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\\ SUMMARY

A\

‘MLet S be a physical system whose state at any time is des-—
cribed by an n—dimensional vector x(t), where x(t) is determined
by a lirear differential equationz- Az, with A a constant
matrix. Application of external influences will yleld an in-
homozeneoi.s equation, Z = Az + {, where [, the ';rorcinr; term",
represents the control. A problem of some importance in the
theory of control circuits is that of choosing f so as to reduce
2 to O in minimum time. If f is restricted to belong to the

th)

class of vectors whose 1« components can assume only the values

[ S

+b)

+ f; the control is said to be of the "bang—bang' type. -

Various aspects of the above problem have been treated by
McDonald, Bushaw, lLaSalle and Rose. ¥We shall consider hereqthe

=/

case where all the solutions of Z = Az approach zero as t-’{éc;) .
In this case we prove that the problem of determining f so as to
minimize the time required to transform the system into the rest .
position subJject to the requirement that fi, the 135 component,
satisfies the constraint lfil < b, may be reduced to the case
where fi 1b1. Purthermore, we show that if all the charac-—
teristic roots of A are real and negative, fi need chance value
only a finite number of times at most, dependent upon the dimen-—

sion of the system.

Finally, an example 18 riven for n - 2, 1llustrating the
procedure that can be followed and the results that can be ob-—

tained.
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ON THE "BANG-BANG" CONTROL PROBLEM

by
Richard Bellman, Irving Glicksberg and Oliver Gross

§1. Introduction

let z be an n—dimensional vector function of t sat'sfyinz the

linear differential equation

g% = Az + £, z(0) =¢ (1.1)

where we assume that:

a. A is a real, constant matrix of order n, whose charac-

teristic roots all have negative real parts;

B f is restricted to be real, measurable, and to have com-

ponents satisfying the constraints, lril < 1.

The first condition is the necessary and sufficient condition

that all tre solutions of (1.1) approach zero as t—> oo.

The problem we wish to consider is that of determining the
vectors f which, subject to the constraint (b), reduce z to zero
in minimum time. This 18 a problem of Bolza of rather unconven-
tional type, and the techniques we shall employ are quite different

from the classical ones.

We shall establish two results:
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Theorem 1. Under the above conditions, an f which reduces z to

zero in minimum time exists, and has components f, for which [f,| = 1.

Theorem 2. If the characteristic roots of A are real, dist'nct,

and negative, & minimizing  exists with components f, for which

If,] = 1, and each f, changes sign at most (n-1) times.

The statement in Theorem 1 has been assumed !n the past on
an intuitive basis, see McDonald, [3], and has becen established in
various cases by Bushaw, [1], LaSalle, [2], and Rose, [4]. The
only paper we have had access to 18 that by Rose, and his methods
are distinct from ours. 1In addition, he 1s wrimarily interested

in the case where the condition in (a) 13 not satisfiled.

Problems of this type arise iIn connection with many differ—
ent types of control processes. A discussion of the connection

with servomechanisms is sketched in [2].

§2. Proof of Theorem 2.

We shall consider in detail only the case of Theorem 2,
where the characteristic roots of A are real and negative. It
will be clear from the treatment of this case how the proof of

Theorem 1 goes.

Let X be a square matrix whose columns are the n linearly
independent eigenvectors X, of A, and let kJ (§ =1,...,n) be the
corresponding n distinct, negative elipgenvalues of A; clearly,

X 18 non—-sincular and all its elements are real. Finally, denote
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by A the diagonal matrix whose ,jﬁ diagonal element i3 AJ. We

have

= \N.X . (2.1)

Axy = hy%y

whence we see that AX = XA ; hence
XX = A (2.2)

If now in (2.1) we make the transformation z = Xy, we obtain

using (2.2),

y'(0) = xtc
) (2.3)
y'(t) = Ay(t) + X 1(¢)
or, componentwise,
n
yi(t) = gy, (t) + 2 . ay4f4(t) (2.4)

v

where the a's are the elements of X 1. Solving for yl(t), we

obtain

Xit Kit t —Ais n
yi(t) - yi(o)e + e U/; e §-1 aijfj(s)de . (2.5)

Since z(t) = O 18 equivalent to y(t) = 0, we wish to find the
least t for which, for some f, yi(t) =0, 1=1,...,n, 1.€., for

which

—A,8 n
-y,(0) = fte 1 §=1 a,,f,(s)ds 1 =1,...,n (2.6)

for some f.
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Our first observation is that, given any starting value
y(O) ¢ O there exists a t > 0 and an f, such that (2.6) 1is
satisfied. In fact, there is a constant vector f(s) = k which

does the trick for some t sufficiently large. For substituting

tJ(a) - kJ in (2.6), we obtain
n y.(O A 0
AP =5 =W

ds e =]

—L/;te )

whence, by virtue of the definition of the a's,

A v,(0)
171
S T RE (2.7)
e =

Since —%1 > 0 the right member of (2.7) can be made as small
in magnitude as we please for sufficiently large t, and hence

we can insure that IkJI (1.

For each t ) O we have a linear mapping Py taking f into

the n—-dimensional vector with 1-tih component
g 8
u/; e 3 aiJfJ(s)ds . (2.8)

and this mapping clearly takes our baslc convex get of f's onto
a convex subset C(t) of euclidean n—space. For any f in our
basic set there is another, T, in the set which agreces with f
for 8 { t and vanishes for s > t, so that, for t' > t,
pt,T = ptT = p L, by (2.8), and p.f 1is in c(t'). Thus C(t)

increases with ¢t.
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Now our desired least time 18, by (2.6), the least t ) O for
which C(t) contains the vector —y(0). Since C(t) increases, we
have an interval (to,aﬂ for which C(t) contains this vector, while
for t < t, this 1s not the case. We can see that C(to) also con—

tains tnis vector as fcllows.

Denoting for any vector i = (xl,...,xn) the euciidean norm
(fo)l/2 by ||x|| we have from (2.8) a constant k for which, for
every f,t,tkg?tollptf-pt.fll { k [t-t'|; thus for |t-t'| small
every point of C(t') is close to a point of C(t). Since -y(0)
1s in C(t) for all t ) ty -y(0) must be at zero distance from
C(to) 8o that if we show this set is closed —y(0O) must actually
be in i1t. But each C(t) is closed, since by a well lmown fact
about Banach spaces [5], our basic set of f's may be topologized
80 a3 to be compact and render each Py continuous. Thus C(t),
as the continuous imace of a compact set, 18 compact, hence

closed.

Let us return to the fact that —y(0) is not in C(t) for

t {t From the theory of convex sets (6] this implies that

0"
we have a vector ot of unit norm, for which, in tle usual inner
product notation, (Ot, ptf) < (Ot, -y(0)) for every f. Since

the vectors of unit norm are compact in the euclidean topology,
we may select a sequence tn increasinr to to for which @ " con-

ver-es to some vector @ of unit norm. But since Pt f converces
n

t t
to py f1 (0, py ) = 1m(0 ey 1) S utm(@ Y, —y(0)) = (9, —y(0)).



Thus if f* denotes an f for which p, f* = ~y(0) we have
0
(9, Py r) < (e, Py f+*) for all f, hence constants 8y,...,0,,
) o

not all zero for which f* maximizes the expression

¢, 8 ¢’ 8
Z °1v/ﬂ Zaijrj(a)da - ?V/; (f Olaije )rJ(s)ds
(2.9)

But this expression clearly has as its maximum

z/o iZOa 17 de (2.10)

—A,.8
achleved by setting fJ(a) = sgn(Z Oiaije 1 ). Thus it 1s clear
i

that f'(a) = sen(Z 9a 148 8 ) almost everywhere on ths set where
i

z0,a ¥ 0.

e
1 e K
Our principal result now follows, namely that we can achleve
minimal time by restricting f to assume componentwise +1 on a
finite number of intervals; in .act, in the case considered,

each component need change sign at most n—-1 times. This latter

statement is a simple consequence of the fact that unless the

—A,S
continuous function éJ given by ¢J(s) =3 °1aije 17 4s

1=1
identically zero (in which case 1t makes no difference as to our

>3

choice of fj), it can have at most n—1 real zeros. This 18 well

mown and there is a simple inductive proof.
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5}. A special cace of n = 2

B QR
Consider the probler. ag before, with A = ( . O) ; thus

g' = =32, =22 + {4

! (3.1)
2! = 2, + fa
2

The transformation

zy = 2y, - Y¥2

(3.2)
Z2g = — Y1 +-ya2
reduces the above system to
]
Y1 = =y + f, + f2
(3.3)

]
Yy = =y2 + £, + 2f;

and we obtain, a:s before, for the set of admiasible starting

values, for a given t and £,, f>,

t 2s
1 (0) = /2% = (£1(s) + f2(5))ds,

(3.1)
]
t
~y2(0) = /3" e (fi(:) + 2fa(s))ds.
From the preceding section, we know that if t“ is minimal,
then the optimal f* is given by
es s
fi(s) = sgn (6, + 62e )
(2.5)

2s 5
fo(c) = sgn (642  + 266 )
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If we now ask the question "For what set of starting values y

18 it optimal to choose f; = 1, f, ~» 1 on an initlial interval?"
with a simlilar question for the other combinations +1, it is

readlly seen that the answers will determine arn optimal policy.

This 18 clear, since any continuation of an optimal policy must

be again optimal with respect to the new gtarting values, We

thus have
*
. es 2s 8 2s S
—~y1(0) = J‘ e {sgn(o,c + 020 ) + 5en(Gye + 20z2e ) ds
o)
*
8 es B8 <8 S
~y2(0) = e sgn(Q,e + G.e ) + 2 sgn(ee + Zope )| ds
0

To anewer the first question, for what values of y i 1t opti-
mal tH set f;, = f, =« 1 on ar initial interval, we note tast
thic 18 ejulivalent t5 the conditions

t* > 0

o + 82 >0

G + 262 > U

2h L s a
Now, since the fun~tlone &,e 4+ Oge , bye + (e Ccun

esch vanlah at most once, we see that the above cace bresks down

into four sub—caces, name.y:

(4.6

)
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e
[ J [
2t t
(a) ©e + ey >0,
[ *
2t t
N + 29ype > U
(k) >, < (3.8)
(¢) < >
(d) <, <
Cune (a) 18 trivial and consists of the arc a' i{llustrated
in fivure 1. a' 1o defined parametrically by
®
<t
- —_ L
y1(9) et -- t*> 0 (5.9)
y?(o) - 5(1—9 ))
#g one <in readily verlfy by worxing out the integrals. More-—

cver, the

the differentinal equation 1¢, with [,

curve defines arn optimal path, since the solution of

= {, = 1 1dentically, and

vi1(C), y=(0) defined a- above, precisely a sub—arc of a' beginning

at y (0) and terminating a the origin.

ace

we obtain

(b) 1e vacuous, for if we have

cte te
G, + Oye > O and
Sre te (3.10)
(* % + 200 < 0,
by subtraction, and tne zondition t* > 0O, that @ < O.



But, 63 + @2 > O, whence @; > C. We thus have

2te te | i Le te
8¢ + 20ge > O,e 4+ 20ze = e (Q,47°02) > O

which contradicts

2t te
O‘e + 2029 < 0

We shall treat case (3.8c) in detail. Case (3.54;
treated simllarly, but 1s a trifle more involved, albat
#and will be omitted on those grounds.

We nave, upon substituting in (5.6) for case (c):

1n(—02/64) 2s Ao o8 Fw. or
_'YX(O f ds - y e d« 4+ 1 r
n(—2/6,) 0
In(—2/0,) g te te
& s
-y2(0) = f S - ey T 2 f 5
© In(—6- /0, ) 0

Simplifying, we obtain

-y1(0) = (82/6,)% -1

—y2(0) = = 2(62/01) + et° -

~

t.
I[f now we et %® a e’ | our corditions berome

P=H5¢
-10—

(3.11)

zarn be

elrmentary,

de

(5.1

(5.14)

)
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x* > 1

& +62>0

@, + 262 > O

G x* + @ < 0O (}.15)

@1 x®* + 202 > O

yi(0) =1 = (82/0,)% .

[ ]
ya(0) = 2 + 2(0a/8y) — x*

Wr easlly obtally from the above that @ < O. By homogenelity,

we can set @, = — 1, G = A and we obtaln the equivalent condi-

tionr

A D> x®* > A > 1 (A)

yi(0) = 1 = )2

y2(0) = 3 = 2A — x*

1.0., we wigh to find the 1mage of all ;alrs 'x*,\) saticsfying

(&) under the mapping defined by (B). Plctorially
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On the other hand, the Jacoblan of the transformation (B) 1is

glven by

-2\ ¢ O (3.16)

-2 -1

throughout (A); herce the tran:formation 1c non--inyular and tho‘
L ]

boundary of the image 1¢ the image of th~ boundam Ma<ing use

of this fact we obtain the region for case (5.:dc):

y1(0) < 0 (3.17)

and

s \[1-y1(9) < y2(0) < 2 - 519, (0) (5.18)

In a simllar manner we obtaln a reglon for case (%.84). “he
union of causes (3.%a) tnrouch (3.3d) 1r the set cf all sterting
values for which fy = f; « 1 1= optimal on an initial interval.
In a similar manner we okttaln tne reglion t, =1, . = — 1,
(Notice tnat we need not compute the other reglons uince they can
be obtained by skew—symmetry.)

"he final result of our calculations 1s 1llustrated in
Flgures 1 and 2. Flgure 2 18 the image of Figure 1 under our
initial tranaformation and sives the optim:l policy in terms of

our initial starting vector c = (21 (0), 22 (0)).
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In terms of optimal pathc (cf. Fig. 2) we can state the
following: A path initiating in the (1,1) region continues
with fy = 1, fo =» 1 until it strikes either the ctraight seg-
ment OB or the parabolic arc . In the former case f, switches
from 1 to =1 and the path continues along OB to the origin. In
the latter race fy cwitches to -1 at {7 and the pith contlinues 1in
tne (=1,1) region until 1t intercepts the parabolic arc a at
which fz changes from 1 to -1 and a is follcwed to the origin

with f;, = f, = &1, Similar remarks hold for the skew—symmetric

reglions,
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