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\J 
Summary 

It  is shown that the  functional equation technique of 
the theory of dynanic programming may be used to derive 
functional differential equations for the characteristic 
values of JLU* integral equation   ^"i")  ■  \ K(B.f )ri(t )tft, 
similar to those obtained for the eigenvalues of differ- 
ential equations 
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Dynamic Programming and a New Formalism in the 

Theory of Integral Equations 

By 

Richard Bellman 

1,  Introduction« 

In a series of papers [1],[2],[ j),    and  in two ruono- 

graphs^^], [ 53 i  we have treated various aspects of the 
mathematical  theory of multi-stage  decision processes,  a 
rather imposing title which we have  shortened to   'dynamic 
proprammlng',  In several of these,  notably [6],[7l, 
we have  shown that  the calculus of variations may be  viewed 
as a multi-st-. r.e  decision process  of continuous type,  and 
that the functional equation technique which we have  eiuployed 
in connection with various other continuous processes may be 
utilizeu in this   discipline to yield  new results and new deriv- 
ations of old  results in the one-dimensional case. 

In the process of extending these methods to  include multi- 
dimensional variational problems,   the theory of functional ana- 
lysis enters  in a very natural  ^ay  since boundary and  initial 
values arc  now  functions  rather than  numbers« 

It turns  o.jt  that an excellent   testing ground  for  these 
new tools  i.-   the   theory of integral  equations which  combines 
the  new  jspects  of functional analysis  with greater analytic 
simrlicit;.' than  afforded by partio3   differential  enaatlons«  In 
addition,   the  results are of iadependftnt interest« 

We  shall   sketch below   an application of the theory of dynamic 

programming to  the proMe.i   of obtaining a  functional equation for 



the characteristic values of the integral equation 

Xu(t) •      ^ Kl8lt)u(i)ds (1.1) 
o 

Following this line of thought, we shall in a subsequent 
work develop corresponding results for some multidimensional 

problems in the  calculus  of variations« 

il. Causality and Optimality. 

As ib dibcussed and illustrated by means of a wealth of 
examples in Hille's treatire,£8]» a large part of analysis may 
be very properly, profitably and  naturally subsumed under the 
general thoory of semi-groups of operations«  Here the basic 
functional equation for a i.-ulti-stnge process is 

f(P;  s ♦ t  )  - f(  P(s);  t), (2.1) 

which,  as remarked by Hadamard ,  expresses the principle of 
causality,  cf.  h;ile,[9j« 

If we  consider a multi-stsge  decision process, where there 
are .-nany  alternative routes to  be pursued,  the analogue of the 
above equation  is 

f(P;   s ♦ t  )   -    Max f(  P(s,Q);  t) (k.2) 
Q 

which expresses the pririciple of optiaality,  cf(33,l6j« 

As we  have   shown elsewhere , [5], [6], various results 
in Uie calculus of variations r.nd in eigenvalue  problems connected 
with differential equations may  be obtained from (<;.2) and its 



limiting form as s-^0,  the "Ir.finitesxal gea©ratorM of (2,2). 

Wo now turn to the  application of U,*)  to the  theory of 
integral equations, 

3. Inte.rral Equations. 

■■> 

L»:t K(stt/  be a syjrietric  kernel belonging to  L*" over 
the square (X s,t<_T, which is  assumed ta be positive definite. 
The dwrtcteristic valuer  of (1.1)  are then eouivalent to the 
rej.ritive minima of    \ u^dt  subject  to the  constraint  that 
SS K(s.t)u(s),j(t)dsdt  - 1.   In order to convert this  minimization 

O 

problem into one with the rroper invariant qualities, we employ 
the device used  in [6] and   L^J  and imbed the   problem within  the 
lir^er probiert,  of determining the   relative minima  of the  functional 

T 

J(a;  r(t)lu(t))  -     \ u'-(t)dtl (3.1) 
lb 

subject to the  constraint 

^  ^ K(s,t)u(s)ult)dsdt ♦  2\rU)ult)dt * 1 (3.2) 

where  r(t) t L*"(OtT),  Let us for the  sake oT simplicity consider 
only the abs  lute minimum and   iefine the   function   r( i;r(t/) 
:?  follows: 

fU;  r(t))  ■ Mtjx <.vu;r(i),a(t)) (3o3) 

The function f is "une fonctlor; ie^ lignes" in ü.e sense of 

Volterra, [llj. 

Let us now proceed, using the principle of optimality em- 

bodied in (^.2) to ..btain an j."proxi"iate functional equation for 

f, under the assumptions of r;>itinuity for K(3,t] ^nd r(t] as 

functions of s and t. 



Let h bt- a small positive quantity. Then,  setting 
for tyoo^raphical convenience v ■ u(a), we have 

U)      f(a;r(t)) - hvfc ♦   \.h u'dt ♦ 0(h), 

XT T (3.4) 

(b)   S   S    K(s,t)u(s)alt)dsdt  ♦ 2\[r(t)  ♦  hKta.t )J u(t )dt 

■ 1 - hr(a)v  ♦ o(h), 

Introducing the change of variable, u(t}   ■  (l-hr(a)v/2)w(t), 
in order   to nonnalize the  relation of (3.tb)I  v/e see that the 
nroblem of   choosing u(t)   in    Ca4hfT]    is a problen of precisely 
the s>ame   forni as the original« Hence we obtain the tpproxinate 
functional  e^u&tion 

f(^;rUn  • Min[hv-*  (l-hrla)v)f (a*h; {r(t )^hK(a,t)(l4hr(a)v/*:])] 
v J 

* o(h). (3.5) 

To obtain a limitinr; functional equation of differential 
form,  we   nust employ functional derivatives, 

4,  A G:iteiu\ LifTeranti.-.l Equation0 

I: e  appropriate  functional derivative to er.ploy hei'e  is ti« 
Gateaux derivative,  rather than the Yolterra. We shall employ  es- 

seritii..ly the notation of KiLle,   [loji  and write SV)(f^  for the 
Gateaux  derivative  of f  .vith  increment  h, 

i.ir)   ' lim    fjajritj» 61.(t))  - f(a;:U)) u#1) 



r—oin 

Using this notation,   the  limiting form of  (3»5)  is 

fa - - MJn [v2 * vrUUrit)m  * iK(Blt)
lf>]    • ('"') 

where f    is the usual oortial derivative., a 

This  functional differential equation  may  be used  to pro- 
vide a  sequence of successive approximations to  f, which can  be 
made to converge montonically  if we choose an initial annroxim- 
ation in policy rather than  function  space,   cf.[7jo 

Furthermore,  due to  the  di-ncle dependence of the expression 
in (to4:)  upon v,  the function 1 may be eliminated and an equation 
for v - v(a;  rlt)), also  involving Gateaux differentials,  derivedo 
This equation will have a  "characteristic theory",  nnd,  as  in the 
case of the  calculus of variations,  the characteriiti cs will  be 
i.ssoci?ted with the Euler equation obtained  by  classical variatior- 

al techniques. These topics will be  discussed  in aubsequcnt  papers«, 
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