let 3(c) be an interior optimal strategy for player

I in the matrix game

8 inf
(8) llur;c $(m+a,,)|

Define a mixed strategy for the survival game by the rule:
choose 1, according to the probability distribution §(¢(rk_1)).
Such a strategy will be called an interior ¢—strategy of player

I. Note that the same probabilities must be used each time the
same value of ¢(r) comes up. Interior $—strategies of player Il
are defined similarly, with "sup" instead of "inf." We shall
see presently that an interior ¢—strategy 1is also a local

¢—-strategy. Pirst we state our main result,

THEOREM 4. If ¢ 1s any monotonic solution of
(3), (4), and if ||31J|| is zero—free, then the in-
terior ¢—strategies are optimal, independently of Q,

and the value of the game 1is ¢(ro).

As stated, theorem 4 is independent of and includes theorem
3, and this independence will be maintained throughout the proof;
which takes up the rest of this section. Consequently we have
a separate proof of the existence of a value in the zero—free
case. Of courss, ¢ 1s actually unique and equal to v, and our

real object is only to show that the interior v-8strategles are

optimal.
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LEMMA 6. An interior ¢-etrategy 1s also a

local ¢—strategy.

Proof. We must show that Z(é(r)) is optimal in ||¢(r+a1J)||,
for all r in (0, R). But ||¢(r+a1J)|| majorizes (8), and both
matrices have the same value ¢(r), by (3) and the fact that ¢
was assumed monotonic. Since ¥(¢(r)) 18 optimal for (8) by

definition, it 1s also optimal for ll¢(r+a1J)||.

LEMMA 7. Let ¢(r) > O and let r%, 1#*, J* be such
that
(1) r*=r + 8iaye < T
(11) J* 18 admissible in |]¢(P+81J)|I'

(111) 5,,(4(r)) > 0.

Then ¢(re*) ¢ ¢(r).

Proof. Suppose to the contrary that ¢(r*) = ¢(r). Then
i* 1s admissible in ||¢(r'+aij)|| and the conditions of propos—
ftion (A) above are met, with regard to that matrix and
||¢(r+a1J)||. Hence ¢(r'+al.J,) - ¢(r+a1.J.), or é(r+2ai.J,) = ¢$(r).
Repeating this argument gives us ¢(r') = ¢(r) for a sequence of
r' that eventually becomes negative (since ai'J' is negative),

contradicting the hypothesis that ¢(r) > O.
LEMMA 8. 1If player I uses an interior ¢—strategy

against any strategy of player Il1, then every possible
play of the survival game has the property that, for

each k > 0, one of the following is true:




(a) r,_y, <Oorr,_, 2R;

(o) M"x-l) - 0;

(¢) J 13 inadmissible in 'I&(rk_1+aij)l|;
(d) r 2> Tyt @, where a = min laij"

i,
(€) 4(r,) ¢ élr_,)-

Prvof. By lemma 7, since if (a), (b), (c¢), and (d) are
false the hypotheses of that lemma are met, and (e) folluwsa.

The importance of this lemma lles in the fact that it
sharply restricts the possibility of a nonterminating play 1in
which {é(qk)} converges .

We need two more preparatory resultg before proceeding
to the proof of the mair theorem. (@(iven an intericr $—strategy

of player 1, define the "punishment" function.

v(r, J) =L Y(c)d(rva ) —c,
1

where ¢ = ¢(r). (Compare proposition (B) above.) By lemma

6, v 18 always nonnegative.

LEMMA y. If § 18 inczdmissible in |:¢(r+a1J)|l

then ¥(r, J) > 0.

Proof. By proposition B and the detfinition of interior

¢—strategy we have
L §(c) Inf b(s+a, ) > c,
\ 8tC ¢

where C = ﬁ-l(o), ¢ = ¢(r). The required inequality 1s now

obtained by removing the "int" and substituting r for s.
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LEMMA 10. 1If player I uses an interior é—strategy
against any strategy ol playver 11, then with probabllity

one tne seguence {“k} = {u(rK_l, “x)} converses to O.

Proof. (Compare [5], page 297, theorem 1.2 (1).y Consider

the saum of the vK. For 2ach n > 1 we hava:

h{i nk} - E{% [E{er) | r-k_l} - ¢(pK_1)]}

= % [E{é(rk)} - E{NPK_J)}]

- £{o(r,)} - E{e(ry)]

Qs
It follows that the probabllity of the infinite sum oxceeding
any given bound M is < 1/M. Hence, with probability ore the

se.les has a finite sum and {jk} converges to 0.

Proof of theorem 4. The theorem is easy if there 18 a os-

itive row or negative column in llaijll' We therefore assume

mix m%n élj < 0« m%n max aiJ'

g J i

Let play2r I adopt an interior ¢-strategy, and player II an
arbitrary atratezy. The play of the game that the occurs can
be described by the palr of sequences {ik}' {JK}, which we shall
regard as the underlying random variable. Tnhey are sufficient
to determine three other important seguences {rk}, {wk}, and
{¢(rk)}. The last-named is a bounded semimartingale, by lemma
0, and therafore the 8¢l oOf piays {1;}, {Jk} for which it fails

to converge has probubility zero. The set cof plays for which
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{fk} falls to converge to O ulso nas probabllity zero, by
lemma 10. We shall prove that every play outslde these two
sets terminates. By (5) this will imply that player I's in-
terior ¢—atrategy assures him an expected payoff > ¢(ro). The
corresponding argument for the other player will complete the
proof.

Consider therefcre a play {1k}’ {Jk} in which both

(9) {é(rk)} >cC
and
(10) {vk} > 0.

If ¢ = 0 and 1 then play must terminate, because of the fact
that ¢ is discontinuous at O and R (see the corollary of lemma
3, section 2). Thus our object will be to show that the hy-
pothesis O < ¢ < 1 leads to a contradiction. Let {kn} be the
sequence of indices k such that ¢(rk) ¢ c or T ¢ O, or both,

and let s = r . Lemma 8 shows that {kn} and {sn} have in-—

%n

finitely many terms, since alternatives "(a)" and "(b)" are
excluded by hypothesis, while any unduly long chain of "(d)"

will take r_ out of the interval C = ¢_1(c). Thus, instances

k

of "(¢)" or "(e)" must occur regularly, giving us L ¢ 0, by

lemma 9, or é(rk) + ¢(rk_1). In fact, consecutive terms of

{kn} cannot differ by more than [(¥/a) + 2], where ¥ 1is the

length of C, a = m;nlaljl, and [x] 1s the greatest integer ¢ x.
Let us now examine the possible 1limit points of the sequence

{ln}, bearing in mind properties (9) and (10). Pirst we have
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the upper and lower endpoints of C; call them u and £ respec—
tively. (If C 18 empty, a short argument shows that (y) is
contradicted.) Secondly, there are the points within C, in
the neighborhood of wnich T, can be arbitrarily small, but
positive. There are only a finite number of such points, since
for éacn J, v(r, J) 18 a monotonic increasing function of r in
C; denote these points by Yar Yyr ooer ¥ Let & be a small
positive constant (it has an exact value, which will be definsd

later), and let Y,, Y2, S e Yp be a collection of intervals,

variously open and closed, but all of length b, defineu as

follows:

([u, u+d) 1fuéC

Yl - 4
(u, u+d) 18w« €
((2-5, £] 1f £ 4 C

Y2 - W
-5, ¢) if £ € C

Y, = (¥, y4+5] 3<1 < p.

Let Y denote their set—theoretic union. By (9), (10) there 1s
an n, (dlepending on &) such that 8, € Y for all n > n,.

Now define § to be the smallest nonzero number of the form:

(11) ’ N < pl(a/a)+2].

a
Ivgi Sy

The effect of this definition 18 to ensur: that when [m—n| < p,

the difference Ism-e | 48 either O or > 6. 1t follows that,

n
for n > Ny 11 s lying in a ziven Y, are equal (proof below).

=% "n




P—022
10-10-506
—25—
Hence some s* appears infinitely often in the sequence {sn}.

If s* ¢ C then (9) 1is contradicted. If s* € C then (10) 18

contradicted, since LIV is infinitely often positive, and
n

bounded away from O by the smallest nonzero w(s*, J). This is
the desired contradiction.
Finally, we have to prove the stutement above 1in italics.

Call a pair (sm, sn) conflicting 1f they lie 1n the same Y1

but are unequal. Either the statement 1in Question 18 true or

there 18 a conflicting pair (sm, en), comirg after 3, » and
0
spanning no other conflicting palir (sm,, sn,), m <m' <n' <n.

Let m, = m and let m be the last integer < n such that s
0 J+1 = My

and 8, 41 lie in a common interval Yl' Then the ascendinyg
J

sejuence

mo. ml' m2, e 0o 0 ) mq_l' mq-n

has at most p+l1 terms, and has the prouperty that 8. - 8
J+1

J
for each J. We see that each 8 is the sum of B and at

J J—1

Hence Iam—enl 18 of the form

m,+1

most [(¥/a)+2] increments a ;
1,0y
(11), and 18 either 0 or > . This contradicts the assumption

that (am, an) was 8 conflicting pailr.

5. EXISTENCE OF A VALUE IN GENERAL

when there are zeros in the ||81J|| matrix a unijue solution
to the fundamental equations (3), (4) is no longer assured, and
the value of the survival game may depend on the double-survival
payoff Q. 1n this section we show that the value does exist

if Q 1s sufficiently regulur. Our proof makes use of 8 new
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palr of functlonal 2juations involving the notlion of recursive
vame (~juations (3), (¥ opelow), whicn reduce to (3), (4) if
Ilal(ll 13 zer—free, ana which always have a unigue soclution.
The restri:tion un Q consists in assuming tnat when2ever
{Pk} conver<es to a limit r w~ithin (O, R), the payoff{ depends
only on tnat limit: Q = P(r). we assume P tou bLe monotonlc
increasing anl!, ¢f course, bounied between O and 1. It is
convenilent to amnal:wnate it with the 0ld function P, which was
defined only outsite (0, R), and denote both by P, The still-—
arbitrary portion of Q will be Jdenoted by §. Thus, thz principal

1istinction in the ;resent set—up 1s between converxent pluy

(yayoff P) and nonconversent ;lay (payof: Q), replacing the for—

mer uistinction between terminating play (payoff P) ana non—
terminating play (Capel'd &)

Note thut tne present arrangement still includes the impor—
tant 3pecilal cases Q e constant. Jn the other hana, the mis-
chievous GQul=2=Stewart functions (example 3 in section 1) are

kept out.

THEOREM . If the convergent—play payoff 1s
a monotonic function P of the limit of the first player's
rortune, then the value of tne survival game exists and

1s independent of the payoff Q for nonconvergrnt play.

The proof follows the same general lines as tne prool of
theorem 3 in sactlion . Howev>er we nust begin with some new

definitions and notation.



By an elementary recursive gane [H, p] we s8hall mean the

following: A matrix ||m = M is given, each entry being

L
elther a number or the symbol CD . Players I and II choose

1
and I1 pays 1 the indicated amount. If my 18 R there
1Y1

i. and Jl respectively. 1If m11J1 is a number the game ends,
is no payment, and the players go back to the beginning and
make new choices 12 and J2, etc. In case of infinite repeti-
tion the payoff is the number p (a constant).

The above 13 a speclal case of the recursive games defined
ty Bverett [6], except for the "p" feature. (EBverett effectively
assumes that p = 0. However, [M, p] is8 obLviously equivalent
to [H', O], with M' obtained by subtracting p from cach numer—
ical entry of M.) Translating the results of [b] we find that
the elementary recursive game has a value, which we shull denote

by val [H, p], though perhaps not optimal strategies. The value

satisfies the relation
(12) x = val ||my,:x]],

where Ilmljlef is the matrix obtalned by inserting the numerical

variable x in place of R 1n IImIJII. The solutions of (12)

solution of (12) that 18 closest to p.
The new functional equations can now be formulated; they

are:

(3) $(r) = val (M(4, r), F(r)], O<r<R

and
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(4) b(r) = B(r), Fg0, PR,

where M(9, r) 18 the matrix with entries:
R R
J ® 1f a;, = 0
(F) and (4) are actually the same. If ||a1J|| is zero—free,

then (3) reduces to (3). 1In general, 1f ¢ 13 a solution of (3),

then (12) gives us:
‘(I‘) = Val'imlj(én P): 6(")” — Valllb(r""alj)”;

thet 18, ¢ 18 a solution of (3) as well. The converse is not
true, however, since in fact (3), (¥) alwaye huave a unique 8sol—
ution, while (3), (4) do not.

As in section 2 (lemma 1), we can construct a monotonic

solution Vb to (3), (§) by iterating the transformation T:

val y ), F
() (r) - { (M4, £, Fir) 0<r <R

¢(r) r<o, r >R,

applied to the same initial function éo(r) which 18 0 for r ¢ R
and 1 for r > R. It 1s easily shown that the functions Tnéo(r)
are monotonic in r and tform a boundea increasing sequence; the
limit i3 the desired function VO’ (It can be interpreted as
the value function of the Q ¢ O game (compare theorem 1), but
there 18 no point in establlshing tnhis fact now, in view of the
stronger result that will be proveu as theorem 7.)

As before, we introduce certaln generalized payoff functions
F'(r); they will be assumed monctonic increasing in (—A, R+A).
The symbols (3*), (T*), (7*) will refer to ejuations (3), (¥),

(7) with P replaced by P®*. The next lemma corresponds to lemma 4




pP-622
10—-10-56
—29—

in section 3.

LEMMA 11. Suppose that (3¢), (T#) have a strictly
monotonic solution 3'. Then the value of the uenerallzed

survival game exists and is equal to é'(ro).

Proof. Relative to a particular play of the generalized
survival game, define ko « O and let k., De the first k (if
any) such that r, ¢ rkn. The subsequence {Bn} - {rkn} 18 finite
in length if and only if {rk} converges. We now describe a
"local recursive €—optimal ;’—etrategf'for player 1I; it resenbles
our previous "local" strategies, but is based on elementary re—
cursive games instead of matrix games. Choose a seyuvence of
positive numbers &0, SETRRSTEREE with sum ¢. Let player I
begin by playing an eo—optlmal strategy of the elementary re—
cursive game [H(;', ro), F'(ro)]. If and when that strategy

runs out (after k, moves, in fact), let him continue with an

1
£,—optimal strategy of [H(z}, al), F'(sl)], and 8o on. In general,
on.his (kn+1)Bt move, he will be commencing an en—Optimal strategy
of [H(z', an), F'(nn)]. We wish to show that such a strategy,
played against an arbitrary strategy of player 1I, causes {rk}
to converge with probability one.

Define the infinite sequence {*n} as follows:

3'(an) if {oi} i8 defined through i = n,
X =
i Pe(s ) 1 {’1} stops at L = n_ < n.
o

Our construction ensures that, forn =1, 2, ...,

8.{xn I Xne1? **°9 xd} 2 xn—l s En—l

LllllIllllllllllllllllllllllll""""""'""""""""""""
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Therefore the: sequence XO' x1+60, x2+éo+t1, x)+to+ﬁ+ EE' etc.

is a bounded semimartingale. We conclude thut {xn} converges

with probabllity one, with

E{xool xo} 2 Xg = -

However, {xn} cannot converge if {81} does not stop at some s_ ,

n
since the 8, osclllate and ;' is strictly monotonlic. Hence °
Xy = F’(sno) « P#(14im rk), and we have:
E{F'(lim rk)} > ;'(ro) - E.
The rest of the proof is obvious.
We now particularized P#(r) to be P(r) + €¢(r—R-A), where
€ 18 a positive constant and A = maxlaljl. (Compare section 3.)

Using the same initial function as before:
e(r—R-A) if r <R
#3(r) = dg(r) =
1 + £(r—R—A) if r > R,
we gZenerate a seguence {3:} - {T’néa} by 1terating the new
transformation Te, given by (7*). The next lemma corresponds

to lemma 5.

LEMMA 12. 1If vall|aijll 2 0, and 1f vy 18 not
continuous at R, then for sufficlently small & the
sequence {3;} Just defined converges to a strictly mono-

tonic scluiion of (%+), (Te).

The proof 18 essentially the same as the proof of lemma 9.
The substitution of elementary recursive games for matrix ganmes

causes trouble only at one spot: the proof of ;i 2 $8. The
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difficulty 1s resolved by an appeal to the follewing fact: p 20
and val||m, :0| > O together imply that val(M, p) > O.

LEMMA 13. If both v, and P have jumps at R,

0

then so does Vb.

Proof. We use the fact that Vb is a solution of (3), (T).
As in the proof of lemma 11, we can find a "local recursive
é—optimal Vb—atrategy" for player I that ensures that the sequence
{xn} (a8 defined there, but witn P for P* and VO for §*) converges
with probability 1, and that

E{xwl xo} > Tio(ro) - £,
This holds for any strategy of player 1II; we shall consider a
particular one. By lemma 3 the Jump in v, means that ||81J||
has a set of columns that meets cach row in a subrow that contalns
a negative element, or is all zero. The same strategy for player
11 used in the proof lemma >, part B, guarantees a probability
> a[—ﬂ/a] =5 > 0 that {?k} will never increase. Thls means
that with probability > 6,{rk} will converge to a limit r ¢ ry < R.
Hence

B{x_, | X} & (1 -6) + 6-F(R).

This bound 1s < 1 because of the Jump in P at R, and 18 indepen—
dent of o* Thus, letting ¢—> O we find that Vb(ro) is bounded
away from 1 for O < o < R, as was to be shown.

Proof of theorem 5. There is no loss of generality in

assuming v;l||a1J|| 2 0. The theorem 1s trivial if v, is con-

tinuous at R, since then 2 by lemmas 2 and J, s0 we can
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assume that v, has a Jump at R. Assume for the moment that P

also haus a jump at R. Ther, applying lemmas 13, 12, and 11 in
that order, we find that the P® games all have values as €-0.

The uniform convergzence ensures that tne original game also has

a value, and it 1s clear that this value, beirg the 1limit of the
Pe values, 1s independent of Q. On the other hand, if P is
continuous at R, thcn we can approximate it uniformly by a
sequence of discontinuous, monotonic functionsa. The preceding
argument appliles to the latter, and passing to the 1limit completes

the proof.

COROLLARY. Equations (3), (%) have a unigue
solution, assuming only that ¥ is monotonic and

satisfies (4).

Progf. Let ¢ be any solutlon of (3), (¥) and consider the
game determined by P, Q, with WU e 1. A "local recursive €e—optimal
¢-strategy” for player 1 (see proof of lemma 11) will guarantee
him an expected payo{f of at least é(ro) — ¢ in this gzame. Thus:

v(rg) > d(ry),
if v 18 its value function. But v 18 also the value function of
the game cdefired by § w O, by theorem ‘. By symmetry we have:
v(rg) < $(ry) -

Thus ¢ is unijuely Jetermineud.
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6. APPROXIMATIONS AND BOUNDS POR THE VALUE FUNCTION

In this section we extend to games of survival some of the
Known results for random walks with absaorbing barriers—1i.e.,
the gambler's ruin problem (see [7], chapter i4). The random
walk on (0, R) with eacnh step determined by the fixed random
variable § leads naturally to a functional equation, highly

reminiscent of our fw.damental equation (3):

(13) d(r) = E{é(N;)} : 0 <r <R.

It 1s satisfied by several functions associated with the random
walk; among them is the probability pR(r) that a particle start-—
ing at r will reach R before it reaches O. This "absorption”
probability 1s uniquely determined by (13) and the familiur

boundary condition:
(4) ¢(r) = P(r), r¢o, r>R;

assuming that ¥ i3 not identically O.
If 1t happens that E {;}- 0, then (13) has among its sol-—-
utions all linear functions A + Br. Aoplyins the two conaitions

pR(O) = 0 ana pR(R) = 1 we get A =0 and B= 1/R, or

pR(P/zE’p O(x‘(R.

This is not exact because the particle will i general be absorbed

beyond, not at, the barriers O and R. Taking this fact into
account, we obtain rigorous estimates:
r + A

m :’/ < prir) Sgeam v 0 < r <R,




P-022
10-10—0
~34

where # and % are such that always —x«{ § { 2.

It on the other nand, E{$} ¢ O, then there will be a unigue,

nonzero AO sucn that

N
(14) E{e O;‘}- 1

providea that ¥ takes on both positive and negative values
with positive probability (see [7], page 302, or [1-], page
284). Then (13) hets among its solutions all functions of the

r
form A + Bexo . As before, this leads tc an approxiaadion
AT

0
e -1
Prir) = O<r <R
R AR
e -1
and bounds:
exor w - exo(r+ﬂ) . ) i
X, R+ SPRUT) S —gResy— v Q< r <R
e ~1 e -1

The linear case first discussed (with E{E} « 0) corresponds

to AO e O. Actually, it 13 not an axceptional case; this bacomes
evident 1if we introduce the function f:
A
(e —1)/A 1If AN 40
f(Av X) -
X if A =0,

which 18 continuous and monotonic increasins in A fcor each x.
The relation (14) defining AO becomes E{?(Ao, S)} = 0, whicnh

nas a unijue solution in all cases. Write F(x) for f(AO, x).
Then the approximation anya bounds for bR are simply PF(r)/P(R),
P(r)/P(R+2) and P(r++-)/P(R++), respectively, regardless of whether

AO is positive, negative, or zero.




#

P—022
10-10-56
_55_

Por gares of survival we have some very similar results:

LEMMA 14. 1If |]a 18 zero—free and if

max min a < 0 ¢ min max s, ,,
IR TR TR
then there 1s a unique number )b such that
(15) vall [£(xg, ag )I] = 0.

Moreover, A, and valllal,ll have opposite signs, or
]

are both zero.

Proof. The value of ||f(A, aij)ll 1s a continuous and

strictly monotonic function of A, since none of the a1J is 0.
This function tends to the limit + ® as A—> + 00 because of the
positive element in each column, and to the limit —@ as A =5 -
because of the negative element n each roa. Therefore, it has
precisely one zero. The last part of the lemma follows f{rom the
fact that vall||r(o0, a1J)|l - va1||a1J||.

Again write F(x) for f(Ao, x).
LD®IA 15. 7 is a solution of (3).
Proof. Using the identity (valid for all 2):

f(A, x+y) = £(2, x) + eur(’\0Y)n

we have:

r

A
® vall|r(a, )|

valllr(r+a1J)|l - P(r) + e

= P(r)
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as reuires, The ccrollary whtciv ©oillows 18 proves by tne sane

davice.

COROLLARY. Th:» local P-strutegles are pruecisely

tnose mixed siratesi~s that use only probabllity dis-

tributions that are optiral in tne walrix Jan= !lF(aii)!

THEOREM o. I¢ |la 18 zero—{ree ana 1if

ol

mak ©in a,, < 0 < min max a, .
T TR

tnen tne value of the survival jame 18 approximately

2ual to F(ro)/P(R). More precisely, we have:

P(r,) P(r, + «)
(10) —2 () ¢ ——2 ,
F(R + V) P(R + #)
where 42/ = nax Gy s He —in aij' The locul RP—strategies

are 4; ;reximately optimal, in tne sense tnat player 1 can
enlorce tne lower bound ol (iv), anu player II the upper

bound, by using thnem.

We remars that an all—positive ros (max min dy > 0) or an
allmne,ative column (min max By . X 0) trivialiczes the game.

(These cuses correspony to A, = - and +a@ rospectively.)

0
Proo! of thecorem u. Dunote the i{indl ..2¢ lower bound in

(1) by 5(r0). Clearly z 1s a 8u.ictly monotonic solution of
(3), and the local P-stirutelies are also local g—etrategles.
If w4 set P#*(r) e« g(r) for r outslae (0, R) we have a "generalized

survival zame" in the sense (* saction 3. By lemma 4, 3(70) is
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ite vaiuz, and tae Local P—atratesdes are optinus. But pe P
throughout the relevant intorvals (-4, 0] and [R, R+ ¥); tn.re—
fore 5(ro) < v{ry), ana the local P-8tratesies enforce at least
the lower amount {or player I. The otner bound 1s estublisheod
in the same way.
The bLounus (iv) cun soiwetiines b2 improved by exploitin.
gpeclal orop2rtles of tne matrix. For zKug 12, inadmlssible

J)| can be alsrejarues in carculating

.

ro~s or columns of |IF(a1
s

A gand 27 . Two oth:r sucn results «re th: follosing:

COROLLARY 1. If ry» R, ‘ni the ag g Are 111

i
v

integers, tnen # ana ¢ in (i0) mey be ropluce.
by =1 and -1 respectively.

COROLLARY 2. 1Ir ro and R are inte.>rs ant tae

ay, are all * 1, then the valu: of tne »~wne 18 exactly

P(ro)/P(R), and the local R=stratesies are optlinal.

An e¢yually c¢ract result holds for arbitrary Lo &nid R; 1t has

the foruw v(r.) = Pir.+ «)/(R+ # + >), where — & and R+ ¥ are

O) 0]
the unique abscrption points 5! rthe process. However, & and 4
depend on To in such a way tnat v 13 actually a step function,
despite the continuity of P.

Two sim;, 1o usymptotic results are of Iintercst:

COROLLARY >. I{ R = @ with Ty held fixed, the

value of the game tends to a limit £ that is = Q0 or

satisfies




P—o2e

1 D20

-35~
r An(CA+H)
o\l—e)\oogfgx—vo CHE
1ependin. on w~hetner vaillai,ll < 0O or > 0.

.~

Thus, 1f the "moncy" game 18 ir nis tavor, player I can defeat

evan an arbltrarlly ricn opponent, sitn sowme probablility.

COROLLARY «. 1If Ty and R — @ 1in a fixed ratio,
or, <ogulval-ntly, 1 tne iy all —0 in a fixed ratlo,
)

ther the limit of v(r 13 eitner O, rO/R, or 1, depending

o)

on whetner val;|ui.|l <0, =0, or > O, respectively.

~

A3 we pass to tne 1imit in tnis rasnion, the "nulve" stratesy
¢l muximizin, the alnimum expected money Zuin on each round
becones betlter and vetter. Jraeeld, in the bulancea case
(vaAl'ui,ll = 0) 1t 18 a local P-8travesy, ani in the lopsile.

v

cases (vall|41;l| < 0 or > 0) one player nhas nothing to lose
anyaway, in the limit, whil: uny 3trategy «~1ith positive expected
sein wins .r the other. These remarks may clarify tne ratner
puzzling (ans nol 2ntirely correct) conclustons of [1], [2], [11]
to the effe .t tnat tne "nalve" stratecy ‘ust mentioned 18 approxi-—

mately optimal.

[T™he following 18 an example of a game in which the

nilve” strotesy 18 not =autisfactory. In ract, it player

1 followa it

. 3 =&
210 ;
Ny
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here he wlill alwuays choose the flrat row .ni hence alwiys
lose (a3suming 0 < € < V). Another case where the "naive"
stratezy 18 not 2atisafactory for player 1 13 zliven by exanple

7 above.]

A generallzation of corollary 4 1.a3s beon obtalped by Scarf
[12] for survival games in w#hich r und i n—dimensional
vectors. Under certaln assumptions, which reduce to our condi-
tion val||a1J|| = 0, hz finds that the limiting value functlions
are generallzed harmonlc functicns, being the zercos of certaln
second-—order uifferential operators, in zeneral nonlinear.

A different cxtension of the survival game model, of some
interest, 1s obtained by chunging the information pattern, dis—
rupting 1in some specified way the process whereby the players
learn of each other's pist moves and the resulting winnings or
losses (see [14]). Since the local F—strategles can be pluyeu

without benefit of any inforuation whatever, the bounds of

theorem 6 remain applicable, and we have:

COROLLARY 5. In 4 game of survival with restricted
information flow, the value (if 1t exists) lies within
the bounds (1%). In any cuse, the minorant (sup—inf) anu

majorant (inf-sup) values exist und satisfy (1v).

We note in passing that the value always exists il Qe O or
Q a1, since the payoff as a function of the pure strategies 1s
semicontinuous, and tihe pure 3trategy 8paces are comp~2%t, regard—
less of the information pattern (compare [15]).

So far in this section we nave been proceeding on the assump—

tion that ||a1J|| 18 zero—free. We now indicuate ~ithout proof
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the moulric.tions re ,ulred 1f tnis assumption 13 uropped. The
parallel nwroerins 111 as8slst comparison.
LaMMA 14°. I mux min a , < 0 < min asox a,, then
AT s
tmz | Slolut ions @2
vall £ (A, a;)|| =0
constitute & finite, closes interval [A', X\"]. Moreover,
A' and A" botn h.ve 8isns opposite to le||ﬂl-||. and e

(Y

have A ¢ 0 < A" 11 =na only 1t V81||d1.|| - 0.
- J
Write P'(x) for (X', x) anil P"(x) for (X", «).
LEMMA 7. Both P' and F" are solutions of (3).

COROLLARY. The local F'— anu F"—strutesies are pre-—
cisely those mixed 8trategles tnat use only probability

Jdistributions that ure optimal in the nmatrix <ames ||F'(11J)||

and ||F"(aij)|| respectively.
THEOREM 0°. If max min dy < O ¢ min max ay then
1 J ;o J

the exireme solutions v, ani v, of (3), (4) are approximated

0
by P"(r)/P"(R) ana P'(r)/P'(R) respectively, with precise
bounis of the form (1v). 1n th2 Q = 0 game, player II cun
enforce the upper bound to Yo by playing ¢ local P"—strateyy,
and player 1 can enforce to witnhnin any & > O of the lower
bound by choosinz & > O small enough ang pluying optimal

strategies of || (N'+8 )1| on each round. A simlilar

’ d‘iJ

statement holds for the Q = 1 game and its value functlion

v.. For generual Q the value (17 1t exists) li2s between

F"(ro)/P"(R+V) aria F'(r+m) /P (R+ry) .
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Again we remuark that the cases m?x mjn aij > 0 and m%n mix a1J<
are triviul. A guide to what happens when one or both 1is egual
to zero 1s provided by lemma 5, in section 2.

The five corollarlies are unchangea or are modified in the
obvious way, using the last part of lemma 14° anu noting thot

statements must be made in terms ol VO and v #ith the value of

1’
the game in general (if 1t exists) lying in between. Corollary
2° can be extended slightiy (with the ald of theorem 2) to ylelu

the following result:

THEOREM 7. If the dqy are #ull X 1 or 0, and ir
A' « A", then Vg = Vv, and the vialue of the survival

game exists and 18 independent of Q.

it 18 natural to ask whether A' @« A" implies Vg = V. under
more general conditions. 1In view of example 11, discussed below,
the answer seems to be in the negative. However, the converse
implication is valid almost always. In fact, if A' ¢ A" tnen
the inejua.ity:
P'(r4p) o F'(r)
P" (R+24) P'(R+v)

holds at r = R/2 1f R 18 3u’ficiently larze. This implies

vO(R/e) < vl(R/E) by theorem °. This proves:

THEOREM 8. 1If llai,ll 18 such that the “unctions
J

Vg a@na v, Aare identical for large values of R, then

1
Al - AT,

(To see that the condition on R 18 neeled, 50 beck to example 2
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in section ! and put R = 1. Then we hive vy = Vv = 1/2 in (0, R);

k

hosever A < 0 < A",)

[In our final example, 1t 1s easlly checked that

vall||a « 0 ani that A\' = A" = 0, To snhow that Vo

i

and v, are Jifferent, let u' and u” be the vailuc functions

tor the 3urvivul games which correspon: to the submatrices:

¢ —1 =1 - i
-1 2 -l and —
_1 _I E—jf 1 bt

respectively. Clearly, v, > max [u', u"] anu Vo < minfu', u"].

—

b R

However, . simple calculation shows thut u' and u" are uis—

tinct for R > 1; hence Yo and v, are also Jiatinct.]

0 o 0] i 1 =
s =1 -1 0 0 0
-1 ¢ =1 0 0o o)
=/} —l « O O O
Exuple 11
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