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The simplex algorithm for solving limear programming
problems mey be modified in various ways to provide algorithms
for various auxiliery purposes. In particular, the use of the
dual system allows arbitrary changes to be made in the right
hand members of the restraint equations. Anm sllied algorithm —
called plrtlotrle-llnoar programming — allows desired changes
to be introduced graduslly im such a2 way as to meintain feasi-
bility and optimality st all times. Simileorly, changes in the
optimizing form can be made efther arbitrar!ly or in such a way
es to meintein optimality. If the simplex method is viewed as
being composed of certain rather comprehensive operations, then
sll these variations cen be stated in terms of the following set
of these asbstrect or pseudo-operations, where the order'of exe-
cution may vary for differeat purposes.

(1> Development of & pricing vector or vectors.

(2) Choice of an index s of some column vector P, not
in the presemt basis.

(3) Representation of the vector P‘ in terms of the
present basis,

(4) Choice of an index r of some column PJr in the
present basis.

(5) Change of basis, with P, replacing PJr. or change
of the right hand members of the restraint
equations,

It is suggested that a breskdown of this type has important

implications for flexibility and asdaptebility in a computer code.



REVISIONS AND EXTENSIONS TO THE SINPLEX METHOD

(With Side-lights on Programming Techniques)

Since this session emphasizes computing techniques, I
will take s little time to explain a problem which I believe
should be more widely understood by people who require large-
scale computations., As this concerns the economics of machine
utilization, it is perhaps not entirely fnappropriaste.

When the original formulator of a large problem — usually,
and hereafter, called the 'customer®' — brings his moastrous
brain child to be prepared for machine caslculation, he is full
of assurances that this examplc is the forerunner of several

entirely similar ones for which the same program can be used.

The customer is entirely honest in this but unfortunately what
usually happens is the following. Just as the routine is nearly

finished, the customer rushes down with some 'trivial' last-minute

changes. These having been more or less greciously sccommodated
and the code finally checked out on the machine, it turns out
that certain numerical difficulties crop up. Change is piled

on change and eventually an acceptable set of snswers is obtained

;
|
3

but the code has lost all elegance or clarity which it may ever
have possessed., In the meantime, of course, the customer has
been pondering deeply over the imperfections in his method vhich
these difficulties have revealed and, when he presents the next
example, he has changed a few formulas, refined a few rules,

but these he suggests are mere details which the coder can

fncorporate in the program before running the next case, At

s I VU

this point, the programmer must consider whether it is not

cheaper to start all over,

v




P-562
9-2-54
Page %2

Now having played both the role of progremmer asnd, in part,
of customer, I have repeatedly been faced with the problem of
making extensive changes in a large code. One attempt at
making these less painful end less expensive has come about
as & result of considerable experience in coding up routines
for linear programming problel} to be solved with the simplex
method oa the IBN 701 le.{]. Since such 8 code may involve
upwards of 5000 individual coll.nas in its entirety, the prob-
lem is by no means a simple one.

One important phase of the programming art is the use of
what are called assembly routines. Since, for many ressons,
it is virtually impossible, in practice, to write down the
required list of commands in ilchine code, some sort of con-
venient language intermediate between ordinary written in-
structions and machine commends is devised. Then a progrem
is prepared — at considerable infitial cost = which can
'read' the intermediate language and translate it into
machine code., Subsequent problems ere then coded in the
intermediate language and, as a preliminary step in the com-
putetions, the code is processed by the assembly routine.
Everytime it is necessary to re-assemble the code, thg cost
of the code is increased by machine time as well as programmers'
time.

In all progreams which are to be assembled, the notion of

regions is promiment. A region is a group of consecutive memory
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cells set aside for some more or less well-defined set of
quantities — commandes or numbers or sometimes both. Regions
sare usually simply created at will as need arises, the reason
that they are needed at all being that the logical layout of
e complex procedure can be conceptualized only in terms of
functional parts that make up the whole. Once a region has
been coded up and checked out (with of course appropriate
devices for implementing its use), it takes on & new character
— ft becomes in fact an abstract, or pseudo-operation which

is henceforth available for use in future problems. By a

pseudo-operation is meant some arithmetic, logical, or utility

sctivity which requires more than one actusl machine order,
For semantic purposes, let us denote adjustments in a
program necessitated by coding errors as corrections, and those

necessitated by procedural changes as modifications. Then once

a particular region — i.e. 8 pseudo-operation — has been
checked out, there are no more corrections to be made provided,
of course, that the sssumptions on which it is based are always
observed. Now procedural changes do not usually involve any

modification in lower order pseudo-operations such, for example,

} as adding two vectors together., The modificstions occur — or
should do so if proper planning {s done — in what are called
contro]l regions, the higher order abstractions which control

® the order and frequency of use of the subservient regions. The
big difficulty is that there is often not a sufficiently compre-

hensive picture of the whole problem shared by the customer and
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coder at the outset to allow proper planning, that is, the
control regions do not bear the proper relationship to the prob-
lems at hand.

At this point I must mention that it is possible to use a
pseudo-code which is never assembled into meschine language at
ell but which requires the use of an interpretive routiné for
the sctusl running of a problem — a method widely practiced.
This interpretive routine usually recognizes some fairly com-
prehensive list of commands but requires that a great deal be
explicitly specified and is very time-consuming in operaticn
for large, special-purpose codes. Moreover, extensive changes
sre nearly as difficult in » universal pseudo-code as in machine
code, What is needed is a pseudo-code which takes advantage
of the extensive background of conventions which inevitably
srises in protracted computations and calculations along fixed
lines, However, it should be possible to couple together var-
fous parts of the code on demand, just as an interpretive
routine does, In short, the code should be analogous to the
mathematician's thought processes. In this way varistions in
the structure of the main procedure are easily arranged with a
minimum of coding and check-out time, and time is not wasted in
repeatedly interpreting the same thing while running the job.
We now have a 701 code based on this philosophy. The pseudo-
operations mentioned below reflect its major structure,

Time limitations force me to make the seemingly reason-

able assumption that those interested in this paper are already

familisr with the simplex method. However, since we use »
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slightly different slgorithm than most others, let me just
briefly sketch the way in which we set up the computations
[!a.c.e.f]. There is, first of all, a linear form to be
optimized, and I will convene that, as written, it is to be

minimized.
n

(6) g 85j%y = min.
J:
This is to be done subject to two classes of restraints on the

n varisbles Xje

(7) Xy 2 0O, J =1, «eey n,
(8) n .
2 X = b ™ i = ¢ ceey Wy
ijl 15%] i

where the agy and by (i =0, 1, ..., m; J =1, ..., n) sre
specified and we further assume, without loss of generality,
that all the by > 0.

Let us assemble all the IR from (6) and (8) into one

(m+1)X(ne¢]l) matrix P whose first column we make 2 unit vector.

pe— Loy

l aol L] L] L] .on

0 .ll L] [ J [ ) aln

(9) P-- . * . =[P°. Pl' EX] Pn]o

L] L4 L]

0 3

The columns we have called Pj (J=0,1, «c., n) where P, is
the unit vector. With P, we will sssociate a new variable x,

and form the column of variables

(10) x = {xo. XI. e 009 Xn} o‘

®*Braces will be used to denote column vectors and parentheses
to denote rows.
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The right hend side will be denoted by the column vector

(11) Q =70, byy eoes by
Now the problem may be stated as:

Meximize x, subject to (7) and the matrix equation

(12) PX = Q.

I will ignore the questions of determining the resk of P
and obtaining some feasible solutionm to (12), i.e. one which
satisfies (7). All this is taken care of by phase one of the
simplex method, when necessary [?I.CS?]. Let us merely assume
that P hes rank m+] and that a basic feasible solution is at
hand which consists of a non-singular basis matrix B and an

sssocisted solution vector V = 8'10 where
(13) B=|P;y , Py, 4 ¢ve, P (P, =P)
[ Jo' "h J;] Jo ©

is formed from a subset of the columns PJ. Let the values of
the corresponding variables xji 4=0,1, .c., m) be vy, with
all other xy = 0. That is,
(14) V=1V Y]o ceee Vg t= B-1q. vy = x4)
Further denote the ‘elements of B~! by 8
(15) g-1 = (8ik)

ik’

and any particular row of -1 byﬁl.

(16) ‘i = (ﬂlo' "l' 200y Al-)o
Note that the first column of B~l i also @ unit vector, that is,

. 4 =1 =
6 1; Aio 0, {1 #0.

The first row Ab of the fnverse is called a pricing vector.
If we define

an. 5 = ar =g Aok 4 =1 eeuym

(e
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then the first simplex criterion is stated as follows:

If SJ < O for anyj, then the value of X, will

(108) be increased (or at least not decreased) lf_Pj
is introduced into B,

If all SJ.Z 0, then x, =V is max.

L]

If some § < O, the usual rule i{s to choose an index s by
. } &

(19: Ss = m;n 6) < 0'§pking snallest index in case
of ties,
Then P, is introduced into B, ii;i&dorego choose an index r of
some vector Pj in B which P, is te Teplace, we express P, in

r
terms of B,

(20) B-IP‘ = Y = yo' y1. o0 09 ’.} [
The second simplex criterion (in its-simplified form) is
now expressed as:

If any ’l> O for i # 0,

let 0 'l/yl for those y, > O and 1> 0

+ o otherwise.

(21) Then @ = n:n 0, teking smallest index in case
of ties,
If all yisé 0, then the value of Xo has no
upper bound.

Assuming that x

5 is bounded, then PJ is eliminated from B and
r

repleced by P, giving, after the change of basis, the new
solution

V=20

(22) B(V - OrY) + OrPs
with a new value of X o0

(23) v
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Those femilisr with the simplex theory will note that,
in using the simplified second criterion, I have ignored the
possibility of endless cycling through a recurring series of
bases — a matter which has been discussed at considerable
length {n various papers [}a. 2, 3, 4] . We feel, however,
that this is a very improbable eventuslity there being, to date,
only two extremely synthetic exsmples (by Alan Héffnan and
Philip Wolfe) in which cycling has occurred. It is my view
that non-convergence of the simplex iterative process is only
the limiting case of slow convergence. Until we understand
more clearly why some problems conmverge quickly and others —
which sppear to be of similar structure — take more iterations,
there seems little point in complicating a code to provide for
the unlikely case while ignoring the more frequent difficulty of
slow convergence. While either Dantzig's or Charnes' method
[}l.é] for rigorously resolving ties in choosing the index r
will prevent absolute degeneracy — and hence avoid cycling —
they still permit an impossible number of iterations, from a
practicsl standpoint, in bad cases.

We have found it advantageous not only to transform just
the basis instead of the whole matrix P on every {teration, but
slso to express B! as o product of elementary column matrices
[lo.{]. These elementary metrices are formed, conceptually,
from a unit metrix by replacing the rth column by a vector
)(= ')o. '11' TR M T!'lPJr where 1, = l/!r # 0. Actually

it is only necesssry to record the index r and the vector " (rom

each iteration. This reduces considerably the amount of writing
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necessary to record B=! and requires less reading for the
first several iterations. This form of the inverse is also
convenient for several other purposes, including calculating
the effects of various transformations on s system ¥nd facili-
tating checking and restarting procedures — the latter being

extremely important in practice, This product form has been

written up and circulated rather widely fsj so that I shall not

develop the details of it here., It seemed necessary to remark
on it however, since it requires the redevelopment of the
pricing vector /70 on each iteration and certain statements to
follow might not be clesr unless this fact were understood.
Similarly, when a P is chosen, it is still in its original
form and must actually be transformed into the vector Y by
spplying B-!,

In the form which I have outlined, then, one iteration
of the simplex method can be considered as consisting of the
following five pseudo-operations,

(i) Develop A for i = 0.

(ii) Compute 5] and either choose a 8‘ or terminate,

(Optimum attained)

(111)  Compute Y = B™lw for w = Pp_.

(iv) Choose the index r (or terminate if x, unbounded.)

(v) Make the change of base, constructing a new M

vector and transforming V.
As will appear, this is a sufficient breakdown of the whole

complex of operations to permit discussion of important varia-

tions in the method.
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The solution eof a linear programming problem is often
merely the first step in the investigation of a larger economic
or sdministrative problem. As one example, a linear program
may contain a parsmeter which can be changed to give different
linesr approximstions to some non-linear relationship among the
varisbles. If the non-linear function is continuous, then it
is expected that optimal programs will differ only slightl} for
small changes in the parameter. It is clearly desirsble to be
sble to introduce slight varistions using a previous optimal
solution as a starting point, rather than to coansider each
parametric change as a whole new progremming prcblenm.

There are three essentially distinct questions of this
kind each of which cean be aspproached in two ways. Of the result-
ing six problems, the following four are the most amenable to
sutomatic computing schemes. We refer to these as post-opti-
melity problems and the techniques for handllﬂg them as paras-
metric linesr progrsmming or PLP. |

Given an optimal solution BY = Q to the problem of maxi-
mizing x, subject to (7) and (12), then:

Pr.1) How much can Q be changed in some specified way before
the basis B is non-feasible, i.e, before the necessary
change in V makes some v!" 0?

Pr.2) If an srbitrary change is made in Q and the basis becomes
non-feasible, how can this be corrécted or it be deter-
mined that the whole new problem is non-feasible?

Pr.3) HRow much can the form (6) be changed in some specified

way before the solution is no longer optimal, f.e. before
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the necessary change in Ao makes some SJ < 0?

Pr.4) If some arbitrary change is made in the 'oj." how can this
be accounted for in B~! (more particularly in 60) so that
vectors not in the basis — or even in the original system
- can be priced out?

We could also ask & pair of similar questions about changes in

the original system (8), {.e. in the matrix P with the zero-th

row and the zero-th column excepted. However, for changes
outside the basis B, the problems are trivial whereas, for
changes within B, the general case is quite messy. It is

better to improvise tricks for the particular model at hand or

else start all over, in the latter case. Consequently, we will

make no further mention of parameters in the left members of

the restraint equetions although they are used fairly frequently.
Pr. 2 can be answered very q'ickly. Simply make the

desired change in Q and re-solve for V. If the resulting V

contains no negative elements, all is well since, in any event,

the pricing vector ﬂo remains unchanged. Hence we still have
ell SJ 2 0 and the solution remains optimal as well as feasible,

If some v; < O, then apply the dual simplex algorithm to regain

feasibility, making the necessary changes of basis. If this

cannot be done, then no feasible solution exists for the new
right hand side.
The dual algorithm, as the name implies, operates on the

dual problem, but does so in terms of *the primal system so that

all computations can still be carried out in (m+l)-space instead
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of (n+l)-space which is typically much larger [}b,t]. Without
ettempting to reconstruct the theory of the dual, let us note

the following pertinent facts concerning the complete duslized

system with notation consistent with the above,

PRI MAL DUAL
n - ' m

Objective: maximize x = - ?;; 2,y%y winimize z = ?leiﬁoi
Feasibility: v, 2 0 for { £0 3J.z O for j # 0
Optimality: 8] 2 0 for j#0 vy 2 0 for i 0
Criterion for ) =

improvement: 8. = min SJ'Q (] v, = min v, <

v Yoy BoPJ

Criterion for 6. = min 1/y“ (140) 9y = Wn =% = min 5

elimination: y“»o er<0 rd rJ

Unbounded case: All y 0 All erg 0

<
is™

The dual slgorithm can now slso be stated in terms of five pseudo-
operations which I number in » manner asnalagous to those for the
regular primel algorithm,
(iva) Choose the index r, or terminste, (Optimum attained)
(1)  Compute 4; for i = 0 and r.

(i1a) Choose §_, or terminate if no ArPJ( 0. (Optimum

s | unbounded)

(i111) Compute Y = B”'N for W = P,.

(v) Make the change of base, constructing s new Tlvector
snd transforming V.

Pr.l is handled by s very similar slgoritha but with

somewhat more finesse, L€t q be the vector of changes which

it is desired to make in Q. Then sssume that an optimum

solution BV = Q has been obtained for the restraints
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(24) PX = Q + Qq (xy2 0, | #0)

with the scalar @ = 0, We now compute the representation of (-q)

in terms of B,
-1 - Y _{- . .
(25) B ("q) - Y - Lyo. yl' o0 0y yu} .
Using the same pseudo-operation (iv) as for the normal simplex

algorithm, we now compute, providing any y‘4> 0,
(26) o, = min “i/yy for y; 2 0.
i#o
Proceeding as though we were going to introduce (-q) into B
in place of PJ ., we have
r

(27) .
12; P-’i('i - 0,y4) + 0,(-q) = Q + 0-q,
r

whence adding Orq to both sides and considering that PJr is
really still in B,
(28) . .
2 PJi(vi - Oryy) + O-PJr = B(V - 9.Y)=10Q+ 0.q.
Now (28) is still a basic feasible optimal solution for the
new right hand side and @  is the greatest value of O which
allows this with the present basis.
If {t is desired to change Q by more than @,q it will be
necessary to change basis and the basis vector to eliminate
WKd{ has already been determined, namely Pjr since this is
where the 'bind' occurs as O increases. lence we must now
determine some Pj not in B which can be used as the real P, to
replace PJr and perhaps allow @ to increase further, Now if
we had such a Ps with the representation B'lP'='{yos.yls.....yms}'
it would be newessary that y . = & P, # 0. We also wish to
maintein optimality if possible, that is feasibility of the dual.

This means that the new;go (i.e, the first row of 3! where B
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is formed from B by replacing PJr with Ps) must have the
property thatdoPJ?_ O for j =1, «ccy n. The rules for
elimination give
AOPJr = SJr
Hence we should choose ’rs‘ 0O since You = 53 2 0. From this it
is easy to show that the index s is chosen by the same rule (iia)
as wes used in the straight dual algorithm above, Hence the PLP
algorithm for changes in the right hand side goes as follows,
where a new pseudo-operation (vi) is needed.
(iii1) Compute Y = 8" !w for w = (-q).
(iv) Choose the index r, or terminstc. (max @ unbounded
with present B.)
(vi) Subtract Ori from V and add 0,q to Q.
(1) Conpute,&i for 1 = 0 and r.
(1is) Choose D'. or terminate, (max x, unbounded with
present 0.)
(111) Compute Ys = B~lw for w = P,.
(v) Make the change of base, constructing a new N
vector and transforming V.
\

// The following theorem is of considerable interesf‘(Qp

this type of PLP, h
Theoren: If the choice of r in (26) is unique (assuming

some ;‘> 0) and
(9) it ﬁrPJ< O for some j =1, ..., nm,

then there exigts a finite range of O, Oréo eerfg'
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for which the solution obtsined by replacing

Pjr in B by P, (chosen by (iia)) is both feasible

and optimal; or

(b) if all p PJ > O, then there is no feasible solution
Elln =
fx@> 0.
r

A constructive proof of this theorem is quite straightforward
and even provides a formula for the value of €. This proof can
be found in another paper which I prepared about a year ago

and will be omitted here [{J.

In order to consider Prs. 3 and 4, let us denote the top
row of P — f.e., the coefficients of X, and the minimizing form —
by

Ao = Uy 8,00 8500 ooy 'on)’
If certain (or all) of the 'oj are to be altered by proportionate
smounts ’] of a parameter P, let
T = (0.7'1.72. ....a'n)
and consider the matri. P as having jts top row given by
[y + 87, 82 0.

Let a given basic feasible optimal solution to the
original problem be BY = Q which is then a solution for # = O,
Now if § is fncreased, B, and hence B'l. is changed. But due
to the spegial structure of B — i,e, with its first column
a unit vector — the only change in B™! will slso be in {its
top row,&o. or as ; economist would say, in the shadow prices,
This can be seen from the following schematic diagram of B~}

compared with B, The matrix A is simply B with its first row

and first column deleted.
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Letting d} correspond to vector PJ in B, a little algebra

shows the new value of B,, call it & , is
4 = - 6- B.
29 B =4 ﬂg G

Thus Pr. 4 is solved. The mew pricing vector 3; given by (29)
is used to price out as wsual, but with the altered cost row, /; +
that is, the new values of the SJ. call them EJ' are

(30) Zo(pJ + nrjro) = ifj-

Pr. 3 can be stated as: find the critical value of
P> 0 st which some Zk turns negative. Expanding (29) and (30),
simplifying, and interpreting the question properly, gives the

following criterion:

(31) max § = P, = mind o | for denominator> 0
J

Z_7y Ak 7y
- J
If the denominator is non-positive for all j, then § can be made

erbitrarily large and the present basis will stil]l be optimum,
Otherwise, the index s determines (perhaps not uniquely) a vector
P, to introduce which may allow § to be increased again. The
reguler primal criterion for choosing ‘an index r is used to

meintain feasibility if a change of basis is to be made.
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I might remark in passing that the use of the product
form of the inverse in machine computations is ideal for
computing the row vector 50 in (29) or the sum vector ;Vjiﬂi
for use in the denominator of (31).

The algorithm for Pr. 4 is the same as the one for the
regular simplex method once the specified amount P of 03 has
been added to each 2 and the correction (29) mede in the
inverse, For Pr, 3, we need only to substitute the computations
involved in (31) for the pseudo-operstions (i) and (ii), {.e.
we replace the first simplex criterion with (31). This is only
to be expected, of course, for once an optimum solution has been
obtained to the original problem, the first simplex criterion
has nothing more to offer — its function is completed.

In summary, let me again re-emphasize that organizing
computetional schezes in terms ¢f fairly comprehensive pseudo-
operations, such as have been indicated, is advantageous for
the coder, the mathematician, and the economist. There is,
of course, nothing new in the notion either of regionsl coding
or of abstract or pseudo-code. My complaint is that the organi-
zation of codes into regions or blocks — and the devices used
to couple them together and execute them — {is all too often
based on short-view expediency or established usage rather than
on the true nature of the problems for which the program is
designed. Furthermore, I suspect that this is also true for
many problem formulations, apart from whether machine codes are
written or not, Mathematicians, economists, and others who are

potential customers for the services of a machine computing

group should be interested in being as much as possible in
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rapport with all those engaged in solving their problems. All
variations to date on the basic simplex algorithm, for instance,
can be expressed in terms of just a few of our pseudo-operations,
very few more than we have already mentioned. Consequently, if
everyone's work is organized and planned along these lines, then
modifications involve only a reshuffling of large blocks of
slready proven code. Furthermore, this sort of breakdown enhances
the clarity of one's insight into the theory which underlies all
these linear progremming techniques — namely that of a system
of linear inequalities in non-negative variables and its dual.
(Actuaslly, in espplying the simplex method, the systems are sets
of linear equalities.) For example, the psrameters O and § which
we have discussed are really variables which are involved implicitl
— but intimately — in any optimization problem with linear
restraints in non-negative variables. When working with feasible
solutions of the primal system, the variasble O is made as largye
ss it is possible to do and still maintain feasibility; the
verisble P plays the same {ole for [easible solutions of the dual.
In fact, s slready noted, the change in the maximand x, for the
former case is -OS'?_ O, whereas the change in the minimend 2z
- which is really the same variable in the complete dualized
system —~ i3 given by Pv, < O in the latter cese. Both 0 and ¢
sre quotients with the pivot element, y ., for denominator in
either the regular primal or straight dusl elgorithms. When
both systems are feasible, f.e. when the whole duaslized system
is optimal, then any desirable change in basis can only give
another optimal solution, both @ and § being zero and y ., being

any non-gzero anumber., If changes are made in the right-hand
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side Q or the cost row f;. then parametric progrsmming provides

slightly different formulas for @ or @ to maintain optimality,

as discussed above,

To conclude, the complete dualized system is displayed
in & form consistent with the preceding notation and arrange-
ment of the original problem. For simplicity, it has been
assumed that the basis B consists of the first m+l columns
of P, It is hoped that a careful perusal of this tableau
will be as helpful to those readers who have not yet consider-
ed it as it has been to me in observing the remarkable
relationships that exist in the type of problems with which
we have been concerned. A full explanation of these relation-

ships which the tableau is intended to display can be found

in reference [4] =
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THE COMPLETE DUALIZED SYSTEM FOR THE SIMPLEX METHOD.

(column multipliers)

Yo '1 v2 e o= v‘ 0 - e 0
[]
)
1l 0 0 e e e 0 . 0 «ee 0 - 2
1 ' 1 1
Poo [1 %1 %2 """ %m'®% mi1 """ %on |0
[]
]
Por 0 %27 fm'fen T b
. [ ] : L]
(P> o) ' .
) ‘ W" .
5 \
- - - . - - -
b go- m ", .n,ml ®an b-
| §
i % E : =)
- . L
L., , . oo
' - ’
. O [} .
o &
b. 1 ) X,
Smel : -1 X+l
. ' e
. [ i .
.} ' - -
2 : 1 X

Note: The Adual bdasis (for n+l space) consists of all rows in the big main
(2+1)X(n+m+1l) matrix except those multiplied by Bys +ees By (all zero).
Making a change in the primal dasis — P' replacing Pdr— implies & cor-
responding change in the 4ual basis — the row multiplied by 6Jr replacing
the one multiplied dy 3 ,assuming the matrix P has renk m+l and that one

starts vith a basic solution to the primal system.
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