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Summary

~“/1This paper is the text of an invited address defore the
annual summer meeting of the American Mathematical Soclety at
Laramie, Wyoming, September 2, 1654,

The contents are chiefly of an expository nature.
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THE THEORY OF DYNAMIC PROGRAMMING
Richard Bellman

§1. Introduction

Before turning to a discussion Hf some representative
problems which will permit us to exhidit various mathematical

features of the theory, let us present 2 drief survey of the

fundamental concepts, hopes, and aspirstions of dynamic programming.

To begin with, the theory was created to treat *he mathe-
matical prodlems arising from the study of various multi-stage
decision processes, which may roughly be descridbed in the fol-
lowing way: We heve a physical system whose strte at »ny time ¢t
is determined by a set of quantities which we c2l]l state para-
meters, or state variables. At certain times, which m-y be pre-
scridbed in advance, or which may be determined by the pricess
{tself, we are called upon to make decisions which willi affect
the state of the system. These decisions are equivalent to
transformations of the state variadbles, the choice »f a decision
being identical with the choice of a trensformation. The out-—
come of the preceding decisions 1is to be used to guide the choice
of future ones, with the purpose of the whole process thet of
maximizing some function of the parameters descriding the final
state.

Examples of processes fitting this loose description are
furnished by virtually every phase of modern life, fra the plan-
ning of industrial production lines to the scheduling of patients

at a medical clinic; from the determination of long-term
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investment programs for universities to the determination of a
replacement policy for machinery in factories; from the program—
ming of training policies for skilled and unskilled 1l-dbor to

the choice of optimal purchasing and inventory policles for
department stores and military establishments.

It 18 adbundantly clear from the very brief description of
possible applications that the problems arising from the study
of these processes are prnblems of the future »ss well as Hf the
immediate present.

Turning to a more precise discussion, let us introduce a
small amount of terminology. A eequence of decisions will be
called a policy, and a policy which is m->st advantageous accord-
ing to some preasasigned criterion will be called an optimal
policy.

The classical approach to the m~*hemrtice]l problems arising
from the processes described abive is to consider the set »f all
possible sequences of decisions, which {s to say, *he set of
all feasible policies, compute the return from each such feasibdble
policy, and then maximize the return over the se: of -11 feasible
policies.

It s evident that straightforward and re- sonable as such
a prncedure 1s, {t is often not practical. For processes involv-
ing even 3 moderate number of stages snd -~ moderate r=nge -f
choices at ench stage, the dimension of the resultant maximizsa—
tion problem will be uncomfortably high, with :ontinusus processes

requiring maximization over function space.



If we momentarily re-examine the situation, not as a

" we see that this price

mathematician, but as a "practical man,
~f excessive dimensionality—a price that occasi-nally makes
even a modern computing machine cringe—arises from a demand

for too much information. How much information is actually
required to carry out a multi-stage decision process?

Do we require a knowledge of the complete sequence of
decisions, those to be performed at the present stage, those »nt
the next stage, and so on? Not at all! It s sufficient to
furnish a general prescription which determines »t rny stage the

decision to be made in terms of the current state of the systea.

In other words, if at any particulnr time we know what to do, it

is never necessary to know the decisions required ~t subsequent
times.

Donning our mathematical cap again, we see that this coremon-
sense attitude reduces the dimension of the prodblem to its proper
level, namely the dimension of the decision prodlem that con-—
fronts one at any particular time.

For the case of deterministic processes, which is to say,
those where the initial state and the decision uniquely deternire
the outcome, both viewpoints are possidle. Por the case of
stochastic processes, where a decision determines only a distri-
bution of outcome states, the classical enumerative approach is

virtually impossibdle.



$2. The Fundamental Approach

As stated above, the dbasic idea of the theory of dynamic
programming is that of viewing an optimal policy as oune deter-
mining the decision required at each time in temms of the cur-
rent state of the system. Following this line of thought, the
basic functional equations given below descriding the quantita-
tive aspects of the theory are uniformly obtained from the fol-
lowing intuitive
Principle of Optimality: An optimal policy has the property thst

whatever the initial state and initial decisisns are, the remain-

ing decisions must constitute an optimal policy with reg-rd_to

the state resulting from the first decisions.

The functional equations we shall derive are of a difficult
and fascinating type, wholly different from any encountered pre-
viously in analysis. ‘*onetheless, as we shall see delow, they
may be utilized to provide an entirely new approach to some clas-

sical problems.

§3. Mathematical Pormulation—I: A Discrete Deterministic Process
To 1llustrate the type of functional equ-tion that =rises

from an application of the principle »f optimality, let us dbegin

with the simplest case of a deterministic process where the sys-

tem 18 described at any time by an M-dimensionsl] vector

p = (p,.p,,....pm), constrairted to lie within some region D.

Let T = {Tk\. where k runs over a set which may be finite, enu-

merable, or continuous, be a set of transformati-ns with the

property that p€D implies that T, (p)eD for all k.
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Let us assume that we are considering an N-stage process
to be carried out to maximize some scalar function, R(p) ef the
final state. We shall call this function the N-—stage return.

A policy coneists of a selection of N transformations,

P -'(T,.T.,....TN). yielding successively the states

P = Ti(p),
Pe = Tl(pl)o
(1)

Py = Ty(Pyy)

b § ¢
If D 1s a finite region,/each T, (p) 1s continuous in p, and

R(p) is a continuous function of p for p€D, it is clear that an
optimal policy exists. The maximum value of R(pN). determined ty
an optimal policy, will be a function only of the initial vector |

and the number of stages N. Let us then define

(2) fx(p) = Max Ripy)

e the N-gtage return odtained using ~n optimal
policy starting from the initial state p.

To derive a functisnal equation for fN(p). we employ the
principle cited adbove. Assume that we choose some transformation
Tk as a result of our first decision, obtaining thereby a new
state Tk(p). The maximum return from the following (N-1) stages
is, by definition, fN_l(Tk(p)). It follows th-t k must now dbe
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chosen 80 as to maximize this. The result i1s the dbasic func-

tional equation

(3) f(p) = Max £y, (T (p)), Ne=2,3,... .

It 18 clear that a knowledge of any particular optimal
policy, not necessarily unique, will yleld tN(p), which s
unique. Conversely, given the sequence {rN(p)}, 3ll optimal
policies may dbe determined.

We thus have a duality between the space of functions and
the space of policies which is of great theoretical and compu-
tational importance. This point will be discussed again delow.

5&. Mathematical Formulation—]1l: Discrete Stochastic Case

Let us now consider the case where the transformationg sre
stochastic rather than Aetemministic. A choice of a transforma-
tion T, now yields a stochastic vector z as the new state vec—
tor with an associated vector distribution function de(p,z).

It 18 clear that it is now in general meaningless t- speak
of maximizing the return. We must agree to measure the value of
a policy in terms of some avernge value of the function of the
fina]l state. Let us call this expected value the N-stage return.

We now define fN(p) as bef-re in terms of the N—stage return.
If z is the state resulting from any initial transformation Tk.

the return from the last (N-1) stages will be tN_l(x). The
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expected return as a result of the choice of Ty 18

(1) zg) fy_y(2)a0, (p,2)

Hence, the functional equation for t'"(p) is

(2) f’,(p) -nﬂx z{t') fh._l(n)do(p.z), Ne2,2,...

Note that the deterministic pr-rcess may dbe considered to de

merely a particular case of & stochastic prnocess.

55. Mathematical Pormulation—I11: Infinite Stochastic Process

For mathemntical purpHrses, it is frequently useful to con-
sider the fictitious infinite process in which there are an
unbounded number of stages. In that case, the sequence tN(p)
is replaced by the single function f(p) e t‘oo(p). and the formal

equivalent of (3.2) s

(1) f(p) = Max S‘ f(z)ac, (p,z)

z€D

’6. Mathematical Pormulation—IV: Continuous Deterministic
Process -

1f we consider a continuous process where a decision must
be made at each point of a time interval, we are led to mixi-
mization prodblems over function spaces. The simplest examples

of these prodlems are fumished by the celculus of variations.

P=550
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As we shall show delow, our approach leads to a new view of
this classical theory.
Defining

(1) f(p;T) = the return obtained over a time interval O,T
using an optimal policy starting from an
initial state p

the analogue of the functional equation of (3.3) is

(2) f(p;S+T) .D'|"§..§l f(Te(p);T)
wvhere the maximum is taken over all allowadble decisions made
over the initial interval [0,§].

As soon as we consider infinite processes, we are confronted
by the difficulty of showing that the maximum is actually attained.
Consequently, in generel, we must initially replace (6.2) by

the rigorous equation

(3) £(p;S+T) .D[Z_SS‘:SJ r(T(p)iT)

and then show, under various assumptions, that the extremum is
attained.

As will be shown below, the limiting form of (5.3) as
S @) O ylelds a partial differential equation.

We shall not discuss here the corresponding problem for the
case of stochastic processes since a number of interesting and
A1fficult conceptual questions arise which have not as yet been

fully resolved.
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51. Some Examples——I: An Allocation Prodblem

Before proceeding any further with our general discussion,
let us {llustrate these ideas by means »f & number of examples,
of dboth stochastic and deterministic type, which are repre-
sentative of the types of problems which fall within the domain
of the general theory.

Problem 1. VWe are given a quantity x > 0 that may be divided
into two non-negative parte, y and x-y. From y we obtain a
return of g(y), at the expense of reducing y to ay where

0 <Ca¢l; from x=y we odbtain a return of h(x-y) at the expense
of reducing x—y to b(x-y) where O ¢ b < 1. The process 18 now
repeated with the new initial quantity ay + b(x-y), and so "n
indefinitely. How does one allocate at each stage s> as to
maximize the total return odbtained over the entire process?

This is a very simple prototype of a l-rge class of impor-
tant allocation and investment problems which Hccur in a number
of diverse activities,

Let

(1) f(x)  the total return obtained employing an
optimal policey.

Arguing as above, 1t 1s readily seen that f(x) satisfies the

functional equation

(2) f(x) « Sup [g(y) + hix=y) + f(ay + b(x-y))] , X > 0
Ogy<x

f(0) = O
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For a discussion of the various ways in which this equa-
tion can arise, and some of the analytic results which csn be
obtained, we refer the reader to [4], [6], [11], [12].

Treatment of the closely related optimal inventory problem

may be found in (2], [29), (19].

§8. Some Examples—I.: Stochastic Gold Mining

Let us now consider the following example:

Problem 2. We are fortunate enough to possess tw> gold mines,
Anaconda and Bonanza, and a sensitive gold-mining machine with
the following characteristics: If the machine is used in
Anaconda, 1t will mine, with probability p, a fixed fraction r
of the gold there and be undamaged; with probability (1—p) 1t
will mine nothing and be damaged beyond repair. If the machine
is used in Bonanza, it will mine, with probability q, a fixed
fraction s of the gold there and be undrmaged; with probabllity
(1=q) 1t will mine nothing and be damaged beyond repair.

At each stage, as long as the machine 18 undamaged, we
have our choice of using the machine in Anaconda -r Bonanza,.
Given the initial amounts, x and y respectively in each mine,
what sequerce of choices maximizes the expected amount mined
before the machine is damaged?

Let

(1) f(x,y) = the expected amount of gold mired before the
machine 13 damage~ using an nptimal policy,
starting with x in Anaconda and y in Bonanga.
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It s easily seen that f(x,y) satisfies the functional
equation

(2)  t(x,y) = Max [“ JE ”“"”‘”’3:]
B:

q(ey + f(x,(1-s)y) ]

The solution has the f-llowing simple structure:

a. Por prx/(1-r) > qsy/(1-8), choose A
(3) b. Por prx/(1-r) ¢ qsy/(1-8), choose B

¢. Por prx/(1-r) = qsy/(1-8), choose either

Using this prescription, f(x,y) mry be computed recurrently.
The boundary curve bdetween the two decisions regions is the locus
of points where immediste expected gain -ver {immedite expected
loss is the same for both choices. Unfortunately, as a counter-
example of Karlin and Shapiro [3§ shows, this simple and intui-
tive rule is not valid generally in more complicated decision
processes.

For a 4iscussion of further results and extensions of both

discrete and continuous type, see [3], (5], (11, BsSl. B4.

59. Some Examples—I]]I: A Problem in the Calculus of Variations

A simple example of a continuous “ecision pr cess {s fur-
nished by the f-llowing problem in the calculus of v-riations:

Problem 3. Maximize .i.P(r,y)d? over all y where x and y are

)
connected by the relation dx/4t e G(x,y), x(0) = c.
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The clossical technique in the cialculus of varl-ti ns,
prtterned directly af*er *he technique used {n m=ximization
problems {n finite-dimensional spaces, consists Hf ~orsider! g
the function ylelding an extremum a8 a p~in* {1 func-ion space.
This point is now characterized by means of variational prper-
ties, of which the most important (s the Euler equati-n.

This approach corresponds to finding y as a furction ~f ¢.
Instead, we shall view the problem as 8 continuous decisior
process and seek to determine y at any time aa o func*tior ~f the
two state parameters, ¢ and 7,

Let us then set

(1) f(c,T) = Max f Fix,y)at

y e
We shall in what follows proceed completely formally. assuming
the maximum is attained, that all functions have the requisite
number of continuous derivatives, and so on. Using the principle

of optimality, we see that f(c,T) satisfies the equati n

c
[N

ST
f(c,5¢T) = Max r. Jr F(x,y)at + éix P(x.y)dt.]

Y'Loot_J =0

(2)

= Max Tj F(x,y)dt + r(c(S).T):l

y[©.§] Lo

where c(S) is x a* ¢t @ S
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Assuming that y is continuous, we obtain after a simple com-—

putation the limiting form of (2) as S —3 O

(3) fy = Max [F(e,v) + G(c,v)f, ]

where v = y(0). Proceeding formally, we h~ve for the determina-—

tion of the maximum
(&) F, ¢+ G f, =0
Fliminating f between (3) and (4) we obtain the first-order

partial differential equation

Fv PGV-GFV POV-OPV
(5) (=) vp = (—g by Vo + (—g—)
v v

\ 4

The characteristics of this equation lead directly to the Euler

equation odbtained by the usual varistional approach:

'x P’
Gx Gy

P
4
(6) G, —JT(-B:_) -

The same is true in the multi-dimensional problem where x,y
and G(x,y) are vectors and P(x,y) 1s a scalar function. The
case where the integrand contains t explicitly can always be
reduced to the above by the introduction of a new dependent

variable.
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If we add to our original problem a constraint such as
0 <y £ x, one which occurs frequently in connection with allo-
cation and investment problems, the functional equation is

replaced by

(7) fyp = Max [P(c.v) + G(c,v)fc:]
0gv<e

Various conditions under which this prodblem has a s->luti n of

particularly simple structure are given 1in [}1. We might note

in passing that the 4ifficulty irduced by a c nstraint -f the

type above 1s due to the fact that free variation is not per-—

mitted whenever y has an extreme value of O or x, and c nsequently

inequalities replace equalities.

Further discussion of these techniques will be found in (14,

ad. 07, £8.

1517. Some Examples—IV: An Figenvalue Problem

This functional-equation approach {s also applicadble t»o

eigenvalue problems assnclated with differential equa‘ions »f

the form

(1., ——g%;'+ ANo(t)u » O

u(0) e u(1) e 0

where we are interested in the vilues of A? which ylel® n-nerivial

solutions u.
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Under suitable conditions upon ¢(t), this prodblem is
equivalert to that of determining the successive mirima of '
J}u"dt sudb ject tH» the constraints afé(t)u‘dt 1, u(0)  u(1) = 0.
In order to employ the functional equation, we imbed the
prodblem within the more genersl problem of determining the suc-

cessive minima of

ast

(2) J(u) = \I‘ u'fas

subject to the constraints

(a) u(a) ® u(aet) e 0,
(3)

ast as+t

) J  e(s)utas + « af 6(S) (n+t—S)u(5)dS = 1

Writing M&n J(u) e £(n,k,t), we can “erive a partial differ-
ential equation for f, which is noniinear. Using the fact that
¢ may be considered constant, and equal to $(a), for smmll ¢,

this equation may be used to determine the eigenvalues computa-

tionally (see ijd, 14. 38).

511. Some Examples—V: Games of Survival
As our last example, let us consider a p-rticularly interest-
ing example of a multi-stage game, the so—c-lleqd "game of sur-

vial."
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Let us assume th2t two players, A and B, are playing a
zero—sum game determined by the matrix A = (’15)' 1.9%1 1,4 ,%;
and th~t A starts initially with an amoun® -f morey x, ant B
starts initially with y. Both are playing the game wi'h the
purpose >f ruining the other. How should both play”?

Let us define, for x and y positive

(1) f(x,y) « the probab!lity that A ruins B, given
that A starts with x, and B with y,
and both play optimally.

I* {3 clear that A wisheg to maximize this probadility and

B wishes to minimize {t.

For other values of x and y, f(x,y) i» “efined as fnllows:

(2) fix,y) = 0, x<{0, y¥y>0
-1, ys_ﬂ. x>

It 1s now clear *hat f(x,y) satisfies the func-ional

equation
_ N
b -« M v
(3) r(x,y) Max vYin E pquf(x + Ay, y-au)]
P qQ «1,]J=]
e Min Max CR7ZL ]
q |

S4nce the to0°al sum of money in the game rem.ins constant, {t
{s clear th-t we can rerlace f(x,y) by a functior of »ne

vari{iable, x.
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For further developments, we refer the reader tn [i},

BU. and to a recent paper by Shapley [33.

5;12. Approximation 1~ Policy Space and Monotone Convergence

The functional equations we h-ve derived above are, in the
main, analytically intransigent. The theoretical and numerical
properties of the solutions must then be “erived by use of th-t
general factotum of analysis, the method of successive - pproxi-

mations. If our functional equation has *he f-rm

(1) f(p) = T(f(p))

as do those above, we choose an initial functi n ro(p). and

obtain a sequence of functions by means of the algorithm

(2) fre1(P) = T(fo(p)), neo,1,...

The physical background wil) usually provide precisely the con-
ditions required for geometric convergence of this sequence 'o
the solution of (1), where the uriqueness will be equally gu-ir-n-
teed by the same c-onditions. This techrique we call approxima-
tion in function space.

Let us recall, however, that in - sense the functi-n f(p)
is not of paramount i{mportance. Father, it {8 the optimal poli-
cles which yleld f(p) that are the most impor:ant. I° foll- ws

that 1t may be wiser to approximite t: Hptimal policies rather
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than approximate directly to maximum returns.

in many ways this is a simpler and m>re natural technique,
as well as more practical in applications. Tre principle theo-
retical advantage lies in the fact that we ~ow obtain monotore
convergence,

To 1llustrate this {n its simplest form. let us con~l-er

the functional equation discussed in

(3) f(x) = Max rs(y) ¢+ hix-y) ¢ rf(ay + b(x-y))]
Oy<x ~

Perhaps the simplest initial! guess 18 to assume that y @ 0 ¢n=-
tinually. This ylelds as our initial approximation t> the
maximum return the function ro(x) sntisfying the functional

equation
(4) fo(x) @ hix) + £ (bx)
Jt 18 now clear that the function f,(x) determined by

(5) f1(x) = 02;;} [g(y) + nix-y) + £ (ay ¢ b(x-y))J

1s always greater than or equal to f (x). Hence, inductively,

if

(6) f .1(x) @ Max [s(y) + h(x-y) + f‘n(a)'+b(x-y))], neo,1,...

X

nel
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we have
(7) frey (%) 2 f(x)

and thus monotone convergence, see [3], [H].

A completely analog us technique is applicadble to con-
tinuous processes, and in particular the calculus of variati ns.
The results are particularly interesting in connection with

eigenvalue problems where we obtain monotone convergence, G4 .

ag

513. Further Resulg

We have not the space here to discuss any of a number H>f
other interesting and important problems in dynamic programming.
For those interested in bottleneck problems Hccurring in
multi-stage production processes, we refer t-> [7], [14], [27].

Those interested in scheduling problems may consult [22].
(23], D3].

A number of mathematical prodblems occurring in connection
with the control of engineering econ-mic systems are discussed
in [26], (21].

Finally, we should like to mentior a number of papers ¢ n-—
cerned with the very d4ifficult m~rthematical pr 'blems occurring
in the genersl theory of learning processes, [32], [34], [35],
and [24].
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