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THE REFRACTED ARRIVAL FROM A LAYER 

T. W. Spencer 

ABSTRACT 

High-frequency geometric ray theory i8 used to investi- 

gate the refracted arrival from a high-speed layer embedded in an 

infinite medium. The effect of changing the layer thickness to 

dominant wavelength ratio (E/ ^ ) and the range io depth ratio 

( p/H) is analyzed for a point oempressional source. The results 

approximate the exact solution when E/Väsf . The theory predicts 

shingling and shows that it is distance-limited. The maximum     ( 

distance at whioh shingling is observed decreases as E/A^ 

decreases. Beyond a certain minimum distance, the refracted 

arrival consists of a superposition of waves whose phase veloci- 

ties approach the compressional velocity in the layer at large 

distances. These waves include the reflected waves which cross 

the layer at least once in the compressional mode and the head 

waves which are generated by reflected waves which do not cross 

the layer in the compressional mode. There are 

Dnm-Cn+rT,)!/n!m.1 

reflected ray paths which cross the layer Ti  times in the com- 

pressional mode and m times in the shear mcde which arrive at 

exactly the same time. A formula is derived which expresses the 

composite amplitude of these rays in the form of a series which 

.^ 
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contains either tr\   ur H+l terms (whichever is smaller). The 

travoi-time ^urves for all rays with the same IT! value approach 

the same asymptote regardless of the t)  values. At large 

distances the travel-time curves for waves whoseffl values differ 

by one approach asymptotes which differ by T^ . At large dis- 

tances and for thin layers, the total amplitude obtained by 

summing all rays with the same HI value satisfies 

The 'fm  depend only on the density and velocity ratios. Because 

the head waves decay like (P/tt) , the reflected waves predomi- 

nate at large distances. If the duration of the direct ware is 

less than T^ , the refracted arrival consists of a series of 

events - each associated with a different .11 value. At large 

distances, the onsets of the events are separated by T, , the 

amplitudes decay like ( P/H)"  and t'ie ^ detemine the relative 

amplitudes. 
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INTRODUCTION' 

The refracted wave generated at the plane interface 

between two half spaces has been studied sxtenblvely  by Heelan 

(1953)* Strick (1959), Dix (1961) and Clilb^rt and Laster (1962). 

For studies of explosion-generated waves, the results for a 

point compressional source are of particular significance. 

High-frequency theory predicts that, the refracted w*ve varies 

with time in a manner which is determined by the integral of the 

direct wave (measured at distances large compared with the wave- 

lengths of interest) and the amplitude decays with distance like 

rt-l# „3/2 
P L  . P is the horizontal source-receiver separation and 

L Is the distance traveled in the refractor. Donato (1964a) 

has determined the minimum range (in terms of the dominant wave- 

length) at which the high-frequency approximation is valid. 

When the high-velocity medium is finite in thickness, 

the problem may be considerably more complicated. To demonstrate 

this, let T be the duration of the head wave for an infinitely 

thick layer and let fT  be the head wave travel time. The results 

for an infinitely thick layer »re not valid if waves which are 

multiply reflected within the layer or other wave types arrive 

In the Interval  tf>Ä "t ä tr + T. Multiple reflections distort 

the refracted arrival when T is large^, the layer in thin or the 

offset is large. When any of these conditions are satisfied, 

the individual phases are not resolved and the character and 

amplitude of the refracted arrival are determined by the way in 

which the individual phases interfere with one another. Inter- 

ference explains the amplitude dependence on offset and on the 
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domin&nt wavelength to thickness ratio, the discrepancy between 

the actual velocity in the layer and the measured velocity, the 

error in determining the true beginning of the arrival and the 

phenomenon of shingling . 

Dunkln (1963) and Donate (lbo4b) have investigated 

theoretically the first extremum produced by the interference 

of the head wave and the compresslonal wave reflected off the 

bottom of the layer. Their theoretical predictions for the 

dependence of phaae velocity on layer thickness and the depend- 

ence of amplitude on range are In general agreement with model 

experiments (Lavergne, 1961, and Levin and Ingram, 1962). 

Various lines of experimental evidence (e.g., shingling) indi- 

cate that in certain situations the first extremum may be so 

weak that it is not detected. In this paper high-frequency 

geometric ray theory is used to compute the complete refracted 

wave train. 

"''Shingling occurs when the phase   ocity exceeds the group 

velocity. As the range Increases, peaks and troughs move 

forward through the envelope which defines the refracted 

arrival. In this process, the amplitude of the first extremum 

decreases and it is eventually lost in the noise. At this off- 

set, a later extremum is selected to define the ti'ne-distance 

curve.  At each offset where an extremum is lost, there is a 

discontinuity in the time-distance curve and a new shingle is 

added corresponding to a later, larger amplitude extremum. 
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THE EMBEDDED LAYER 

Consider the problem of determining the refracted 

arrival from a hlgh-veiocity layer embedded in an iufinite 

medium. This model avoids the complications introduced by 

putting in a free surface. The significance of the geometric 

quantities is Indicated in Figure 1. The top of the layer is 

at e depth H below the source and at a depth Z below the 

receiver. The radiation field la axially Symmetrie about the 

7  axis.  The Z axis pssses through the source and is normal to 

the interface. Th^ plane Z = 0 coincides with the top of the 

layer. Our computations are made for a horizontal refractor 

so that Z»H. A dipping refractor can also be investigated by 

using 

to relate Z and HL Hei^e the refractor dips at an angle jjll with 

respect to the horizontal plane in which the source and receiver 

are located and P. is the source-receiver separation in the 

horizontal plane. E is the layer thickness. V is the compres- 

slonal velocity, V is the shear velocity and b is the density. 

Subscript 1 refers to the infinite medium and subscript 2 refers 

to the layer. 

The critical angle for FjP^ (incident compressional, 

transmitted corapressional) is 0C and the critical angle for RS 

(incident compressional, transmitted shear) is SL . 
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DEGENERACY 

When we attempt to take Into account all the waves 

which are multiply reflected within the layer, VJG Isaneülately 

encounter the problem of degeneracy. The simplest case of 

degeneracy arises when the ray crosses the layer once in the 

compressional (P) mode and once in the shear (r; mode. In 

Figure 1 we see that there are two such rays which arrive at 

exactly the same time and are therefore deaenerate.  T'hP'Rp t-.wn 

rays differ in the sequence in which the P and S legs of th^ 

path are traversed. This type of degeneracy cannot be removed 

by changing th^ layer thickness or velocity. It is a conse- 

quence of the fact that two different types of waves can propa- 

gate in an elastic medium. Degeneracy occurs only for rays 

which cross the layer in both modes. 

To reduce this idea to quantitative terms, we introduce 

the following definitions: 

r\  number of crossings in the P mode, 

TO   number of crossings in the S mode. 

Specifying Y\  and nfl determines a family of degenerate rays. The 

number of rays in the family (i.e., the degeneracy) is given by 
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,.Even when n Ä 6 and m = 2, the degeneracy is 28. If highly- 

degenerate events are truly significant, a way must be found 

Tot  removing the degeneracy - otherwise the ray theory becomes 

extremely inefficient from a computationpJ. standpoint. Also, 

because all the degenerate rays arrive at the same time, only 

the composite event has physical significance. For the embedded 

layer, a simple technique exists for removing the degeneracy. 
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REKOVAL OF DEGENERACY 

For Illustrative purposes, we consider waves which 

leave the source and arrive at the detector in the compresslonal 

mode. The total amplitude of a degenerate event must be 

expressible Ln the fom 

The T's are transmission coefficients.  The etter subscripts 

indicate the mode of propagation before r. d after transmission. 

The numbers indicate the media in which the wave propagal J. 

Q-  gives the total amplitude of all waves which make the first 
nrn 

and last crossing in the layer in the compresslonal mode. The 

significance of each quantity is indicated below: 

Symbol First Cros 3ing I<ast Crossing 

^m P P 

snm S P 

% P S 

w s 3 

The transmission coefficients appear explicitly in (2). Qrm , 

S tL,-, and VL^ are functions of the reflection coefficients 

Rpp ^PS * ^P Bn^  RSS * There are only four reflection coefficients 

because the wave can approach the interfaces only from within the 

layer and the extemai media have identical properties. 
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Formulas which give Qnm , S^ ,  Unm and W^ In terms 

of the reflection coefficients can be derived by using the pro- 

cedure outlined below for Q  .  Partition the f^ shear crossings 

into a. groups. Ea^h group must contain at least one shear 

crossing. or   satisTies 

The number of ways of distributing ffi identical things among CL. 

groups is 

If there are a. groups of 3, there must be CL +1 groups of P (since 

for Q^ the first and last leg must be in the P mode). The 

number of ways of distrituting the n compressional crossings 

into QL.?- 1 groups is Pn o^{   . Consequently, the  total number 

of P~S sequences in which the S are arranged in (L groups 1? 

The exponents for the reflection coefficients can be 

derived Just as easily. There are a,  groups of S. This indicates 

that there are O. conversions from P to S and from S back to P, 

Rps and Rgp enter In the fonn 

Let Xj^ be the number of shear crossings In the l^h  group.  "X.-1 

is the number of SS reflections in the i^h group. The total number 

of SS reflections is 

(%l)«rrv-f . 
H 
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m-Q-. la the exponent of P-ss« ^xe  total number of reflections 

Is given by H +01-1. We have already accounted for fT?-(1 + 20- = 

rf\ + ^- reflections. Therefore, the number of FP inflections is 

The final expression for Q.        is 

minCn-^m) 

The final expression for the total amplitude is 

The total amplitude for the trivial cases where either fl or ffl 

is zero is 

Instead of computing the amplitudes of Dn  individual 

degenerate rays, we need evaluate only FT) or rl +1 (whichever is 

smaller) temis in a series. It is this fact which permits the 

rapid computation of highly degenerate events. Furthermore, the 

use of (3) avoids the complicated bookkeeping required to insure 

that all members of the degenerate family have been included. 

(3) 

- 
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In the derivation we confined our attention to a geometrical 

situation in which the source and receiver were on the same side 

of the layer and to rays which leave the source and arrive at the 

det-öctor in the P mode. The same method yields the total ampli- 

tude when the waves leave the source and arrive at the detector in 

either the P or S mode and 

(a) the source is in the half-space and the receiver is 

in the layer (or vice versa), 

(b) the source and receiver are on opposite sides of 

the layer, 

(c) the rjource and receiver are in the layer. 
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HIGH-FREQUENCY THEORY 

Knowing An  we can derive Information about tne 

infracted arrival by using the method of generalized reflection 

and transmission coefficients (Spencer, i960). To use this 

method, we require an Integral representation for the Laplace 

transform of the source radiation field. The vertical component 

of particle velocity in a spherically symmetric compressio" .1 

wave is 

■ T 

'oH^U(¥)i^)+¥{^ 
(yj 

b, / rv, v r / [ l    p j 

The source function,>f , is time-limited and merely expands or 

contracts with "tj but does not change shape. The amplitvie 

spectrum of )f   is assumed to peak at a dominant frequency 

•^ = 1/1^.  P is the distance between source and receiver. 

At distances, which are large compared with the dominant wave- 

length, the direct wave propagates without change of shape and 

the time variation is given by )/(T). d is the radius of the 

spherical cavity and P0  is the peak pressure applied to the 

cavity wall. 

The Laplace transform of (5) is 

o 
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Using the method of generalized coefficients gives the Laplace 

transform of the composite event specified in equation (3) as 

0 

-W^) d> ^ (6) 

where 

K^-OHzX^f + nE(^f+mEa^f. 

Cagniard's method (1961) gives the response function 

corresponding to tT^-. in terms of a contour iotegrai. The 

numerical integration is time consuming even on a c mputer In 

the IBM 709^ class. For a line source, the Bessel function in 

(6) is replaced by the exponential c 9 (the line source 

coincides with the /( axis). Garvin (1956), by applying Cagniard's 

method to the line-source problem, obtained a closed algebraic 

expression for the response. This function can be evaluated 

rapidly on the IBM 709^. The total solution for our problem is 

built up by superposing the response functions for all rays which 

arrive during the t3me interval of interest. If there are a great 

many rays, the computation of the total response is time consuming 

even though the computation time per ray is nominal. Because of 

this and other difficulties, we have derived an approximation to 

the exact response function which is vail 1 in some high-frequency 

limit. The low-frequency cutoff will become apparent later when 

we plot the amplitude of the refracted arrival against the dominant 

wavelength to thickness ratio. 
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The high-frequency aayinptotlc expansion of (6) can 

be obtained by using the method of steepest descent and a modi- 

fication of the method of stationary phase discussed by Erdelyi 

(1956). The asymptotic representation for the composite reflec- 

tion is designated by a superscript P and is 

±im) (7) 

where <=f A   refers to the imaginary part of A   and flA-- to 

the real part. Arons and Yennle (1950) derived a similar result 

by considering the reflection of a plane wave from a liquld-sclid 

Interface. Equation (7) shows that their result remains valid 

for a multiply reflected wave which is initially spherical in 

shape. Q      is the angle of incidence at the upper interface of 

the rays which cross the layer n times in the compresslonal mode 

and T(\   times In the shear mode. A_ (-ISUlO^ ) is a function of 

the plane wave reflection and transmission coefficients. Inside 

the critical angle ( 0^,^ ec ), Anm (-Um0nm ) is pure real, 

the first term in (7) vanishes and the time variation in the 

reflected wave is determined by the source function.  Each reflected 

wave propagates with a phase velocity which depends on the range. 

Waves which cross the layer at least once in the compresslonal 
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mods (n^l) propagate with phase velocities which approach the 

compressional velocity in the layer at large distances. All other 

^sflected waves have phase velocities which approach either the 

compressional velocity in the half space or the shear velocity 

in the layer. Therefore, beyond a certain minimum distance 

(which depends on the time interval of interest) only reflected 

waves which satisfy the condition fy^l  can contribute to the 

refracted arrival. For these waves the angle of incidence is 

less than the critical angle and the vave shape is determined 

by tha source function. 

Qn~ takes into account the diminution in amplitude 

produced by geometric spreading 

i+f  1„ .mf£ 
-* \lö 

1 
!/£ 

i^AtT (f ^«r Hr^n. 
SlnÖ^wi   Is äO implicit function of the geometric  parameters 

through the relation 

| «n1 
f^iT —rrs -f 

ifv| 

ip-*iv (f^ (^mf 
and   T«« is tha norp»Ali2tfd travel tiine 

t x '-Hf tf wf* 
^    ('-^«l^^f s^f ^(f-s^) 
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These relations show that except for the factor (H/Q.) b, V,/P0 J 

the response expressed as a function of ivjH/Vi) depends on the 

three geometric parameters P/H, E/H and Z/H and on the dominant 

wavelength to thickness ratio through the parameter 

H/y, 

The reflected waves which do not cross the layer in 

the compressional mode (H =0 ) generate head waves.  The head 

waves which propagate with a ph&se velocity V^  are components 

of the refracted arrival. The wave reflected from the top of 

the layer generates the ordinary head wave indicated by the 

segment ED in the upper diagram in Figure 2, This wave travels 

in th«3 direction normal to ED with a velocity V.  and has a 

constant phase velocity, Vj . The incident wave produces both 

a transmitted compressional wave (p^ F^) and a transmitted shear 

wave (P. S£) in the layer. These two wavefronts intersect at the 

interface as long as the phase velocity in the incident wave 

exceeds V^ . When the phase velocity in the incident wave drops 

below Vn* the wavefronts separace.  In this process an internal 

head wave is generated (BD), This wave travels in the direction 

normal to BD with a velocity 1% . 

The lower diagram shows what nappens when the transmitted 

shear wave and the head wave reflect off the bottom of the layer. 

BQ is the reflected part of the head wave. The incident shear 

wave (PC) generates a reflected compressional wave (QF) and a 
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reflected shear wave (PBA). At a point on the lower Interface 

where the phase velocity of the incident shear wave drops Delow 

V^ , these two wavefronts begin to separate  A new head wave 

is generated whose wavefront coincides with BQ. Each time the 

unconverted shear wave (ft - 0) is reflected back into the layer, 

a new head wave is generated whose wavefront coincides with the 

wavefront of head waves generated by earlier shear reflections. 

The high-frequency representation for head waves which 

propagate with a phase velocity V« is 

= r4f-A  YTf&7^\    (m-o,2,1,.... ) 
(8) 

rn-^r 
where 

H/Vi 

yo-fweis. 
and ^pj, p^ and T^ are defined subsequently. The time variation 

is determined by the integral of the source function. At large 

offsets the amplitude decays like ( P/H)  . The wavefront of the 

head wave is tangent to the reflected wave which generates it at 

the critical distance 

pm   Ui+f   +JI!iL 
lN|/S H       ^ 

and the normalized travel time is 
Hf (14) 

Tn -^a . Ii+(|4* Y|-iT4- mt(£-t V* 
Vl ■ 
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S-JÄ ... -Mira Zlli. mm *• Ji ( L   _ JJ* ( (,\ 

m     H/V,      ^ Ua i?; 

The head waves are separated by equal time Intervals 

which do not depend on the offset. This fact suggests that if 

the refracted arrival consisted of head waves alone, the condi- 

tion "h ~ 2T^ would lead to constructive interference when the 

/^j all have the same polarity. 

The /^depend on the velocity and density ratios and 

are defined by 

/(_-11 i iSbn"!  , WfU'V*, do) 

where 

■f*(f) ls the complex conjugate of fCf). f may be identified 

with the sine of the angle of incidence. The form of-f (^ } 

depends on the value of m as follows; 

f(§) contains square 2?oots of the form (f2--f^ ) ^. A one-to-one 

correspondence between points In the §  and f (f ) planes is estab- 

lished by introducing cuts of finite length along the real f -axis 

between each pair of branch points. Each square root is defined 

to be positve real on the real f -axis to the right of the cut. 

At large offsets the /^ determine the relative strengths of the 

head waves. 
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The refVacted arrival from the layer is compüsec. of 

head waves and multiply reflected wave.? which cross the ?.\yer  at 

least once in the compressional mode. All those waves propagate 

with a phase velocity which at large offsets approaches the com- 

pressional velocity in the layer. The reflected waves have the 

same shape as the source function. The shape of the head waves 

is determined by the time integral of the source function. To 

explain the significance of the factor (id/(H/V| ))which appears 

in (7) and {S)i  we must re-examine the expression for the direct 

wave in (5). The total energy radiated into the system is 

.TlU 
^ ~ (j^tjik t^ r -fiotf. 

1'  is the duration of the source function {/f ) and, for the fom 

of source function we are assuming« T/t^ is a constant. The 

total energy input is directly proportional to "tj. We make the 

energy input independent of the dominant period by dividing the 

source- function by the dimensionless quantity ("b/C^V^i ))• T*16 

quantity ("tj/CH/Vi )) appears in the numerator in (8) because the 

BtLie  of the head wave is determined by the integral of the source 

function and Integration introdacef» a factor "tj . Note that in 

the high-frequency limit, the reflected waves determine the ampli- 

tude and character of the refracted arrival. 
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The complete expression for the refracted arrival is 

f^MU-R^ WE? 
Va/  R WV/H/V.'H'H'H 

(n) 

) 

When Vj^^ , T^0 Is the travel time of the first reflected arrival 

which is incident beyond the critical angle - this .1 s the reflected 

wave P. P. . When V.-i1^ ,   a shear head wave is generated which 

propagates wjch the phase velocity V^ .    Beyond the shear critical 

angle, 9g , "tois determined by the travel time of the shear 

head wave - 

s  q-ifeH +^ HA
1
 if) j 

Inside the shear critical angle, "Q. is determined by the travel 

time of the first reflected wave which is incident beyond the 

critical angle 6C . Note that inside the critical angle A, 

there are no head waves and if we remove the restriction on f] 

(i.e,,ins:l) equation (ll) gives the complete reflected arrival 

from the embedded layer. 
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CHARACTERISTICS OP THE MULTIPLY REFLECTED WAVES 

For high frequencies the multiply reflected wavea 

determine the characteristics of ehe refracted arrival. The 

travel-time curves for frt ■ 0,1,2 tire  plotted in Figure 3. The 

difference in travel time between the reflected wave and the 

refracted arrival is plotted on the ordlnate. The offset is 

plotted on a logarithmic scale to emphasize the fact that all 

the travel-time curves for a particular |Y1 value approach the 

saro^ asymptote at large offsets - tne travel-time difference 

between any two waves which have the same IT) value goes to zero 

at larg;^ offsets regardless of the D values. The travel-time 

difference between waves which have different ffl values approaches 

a finite value at large offsets which is a multiple of T. . T. 

is defined in (9) where it is shown that 2TA is the time interval 

between head wave arrivals. 

This clustering of the travel-time curves leads us to 

refer  to waves with the same ry) value as a particular order. If 

the significant amplitudes in each order are confined to a limited 

range of fl values and T (source duration) «s. T , the refracted 

arrival at large offsets appears as a series of events (Berckhemmer 

and Oliver, 1955). Each event is associated with a particular fT\ 

value and propagates with a phase velocity which is very close to 

the compressional velocity in the layer. The amplitude of each 

event is obtained by summing the amplitudes of all rays which 

have the same flfl value as follows: 
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n 
Am Is plotted against the normalized offset in Figure k.    At 

large offsets, the slope approaches -3/2.  In Figure 5, A^ 

is plotted against tne r.omalized layer thickness. For thin 

layers the slope approaches 1/2. A study of many cases shows 

that for fVH;>20 and 5/H <. .1, 

Am-Vf'^'W2 • (i3) 

At large offsets the head wave contributions decay like (p/H)-. 

This means that the reflected waves determine the character of 

the refracted arrival at large offsets. 

The T^j and/^yj depend on the rompressional velocity 

ratio, the Poisson's ratios ( ÖJ and (X» ) and the density ratio. 

In Figure 6,   the 7^ and ^jbL   are plotted against the compressional 

velocity ratio for a rigid layer ( 0%  - .25)  embedded in a very 

weak medium ( flTj = .45).  For large velocity contrasts, the 

X^(rfl^,l) approach and even exceed Y .  'Vj is within 10 per cent 

of 7^ over a large part of the range.  Y goes through zero 

between .86 and .87. This fact indicates that in the first 

order (m = 1) the amplitudes of the individual waves change sign 

at least once.  If the amplitudes of the head wave and reflected 

P 
Note that the measurements of McDonal, et al. (1950) indicate 

that at a depth of 500 ft, the Poisson's ratio in Pierre Shale 

is about .42. 
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wave contributions to the refracted arrival were detemlned by 

M^  and iC alone, the reflected waves would be of minor importance 

over most of the range. However, increasing aither the offset 

or the dominant frequency reduces the bead wave amplitude rela- 

tive to the reflected wave  No significance should be attached 

to the behavior of/JU near V./% = 1. This is a consequence of 

the fact that the high-frequency asymptotic representation for 

the head wave is not valid when the receiver is near the critical 

cone. As Vj/V^ approaches unity, the critical cone approaches 

the receiver regardless of where the receiver is located. Note 

that Jlf,  decreases relative toyU0 as the velocity contrast 

Increases and is always less than five per cent of JU^ - 

In  Figure 7* the T^ andyU^ are plotted againpt 

\  /l/i • This quantity determines the Poisson's ratio 

l %  i 

o- _ JJS! . . 2 

The higher oi-ders peak sharply near V2 /Q^
2 = 3.0((^ = .25). 

Near V^ /v^  = 3.0, ^    is about 10 per cent of ^ . As the 

layer becomes more fluid-like, the ^ (rtl^l) decrease and become 

very amaU compared with ^ . This is because the Y^, (^2^1) 

depc-iid on the conversion coefficients R. and R,^, As the layer 

becomes more fluid-like, the efficiency of the compressional to 

shear conversion decreases. Similar behavior i-* exhibited by the 
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In Figure 8 the Y and /J-    are plotted against 

V /ir2. Over the entire range the */ ( m>L2) are small com- 

pared with 1^ but as the Infinite medium becomes more fluid- 

like. 'T  approaches Y  and even exceeds it. The Al    (mi 2) 

have much larger values when the infinite medium is xiuid-like 

than when it is rigid but only^ ever exceeds 10 per cent of 

/X^ . Note that for large values of V* /V?',  all the higher 

orders have opposite polarity to /la . 

Equation (12) cannot be used when the individual wave- 

lets (corresponding to the different 0 values) are wholly or 

partially resolved. The degree of resolution increases a? the 

offset decreases, the layer g^ts thicker or the dominant 

frequency Increases.  In Figure 9* the amplitude of each wave 

is plotted along the ordlnate and the difference between the 

arrival time of the reflected wave and the onset of the 

refracted arrival along the abscissa. Here we consider only 

multiples which do not cross the layer in the shear mode (171 = 0)^ 

Each curve is drawn for a particular offset. The leftmost dot 

on each curve gives the amplitude and time difference for the 

wave which crosses the layer twice in the compressional mode 

(D = 2). As wo move along each curve from left to right, f] 

increases in Increments of two. 

Note that the time interval between the arrival of 

events corresponding to different IT1 values is ..105. At each 

offset, all the significant amplitudes occur well within this 
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interval. It follows that if the first event is resolved at 

P/H - 5* it iä resolved at all larger offsets. 

The open dot on each curve corresponds to H = 8. As 

the offset increases, the amplitude increases to a maximum and 

then decreases. For D = 8, the maximum amplitude occurs near 

p/H =20. At o/H m  50, the amplitude for H = 8 Is larger 

than for any o.her H value. As the offset increases, the 

amplitude of the later arrivals increases and the number of 

arrivals within a fixed time interval increases. When the wave- 

lets are partially resolved, this causes additional wiggles to 

appear on the tail of the first event (it) = 0 ). 

As tha offset incrsasep, the time delay decreases for 

each H value. The wavelet associated with each reflection moves 

forward in time with respect to the onset, and the amplitude of 

the early arrivals decreases. It is this behavior which is 

responsible for shingling. 

It may seem odd that at a given offset, the eraplitude 

actually increases as the number of reflections increases. ?or 

|ffl = 0 the amplitude is determined by 

A    T T P ^ 

At the critical angle (6t ), R,— ■ 1 and TOB  =0. As 6 decreases, 
rr       ritft 

R-p decreases rapidly and is always less than unity. This means 

that the amplitude reaches a maximum value near 6^ and that the 

position of the maximum migrates toward Öc as fl increases. 
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In Figure 10, A.  Is plotted as a function of V, A2 - SlilÖ 

for several D values.  If the angle of lncif>nce were Inde- 

pendent of t]  ,   the amplitude would decrease with increasing fl 

Actually, increasing fl causes the angle of incidence to 

decrease. This fact and the proximity to the critical angle 

of the peaks for the higher fl values explain the increase in 

amplitude with Increasing fi . The dashed lines are drawn for 

particular P/H values. 
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THE REFRACTED ARRIVAL 

The reflected waves and head waves superpose to form 

the refracted arrival. The actual responae function is obtained 

by (a) convolving the source function with the sequence of 

impulses which represent the reflected waves and (b) convolving 

the integral of the source function with the sequence of 

impulses which represent the head waves (as indicated in 

Equation (11) K Thtv choice of source function is not completely 

arbitrary. It must be chosen so that each poir.t in an infinite 

medium returns to its original state a finite time after the 

arrival of the disturbance at that point. This means that the 

D,C. component of luch quantities as the stress and strain must 

be finite. The Laplace transform of the radial stress in a 

spherically symmetric compressional wave is 

"•     0     r   |      ^m    Vflsrv J 
In order for the D.C. compcnont to be finite, 

Umtt? «As\ A^2. (i4) 

As a consequence of (14), X must have at leaut two axis crossings 

We also require that the particle velocity and acceleration be 

continuous. One function which satisfies all these conditions is 
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The first factor determines the envelop. The duration of the 

function is T = Ktj . The condition K^: 2 forces the low- 

frequency behavior to satisfy (ik).    The source function and 

its integral are plotted in Figure 11 for K - 4. The source 

function is symmetric about "t/t^ - 2. The integral of the 

source function is antisymmetric about "t/t'dl ^ 2.  It follows 

that under certain conditions, we can distinguish between 

reflected and head wave contributions to the refracted arrival 

on the basis of symmetry. 

Figures 12-iA show how the character of the refracted 

arrival varies with the dominant frequency at three offsets. 

In each figure, the dimensions are fixed. One division along 

the abscissa is equal to the dominant period. As we move down, 

the dominant period increases, the dominant wavelength increases, 

and E/Äj    decreases. Because the dominant period changes, the 

time scales cannot be compared directly. 

If the refracted arrival consisted of the head wave 

only, all traces would have the antisymmetric form of the head 

wave and would terminate at the fourth division. Figure 12 

shows three distinct events for E/,.,  - 7» 5 and 4. These events 

correspond to m = 0 , 1 and 2. As E/X     decreases, the later 
c} 

events move toward the first event, interfere with it and 

become lost in it. 

Changes in E/Xj    produce signif'^ant changes in 

character for f>/H  values of 3.5 and 10, but relatively minor 

changes for P/H = 100, At large offsets, the dominant frequency 
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is not high enough to partially resolve the Individual waves 

which contribute to the first event. At small offsets, the 

individual waves are separated by larger tir-ie Intervals and 

tne change in character is a consequence of Interference. 

As we move down on each figure, the dominant period 

increases. This causes the Individual waves to overlap to such 

an extent that only a single event is discernible and reduces 

the amplitude of the reflected waves relative to the head waves. 

This explains why the last trace on each figure approaches the 

antisymmetric shape associated with the head wave. 

Each trace is normalized so that the maximum amplitude 

plots at the same value. The true maximum amplitude in the 

refracted wave train is plotted in Figure 15 as a function of 

the dominant wavelength to thickness ratio. Each curve is drawn 

for a particular offset. As the offset increases, a relative 

maximum develops which migrates toward the vertical line marked 

l^j = TA . We have shown that at large offsets the waves arrive 

in groups which are associated with different ffl values and are 

separated by the time Interval T.    "^ = T.  is the condition 

for constructive interference between the groups. The weak 

minimum and maximum at P/H - 100 are also a consequence of 

interference between the groups. 

As the dominant frequency increases, the individual 

waves in the group begin to separate from one another, and the 

amplitude varies in a complex way. Destructive interference 
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between Individual waves Is responsible for the deep mlnlmurr.. 

At sufficiently high frequencies, the Individual waves are 

completely resolved and each curve must approach an asymptote 

with slope -1/2. At very low frequencies^ the head wave is 

dominant and each curve must aj. roach an asymptote with slope 

1/2. The increase in amplitude at low frequencies is indicative 

of the failure of the high-frequency theory.  If this increase 

in amplitude were continued to very low frequency, the energy 

in the refracted wave would exceed the total energy radiated 

into the system (EL. ). There is also another indicator of the 

failure of tho asymptotic theory. We are dealing w'th a layer 

which is embedded between two half-spaces which have identical 

properties.  In the limit as the layer thickness goes to zero, 

the amplitude of the refracted arrival must go to zero. The 

multiply reflected waves exhibit the- correct behavior 

(Equation 13)j» tut the head wave amplitudes do not go to zero 

(8). We do not attach significance to dominant wavelength to 

thickness ratios greater than unity; consequently, this analysis 

is restricted to thick high velocity zones. 

Figures l6-l8 illustrate the effect of offset. On each 

figure, the E//^ ratio is constant and the dominant period does 

not change from trace to trace. Each trace is normalized so that 

the maximum amplitude plots at the same value. The normalized 

offset ( P/H) changes in increments of 0.5. The group of lines 

which start in the upper left corner of Figare 16 show how the 
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individual peaks and troughs move forward with respect to the 

onset and decrease in amplitude as the offset increases. This 

behavior is known as shingling. The decrease in amplitude 

would be considerably more pronounced if true amplitudes had 

been plotted. 

In their model experiments, Levin and Tngram (1962) 

observed that the phase velocity measured as a function of 

laye^ thickness t<_xes on values which exceed the compressional 

velocity in the layer. The explanation for this effect lies in 

the fact that the phase velocity of the reflected waves exceeds 

the compressioral velocity in the layer. The effect ij not 

observed when the layer is very thick because the initial peaks 

and troughs are associated with the true head wave which is 

observed uncontaminated by reflections off the bottom of the 

layer. For thin layers the effect is not observed because the 

phase velocity of the reflected waves approaches the compiessional 

velocity in the layer. 

The secor i group of lines in Figure 18 t-.ow how addi- 

tional peaks and troughs appear on the tail of ehe first event 

as the offset increases. These phases are associated with the 

later arriving, higher f) values which increase in amplitude with 

offset. The third group of lines shows that shingling also occurs 

in the second event (fT) = l). 

The shingling effect may be particularly pronounced when 

the difference between the phase velocity of the reflected waves 
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(C)   and V2  Is  large.     The  phase  velocity  is defined by 
J P 

Cnrn _ dT   _    i 
Y, Jtnm       Sm 

wvr nm 

The difference In phase velocity Is 

Changes In the physical dimensions which reduce ^L- Increase 

the phase velocity difference.  Therefore, increasing the layer 

thickness or reducing the offset Increases the phase velocity 

difference.  Figures l6-l8 were computed for a relatively thin 

layer (E/H = .1).  For tnlcker layers. Individual extrema move 

toward the onset more rapidly with increasing offset. 

In Figure 17, -he phase velocity is slightly greater 

for the third peak than it is for the earlier extrema. Shingling 

is exhibited only over a limited range of offsets.  The second 

trough and third peak on the first trace can be correlated across 

the entire record, but the phase velocity difference disappears 

for P/H ^ ?.  In Figure 18, E/^ = 4 and there is no shingling. 

These observations Indicate chat for a fixed dominant period, 

shingling is not observed beyond a certain maximum offset. The 

maximum offset decreases as tae dominant period increases anu 

for sufficiently long dominant periods, shingling does not occur. 

When shingling is observed, it indicates that the high velocity 

zone is thick.  The lower bound or E/A, depends on the depth to 

the layer.  For E/H = .1, the existence of shingling indicates 

that E/7d^4. 
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Normal mode propagation In whlnh the phase velocity 

exceeds the group velocity can produce shingling but not distance- 

limited shingling. This is because the group velocity -phase 

velocity relationship for a single mode is independent of distance. 

The maximum amplitude and the amplitudes of individual 

peaks (P^ ) and troughs (Tj ) are plotted against offset in 

figure 19. Notice how the maximum amplitude shifts to later 

extrema as the offset increases. The first extremum may not be 

observed because of noise or insufficient dynamic range. Never- 

theless, in certain cases it may ttill be possible to determine 

the onset of the event. Figures 12-14 show that the position of 

the deepest trough is relatively insensitive to offset and to 

E/Aj when E/^. is near unity. In each case, the deepest 

trough occurs at a time near 2"^ after the onset. Recall that 

2"h is the time at which the source function takes on its maxi- 

mum value. This suggests that the time of the source function 

maximum might determine the delay factor to be used in determin- 

ing the true onset of the refracted arrival. When used in this 

way, the source function should include the effect of reverbera- 

tion in the near surface in the vicinity of the source and 

receiver. 

In Figure 20, the maximum amplitude is plotted against 

offset for different values of E/^ . Changes in the way in which 

the individual wavelets interfere accounts for the complicated 

variation of the higher frequency curves. For E/^j values of 

ria 



- 32 - 

Ü and 1,   the amplitude actual;.y increases with offset over 

limited ranges of p/H.  For o/H ^ 8.5, the maximum amplitude 

occurs for E/^ ^1.  At laj'ge offsets ( p/H > 20),  each of the 
-.3/2 

curves approaches the (p/H)   decay required by (13). 
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CONCLUSIONS 

At large offsets the refracted arrival from a layer 

results from a superposition of all waves which travel with 

phase velocities equal to or near the compresaional velocity 

in the layer. This requirement is satisfied by the head waves 

generated by reflected waves which do not cross the layer in 

the compressional mode and by multiply reflected waves which 

cross the layer at least once in the compressional mode. 

Specifying H (the number of crossings In the compressional 

mode) and ffl (the number of crossings in the shear mode) does 

not define a particular ray but rather a family of degenerate 

rays which arrive at exactly the same time. The number of 

rays in the family is 

Dnm'-(n-fm)!/n',rn! ' nm 

The individual rays differ from one another in the sequence in 

which the P and S legs of the path are traversed. Because all 

the rays arrive at exactly the same time, only the total ampli- 

tude is physically significant. A formula is derived which 

gives the total amplitude in terms of a series which contains 

either |T1 or n ■♦• 1 terms (whichever is smaller). This formula 

makes possible the rapid computation of highly degenerate events. 

The travel-time curves for all rays with the same IT) 

value approach the same asymptote regardless of the n values. 

The travel-time curves for waves with different ffl values approach 



- 3^ - 

asymptotes which differ by a multiple of T. .  At large offsets 

and for thin layers, the total amplitude obtained by summing 

all rays with the same ffl value satisfies 

The head waves decay with distance like ( P/H)  .  Therefore, tne 

reflected waves predominate at large offsets. The reflected waves 

also predominate when the dominant frequency Is high.  If the 

duration of the source function is less than T^ , the refracted 

arrival consists of a series of events.  Each event is associated 

with waves which cross tne layer the same number of times in the 

shear mode.  At large offsets the onsets of the events are 

separated by T. , the phase velocities approach the compressional 
-3/2 

velocity in the layer, the amplitudes decay like ( P/H)   an- 

the relative amplitudes are determined by the Ym .  The Y^ 

depend only on the density and velocity ratios.  The higher orders 

(rfi;>0) are shown to be elgniflcant when the compressional velocity 

contrast is large, the Polsson's ratio in the layer is near .2^ 

or the Polsson's ratio in the Infinite medium approaches ,5. 

The multiply reflected waves propagate with phase 

velocities which exceed the compressional velocity in the layer. 

Consequently, as the offset increases, each wavelet moves toward 

the beginning of the refracted arrival.  In this process the 

early arrivals (corresponding to the smaller n values) decrease 

in amplitude.  Th_ slightly higher phase velocity and the decrease 
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in amplitude produce the shingling effect. The later- arrivals 

(corresponding to higher fl values) first increase and then 

decrease in amplitude  This causes additional wiggles to appear 

on the tail of each event as the offset increases. The shingling 

Is distance-limited. The maximum uffcct at which it is observed 

decreases with increasing period^ and for sufficiently long period 

it is not otaervec'. Shingling occurs when the high velocity zone 

is thick compared with the dominant wavelength.  We know that the 

smallest value of (E/^ ) for which it occurs depends on E/H and 

that as E/H increases, the shingling effect becomes more pro- 

nounced. 

For E/A^ near unity, the time of the deepest trough 

is not ve'-'y sensitive to changes either in offset or in E/XJ • 

In our case the time between the onset of the refracted wave 

and the dee;>?st trough is determined by the time at which the 

source function attains its maximum value. If this were true 

generally, it would provide a means for making a good estimate 

of the onset time. When used in this way, t-he source function 

must include the effect of reverberation in the near surface 

in the vicinity of the source and receiver. 

Beyond a certain offset, the maximum amplitude of the 

refracted arrival occurs for "tj * T. . This is the condition 

for constructive interference between the groups of waves 

corresponding to different flf] values. 
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Our results have been obtained by using high-frequency 

geometric ray theory and approximate the exact theory for 

E/A^  1. 

Reflections off interfaces both above and below the 

high-velocity zone can introduce energy into the layer at and 

near the critical angle to produce secondary refractions.  A 

reflection off a deeper interface can generate a secondary 

refraction when the interface dips in such a way as to reduce 

the phase velocity in the reflected wave.  It follows that more 

than one refracted arrival may be associated with one high- 

velocity Jayer.  When this happens, the difference in travel 

times between the primary and secondary determines the travel 

time ülong the critical angle to an underlving or overlyln,? 

reflector. 
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