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Summary

\J

It is shown that the functional equation technique of
the theory of dynanic programming may be used to derive
functional differential equations for the characteristic

CeyNmivy
values of J.Ls integral equation »RJ-_LW,

similar to t,hose obtained for the eigenvalues of differ-

entizl equations (&
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Dynamic Programming and a New Formalism in the
Theory of Integral Equations

By

Richard Bellman
1. Introduction.

In a series of papers [1],[2],[ 3], and in two mono-
graphs,[b],[s], we have treated various aspects of the
nathematical theory of multi-stage decision processes, a
rather imposing title which we have shortened to 'dynarnic
progranming'. In several of these, notatly {617, (7],
we have shown that the calculus of variations may be viewed
2as a multi-st: e decision process of continuous type, and
that the functicnal equation technique which we have eniployed
in conncction with various other continuous processes may bLe
utilized in t his discipline to yield new results and new deriv-
ations of o0ld results in the one-dimensional case,

In the process of exterding these methods to include multi-
dimensional variational problemc, the theory of functionsl ana-
lysis enters in a very natural ~ay since boundary and initial

values arc now functions rather than nunbters,

It turns o:t that un excellent testing gpround for these
rnew tools i- the theory of intesral equations which cocsbines
the new aspects of tunctional anulysis with grcater amalytic
simplicity thun afforded by partinl differential equntions., In

addition, the results are of independent interest,

We sha.l s<ketch below an aonnlication of the theory of dynanic

orogranmming to the protlen of odtaining a functional equation for



the characteristic values of the integral equation

T

au(t) = (Kkis,t)u(s)ds (1.1)
0

Following this lire of thought, we shall in a subsequent
work develop corresponding results for some multidimensional
problems in the calculus of variations,

<, Causality and Optimality.

As is discussed and illustrated by means of a wealth of
exanples in Hille's treatiso,[B], a large part of analysis may
be very properly, profitably and naturally subsumed under the
yeneral theory of semi-groups of operations. Here the basic
functional equation for a wulti-stage process is

f(P; s+t )= f( P(s); t), (R.1)

which, as remcrked by Hudamard, expresses the principle of
causality, cf. Hille,[9 ].

If we consider a multi-stege decision process, where there
are many alternative routes tc be pursued, the analogue of the
above vquation tis

£(P;

s

+t ) = ng £( P(s,Q); t) (¢e2)

-

which ~xpresses the principle of optimality, cf [}J ,[GJ.

As we have shown elsewhere,[s],[:6], various results
in the calculus of varistionsg and in eigenvalue problems corinected
with differential equatiuns may be obtalned from (<.2) and its
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limiting form as s =« 0, the "infiniteswal generator" of (2.2).

We now turn to the application of (<.<) to the theory of
integrel eguations.

3. Intecral Equations.

Let K(s,t) be a symmetric kernel belonging to L over
the square 0< s,t<_T, which is assumed to ve positive definite.
The characteristic values of (1.1) are then eouivaient to the
rq}ative minima of & 1°dt subject to the constraint that
g} K(s,t)u(s)u(t)dsdt = 1. In order to convert this mininization
problem into one with the rroper inviriant qualities, we employ
the device used in [6) and (7] and imbed thre provlem within the
lirger problem of determining the relative minima of the functional

T .
Jla; r(t),uit)) = g"u“(t)dt, (3.1)
subject to the constraint
. v T
S § K(s,t)uis)u(t)dsdt ¢+ < Srﬂt)u(t)dt = 1 (3.2)
S [ %)

where r(t)e L“(0,T). Let us for the sake of sizplicity consider
only the abs .lute rinicum and define the furction (. ;r{t))

(s follows:

fla; r(t)) = ng Jyayr(t),utt)) (3.3)

The {function { is "une fonctiorn des lignes" in w.e sense of
Volterra, [}IJ.

let us now proceed, using the princinle of ortimality em-
bodied in («.<) to obtain ar croroximate functicnal equation for
f, under the assumptions of citinuity for K(s,t) .nd r(t) as
functions of s an!l t,



Let h be a small positive quantity. Then, setting
for tyoographical corvenience v = u(a), we have
' T
(&) fla;r(t)) = hv° « g*h u“dt + o(h),

- r T (30‘0)
(o) S S K(s,t)u(s)u(t)dsde + ZS[_r(t.) + hK(a,t.)]u(t)dt.
Grh Ok <h

= 1 - hr(a)v + o(h),

Introducing the change of variable, u(t) = (l-hrla)v/2)w(t),
in order to nornalize the relation of (3.4b), we see that the
problem of choosing u(t) in [a+k,T] is a problem of precisely
the same form ac the original., Hence we obtain the upproximate

functiorel ecustion

erseits) = Minnv e (L-hr(a)v)s(ash; (r(t)+nk(a,t)(1shrla)v/c)]
v

a O(h)¢ (305)

To ottain o limitineg functional equaticn of differential
form, we must em»nloy functiorigl derivatives.

L. A Gate-ux uvifierential Equation.

T:e 2vpropriate runctionai derivative to ermploy lhiere is the
Giteasux derivative, rather than the Volterra. We shall emrloy es-
sentis . ly the notation of HKille, [10_], and write Sh(f) for the
Gateuux derivative of  with increment h,

§ (f) = lim fagr{t)+ ei(t)) - flazr(t))
e ‘ (Lil)
20 €
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Using this rnotation, the limiting form of (3.5) is

- - P ) -
fa M&n LV + Vr(d)sr(t)(f) "K(H,t’)(f)] ’ (Lo‘)
where fa is the usual nartial derivative.

This functional dif ferential ecquation may be used to pro-
vide a sequence of successive aporoximations to f, which can be
made to converge montonically if we choose an initial aporoxim-
ation in policy rather than function space, cf.(7J°

Furthermore, due to tine simrle dependence of the expression
in (L.<) upon v, the functicon [ may be eliminated and an equation
for v = v(a; r{(t)), alse invnlving Gateaux differeatials, derived.
This equation will have a "characteristic theory", and, as in the
case of the calculus of variations, the characteristics will be
ussocizted with the Euler equatinn obtained by classical variation-
al techniques. These topics will be discussed in subsequent papers,
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