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SUMMARY 

In a game of survival, two players with limited resourcea 

play a-zero—SILT game repeatedly until one of them Is ruined. 

The soluticn or the survival game gives one a measure of the 

value of resources in terms of survival probabilities. In thl» 

paper the zero—sum game is expressed as a finite matrix, but 

with (possibly) incommensurable entries; hence the number of 

different distributions of resources that can occur during a 

single play may be infinite.  The existence of a value and 

optimal strategies is proved, usi^.g the theory of semi-martin— 

gales.  A simple approximation to the solution Is described, and 

several examples are discussed. (    ] 
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ON OAHES OF SURVIVAL 

Two gamblers, with limited resources of money, agree to 

play and replay the same zero-eum ganie until one of them Is 

rulneü. The  "game of survival" that results Is similar In many 

respects to the classic "gambler's ruin" problem, but there Is 

one Important difference 1  since the transition probabilities 

are controlled by the participants, and not by chance, there 

may be a positive probability of infinite repetition, with 

neither gambler being ruined. Thus, to save oneself and to 

destroy one's opponent are somewhat different objectives; in 

fact, the optimal strategies and the corresponding probabilities 

of ruin or survival will sometimes be found to depend on the 

value assigned to the case of double survival. 

In this paper we propose to investigate thoroughly those 

games of survival where the underlying "money" game is given by 

an arbitrary, finite matrix of real numbers. The  existence of 

solutions, and the extent to which they depend on the double- 

survival payoff, are the central topics. Our approach combines 

an analysis of certain game—theoretic functional equations with 

the theory of semimartingales.  A number of examples, and methods 

of constructing and approximating the solutions, are also dis- 

cussed . 

Previous writings on tne subject include those of Bellman 

and LaSalle [}), Hausner [lO], Peisakoff [ll], and Bellman [l,2]; 

Portions of this paper were presented by the authors at a 
conference on "Recent Developments Ln the Theory of Oames" in 
Princeton, January ^1 - February 1, 19^3» and at a meeting of the 
Mathematical Association of America in Seattle, August 20-21, 19^. 
The work was supported by the RAND Corporation and by the Office 
of Maval Research contract Nonr-^20(l6) with the California Institute 
of Technology. 
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however, only certain apeclal caaes have so far been examined 

rigorously. Usually, it has been assumed that the number of 

accessible "states" (possible distributions of money during the 

play) Is finite. It should be remarked that under such restric- 

tions survival games become "recursive games" in the sense of 

Everett and the existence of a solution (assuming a constant 

double-survival payoff) becomes a simple corollary of his result 

[b].  Mention should also be made of the multi-dimensional 

survival games treated by Scarf [12] , ?nd the somewhat similar 

multi—component attrition games of Blackwell [4]. 

1.  QKNKRAL INTRODUCTION AND EXAMPLES 

Let I la.,I I denote the matrix of the "money" game, lot R 

be the sum of the resources of the two players, and let r0 be 

the first player's initial fortune. Then, If player I chooses 

1. on the k  round and player II chooses J. , the new level of 

player I's fortune is given by: 

(1) rk - rk_l  
+aij' k-1,2,...; 

a formula valid so long as 0 < r. . < R. For r. outside this 

interval we define r, • ^V 1» serving the formal purpose of 

associating an infinite sequence Iv.f  with every play of the 

game, .whether it tenninates or not. 

If one of the players is eventually ruinea, the "utility" 

payoff to player I can be defined: 

0 if r < 0 
(2) P(r) 

1 if r ^ R; 
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where r ■ 11m rv. If both players survive Indefinitely, the 

payoff will be a number Q, which may be a function of the course 

of play. When we are not considering special cases we shall 

let Q be entirely arbitrary, assuming only 0 ^ Q < 1. The pay^ 

off to player II Is taken to be 1 minus the payoff to player I. 

Thus, the survival game Is completely specified by the five 

elements: Ma.JI, P, Q, R, and r0. 

Assume for the moment that Q Is a constant, and that the 

value of the game exists for every Initial state r0. Then It 

is easily proved that the value Is a monotonlc Increasing function 

of r0, and that it satisfies the functional equation: 

(2)     ♦(r) - val M^r+a^)!!,        0 < r < R, 

with boundary conditions: 

(4)      ^(r) - P(r) r ^ 0, r > R. 

Here "val" denotes the ordinary mlnimax value of a matrix game. 

Even if i is not constant, equations (3) and (4) play a 

very fundamental role In the analysis. As we shall see In section 

2 of this paper, there always exists at least one monotonlc solu- 

tion to (5)» (4). If this solution is unique, then the value of 

the survival games exists and ie independent of Q. If the solu- 

tion is not unique, then the value may not exist, and It is not 

Independent of Q If it does exist. 

[To Illustrate:  In the first example below, all 

monotonlc functions, and some others, are solutions of 

(3). In the second example, any linear or near-linear 
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functlon la a solution. In both cases the dependence 

of the game on Q Is Intuitively obvious, since both 

players have powerful "derenslve"  strategies that 

prevent any action from taking place except on favor- 

able ground.  In the third 

Example 1 

/ 0 0 2 -l\ 

0 0 -1 2 

1 -2 0 0 

-2 1 0 0/ 

Ex amp le 2 Example 3 

example equation (3) becomes trivial and Irrelevant. The 

game turns entirely on the properties of Q. An example 

of Gale and Stewart [8] shows that the value does not 

exist for certain payoffs of the form Q ■ ^(1,, Jp» 1*# ••• ) 

Whether such Indeterminacy can ever occur when Q has the 

form Qfr.., r2» ... ) Is an open question.] 

A mixed strategy In the survival game can be represented 

as a probability distribution on 1 (or J) for each round, as a 

function of the past; this Is the so-called 'behavior strategy" 

form.  We snail call a mixed strategy locally optimal If for 

every k the probabilities it prescribes for 1, (or J. ) tre 

optimal in tne matrix game l|v{rk, + a..)||, v being the value 

funcdon of the survival ga^e.  Locally optimal strategies exist 

whenever the value function exists, but they need not be optimal, 

nor are optimal strategies necessarily locally optimal. 
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[ihua, in example 4, consider the strategy that picks 

ij- 2 if and only if r^ , > 1.  It is clearly locally 

optimal, since the value function is identically 1# but 

it is not optimal if R > 2 and Q < 1.  Again, in example 

5, the strategy that always chooses l.» 3 Is locally 

optimal but not optimal if Q < 1 and r0 > 1.  (In this 

example the value depends on Q.)  In example o, the mixed 

Sxaaple j» 

r -'] 
-i   i 

\o oj 

Example 3 Example b 

strategy that prescribes the probabilities  (1/3,  1/3,  1/3) 

for ik if Jk .  - 3 and the probabilities (1/2,  1/2, 0)  if 

J.   -  • 1 or 2, or if k - 1, is optimal for player I,  but 

it  is not locally optimal,  since  it fails to take full 

advantage of the occasions when player II makes the  "mistake" 

of playing J - 3.] 

A semimartingale may be defined as a sequence of random 

variables IxA such that the conditional expectation of each 

term is greater than or equal to the preceding term,  thus: 

E pc   '   V-l'   *' *' x0 j ^ V-l' 

A fundamental theorem {[5],  page 324) implies that a bounded 

semi-martingale converges with probability 1, and that its 
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limlt x      sat1Bfies 

E{xool   xo}  ^X0   ' 

For our purposes, "bounded" can be taken to mean that the x. 

themselves are bounded, uniformly In k, although the results 

stated are valid under much weaker condltiois. 

Let fy  be any bounded solution of (}). We define a local 

^—atrategy to be a mixed strategy that always prescribes optimal 

probabilities for the games II4(rki + 
aii)ll* TYiua, in this 

terminology, a locally optimal strategy is a local v-6trategy. 

If player 1 uses a local (^-strategy against an arbitrary strategy 

of player II, then the sequence {4(iv) [ that is generated is a 

bounded eemimartingale.  (Note that EUtr^) | **._-, ,.,, ro)2^ric—i) 

implies B{<Krk) | ♦(rk_1), ..., +(^0)} > ♦(rk„1)# even though 

(j) may not be one—one.) Hence we have convergence with probability 

1, and 

E {lim <Krk) I r0}2 ♦(r0). 

Now if 4 satisfies (4) as well, the left side of this inequality 

can be expressed as 

0«prob (l is ruineal + 1 «prob III is ruinedj -f 0«prob (both »urviveV, 

where ^ is tome number between 0 and 1. Hence 1 

(5) prob {ll is rulnadV ;> ♦(r0) - e»prob (both turvlve \ ; 

(0) prob jl survives! 2 ♦(r0) + (l-^)»prob füoth survive!. 

Thus, such a strategy for player I guarantees that he will survive 

with probability ;> ♦(r0). If we could show that double survival 

has probability zero, at least for some particular local 4—strategy 



r-622 
10-10-&Ü 

-7- 

of player I, then It would follow that he can guarantee himself 

an expected payoff of ♦(r0), or more, regardless of the other's 

•trategy, and regardless of Q. A siailar argument for player II 

would then establish the existence of a value and optimal strategies 

for the survival game« independent of Q. 

In attempting to carry out a proof on the above lines, one 

might hope to start with an arbitrary local (|>-6trategy and (l) 

use the known convergence of {^(ru)) to establish convergence 

of [r^j; then (11) use the convergence of jrj to show that the 

game must end; all with probability 1. unfortunately, neither 

(i) nor (11) is unconditionally valid. In section 3 we proceed 

by way of strictly monotonlc approximants, for which (i) is 

valid, and obtain thereby the existence of the value.  In section 

4 we obtain the existence of optimal strategies by working with 

a special class of "interior ^-«trategie8,n which make [r^l con- 

verge even when 4  Is not strictly monotonlc. However, in both 

proofs it is necessary to assume that none of the a,, is zero, 

in order to make convergence of frA   equivalent to termination 

of play (step (11)). 

In section 5 we drop the zero—free condition on ||a. , {|, 

and find that a value still exists if Q is sufficiently regular. 

However, the value may depend or g (see .xamples I, 2, 5  above), 

and the players may not have optimal strategies (example 7 belorf). 

Our proof parallels the one in section 3 (strictly monotonlc 

approximants), but is based on a more complicated functional 

equation, to be discussed there. 
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Flnally,  In section 6 we  will derive some estimates for the 

value  function  that h*'ve much  in  common  with the  well-known ap- 

proximate solutions of the classic  "gambler's ruin" problem. 

They have  simple  analytic  forms,  in contrast to  the  sharply 

discontinuoua nature of the exact  value  functions  (see examples 

6 and 9 below).    The estimates become more precise  if R is made 

large compared to the a1,,  and   they give exact  information  if 

the a., are   all ± 1, or ± 1  ana 0.    Ihey also provide strategies 

that are approximately optimal. 

It should be noted that «sotions >, K, 5, and 6 are essen- 

tially independent of one another. 

[in example  7,  player I  can win with probability 

approaching  I  if hd always chooses  i^ according to the 
2 2 

distribution (l-£, €-£ , E ), with £ small but positive. 

However, if Q < l he has no strictly optimal strategy. 

Example 8 illustrates in a simple way some of the pos- 

sibilities for the value function v{r). Under optimal 

play the first player's fortune describes a random walk 

u-) -2-fai     2+tsa 

Sxample 8 Sxaiuple  9 

on  (0,  R)  with +1  and -a having equal probability.    The 

gxaraple 

value  is  Juat the probability of absorption  at    R.    If 

a    is rational then  the  value  is a finite  step—function, 

which can be determined exactly by solving a certain 

system of  linear equations.    But if    a    is  irrational 

(with R > 1-fa > 1),    then  the  value function  is 
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dlscontlnuous on a set of points everywhere dense in (0, R); 

It Is strictly monotonlc; and Its derivative Is almost every- 

where 0. In example 9 the €..  are meant to be small pos- 

itive Incomensurables. We no longer have a simple random 

walk as above, but It can be shown that for R - 3 the value 

Is constant In an Interval slightly larger than (1, 2) and 

has dlacontlnultles everywhere dense In the rest of (0, R). 

Whether the derivative vanishes almost everywhere In this 

case Is an open question.] 

2.     S0LDTI0W3 OF THg FUNCTIONAL SQUATIONS 

A monotonlc solution to (3)» (4) can be constructed by an 

Iterative procedure.  Define ^0 byi 

0 If r < R 

u      1 If r > R 
v. 

and let ± " T^rv w*161,0 th® transformation T Is given by: n 

0 < r < R 

r ^ 0,   r  > R 

fval      ^(r>a    )|| 

[♦ r 

It  is clear that i    can be  Interpreted as  the value function of 

the finite,  truncated game  In which player I  loses unless he 

succeeds  In ruining his opponent In n moves or less. 

LEMMA  1.    The  sequence  |4nl  Just  defined converges 

polntwlse  to a monotonlc  solution of   ()),   (4). 
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Proof.    By  construction,  the  fixed points of   (7)  are sol- 

utions of  (5),   and  conversely.     Since  T Is continuous,   it aufflees 

to  show that   11m 6    exists  and  Is  nonotonlc.    This   Is  accorapllehed 

by  showing  inductively  that  ^(r)   is  monotonic   Increasing in 

both n and  r.     The  details  present  no  difficulty  whatever, 

(Compare  the much harder proof of  lemmaa  5 below.) 

Let VQ denote  the limit of  the ^   ,  and let  v,   denote the 

limit of  the  similar   (descending)   sequence  ^T^Af»   beginning 

with the  function 

^n(r)   - 
0 if r < 0 

1 if  r > 0. 

THEOREM 1.     If Q » 0 then  the  value  of the  survival 

game  exists  and  is equal  to   VQ^Q).    If  Q 5  1   then   the 

value  exists  and  is equal  to  v..(r0). 

Proof.     Player  I  can guarantee   that 

proL   <II  is  rulnedj ^ 4»   (r(0 

by   following an  optimal  strategy   for  the n       truncated  ganie   (and 

playing arbitrarily  after the  n       move).    On  the  other hand, 

player 11  can  guarantee  tnat 

prcb   |'I  aurvlvesj 2  1   - ^^rJ 

b>   adopting  a  local   v0-strategy   (see   (6)  above).     But  the  payoff 

of   the  Q • 0 game  depends  solely  un  whether player  II  survives 

or not.     Therefore   v0(r0)   is  its   value.     Tie  otner  case   is  similar. 
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Note that the proof provides an optimal strategy for play«r 

II,  but not player I,   If Q e 0.    The e.iatence of this  optimal 

strategy,  and of  the  value,  could have  been deduced  from the 

lower aeml-contljiulty of the payoff,  aa a function of the pure 

strategies  (see   [9]) •    A similar remark applies  to the  Q - 1 

game. 

THEOREM 2.     If  (3),   (M  have  a unique  solution  ^ 

then  the value of the survival gameb exists and  is  equal 

to ^(r0),  independently of 0. 

Proof.    As  before, player I can ensure that 

prob (ll  la ruined} 2 ^n(r(J   • 

Similarly player II can ensure that 

prob [l is ruined} 2 1 _ ^n^ro^   * 

But  lim ±    m v    m $ m y    m lim ^';   hence ^(r0)  la  the  value of 

the game. 

Wote  that this  time we do rot  obtain an optimal  strategy 

for either player. 

•Rie next lemma identifies v0 and v. as the "extreme" sol- 

ution« of (3)# (^); and Incidentally establlahes a converse to 

theorem 2. 

LEMMA 2.     If 4 1« any solution of  (^),   (4)   that  is 

bounded between 0 and  1,  then  V
Q < i < v, • 

Proof.     We observe  that 4Q < ^»  and  that 4n  < i  implies 

Ti     < ^'    Hence  v0 < ^.    Symmetrically,   v.  2 i* 
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C0R0LLARY.    If the  value  function of the  survival 

game exists  and la  Independent of 4,  then  It  Is  the only 

solution of  (5),   (4)  bounded between 0 and  1. 

The last provision  Is necessary, since  "spurious" unbounded 

solutions do  sometimes occur. 

The next  lemma shows  that  v0 and v.   usually have Jumps at 

0 and R,  and  cnaracterlzes  the exceptions  In terms of the matrix 

lla.jll. 

LSMMA  3-     (A)  The  following are  equivalent: 

(1)    v  (r)  Is  continuous at r - R; 

(11)    v^r)  -  1  for 0 < r < R; 

(111)     Ma.JI   has a nonnegative row. 

(B)  TCie  following are  equivalent: 

(1)    v0(r)   Is  continuous at r - R; 

(11)    v0(r)  B  1  for 0 < r < R; 

(111)    every  set  of  columns of   ||a^.||,   considered 

as  a  submatrlx of   ||a..||,  has  a nonnegative  row,  not 

all   zero. 

Corresponding statements nola  cQncernlng continuity of 

v0 and  v.   at  r - 0. 

Proof.     (A)   Obviously   (111)   ->  (11)  ->  (1).     If   (111)   Is 

false  there  Is  a  negative entry  In  each row.     A strategy of 

playing all  columns with  equal probability,  on  every mov«,  gives 
[-R/a] 

player II a  probability ^ n uf  winning.   If n  Is  the number 

of columns and a  Is the suiallest nonzero   la<J*    T^ls gives  a 
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pooltlve lower bound for 1 - vi(ro)* independent of rQ,  and 

makee v. discontinuous at R. Hence (1) -> (111). 

(B) Obviously (li) -> (1).  If (111) Is false there la a 

set of s columns on which player II can distribute his choices 
I-Va] 

with equal probabilities 1/s, giving hini a probability 2 8 

of surviving.  Hence v0(r0) is bounded away from 1 and v0 is 

discontinuous at R. Hsnoe (l) -> (ill). Tc complete the proof, 

suppose that (ill) holds but not (11). Choose r« > 0 so that 

v0(r
#) < v0(r

#+a). Ttien  v0(r
#) is strictly less than v^r^a..) 

whenever a. , is positive. Let *I be an optimal mixed strategy 

for II in the matrix game | | v0(r
#-»-a11) | | ; let S be the set of 

columns J with >J. > 0; and let IQ be the nonnegative subrow, 

not all zero, whose existence is asserted by (ill).  Then 

v0(r
#) j£ v-^r^a. ,) holds for J In S, with strict inequality 

at least once, and 

n:  v^r«) <, ^  v0(r.+alsJ) 

holds for all J, with strict inequality at least once. Summing 

over J, and recalling the optimallty ol >], we obtain: 

vo(r#) <  L Yo^***!  J) ^ val  llv0(
r#^a1j)ll- J S 

But v0 is a solution of {}),  making the first and last terms 

equal. This contradiction establishes (ill) -> (11). 

CORROLARY. If 

max mln a. . < 0 < mln max a, . 
1   J  1J       J   1  1J 
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then  every bounded solution of  (5),   (4)  has  jumps  at 

0 and R. 

It may be of Interest  to describe some near—optimal strategies 

for player I  In the event  that   (1),   (11),   (111)   of (B)  hold. 

(Compare example 7 above.)     Let S0 be  the  set of all columns; 

let  10 be  a  row nonnegative and not  Identically  zero on SQ; 

let S..   be  the subaet of Sn on which a.    ,  - 0;   and so on.    Then 

we have  SQ-J.-.^S   ZD S     .   m ty,  for soma p   (proper Inclusion 

all  the  way), and moreover the  10,   ...,   1    are all distinct. 

Then  It   is  easy to  show  that  the probabilities: 

10 11 1p-l ^p 

all other jL » 0, If used repeatedly by flayer I, guarantee with 

probability 2 1 _t that the first nonzero a., to occur will be 

positive.  Hence player I wins with probability 2: (l-£)~'-_^R~r0^a-', 

nu matter what player II does. Tnls bound goes to 1 as €->0. 

^.  EXISTENCS 0? A VALUE WHEN | |a1 i| IS ZERO-FRKH 

This section will be devoted to the proof of the following 

theorem : 

THKOKiäH }.     If   Ma.    | |   la  zero-free,   tnen  the 

value  of  the  survival   game  exists  and   la   independent 

of   the  payoff  Q assigned   to nontermlnatlng  play. 

During   the proof  we   snail  ^ork   with  certain  generalized 

survival  games,  n.ivln^ more  general,   bounded  p&yolf functions 
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P#(r). In plac« of the P(r)  of  (2).    The other elements of the 

game, namely   ll»ijll*  Qi  R a^1^ rQ#  remain as  before.    The  functional 

equation   (3)  Is itlll applicable, but  with new boundary condition»: 

(4*) ^(r) - P«(r) r < 0, r > R. 

LBMHA 4.    Suppose  that  (^),   (4*)  have  a strictly 

monotonlc solution ^•.    Then,  If   ||a. .||   Is  zero—free, 

the  value of the generalized survival gcune exists and Is 

equal to MTQ) • 

Proof.    Let player I use  a local b*-otratezy and player II 

an arbitrary strategy.    Then {^(TI.)} IS a bounded semlaartlngale, 

and converges with probability  1.    Because ^# is strictly monotonlc, 

<r^|  also converge».    Ttiia means that play terminates,   since,   with 

none of the  a,, - 0,  the  limit of JVl raust  be  outside   (0, R) . Hence 

K{p«(llm rk)}   - BJ^Cllm rk)} 2 ♦•(^Q). 

A similar argument for player II completes the proof. 

We »hall consider functions P* of the following form only 

(until section o): 

P*(r) 
f(r-R-A) If r ^ 0 

1 -f f (r-R-A) If r 2 R» 

where  A  • max|a. J,   and t   Is  a positive  constant.     As t —> 0 these 

function»  approach P(r)   from below.    Imitating  the construction of 

»ectlon  2,   we  define 4« ■ T^n    -'here T i8  the  same  transformation 

(7), and ♦{ 1» given byi 

'^(p-a^A) If r £ R 

1  -f t(x^-li-A) if   r ^ R. ♦JM - 

If  It exist»,   11a +• 1» obviously a solution of   (;5),   (4#). 
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LKMMA 5.  If val| {a^A | ^ 0, and If v0 is not con- 

tlnuoue at R, then for sufficiently Bmali £ the sequence 

(^n) Ju8t defined converges pointwlae to a strictly mono- 

tonic solution of (3), (^•). 

Proof. To show that the limit exists we observe first 

tnat 

(^•(r)  - val| l^ir+a^)! |  2 val | |£ (r-a-A^j) | | 

- £(r-«-A)  +   £-val||a1J||   ^ «(r-R-A) 

If 0 < r < R,  and 4j(r)  - ♦jt1')    otherwiso.    Horeover, ♦• ^ ♦•»»i 
i 

Implies +* .  • T^* 2 ^n—i " ^n*    8inca ^# »equenc« it obvlouily 

bounded,  it therefore  converges.    To show  that the  limit  is 

strictly monotonlc  we shall prove  inductively that  for £  suf- 

ficiently small  the  function ^*{r) — £r  is monotonlc  in  r for 

eacn  n.    This  Is  trivial  for 4»Q;  assume   it  for ♦* i»    Case  1: 

Take  0 < r < e  < R.     Tnen we have: 

^(r) ^Ä-l^ij)-^ £r -  val 

^ val   | |^1(8+a11)-La 

-  ^(s)  - 6S. 

Case  2:     Take  r ^ 0  < s   < R.    Then  wt  have: 

^•(r) - tr - ^^(r) - ^r 

< ^c«) -f8 

<> ^(o) - ^s 

(using the first part of this pruof in the last step). 
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Case 3: Take 0 < r < R ^ B. Note that ^t  <; v0 ove^ the entire 

range of Interest (-A, R+A), and hence, by induction, that 

+• ^ v^. Since the latter la assumed discontinuous at R, we 

can select t  so that CA ^ 1 - v0{R-). Then we have: 

♦S(r) - tr ^ ^(R-) - <5R 
^ v0(R-) - tR 

£ 1 - «A - £R 

- ♦•(») - SB 

(using case 1 in the first step). The other cases, namely 

r<B^0, r<;0<R^8, and R < r < s, are trivial. This 

completes the proof of lemma ^• 

Proof of theorem 3» There is no loss of generality In 

assuming that val| la.J | 2 0. The theorem Is trivial if v0 » 1 

in (0, R); we may therefore assume (lemma 3) that v0 Is dis- 

contiguous at R. Lemmas 4 and 5 now give us well-defined value 

functions ^# for our class of generalized games, for £ suf- 

ficiently small. As £->0 their payoffs P# converge uniformly 

to P, our original payoff function. It follows that lim i#(rn) 
£->0    u 

exists and Is the value of the original game. Ttils number is 

obviously independent of Q. This completes the proof. 

As yet we know nothing about the existence of optimal 

strategies, unless Q ■ 0 or Q e 1. As example 4 showed, local 

v-strategles need not be optimal. However, the local ^•—strategies, 

for given t,  are nearly optimal: it can be shown that they 

guarantee an expected payoff within c(R-»-2A) of the true value. 
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COROLLARY.  If lla1J|| Iß zero-free then {}), 

(4) have a unique solution bounded between 0 and 1. 

Proof. Theorer. 3 and the corollary to lemma 2. 

j».  EX1STSWCB OP OPTIMAL STRATBQIBS 

In this section we shall find optima.1, strategies for both 

players, under the assumption that ||a. Jj is zero—free. The 

strategies are locally optimal, with «he added property that 

they force play to terminate v?ith probability one.  Their 

optimallty is therefore independent of Q. 

Let us first review some properties of matrix games. A 

pure strategy is said to be admissible if it appears with pos- 

itive probability in at least one optimal strategy.  We call 

an optimal strategy interior if it lies in the relative interior 
* 

of the convex set of all optimal mixed strategies. Every matrix 

game has at least one interior optimal strategy for each player. 

For later reference  we state two elementary facts: 

(A) If  valMb^M   -  valllc^M,  with b1J  $ c^, 

all  i,   J,  and  if !• and  j« are admissible in   ll^jjll 

and   | Ic.J |   respectively,  then bi#1# - c1#.#. 

(B) An  interior optimal  strategy  "punishes" 

every  inadmissible strategy  of  the  other player; 

that  is,  if ^  is  interior optimal and J#  Is  in- 

admissible   in   llb^Jl,   then 

^ 5lblJ. > valllb^H. 
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Returnlng to the ourvlval game, we define a special claes 

of »trategies for player I. Let ^ be a monotonlc aolutlon of 

(3)» i^)'    Por each number c for which the set C - 4,"' (c) Is 

not empty, let ?(c) be an Interior optimal strategy for player 

I In the matrix game 

(8)     ||lnf ♦(•+a11)ll. 

Define a mixed strategy for the survival game by the  rule: 

choose 1^ according to  the probability distribution   ^(^(r,    ,)). 

Such a strategy will be called an  Interior j—strategy of player 

I.    Note that the same probabilities must bo used each time the 

same value of b{v)  comes up.    Interior (^—strategies of player II 

are defined similarly,  with  "supM  Instead of "Inf."     We shall 

see presently that an  Interior ^—strategy Is also a local 

^-•trategy.    First  we  state our main  result. 

THBORBM 4.     If ^ Is any monotonlc solution of 

(3)f   (M*  fi^d if   llaiJI   i8  zero-free,  then the  In- 

terior ^-strategies are optimal.  Independently of Q, 

and the value of the game Is ^(r0). 

As stated,   theorem k Is Independent of and Includes  theorem 

5#  and this Independence will be maintained throughout  the proof; 

which takes up the rest of this section.    Consequently we have 

a separate proof of the existence of a value In the zero—free 

case.    Of course,  4 la actually unique    and equal  to v, and our 

real object Is only to show that  the  Interior v-etrategles are 

optimal. 
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LEMMA 6.    An interior ^-etrategy la also a 

local 4>—ötrategy. 

Proof.     We muat show that   ^(^(r))  la optimal  In   | li(r+a,.)|1, 

for all r In   (0,  R).    But   ||^(r+a. .)||  majorlzea   (8),  and both 

matrlcea have  the aame  value ^(r),  by  (5) and the  fact that $ 

was aasumed monotonlc.    Since   ^(^(r))  la optimal  for   (8)  by 

definition,   it is  alao optimal  for   | ^(r+a,,)||. 

LEMMA 7. Let ^(r)   > 0 and let V,   1*,   J* be auch 

that 

(1) r« - r + a1#J#  < r, 

(11) J* la admiaaible in  | ^{r+a^ ) | | , 

(ill) 51#(^(r))   > 0. 

Then <Kr«)  f $(r) . 

Proof.    Suppoae to the contrary that ^(r#)  • 4(r).    Then 

1* la admiaaible   in   |l^fr^+a. -)||   and the condltiona  of propoa— 

Itlon  (A)   above are met,  with  regard to that matrix and 

I lifr+a^)! 1 .    Hence ^(r»>a1#J#)  -4(r+a1#J#),  or ^(r+2Qi#J#)  - b{r), 

Repeating  this argument givea  ua 4(^,)  " 4(r)   for a aequence of 

r'   that eventually becomea negative   (since a<#«#  lo  negative), 

contradicting the hypotheaia  that 4(r)  > 0« 

LEMMA 8.    If player  I uaea an interior ^-«trategy 

againat any atrategy of player II,  then every poaaible 

play of  the  aurvival game  has  the property  that,  for 

each k  > 0,  one of the  following la true: 
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(a) r
k_i £0 or rk__1  > R; 

(to) ^(r^j - 0; 

(c) Jk  Is  Inadmlsalble  In   ' l^r^^a^ ) | | ; 

(d) r    2 ri/  i+ a'   where  a - min   |a. J ; K k-1 ^j 1J 

k-l (e)    i(rj  | iCr,,  , .. 

Proof.    B|y  lemma  7,  since If  (a),   (b),   (c), and  (d)  are 

false  the hypotheses of that  lemma  are met,   and  (e)   follows. 

The importance of this  lemma lies  in  the  fact  that  it 

sharply restricts  the possibility of a nontermlnatlng play  in 

which (4(rk)j   converges. 

We need two more preparatory result^ before proceeding 

to  the  proof of  the mail   theorem.     Given  an  interior 4>—strategy 

of player 1, define  the   "punishment"  function. 

Mr.  J)   - ^  UcWr+a.J  - c, 
i 

where  c  - ^(r).     (Compare  proposition   (B)   above.)     By   lemma 

o,  T  is always nonnegative. 

LEMMA  ^.     If  J   is  inadmisbibie   In   ^(r+ajJII 

then ¥(r,  J)  > 0. 

Proof.     By proposition B and  the definition of  Interior 

^—strategy we have 

£   L(c)   inf ^(»-Hi   ,)   > c, 
^       ate ^^ 

where C • ♦"'1(c),  c - ♦(r).    The required Inequality Is now 

obtained  by removing the  "inf"  and substituting  r for s. 



?~o22 
10-10-50 

-22- 

LKMMA 10. If player I aaea an Interior ^—etrate^y 

a^alnat .my strategy of player II, then with probability 

one  tne   eoquenre   h^}  " |'u(r'>_i»   "./M   converiG8   to  0. 

Proof.     (Compare   [5], page 297,  theorem 1.2  (l).«)    Consider 

tho   sum of  the  ir   .     For each n  >   1   we   hav3: 
K — 

- I [Ei*(rk)} - E{4(rk_,)ll 
1 

It follows that the probability of the Infinite Bum exceeding 

any given bound M le < l/M. Hence, with probability one the 

series has a finite aum and Jw.j converges to 0. 

Proof of theorem k .     The theorem la easy If there Is a pos- 

itive row or negative column In ||a1 f||.  We therefore assume 

max mln a,, < 0 < mln max a... 

Let play?r I adopt an Interior ^—strategy, and player II an 

arbitrary strategy.  TYie play of the game that the occurs can 

be described by the pair of sequences (l^}» {^1* which we shall 

regard as the underlying random variable. Tney are sufficient 

to determine three other Important sequences jrvj, f^u}» ariJ 

L^rkM* '*ie iaot~na:ne^ 1§ a bounded semlmartlngaie, by lemma 

o, and therefore the set of plays |i. j , [j.\ for which It falls 

to converge has probability zero.  The set of plays for which 
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|T. I falla to  converge  to 0 also has probability zero,   by 

lemma 10.    We  shall prove that every play outolde  these  two 

sets temlnates.     By  (5)  this  will  Imply that player I's In- 

terior (^-«trate^y assures hlm an expected payoff 2 ^(ro^*    7nQ 

corresponding argument  for the other player will  complete  the 

proof. 

Consider therefore  a play |ik|*   l^k\ in  *'hich  both 

(9) {<Hrk)}  ->c 

and 

(10) [rk}  -»0. 

If c - 0 and 1 then play must terminate, because of the fact 

that 4 i* discontinuous at 0 and R (see the corollary of lemma 

3, section 2). Thus our object will be to show that the hy- 

pothesis 0 < c < 1 leads to a contradiction.  Let |k | be the 

sequence of indices k such that ^(JV) ^ c or w^ ^ 0,  or  both, 

and let »p " rk •  Lemma 8 shows that |k \ and /si have in- 

finitely many teras, since alternatives "(a)" and "(b)" are 

excluded by hypothesis, while any unduly long chain of "(d)" 

will take r. out of the interval C - 4~ (c).  Thus, instances 

of "(c)" or "(e)" must occur regularly, giving us T f 0, by 

lemma 9, or ^(iv) + ^^u-i^*  In fact» consecutive terms of 

fk/l cannot differ by more than [(^/a) + 2], where / is the 

length of C, a - m^nja.-l, and [x] is the greatest integer £ x. 

Let us now examine the possible limit points of the sequence 

Is j, bearing In mind properties (9) and (10). First we have 
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the upper and lower endpolnts of C; call them u ana *  respec- 

tively.  (If C 18 empty, a abort argument shows that (^) Is 

contradicted.)  Secondly, there are the points within C, in 

the neighborhood of wnich ir, can be arbitrarily small, but 

positive. There are only a finite number of such points, since 

for each J, T(r, J) is a monotonlc increasing function of r in 

C; denote these points by y,, y^, ..., y .  Let 6 be a small 

positive constant (it has an exact value, which will be definsd 

later), and let Y,, Y2, ..., Y be a collection of intervals, 

variously open and closed, but all of length 6, defineu as 

follows: 

Y, - 

Y^ - 

[u, u-f-6) 

(u, u+6) 

(^6, A 

Yi " (yi' yi+6] 

if u i C 

if U £ C 

If / < c 

if / t C 

3 < 1 < P. 

Let Y denote their set-theoretic union.  By (9)* (10) there is 

an n0 (depending on 6) such that s 6 Y for all n > n0. 

Now define 5 to be the smallest nonzero number of the form: 

(ID Sai J 
v-l V > 

N < p[(3r/a)+2] . 

Tie effect of this definition is to ensuri that when [nv-n] ^ p, 

the difference Is -s j is either 0 or > 6.  It follows that, 1 m n £- 
for n > n0, all s lyinR in a given Y, are equal (jroof below). 
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Hence  some 8# appears  Infinitely often  In the  sequence |an| . 

If s« 4  c  then   (9)   Is  contradicted.     If 3» 6   C then   (10)   la 

contradicted,   since  f.      Is  Infinitely often  positive,   and 
Kn 

bounded  away   from 0 by  the  smallest nonzero  ^(s*,   J).    TVJIS   la 

the desired  contradiction. 

Finally,   we  have  to prove  the  statement  above   In  Italics. 

Call  a pair   (s   ,   s  )   conflicting  If  they  lie   In  the  same  Y. 

but  are  unequal.     Either the  statement   In  question   Is  true or 

there Is  a conflicting pair  (s   ,   s   ),  coming after s     ,  and 0 r x m'  n'      0       nn 

spanning no other conflicting pair (s . , s,,, ), m < :n' < n1 < n. m        n — — 

Let mn ■ m and  let m.   ,   be  the   last  Integer  < n  such  that  s u j-n mui 

and  s       .   lie   In  a common  Interval  Y..     Then  the   ascending 

sequence 

HIQ,  m^,  m^,   ...,  ro     1,  m    - n 

has at most p-fl terms, and has the property that s    ■ 8„, . i 

for each J.  We see that each s   is the sum of a    and at 
mJ raJ-l 

most [(y/a)-f2] Increments a. , .  Hence Is -si Is of the form 

(11), and Is either 0 or ^ ^'  This contradicts the assumption 

that (s , s ) was a conflicting pair. % m  n 

b.  gXISTSWCS OP A VALUS IN QEKKRAL 

When there are zeros In the | |a. , (| matrix a unique solution 

to the fundamental equations (3)» (^) le no longer assured, and 

the value of the survival game may depend on the double-survival 

payoff Q.  In this iectlon we show that the value does exist 

If Q Is sufficiently regular.  Our proof makes use of a new 
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pair of funcUlonal equations Involving the notion of recursive 

^arae (equations CJi # (^! Delo.v), •mien reduce to (3), (4) If 

1|a  || Is zero—free, ana which always have a unique solution. 

The restriction on Q consists in assuming that whenever 

/r,| converges to a limit r within (0, R), the payoff depends 

only on tnat limit:  Q - F(r).  We assume F tu be monotonic 

Increasing and, of course, bounaed between 0 and 1.  It Is 

convenient to aiaal^amate it with ♦'he old function P, which was 

defined only outside (0, R), and denote both by F. The still— 

arbitrary portion oC  Q will be denoted by ^.  Thus, tha principal 

listlnctlon in the present set-up is between convergent play 

(payoff F) ana nonconver^ent play (payoff "5), replacing the for- 

mer aiHtinction between terminating piay (payoff P) ana non- 

terminating play (payoff Q). 

Note that tne present arrangement still Includes the impor- 

tant special cases Q e constant.  On the otner hana, the mis- 

chievous Qale—Stewart functions (example }  In section l) are 

kept out . 

THS0RÜM ;.  If the convergent-play payoff is 

a monotonic function F of the Unit of the first player's 

fortune, then the value of tne survival game exists and 

is Independent of the payoff "5 for nonconvergrnt play. 

The proof follows the same general lines as tne proof of 
* 

theorem > In section >.  However we must begin witn some new 

definitions and notation. 
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Bty an elementary recursive game [M, pj we ahall mean the 

following:  A matrix |Im.-j | • M la given, each entry being 

either a number or the symbol (R) .  Players I and II choose 

i. and J. respectively.  If m1 1 Is a number the game ends, 

.and II pays I the Indicated amount.  If m. ,  Is R^ there 
11J1 

Is no payment, and the players go back to the beginning and 

make new choices 1« and J2, etc. In case of Infinite repeti- 

tion the payoff la the number p (a constant). 

The above is a special case of the recursive games defined 

by Everett [b], except for the "p" feature.  (Everett effectively 

assumes that p ■ 0. However, [M, pj Is obviously equivalent 

to TM', 0], with M' obtained by subtracting p from each numer- 

ical entry of M.)  Translating the results of [b] we find that 

the elementary recursive game has a value, which we shall denote 

by val TM, p], though perhaps not optimal strategies. The value 

satisfies the relation 

(12) x - val ||mlj:xl|, 

where ||m. .txj1 is the matrix obtained by inserting the numerical 

variable x in place of ® in llm.,11. The solutions of (12) 

form a closed interval, and it develops that val [w, pj is tho 

solution of (12) that is closest to p. 

Tine  new functional equations can now be formulated; they 

are : 

(3) <Hr) - m [M(4, r), P(r)),   0 < r < R 

and 
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iM ♦(r)  - ^(r), r ^ 0,  r 2 R, 

where  M(4,  r)   la  the matrix with entries: 

)      If a  + 0 J^r"faii 
1J riS\ 

(T) ^(r) 

® If a^ - 0 

(T) and (4) are actually the same. If ||a. . | j is zero-free, 

then (3) reduces to (3). In general. If ^ Is a solution of (3)* 

then (12) gives us: 

4(r) - valMm^U, r) : ^(r)|| - val | ^(r+a^) | | ; 

thet is, (^ Is a solution of (^) as well. The converse is not 

true, however, since in fact (5), (%)  always have a unique sol- 

ution, while O), (4) do not. 

As in section 2 (lemma 1), we can construct a monotonic 

solution v. to (T)i (^) by Iterating the transformation T: 

r väl(M(^, p), F(r)]      0 < r < R 

1 4(r) r ^ 0, r 2 R. 

applied  to  the  same  initial  function 4o(r)   which is 0 for r < R 

and  1  for r 2 R'    It  la  easily shown  that  the  functions ^^(r) 

are  monotonic   in r  ana   form a bouniea  Increasing sequence;   the 

limit  is  the desired  function  v0.     (It  can  be   interpreted  as 

the   value  function  of  the ^ i 0 game   (compare  theorem  1),   but 

there   is  no point  In  establishing  tnls   fact  now,   In  view of  the 

stronger  result  that   will  be  ^rovea  as  theorem 7.) 

As  before,  we  Introduce  certain generallzeJ payoff  functions 

F*^r);   they will  be  assumed monotonic   increasing  in   (-A,   R-fA) . 

The  symbols   (5*),   (^#),   (?•)  will  refer  to  equations   (T),   {?), 

(7)   with J replaced  by ?•.    The  next  lemma  corresponds  to  lemma 4 
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ln section 3. 

LEMMA  11.     Suppoae  that   (T#),   C*)   have  a strictly 

monotonic  solution ^•.    Then the  value of the generalized 

aurvlval game exlata  ind la equal  to 4#(r0). 

Proof.    Relative  to a particular play of the generalized 

•unrlval game, define krt - 0 and  let k    .   be  the first k  (If 0       ' 0 n-fl ^ 

any)   auch  that  ^V ^ ^   •     The subaequence  fa \ " ^ rk I   l8  finite 
n     . I    J       I    nJ 

In  length If and only  If  jr^l converges.     We now describe  a 

"local recursive f-optlmal J#—strategy for player Ij  it  reseoibles 

our previous  "local" strategies,  but  Is  based on elementary re- 

cursive games Instead of matrix games.    Choose a sequence of 

positive numbers   U,   t ,   t^,   •••  with sum  £.    Let player I 

begin  by playing an  £0-optlmal strategy of the elementary  re— 

curalve game   (M(^#,  r.),  ^(rQ)] .    If and  when  that strategy 

runa out   (after k.  raovea,   in  fact),  let him continue with an 

£.-optimal strategy of   [M(J
#
,  S.), P«(81)],  and so on.     In general, 

on his  (k +1)      move,  he  will be commencing an  £ -optimal strategy 

of   [M(^
#
,  s   ), F#(s   )J .     We  wish to show  that  such a strategy, 

played agalnat an arbitrary strategy of player II,  causes   (r, | 

to converge  with probability one. 

Define  the  infinite  sequence  IzX as   follows: 

if /s.\   is defined  through  i - n. 
xn " 

^(.n) 

^(.n ) 
o 

if Js.l stops at i - n0 < n. 
0 

Our construction ensures that, for n 1, £, • • •, 

K [*n   ' ^n-l' •'°' xo] * *„-! - n-l 
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Therefore  thi  sequence  xQ,  ^i-*-^»  x2+V *! *  x3+fcD+fcl+S'  etc • 

is  a  bounded  seralniartlngale.     We  conclude  that  (x |   convergee 

with probability  one,   with 

E-U_  x^V > x^ - t . 

* 
o 

^oo ' xo} ^ "0 

However, /x^| cannot converge if /a«V does not stop at some s 

since the s. oscillate and ^# Is strictly monotonlc.  Hence 

x  • ^*(sn ) " ^(l^ r^), and we have: 
o 

E[p^(llm rk)} >h(r0) -  t- 

The rest of the  proof  Is obvious. 

We now particularized F#(r)  to  be ^(r) +  t(r-R-A),   where 

^ Is  a positive  constant and A - maxja..!.     (Compare  section 3«) 

Using the  sane  Initial  function  as before : 

fttr-R-A) If r < R 
?5(r)  - ^(r)  - 

y u 11+  t(p-R-A) If r 2 R» 

we generate a sequence l^*\   - JT^^Q} by Iterating the new 

transformation T#, given by (7*). The next lemma corresponds 

to lemma '-j . 

LÄMMA   12.     If  vali|a   J i   ^ 0»   and  u  ^Q 
i8  not 

continuous  at R,   then  for sufficiently small fe   the 

sequence  {^*?  Just defined  converges  to  a strictly mono- 

tonlc solution of  {3#),   (^•). 

The proof Is essentially the sa:ne as the proof of lemma S. 

T^e substitution of elementary recursive games for matrix games 

causes  trouble  only  at  one  spot:     the  proof of ?][ 2 TQ *     '^le 
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dlfflculty Is resolved by an appeal   to the  following  fact:    p ^ 0 

and  val|Im     :0|!   2 0 together imply  that  val [M,  p]   ^ 0- 

LSKMA 1>.    If both v0 and f have Jumps at R, 

then  so does  v.. 

Proof.    We use  the  fact that  v0 Is  a solution of   (T),   (^). 

As  in  the proof of lemma 11,  we  can  find  a  "local recursive 

^—optimal "VQ—strategy"  for player I  that ensures  that  the  sequence 

Jxl   (as defined  there,  but  witn F for F# and v0 for ^#)  converges 

with probability  1,  and that 

B{xool   xo} ^70(r0) " £- 
Itils holds  for any strategy of player II;   we  shall consider a 

particular one.     By lemma 3 the  Jump  in  v0 means that   |I a« «I I 

has  a set of columns  that meets each row in a subrow that  contains 

a negative element,  or   is all zero.     The  same  strategy  for player 

II used in the proof lemma 5# part  B,  guarantees  a probability 

2 »      '   ^   ■ 8 > 0 that   iFjA  will never increase.    This means 

that with probability ^ ^. {''ic} wlll  converge  to a limit  r ^ r0 < R. 

Hence 

K(xool   xo} * 0 " *) + ö.F(Rr-). 

This  bound Is <  1  because of  the jump In F at R,  and  is  indepen- 

dent of TQ.    Thus,  letting I—> 0 we  find  that  v0(r0)   is  bounded 

away from 1 for 0 < r0 < R,  as was  to be  shown. 

Proof of theorem ^.    There is no loss of generality  in 

assuming vallla.JI  2 0»    '^e theorem is  trivial if v0  is con- 

tinuous at R,  since then v0 - v    by  lemmas 2 and 5,  so  we can 
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aasuflie that  v0 has a Jump at  R.    ABauzne for the moment  that P 

alao has  a  Jump  at R.    Then,   applying  lemmao  13#   12,  and  11  In 

that order,   we  find that the P# games  all have   values as  £->0. 

Ttie uniform  convergence ensures  that  tne original game also has 

a value,  and  It Is clear that  this value,  being  the  limit of the 

F* values,   is independent of Q.    On the other hand,  if f is 

continuous  at R,  then  we can  approximate  it uniformly by a 

sequence of discontinuous, monotonlc  functions.     The preceding 

argument applies  to the  latter,  and passing to  the  limit completes 

the proof. 

COROLLARY.     Equations   (5),   {?)  have  a  unique 

solution,  assuming only  that P is monotonlc  and 

satisfies   (4). 

Proqf.     Let 4 be  any solution of   (5),   (^")   and consider the 

game  determined  by P,  ^,   with ^5 ■   1.    A  "local  recursive  c-optimal 

^-strategy"   for player I   (see  proof of  lemma  11)   will guarantee 

him an expecteJ payoff of at  least 4(r0)  - t  in   this game.    Thus: 

v(r0)  > i(r0). 

If  v  la  its   value   function.     But  v   is  also  the   value  function of 

the game  defined  by ^ « 0,  by   theorem lj.    By symmetry we have: 

Thus  ^  la  uniquely  Jeterwinea. 
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6.     AfPROXIMATIOKS  AKD BOONDS FOR THK VALtTK FUNCTION 

In  this  aectlon  ^e  extend  to ganieo  of  survival  some  of  the 

known   results  for  random  walks  with  absorbing barriers—i.e., 

Che gambler's  ruin problem (see   [?] ,   chapter  i^).    The  random 

walk on   (0,  R)   with  each  step detemined  by  the  fixed  random 

variable   ^ leads naturally to a  functional  equation,  highly 

reminiscent of our  fui.damental equation   (,}) i 

(1)) ♦(r)   - K(4(r+0}   * 0 < r v 

It  Is  satisfied by several functions  associated with  the  random 

walk;   among them is   the probability PR(r)   that a particle start- 

ing at  r will reach R before it reaches 0.    This  "absorption" 

probability lü uniquely determined by   (13)   and the  famillir 

boundary condition: 

(M <Kr)  - P(r). r ^ 0.  r > R; 

assuming that   ^ Is not Identically 0. 

If It happens  that  s|f|- 0,  then   (13)  has among its  sol- 

utions  all linear functions A -f Br.    Applying the  two  conaitions 

PofO)  - 0 ana PoW   •■ 1  we get A - 0 and B -  1/^,  or 

pR^r/piS' 0<r<R. 

TtilM Is not exact because  the particle  will  in general  be  absorbed 

beyond,  not at,  the  barriers 0 and R.     Taking this  fact  into 

account,  we obtain rigorous estimatest 

<    PR(r) £ x~~£r  . 0 < r < R, 
R -»-^ 
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where  M    and   ^   are  such that  always  —/"^ f £ "^ • 

If  on   the   other nand,   KK|    4 0»   then  there   will   be   a unique, 

nonzero A-   aucn   that 

(IM E^e v J     0    1 1, 

provldea   that   ^     takes on  both positive  and  negative   values 

with positive  probability   (see   [l],  page  }02,  or   [l:],   page 

284).    Then   (13)   hL3   among  Its  solutions  ail   functions  of the 

form A -f  Be        .     As   before,   this   leads   tc an  approximation 

PB(r) a    -*F 0 < r < R 

- 1 

and  bounds: 

V*^) -1 
^pR(r) ^    \(R^) 

- 1 0 <  r < R 

-  1 

The linear case first discussed (with Z\%\ m 0) corresponds 

to A • o. Actually, It Is not an exceptional case; this becomes 

evident if we Introduce the function f: 

H*. x) 

Ax 
(e  -i)/A If ^ | 0 

If A - 0 , 

which  is  continuous   and monotonic   Increasing  in ^  for each x. 

Th«  relation   (H)   defining ^Q becomes   s|f(A , \)|  -  0,   whicn 

has  a unique  solution  in  all  cases.     Write  P(x)   for  ^(^Q»   X). 

Then  the  approxlniatlon  ana  bounas   for  pR are  simply   P(r)/F(R), 

F(r)/P(R-n/)   and  F(r-fA-)/P(R-»-A^),   respectively,   regardless  of  whether 

AQ  is positive,   negative,  or  zero. 
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?or gair.es  of  survival  we have  come very  similar  reeults: 

LEMMA   H.     If   ||a1J|j   Is  zero-fr«e  and  if 

majc mln a1 ,   < 0 < mln max a. ., 
1       J       1J J       1       1J 

then  there   la   a unique  number   A-,  such  that 

(15) val| |f(Aol   a^)!!   - 0. 

Moreover,  A.  and  val||a. . ||   have  opposite   algna,   or 

are  both zero . 

Proof.     The   value of   ||f(A,   ** «)I I   l8 a continuous   and 

■ trlotly Monotonie  function of A,   sinoe none of the  a. .   is 0. 

nils function tends to the limit + 00   as ^-> +00 because of the 

positive element  in each column,   and  to the  limit  - oo as   A -> -CD 

because of the  negative element  .In each row.    Therefore,   it has 

precisely one  zero.     The  last part of  the lemma follows   from the 

fact that val||f(0,   a1J)||   - val||a1J||. 

Again write  ?{K)  for f^»  x). 

LMA 13.    f if * solution of (?). 

Proof.    Using the identity  (valid for all >): 

AX. f(A,   x-t-y)   -  f(A,  x)  4 e^f(A,y), 

ire  hsve : 

V vsl||F(r+a     )||  - F(r) * e u val| ^(a^) | | 

F(r) 
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aa  ro-iuli'ea.     Th"  oorollai'y   whloii   i'.liows   la  proves   by   th?  aa^.e 

d'3VlCL'  . 

COROLLARY. Thi local F-ötrateglea are precisely 

tnoai? n^lxe^i aLrate^l^s that uae only probability dis- 

tributions   that  are  optimal   In  tne ;;4atrlx ga^ie   [^{a.^lj. 

THK0R2M o.     If   jla, ,||   Is   zaro-free   ana   If 

max ir.ln   a1 4   < 0   < mln xax  a. , 

then   the   value  of  tne   survival  came   la   approxLuately 

e.iual   to   P(r0)/P(R).     More   preclaely,   we   nave: 

(10)  9.     <  v(r   )   <  2      , 
P(R + v) u    "" P(R -»■ A*) 

where     -j' • aax  a. <#    A*" -ein  a. ,.     The   local   P—Strategien 

are   a; proxlmately  optimal.   In   the  sense   tnat  player I  can 

enforce   the   lowc'r  bound  of   (lo),   anj  player   II   the upper 

bound,   by   ualn^  them. 

We   remark   that  an,  all—positive   row   (max. mln   a. ,   > 0)   or  an 

all-ne^atlve   colum:,   (rain  max  a. ,   < 0)   trivializes   the  game. 

(Theue   cases   correspond   to  A     - —oo   and  -f-cr   respectively.) 

Proof  of   theorem o.     IX note   the   Indl   .ced   lower bound   In 

(1-)   by  i(r0).     Clearly  5  la   a  sttictly monotonlc   ao^tlon of 

(.5),   and   the   local  P-etrute^les   are  alao   local  g—etraiegles. 

If   we   set   r»(r)   - ft(r)   for   r outside   (0,   R)   we  have   a  "generalized 

Survival  game"   in   tne  sense  t •   section  3-     By   leuuna  ^,   g(rQ)   Is 
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118   vaiuj,   ar.a   lae  local  P—ülrutesi-j  aro o^tlniui.     Bui  P*  < P 

thr^u^nout   the  relevant   intervals   (-/*-,   0]   and   [R,   R-f ^);   tn-re 

fore  i(r0)   <  v(r0),   ana   the   local  P—strategies  enforce   at   least 

the   lower  amount  Tor player  I.     The other bound   Is  established 

In  the  saxe   way. 

The  bounas   (iu)   can  souetlineg  be   Ir.provea   by  exploiting 

special   proper-ties of   the  tnatrix.     For   jXij;.;ie,   inadmissible 

ro^a  or  columns  of   ||P(a. .)||   crin  be  alere-jarueu   In   ^alculatiru 

**    and    is   .     Two other  sucn   results  are   the   following; 

COROLLARY 1. If r0, R, m the a1, ^r- ill 

Integers, then n anu iS In (lo) rn.'y be r:?; IdCe i 

by/^—1   ana V-1   respectively. 

c.     If   r0  and   R ar-?   inte^->rs   an i   I.T COROLLARY   ' 

a, ,   are   all 1  1,   then   the   valu ;  of   tne   ^ame   is   exactly 

P{r0)/P(R),   and  the   local   P-eurateties   are   optical. 

An  equally   e>act  result  holds   for  arbitrary  r0  anj  R;   It  has 

the   fonn  v(r0)   -  ^'^Q"*" 
M
)/?(R-» ^* "♦■ >)#   where  —/^ and  h+v   are 

the unique   absorption points   jl'  the  process.     However,    M- ana 4/ 

depend on  r0  in  such a  way   that  v  is  actually   a  step   function, 

despite  the   continuity  of P. 

Two  simple   asytaptotic   results  are  of  interest : 

COROLLARY 3.     IT R -> oo   with  r0 held   fixed,   the 

value  of  the game  tends   to  a  limit  Jt   that  is   - 0 or 

satisfies 
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iepenJln-; on   -vhetn-r   \/ai||a.,||   < 0 or  > 0. 

Thus,   if   the   "money"   game   la   In nis   favor,   player I  can  defeat 

even   an   arbitrarily   rich  opponent,   .vltn   so.ne   probability. 

COROLLARY  4.     If   r0  and R -> oo    In   a   fixed  ratio, 

or,   equlvalently,   If   the   a.,   all  —>0   In   a   fixed  ratio, 

ther   tfvj   llir.lt  of  v(r0)   la  eltner 0,   r-VR,   or  1,   depenalng 

on   rfhetner  val||a. .||   <  0,   -  0,   or  >  0,   respectively. 

As   *e   pass   to  tne   limit   In   tnls   fasnlon,   the   "n^lve"   strategy 

of maximizing  the  .alnlmajr,  expectea money   ^aln  on  each  round 

becomes   better ana  better.     Iraeed,   in   the   balanced  case 

(va^i la. ,| |   «=0)   It   Is  a   local  P-atrate./.y,   an J   In  the   lopslae.; 

cases   (valll.i.,11   < 0 or  > 0)   one  player  nas   nothing  to   lose 

anyway,   In   the   limit,   while   cini   strategy   with  positive  expected 

tialn   wins   for  the  other.     These  remarks may   clarify  tne   ratner 

puzzling   (an.;  nut  entirely   correct)   cuncluslona  of   [l] ,   [2~\ ,   [ll] 

to   thtj   effect   tnit   tne   "naive"   strategy   Just  mentioned   Is   approxi- 

mately  optimal. 

[The  following   la  an  example  of a  game  In which  the 

"naive"  strategy   Is  not   satisfactory.     in   fact,   If  player 

1   follows   It 

\ 

-10 

4 

Example   10 
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here  he  will   always   choose  the   flrat   row  anu  hence   always 

lose   (dssumlng 0 <   £ <  ]^).    Another caae  where  the   "naive" 

strategy  id  not   satisfactory  for player   I   Is  ^iven   by   example 

7   ^bove .] 

A  generalization  of   corollary  4   has   been  obt-iined   by  Scarf 

[l2]   for  survival  gaxi.ea   in   which  r ana   a. .   are   n-dimensional 

vectors.     Under certain   asstunptiona,   which   reduce   to our  condi- 

tion   val||d. ,||   = 0,  h^   finds   that  the   limiting  vaiue   functions 

are  generalized hamonic   functions,   being  the   zeros of  certain 

second—order aifferential  operators,   in  general  nonlinear. 

A  different extension  of  the  survival  game  model,   of  some 

interest,   is obtained  by  changing the   information pattern,   dis- 

rupting  in  some  specified  way  the process  whereby  the  players 

learn  of each other's  past moves  and  the  resulting winnings  or 

losses   (see   [14] ) .     Since   the   local  P—strategies  can be  playeu 

without  benefit of  any  Infonuatlon  whatever,   the  bounds  of 

theorem  6  remain applicable,   and  we have: 

COROLLARY 3.     In  a  game of  survival  with restricted 

information  flow,   the   value   (if  it  exists)   lies  within 

the   bounds   (1*J).     In   any  case,   the  mlnorant   (sup—inf)   ana 

majorant   (inf—sup)   values  exist   and   satisfy   (lb). 

We  note   in  passing  that  the   value  always  exists   If Q » 0 or 

Q «  1,   since   the payoff  as   a  function  of   the   pare  strategies   is 

semlcontlnuoas,  and  the  pure   strategy  spaces   are  como-ot,   regard- 

less  of  the  information  pattern  (compare   [o] ) . 

So  far in  this  section  we  nave  been  proceeding on  the  assump- 

tion  that   I I a.,I I   is  zero—free .     We now  Indicate  without  proof 
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the modli'icationa re .uired If tnls dssumptlon 1J dropped.  The 

parallel niunberlng will asaist comparison. 

L2MMA 14 .  If max mln a. , < 0 < min max a. , then 
1  .   lj       J  1   1^ 

the aolutlonj of": 

(1-.°) val||f(A, a. ,)|| - 0 

constitute   a   finite,   cloaea   interval   [V ,   V].     Moreover, 

A'   anJ X'   botn  h^ve   3i-;n8  opposite   to  vai||a. . ||,   and   .ve 

have   A'   1 0  < A"   If   and  only   If   val| | a, , | |   -0." 

Write  P^x)   for   V{X,   x)   cui 1  P"(x)   for  f(A",   x) . 

LEMMA   i-".     Both P1   and   P"   are   solutions  of   {}). 

COROLLARY.     The   local   P'- ana   P^-ätrute/les   are   pre- 

cisely  those  mixed   strategies   that   use  only   probability 

distributions   that   are optimal  In   the  matrix games   llP'^.,)! 

and   IJP'^a. Jll   respectively. 

THEORKM 0°.     If max mln   a, i   < 0  < mln max  a. 4   then 
1 w J i 

the exLrerae   solutions  v     an 1   v,   of   (3)i   (^)   are   approximated 

by  P,,(r)/Pn(R)   and  P,(r)/P,(R)   respectively,   ^ith  precise 

bounds of  the   form   (lb).     In  the   Q - 0 game,   player  II  can 

enforce   tne  upper  bourjd  to  v0 by  playing v   local  P^-stratagy, 

and player  1   can  enforce  to  within   any   6 > 0 of  tne   lower 

bouna  by  choosing  6   > 0 small  enough   ana playing optimal 

strategies  of   ||f(A"+6,   a     )||   on  each  round.     A  similar 

statement  holds   for  tne   Q -   1   grüne   and  its  value   function 

v, .    Por general   Q  the   value   (if   It   exists)   lies   between 

P,,(r0)/P"{R^v)   ana  P'(r-H/T'(R+^) • 



10-10-: o 
-41- 

Agöln  we  remark   that   the  caoea max mln  a. <   > 0  and   mln maa  a.   < 

are   trivial.     A  guide   to   >rhat happens   when  one or  both   Is  e^ual 

to   zero  la provided   by   lemzud j>,   In  section   c?. 

The  five  corollaries  ai'e unchanged or  are modified   In  the 

obvious  way,   using  the   last  part  of   lemma   14     ana  noting   that 

statements must   be  made   In   terms  oi"  v0   and   v.,   with  the   value  of 

the  game  in general   (if  It  exlats)   lying  In  between.     Corollary 

O / X 2     can  be extended  slightiy   (with  the   aid  of  theorem  ^)   to  ylela 

the  following rtjsult; 

THEORiiM 7.     If  the  aj.   are  all ±  1  or 0,   and   if 

A'   - A",   then  vo "  vi   ^d  the  value of  the  survival 

gaine  exists  and   Is  Independent of   Q. 

It  Is natural  to  ask  whether  X  - >vn   Implies  V
Q 

m v
x  under 

more general conditions.     In view of example  11,  discussed  below, 

the  answer seems  to  be  In  the negative .    However,  the  converse 

liapllcatlon is valid  almost always.    In  fact.   If  X'   < V   tnen 

the  inequality : 

P"(R+y^)        ^'(R+v) 

holds at r - n/^  If R Is sufficiently large. This implies 

v0(R/2) < v.(R/2) by theorem d0. This proves: 

THBOREM 8.  If ||a. Jj is such that the functions 

v0 anu v. ar^ Identical for large values of R, then 

(To see that the condition on R is needed, go back to example 2 
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however    A'   < 0  <  A" .) 

0 
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1/2   in   (0,  R); 

[in  our  final  exajmpie.   It   lo  easily  checkeJ   that 

V'4l||?i     | |   - 0  .ini   that   A'   -   XM   - 0.    To  snow   that   v0 

and  v.   are   Jifferent,   let  u'   and  u"  be  the   valuj   functions 

for  the  aurvlval  gar«ea  which  correaporu  to   the   jubmatrlces 

ana 
-2     I 

1   -2 
1   -2 

respectively.     Clearly,   v.   > max [u',  u"]   ana   v0  < mln[u,,  un] 

However,   a   simple  calcu.i ntlon   shows  that   a'   and   u"   are als— 

tlnct  for  R  >  1;   hence   v0  and   v,   are  also  distinct.] 

-1 

0     -2 1 

0       0       1-2 

0       0       11 -2 

-1-10       0 0 

2-1       0       0 0 

-1     -1.0       0 0 

Rxojuple   11 
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