ON A QUASI-LINEAR EQUATION Richard Bellman Ber P-575 1 October 1954 Approved for OTS release 11 COPY OF HARD COPY \$.1.00 MICROFICHE 5.0.5 C DDC AUG 27 1964 SUGIV DDC-IRA D -7he RHN Corporation AONICA - CALIFOR

- -

.

604405

SUMMARY

The purpose of this paper is to establish some limit theorems for the solutions of $\frac{mon - linear relations}{\frac{q}{1} + \frac{1}{1}} = \frac{max}{\frac{q}{1} + \frac{1}{1}} \frac{2}{1} \frac{q}{1} \frac{q}{1} \frac{x_1(q)x_2(n)}{q}$ Recurrence relations of this kind occur in various dynamic programming problems. ()

ν

ON A QUASI-LINEAR EQUATION

Richard Bellman

The purpose of this note is to establish some limit theorems for the non-linear recurrence relations

(1)
$$x_{i}(n+1) = \max_{q} \sum_{j=1}^{n} a_{ij}(q) x_{j}(n), j = 1, 2, ..., n, n \ge 0,$$

under certain assumptions concerning the initial values $c_1 = x_1(0)$, and the coefficient matrices $A(q) = (a_{1,1}(q))$.

Equations of this type occur in various parts of the theory of dynamic programming, as we shall indicate below, and are, in addition, of interest in furnishing a link between the theory of linear and non-linear operations, as we have discussed elsewhere, of [1], [2], [3], [4].

\$2. The Homogeneous Equation

Let us consider the equation

(1)
$$\lambda y_{1} = \max_{q} \sum_{j=1}^{n} a_{1j}(q) y_{j}, 1 = 1, 2, ..., n,$$

where we impose the following conditions.

- (2) (a) $q = (q_1, q_2, ..., q_n)$ runs over some set of values, S, with the property that the maximum is attained in (1),
 - (b) $\infty > m \ge a_{ij}(q) > 0$, i, j = 1, 2, ..., n for $q \in S$,
 - (c) for any q, let $\phi(q)$ denote the characteristic root of $A(q) = (a_{1j}(q))$ of largest absolute value, the Perron

root, known to be positive. We assume that there exists at least one value of q for which $\phi(q)$ assumes its maximum for $q \in S$.

We shall now prove

Theorem 1. Under these conditions, there exists a unique positive λ with the property that (1) has a positive solution, $y_1>0$, i=1,2,...,n. This solution is unique up to a multiplicative constant, and

(3) $\lambda = \max_{q \in S} \phi(q)$.

<u>Proof.</u> We begin by showing the existence of a positive λ and a positive set of solutions $\{y_i\}$. Consider the region defined by $y_i \ge 0$, $\sum_{i=1}^{n} y_i = 1$. The normalized transformation

(4)
$$y_{i} = \left[\max_{q} \sum_{j=1}^{n} a_{ij}(q)y_{j} \right] / \left[\sum_{i=1}^{n} \max_{q} \sum_{j=1}^{n} a_{ij}(q)y_{j} \right],$$

is a continuous mapping of this region into itself. Hence there exists a fixed point, $\{y_i\}$. This fixed point is a solution of (1), with λ the denominator in (4). Each component y_i is positive because of the positivity of $a_{ij}(q)$.

To show that this solution is unique up to a multiplicative constant, let $[\mu, z]$ be another solution of (1) with $\mu > 0$ and z a positive vector. Let $\{q\}$ be the set of values for which the maximum is attained in (1), and $\{\overline{q}\}$ the similar set associated with z. Observe that we may have different sets for each i. We have then

P-575

(5)
$$\lambda y_1 = \sum_{j=1}^{a_{ij}(q)} y_j \ge \sum_{a_{ij}(\overline{q})} y_j, i = 1, 2, ..., n,$$

 $\mu z_1 = \sum_{j=1}^{a_{ij}(\overline{q})} z_j.$

Let us now assume, without loss of generality that $\lambda < \mu$. Let ε be a positive constant chosen so that one, at least, of the components $y_1 - \varepsilon z_1$ is zero, one at least is positive, and the others are non-negative. This can always be accomplished if y and z are not proportional. If i is an index for which $y_1 - \varepsilon z_1$ is zero, we have

(6)
$$0 = \mu(y_1 - \epsilon_{z_1}) > \lambda y_1 - \epsilon \mu z_1 \ge \sum_{j=1}^n a_{1j}(\overline{q})(y_j - \epsilon_{z_j}) > 0,$$

Since $a_{ij}(\overline{q})>0$, a contradiction. Hence $\lambda = \mu$ and y and z are proportional.

To show that $\lambda = \max \phi(q)$, we proceed as follows. Let $\mu = \prod_{q}^{q} \max \phi(q)$. It is clear that λ , as the characteristic root of some q. A(q), satisfies the inequality $\lambda \leq \mu$. Assume that actually $\mu > \lambda$. Let $z = (z_1, z_2, \dots, z_n)$ be a positive characteristic vector associated with μ and \overline{q} a set of q-values which yield $\mu = \phi(\overline{q})$. Then we have

(7)
$$\mu z_1 = \sum_{j=1}^n a_{1j}(\overline{q}) z_j \leq \max_{q} \sum_{j=1}^n a_{1j}(q) z_j$$

Since y_1 is positive, we can find a positive constant m such that $z_1 \leq my_1$ for 1 = 1, 2, ..., n. Hence, (7) yields

(8)
$$\mu z_1 \leq m \max_{q} \sum_{j=1}^{n} a_{1j}(q) y_j = m \lambda y_1$$

Thus $z_1 \leq my_1 \lambda/\mu$. Iterating this we obtain $z_1 \leq my_1 (\lambda/\mu)^k$, for arbitrary k. Since $\lambda/\mu < 1$, by assumption, this yields $z_1 = 0$, a contradiction. Hence $\lambda = \mu$.

§3. The Recurrence Relation

Let us now return to the recurrence relation of (1.1) and prove

Theorem 2. If, in addition to the conditions of (2.2), we assume that there is a unique q for which the maximum value of $\phi(q)$ is attained and that $c_1 \ge 0$, then

(1) $x_i(n) \sim ay_i \lambda^n$,

as $n \rightarrow \infty$, where a is a constant dependent upon the initial values c_1 .

<u>Proof</u>. Let us take $c_1>0$ without loss of generality. There are then two positive constants k and K such that $ky_1 \leq c_1 \leq Ky_1, i=1,2,...,n$. Let us show inductively that

(2) $ky_1 \lambda^n \leq x_1(n) \leq Ky_1 \lambda^n$.

Assume that we have the result for n, then

(3)
$$x_{1}(n+1) \leq \kappa \lambda^{n} \max_{q} \sum_{j=1}^{n} a_{1j}(q)y_{j} = \kappa \lambda^{n+1}y_{1}$$

$$\geq \kappa \lambda^{n} \max_{q} \sum_{j=1}^{n} a_{1j}(q)y_{j} = \kappa \lambda^{n+1}y_{1}.$$

To establish the asymptotic behavior we show that for n sufficiently large the set of q's which furnish the maximum in (1.1) is precisely the set which yields $\lambda = \max \phi(q)$.

Assume the contrary. This means that infinitely often we employ a set $\{\overline{q}\}$ which is not identical with the q which furnishes the maximum in $\phi(q)$.

We then have

(4)
$$x_{i}(n+1) = \sum_{j=1}^{n} a_{ij}(\overline{q})x_{j}(n), i=1,2,...,n$$

 $\leq (\sum_{j=1}^{n} a_{ij}(\overline{q})y_{j}) K \lambda^{n}.$

For some index 1 we must have

(5)
$$\sum_{j=1}^{n} a_{ij}(\bar{q})y_{j} < \lambda y_{i},$$

with strict inequality. For if $\sum_{j=1}^{n} a_{1j}(\overline{q})y_{j} \ge \lambda y_{1}$ for all i, the characteristic root of $A(\overline{q}) = (a_{1j}(\overline{q}))$ of largest absolute value, $\phi(\overline{q})$, would at least equal $\lambda = \max \phi(q)$, which would contradict q the assumption concerning the uniqueness of the maximum of $\phi(q)$.

Hence, for some component, say the first, we have

(6)
$$x_1(n+1) \leq \Theta K \lambda^{n+1} y_1, 0 < \Theta < 1.$$

Since $a_{1,j}(\mathbf{q}) > 0$ for i, j, where \mathbf{q} is the value of q for which $\lambda = \phi(\mathbf{q})$, we see that, for $\mathbf{i} = 1, 2, ..., n$,
(7) $x_1(n+2) \leq K \lambda^{n+1} \left[\sum_{j=2}^{n} a_{1,j}(\mathbf{q}) y_1 + \Theta a_{1,j}(\mathbf{q}) y_1\right]$
 $\leq \Theta_1 K \lambda^{n+2} y_1$,

where $\Theta < 1$.

If therefore a set of q's distinct from \bar{q} are used R times, we obtain

(8) $x_{i}(n) \leq \Theta_{l}^{R} \kappa \lambda^{n} y_{i}$,

for n sufficiently large. Since $0 < \Theta_1 < 1$, if R is too large we eventually contradict the lower bound for $x_1(n)$.

Hence for $n \ge n_0 = n_0(c_1)$, we have

(9) x(n+1) = A(q) x(n),

whence the asymptotic statement of (1) follows.

§4. A Dynamic Programming Problem

Suppose that we are engaged in a multi-stage decision process of the following type. At each stage we have our choice of various operations, which we number i=1,2,...,K. The $i\frac{th}{th}$ operation has a probability distribution attached with the following properties:

- a. There is a probability p_{ik} that we receive k units and the process continues, k=1,2,...,R,
 - b. There is a probability p₁₀ that we receive nothing and the process terminates.

How do we proceed so as to maximize the probability that we receive at least n units before the process terminates?

Let us define the sequence

(2) u(n) = the probability of attaining at least n units before the termination of the process using an optimal procedure. Then using the intuitive "principle of optimality", cf. []], [2], [3], [4], we see that u(n) satisfies the recurrence relation

(3)
$$u(n) = \max_{i} \left[\sum_{k=1}^{R} p_{ik} u(n-k) \right], n > 0$$

= 1, $n \le 0.$

Using methods similar to those above, we see that for large n,

(4)
$$u(n) \sim c \rho^n$$
,

where ρ is the root of largest absolute value, necessarily positive, of (5) $1 = \sum_{k=1}^{R} p_{ik} \rho^{-k}$,

for the value of i which maximizes ρ .

Markoff showed that if

(1)
$$x_{i}(n+1) = \sum_{j=1}^{n} a_{ij}x_{j}(n), n = 0, 1, ...,$$

 $x_i(0)>0$, with the conditions

(2)
$$a_{ij} > 0, \sum_{j} a_{ij} = 1, i = 1, 2, ..., n,$$

then

(3)
$$\lim_{n \to \infty} x_i(n) = c, i = 1, 2, \dots, n,$$

where c depends on the initial values.

P-575

The same proof shows that the same result holds for the sequence defined by

(4)
$$x_{i}(u+1) = \max_{q} \sum_{j=1}^{n} a_{ij}(q)x_{j}(n),$$

provided that the conditions in (2) hold uniformly in q. The constant will, of course, in general, be different from that above.

P-575

BIBLIOGRAPHY

١

1.	Bellman, R.,	"An Introduction to the Theory of Dynamic Programming", RAND Report No. R-245, 1953.
2.	<u> </u>	"The Theory of Dynamic Programming", <u>Bull.</u> Amer. Math. Soc., (to appear).
3.	,	"Some Functional Equations in the Theory of Dynamic Programming", (to appear).
4.	,	"A Survey of the Theory of Dynamic Programming", Chapter XII of Mathematics for Modern Engineers, E. F. Beckenbach, ed., McGraw-Hill, (forthcoming)

md

BLANK PAGE