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SUMMARY

An iterative procedure for obtaining the characteristic
root of largest absolute value of a positive matrix, the
Perron Root, 1s derived which ylelds geometric conver-—

gence.
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CN AN ITERATIVE PROCEDURE FOR. OBTAINING TJdE PERRON ROOT

OF A POCITIVE MATRIX

Richard Bellman

§1. Introduction

The purpose of this paper is to present a new iterative
procedure for obtalning the characterictic root of largest abso-

lute value of a positive ratrix.

The origin of the method 1: as follows. There is a result
of Von Neumann, [7], a generalization of hi:s fundamental min-max

theorem in the theory of games, [8], to the effect that

(1) Min Max :x,Az{ . Max Min (x,A
y X X,By, X y x,By
where the variation 1s over the region defined by

O, & 1)

(2) (a) x, > S X, =
i ~ 121 i
R:
n
(b) yl ; 0, 1Z.1 yi = I,

and it i{c ascumed that B ha: the property that (x,By) > b > C for

all (x,y) €R.

It wac obuerved by Shapley, [6], that this result can be ob-
tained a: a by—product of the theory of "games of rurvival®, cf [1],
(5], [6], which requires only the fundamental min-max theorem, by

considering the equation for K,
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(3) A= Min ¥ax [ (x,Ay) + A (1-(x,By)) ],

y x
e Max Min [ (x,Ay) + A(1-(x,By)) ],
X y

where we impose the additional assumption the 1 > (x,By) for all
(x,y) €R. "his restriction ic of no importance becaucse of the
homogeneity of the ratio in (1).

It 1s then easy to prove that there 1s a unique solution of

(5) which may be obtained as the limit of the sequence {Al\} defined

by
(4) AO = Min Max [ (x,Ay) ] = Max in [ (x,Ay) ],
y X X y

Ans1 = Min Max [ (x,ay) + A (1-(x,By)) ],
y X

= Max Min [ (x,ay) + A_ (1-(x,By)) ],
n
X y
and that thls solution {s the given also by the common value of

the ratio in (1).

This procedure ylelds a theoretical and computational hold
on %, which 1. quite useful. Furthermore, by means of this
ingenious device we have a means of linearizing a number of pro-—
blem: relating to ratios. In thils paper we shall apply thls 1dea
to the problem of determining the root of a positive matrix of
iargest absolute value, using a variational representation for

this root involving a ratio.
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§2. The Perron Root

Let A be a square matrix (aij)’ It 1s called positive'.if
aiJ > O for all 1 and J. The basic result concerning positive

matrices 1s due to Perron and 1s the following.

Lemma 1. If A is a positive matrix, there is a unique characteristic

root of largest absolute value. This root is positive and its

assoclated characteristic vector may be taken to be positive.

Notation. We denote this root by p(A), the Perron root of A.

An alternative definition of this root, possessing the great

merit of involving a variation, is

Lemma 2.

n
(1) p(A) = Max Min a, x,/
In 5> 8y5%y/x

X J=1
Y /
= Min Max 8, X.,/X
P B

This result has been used by several authors independently,
and does not seem to have any particular known origin. It was
communicated to the author several years ago by H. Bohnenblust

in connection with a different problem, see [2].

Here the variation is over the region defined by

* not to be confused with positive definite
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§}. A Refinement of Lemma 2

Let us show that Lemma 2 may be replaced by the stronger result
Lemma 3. We have

n
(1) p(A) = Max Min a, X,.,/x, ,
R' 1 52; 13731

n

= Mi? Max E: aijxj/x1 ,
RO 1 o

where R! ii defined 91

(2) x, > d, é;j Xy =1,

and d 1s some parameter depending only upon A. Specifically, we
may take

(3) a4 = Tig a J/Max ( 2:
’ J=1

Proof: The minimizing Xy constitute the characteristic vector

associated with p(A), normalized by the condition that EE: Xy = 1.
i

ience

n
(4) ep(A)xy = le g%y s 1 =1, 2, ...y n.

Thus

(5) p(A) Min Xy 3 ("1n ay4) Z ; Min a,
J=1

1
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Cn the other hand,

n
(6) p(a) Mix Xy € Mix Xy (Mﬁx zi alj) .
J=1

whence

(7) p(A) < Max (Z ay4)-
1 3=1

Combining (5) and (7) we have

(8) mMin x; > Min aij/Max (2{
1 1, =

$4. An Alternstive Definition of p(A)

Let us now show, following the lead of Shapley, that we may
define p(A) as follows

Lemme 4. p(A) 1s the unigue solution of

(1) A= Max Min [Z kg * A(l-—x ]

=1
or of
(2) A= ‘un Max [ Z + ?\(l—xi)]
3=1

where RF' 1s 25 defined by (3.2).

Proof: It is sufficient to prove that p(A) catisfies (1). The
proof of the other statement 1s similar. We have, for all x in

R',
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(3) A ( Zn A(1=x,) ]
b) > il X —X ’
2 N & a34%3 7 1

for any solutlon A,wlth equality for a2t least one x. We shall
prove below that there 1s exactly one solution which may be obtained

lteratively.

Hence, for all x€R!',

(4) s Ax,]
4 0 > Min 8y4X, = NAX ’
<7 5;; 1373  §

or

(

n

) © ?_Min Cx 5_‘ ai"xj/xi-A}] X
J=1

for all x€R'. Slnce Xy > 0, it follows that

n
(6) > Min ( %
AD> 1n g;l aiij/xi)

for all x, with equality for one x, at least. lence

n
(7) A= M;);. Min (Jz:l aleJ/xi) = p(A),

whnich shows uniqueness provided we assume existence.

Similarly we may demonstrate the result in (2)

'§$5. A Non-Linear Recurrence Relation

ol S B R e e

Let us now consider the non-linear recurrence relation
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n
(1) w,, = Mé? Vix [ 2 gyt u (1=x,) ],

where R' i3 as above and u. is arbitrary. We shall prove
Theorem

(2) p(A) = 1lim u,
n—»00
A similar result holds for the recurrence relation based upon

(4.2)
Proof: We have

(3) ugy = M;? M?x r agyxy + up (1-x,) ]

= Mln Max

y1[2a133+u(1‘x1)33

3=1

S
J=-1

n
where the maximum in y 1is over the region vy 2 0, :E: yy = 1.
i=]

Using the min-max thecrem of Von Neumann, this may also be written

(4) u .y = Max Min {Z Yy C i 84Xy + u n(1-x,) ]} .

i=1 J=1
Let us write this recurrence relation in the form

(5) Ue1 ™ Hé? Max T(u ,X,y) = Max Min T(u » X,¥)
y ¥

Then using a device we have employed frequently in the theory of

dynamic programming, cf (2], [3], we have



(6) wu =

n+l

where (X,y)

and mex-min

YHence,

' i - J
(7) Ynel
and

() u_. =

n

From thic we

(9) un+1"un

which yleld:

(12) u_, 1=y

Hdence

)

<l

T(un,Y,

5)

x|

T(un-l’
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and (X,y) are respectively values where the min-max

are assumed for n and n-l respectively.

by virtue cf (5)

-3
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-
w7
<
W’
\/
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c
3

>
<
p g

u,_10%Y) Tl _,X,Y)

N\
-
c
b= |

|
—
-
b
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<
N

obtalin

v

T(un:;ny) - T(un—l p;»-y-)

T(unv':l:.;;) - T(un_lii.'y) »

s

IN

n -
n 2 hﬂfun—l) Ez.yi(]_xi)
i=]
L =
< lup=up ) :E: 71 (1-%y) .
1=}
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n - n -
(11) Ju = ) < Ju—u | Mex [Z Y (1-%,), y,(1x,) ] .
i=] i=]

Since Xx,, X,> d > 0, and y >O,Zy-l,w»have
i i< i< 1 1
(12) Ju ,=u | < (1) Ju = |,

@®
and hence geometric convergence of EZ'(U

—~u_). The limit of
by l "n

n+

u, exists, and must equal p(A). Observe that thic 1 a situation
where only the value of a game 13 of interest, i1f we wish only to
determine p(A). Consequently, the iterative procedure of [4],

may be of some merit here.

§6. Monotone Convergence

If we set
1 u, = Min Max a, X
LLIRE R Ll B

J

we see that u1 > uo and hence Unsl > Ups which ensure: monctone

convergence.
Similarly, if we have
(2) a; € a4 < 3y,

and use the Perron roots of the arcociated matrices a. initial

aprroximations, we obtaln monotone increa inc and monotcne decreasing

sequence: respectively.
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