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SUMMARY

The purpose of this paper 1s to eztablieh some lﬁuﬂgdtbmu/

V2
theorem= ror the solutions of

/—-—-.N..

A Recurrence relations of this kind occur In various dynamie

programming problems. ( )
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ON A QUASI-LINEAR EQUATION

Richerd Bellman

$1.\)Introduction

' The purpose of this note 1s to establish some 1limit theorems

for & non-linear recurrence relations

n
(1) x,(n+l) = Max ? a,.(q)x,(n), J=1,2, ..., n, n>0,
i a — 1) J <

under certaln assumptions concerning the initial values cy = xi(O),

and the coefficient matrices A(q) = (a“(q)).

Equations of this type occur in various parts of the theory
of dynamic programming, as we shall indicate below, and are, 1in
addition, of interest in furnishing a link between the theory of

linear and non-linear operations, as we have discussed elsewhere,

et [1], [21, [3], [4].

$2. The Homogeneous Equation

Let us consider the equation

n
(1) 7\y1 = Max F au(q)yJ, i = 1, By sxs; N,
q =
where we impose the following conditions.

(2) (a) q = (ql,qe,...,qn) runs over some set of values, S, with
the property that the maximum 1s attained in (1),
(b) @ >m) a“(q) >0, 1, =1,2,...,n for q€S8,
(c) for any q, let ¢(q) denote the characteristic root of

A(q) = (81J(q)) of largest absolute value, the Perron
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root, known to be positive, We assume that there exists
at least one value of q for which ¢(q) assumes its maxi-

mum for q€S.
We shall now prove

Theorem 1. Under these conditions, there exists a unique positive

A with the property that (1) has a positive solution, y¥,>0, £ - JIRS | 8

This :colution 1is unique up to a multiplicative constant, and

(3) )\ = Max $(q).
q€S

Proof. We beglin by showing the existence of a positive A and a
positive set of solutions {y#}. Consider the region defined by

n
Y420, ;E yy=1. The normalized transformation

n n

n
(4) yi = [ng E aiJ(Q)yJ] / EEM;X %aij(Q)yJJ’

is a continuous mapping of this region into itself. Hence there
exists a fixed point,-{yi}. This fixed point is a solution of
(1), with A the denominator in (4). Each component vy is positive
because of the positivity of alJ(q)'

To show that this solution 1s unique up to a multiplicative
constant, let [,‘, z ] be another solution of (1) with >0 and
z a positive vector. Let {q}.be the set of values for which the
maximum 1s attained in (1), and {E} the similar set assoclated
with z. Observe that we may have different sets for each 1. We

have then
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(5) Ayl = ?aij(Q)yJ ZZ "115(6))"’, i=1,2, ..., n,
Mz ';815‘5)%'

Let us now assume, wlithout loss of generality that A(lu.. Let
€ ve n positive constant chocen 30 that one, at leacst, of the com—
ponents yi—Gzi is zero, one at least 1s positive, and the others
are non-negative., Thi: can always be accomplished if y and 2z are

not proportional. 1If ! 15 an index for which yi-ez1 is zero, we

have
n
(6) O = /"(yi—ezl) > Ayi—G/Mzi 2 E ﬁij(a)(yJ—GZJ) > 0,

Since aU(E)>O, a contradiction. Hence A-/-A- and y and z are

proportional.

To chow thet A= Max $(q), we proceed as follows. Let u=
q
Max ¢(q). It is clear that A, as the characteristic root of some

A?q), gatlafles the inequallty Ag_/u.. As:ume that actually/u>7‘\.

Let 2 = (zl,zg,...,zn) be = pciitive characterl:tlic vector assoclated

with/-&and q ¢« set of g-values which yleld u = ¢(3). Then we have

n n
(7) M2y ; aij(a)zj < Max ; aiJ(Q)ZJ
= q =

Since ¥y is pesitive, we can find a positive constant m csueh that

2,{my, for 1 = 1,2,...,n. Hence, (7) yleldc

n
(8) z, <M Max a,.(q)y., = Ay
M= ; % e 1
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Thus z1 < tny1 A//u. . Ilterating this we obtain z1 S myi( A//L) ’
for arbitrary k. Since A;ﬁ- < 1, by assumption, this ylelds

zy = 0, a contradiction. Hence A 7/*.

; 53. The Recurrence Relation

Let us now return to the recurrence relation of (1.1) and

prove

Theorem 2. If, in addition to the conditions of (2.2), we assume

that there 1s a unique q for which the maximum value of ¢(q) is

attained and that cigp, then

(1) xy(n) ~ ay, AP,

as n — @, where a 1s a constant dependent upon the initial values Cye

Proof. Let us take c1>0 without loss of generality. There are
then two positive constants k and K such that ky15915Ky1,1=1,2,...,n.

Let us show inductively that
(2) ky, A" < x,(n) < Ky, A"
Assume that we have the result for n, then
n L n+1l
(3) x,(n+l) < KA" Max a,.(q)y, = KAy
1 2 q fFT U J 1
= +1
> kX' Max a, (q)y, = kX y..
< a - 1J b : |
To establlich the asymptotic behavior we show that for n

sufficiently large the set of q's which furnish the maximum in
(1.1) 1s precisely the set which yields A = Max é(q).
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Assume the contrary. Thi: means that infinitely often we
employ a cet {E} which 15 not 1ldentical with the g which furnishes

the maximum in $(g).

We then have

n
E aIJ(E)xJ(n), 181 ,2,:50 50

G 21 (@) WX

(3)  x;(n+1)

I

For some index i we must have
q n - -
(5) ?ﬁ a3 5(@yy < Ay,

n
with strict inequality. For if ; 315(5)%2?\1& for all i, the

characteristic root of A(q) = (81;(5)) of largest absolute value,

$(q), would at leact equal A = Max $(q), which would contradict
q
the assumption concerning the uniqueness of the maximum of ¢(q).
Hence, for some component, say the first, we have

(6) x,(n+1) ¢ &Ny, 0 < o< 1.

Since alj(a) > 0 for 1,3, where a is the value of g for which
A = b(a), we see that, for 1 = 1,2,...,n,

n ®
(7) x,(n+2) ¢ KX [?__,‘, 215(Q)yy + 8e158)y, ]
< oKXy,

where & < 1.
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If therefore a set of g's distinct from a are used R times,
we obtain
(8) x,(n) <& Ay,

for n sufficiently large. Since 0 ( 01 <1l, 1f R 1s too large we

eventually contradict the lower bound for xi(n).
Hence for n > n, = no(ci), we have
*
(¢) x(n+1) = A(g) x(n),
whence the acymptotic ctatement of (1) follows.

Sy, a Dynamic Programming Problem

Suppose that we are engaged in a multi—stage decision process
of the rollcowing type. At each stage we have our choice of various
operations, which we number i=1,2,...,K. The 132 operation has a

probabllity distribution attached with the following properties:

(1) a. There 1t a prcbablility Py that we receive k units and
the proces:s continues, k=1,2,...,R,
b. There 1c a probabillity Pio that we receive nothing and

the grocess terminates.,

How do we proceed sc as to maximize the probability that we

recelve at least n units before the process terminatecs?
Let us define the sequence

(2) wu(n) = the probability of attalning at least n units before
the termination of the process using an optimal pro—

cedure.
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Then using the intuitive "principle of cptimality”, cf. [2], [2],

[j], (4], we cee that u(n) vatisfier the recurrence relation
R
(3) u(n) = it [g Py ulnk) ], n>o0
- 1, n < 0.
Uslng methods similar to those above, we see that for large n,
(4) u(n)~cp”,

where e is the root of largest absolute value, necessarily positive, of

R
-«
SIEEP SR

for the value of 1 which maximizes e

§5. An Analogue of & Result of Markoff

Markoff chowed that 1if

n

(1) xi(n+1) = ;g; aiij(n), n=20,1,...,

:<1(o)>o, with the conditions

(2) a13>0, }; a4 = 1, 1 =1,2,...,n,

then

(3) 1lim Xi(n) = C, i = l,?,ouo,n,
n— o

where ¢ depends on the initial values.
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The same proof shows that the same result holds for the

sequerice defined by

(4) xi(u+l) = ng i aiJ(Q)xJ(")’

provided that the conditions in (2) hold uniformly in q. The

constant will, of course, in general, be different from that above.
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