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THE THEORY OF DYNAMIC PROOHAWHINO 

Richard Bellaan 

|1.     Introduction 

Before turning to a discussion rt so«e representative 

problems which will pemlt us to exhibit various mathematical 

features of the theory,  let us present * brief survey of the 

funrlaiient«! concepts, hopes, and aspirations of dynaalc prognmming 

To begin with, the  theory was created  to treat *he mathe- 

matical problems arising fro« the study of various aultl-stage 

decision processes, which may roughly be described In the fol- 

lowing way:    We h^ve a  physical system whose st*te at *ny time t 

Is determined by a set    f quantities which we call  state para- 

meters, or state variables.    At certain times, which m-y be pre- 

scribed In advance, or which may be determined by the process 

Itself, we are called upon to make decisions which will «ffect 

the state of the system.    These decisions are equivalent to 

transfonnatIons of the state variables,  the choice of a decision 

being Identical with the choice of a transfonsatIon.    The out- 

come of the preceding decisions Is to be used  to guide the choice 

of future ones, with the purpose of the whole process that of 

maximizing aome  function of the parameters describing the final 

state. 

Examples of processes fitting this loose description are 

furnished by virtually every phase of modem life,  from the plan- 

ning of Industrial production lines to the scheduling of patients 

at a medical clinic;  fro« the determination of long-term 
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investnent programs  for universities  to the determination of n 

replicemer.t policy for machinery In  factories;   fro« the program- 

ming of training policies  for skilled and unskilled  1-bor to 

the choice of optimal  purchasing and  Inventory policies  f^r 

department stores and military establishments. 

It Is abundantly clear from the very brief description of 

possible applications that  the problems arising fro« the study 

of these processes are problems of the   future ^b w^ll  as  of th^ 

Inonedlate  present. 

Turning to a  more  precise discussion,   let us  Introduce a 

small  amount   of terminology.    A sequence of decisions will  b^ 

called a policy, and a policy which  Is m>st advantageous accord- 

ing to some preasslgned  criterion will  be called an optimal 

policy. 

The classical spproach  to the m'*h^m«»tlc»l  problem? arising 

from the processes described ab^ve  Is  to consider the  set   ^f ^11 

possible sequences of decisions,  which  Is  to s^y,   *he  set  of 

all   feasible policies,  compute  the  return  from each such  feasible 

policy,  ind  then maximise  the return  over the  »e*  of -11   feaalble 

policies. 

It  Is evident   that  straightforward and   re-sonable as  such 

a  procedure  in,  It  Is  often not  practical.     For processes  Involv- 

ing even a moderate number of stages  «ind  n  moderate r-nge   of 

choices ^t e«jch stage,   the dimension  of the  resul^nt  maximiza- 

tion problem will  be uncomfortably nigh,   with   :ontlnuJUS processes 

requiring maximization over  function  space. 
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If «• «oaentarlly  re-examine the  situation,  not as * 

mathematician,  but as a   "practical ma^,," we  see  that this  price 

of excessive dlaenslonallty—a  price that  occasionally makes 

even a Modern conputlng nachlne cringe—arises   fr ■ a  demand 

for too aiuch infor«atlon.    How much Infonsatlon Is actually 

required to carry out a «ulti-atage decision process? 

Do we  require a knowledge  of the conplete  sequence of 

decisions,   those to be perfonaed at  the present  stage,   tr.ose at 

the next stage, and  so ont    Not at  nil!     It  is  sufficient  to 

furnish a general  prescription which 'letenaines «t «ny stage  the 

decision to be «sde In  tents  of the current   st^te of the systea. 

In other words,  if at any particular tine we know what to do,  it 

is  never necessary to know the decisions required at subsequent 

*laes. 

Donning our o^theaiatlcal  cap again,  we  see  that this     >mmon- 

aer.se attitude reduces  the dimension of the problem to  its proper 

level,  namely the dimension  of the decision problem that con- 

fronts one at any particular time. 

For the case of datermlnlstle processes,  which is to say, 

those where the Initial  state and the decision uniquely determine 

the  outcome, both viewpoints are possible.    For the case of 

stochastic processes, where a decision determines only a dlatrl— 

butlon of outcome atatea,  the classics! enumeratlve approach la 

virtually impossible. 



§2,    The Pundaaental Approach 

As stated above,  the basic  Idea of the theory of dynaalc 

programing is that of viewing an optimal policy as one deter- 

■Inlng the declaion required at each tiae  in terns  of the cur- 

rent  state of the systeai.    Following this  line of thought,   the 

basic  functional equations given below describing the quantita- 

tive aspects of the theory are unifomly obtained  fro« the  fol- 

lowing Intuitive 

Principle of Optlwality:     An optical  policy has the property  th%t 

whatever the  initial  atate and   initial decisir.s ar^,   the remain- 

ing decisions «uet  constitute an  OPtlgal  policy with reg-rd  to 

the  state resulting from  the first decisions. 

The  functional equations we shall derive are of a difficult 

and  fascinating type, wholly different  froa any encountered  pre- 

viously in analysis.     Nonetheless, as we shall  see below,   they 

may be utilized to provide an entirely new approach to some  claa- 

slcal problems. 

^3«     Mathematical Fonsulation—I!    A Discrete Detemlnlatic  Process 

To illustrate the  type of functional equ-tion  that «rises 

from an application of the principle  of optlmslity,   let  us begin 

with the simplest  case of a detensinlstic  process where  the  sys- 

tem is described at any time by an M-dlmer slor.M  vector 

P ■   (Pi *Pa >• • • *PM) >  c nstralr.ted  to  M^ within some  region D. 

Let T • f^icV  ,,her* *  run8 over a  aet which msy be   finite,  enu- 

merable,  or continuous,  be a  set of  transforaati ns with the 

property that  p€D implies  that Tk(p)tD for all k. 
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Let us assuae that w# are considering an N-stage process 

to be carried  out to maximize so«e scalar function, F(p) of the 

final state.    We shall  call this function the N-etage return. 

A policy conaista of a  selection of N transfornations, 

P * (T| (Tt».. • v^), yielding successlvelj tka states 

(1) 

Pi   - T»(p), 

P»  • Tt(pi). 

• 

if 
If D is a   finite region,/each Tk(p)  ia continuous  in p# and 

P(p)   is s continuous function of p for pCP,  it ia clear that an 

optiml policy exiata.    The maxlmua value of P(pN),  deteminei \w 

an optlaal policy, will be a function only of the  Initial vector j 

and  the nuaber of stages N.    Let us then define 

(2) fN(p) - Mjx RCp^) 

• the N-«tage return obtained using -n optlaal 
policy starting froa the initial state p. 

To derive a functional equation for f.^p), we eaploy the 

principle cited above. Assume that we choose soae transfonntlon 

Tk as a result of our first decision, obtslning thereby a new 

state Tk(p).  The a^xiaua return froa the following (N-l) stages 

la, by definition, ^^(^(p)).  It followa th-t k auat now be 



-6- 

choien so as to maximize this. The result Is the bislc func- 

tional equation 

(3)    fN(p) - Max f^CTjjCp)), N-2,3  

It Is clear that a knowledge of any particular ^ptlmnl 

policy,  not necessarily unique, will yield  fN(p)*  «^ich Is 

unique.    Conversely, given the sequence f^(p)c*  'l11  opt Ins 1 

policies may be detemlned. 

We thus have a duality between the space of functions and 

the space of policies which Is of great theoretical and compu- 

tational  Importance.    This point will be dlscusaed again b^low. 

i*•    Mathematical Porwulatlon—II;    Discrete Stochastic Case 

Let us now consider the csse where the  transf^nsatlons ire 

stochastic  rather than ^etenslnlstlc.    A choice of a  transfoma- 

tlon Tk now yields a stochastic vector z as  the new state vec- 

tor with an associated vector distribution  function dG^fp.z). 

It  la  clear that  It  Is now In general meanlngleas  to  speak 

of maximizing the return.     We must agree to measure  th* value  of 

a policy In  terns of some average value of the  function  of the 

final  state.    Let ua call  this expected value th^ N-atage return. 

We now define  fN(p) as before  In  terms of the N-atsge return. 

If z Is  the state resulting fr>m any Initial  transforrnatlor. T^, 

the return   from the  last   (N-l)  stages will be  fN  .(t).     The 
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tKp*et«d r«turn as a rttult of the choice of Tk Is 

C 
J   fNÄl(t)(Jok(p#i) (1) 

XÄD 

Hence,  the functional equation for fN(p)  Is 

f 
(?) fH(p) - Njx     J    fN-1(f)dQ(p,f).    M-2,2,... 

Note that the detenslnlstlc process nay be considered t-) be 

■erelj a particular eaae of a stochastic process. 

$5»    Mathematical Forwulatlon—Hit    Infinite Stochaatic Procesa 

For sntheBMtical purp see,   it  is frequently useful to con» 

slder the fictitious infinite process In which there nre an 

unbounded number of stages.     In that case,  the sequence    fN(p) 

is replaced bj the single function f(p) • f00(p)» *nd the fonsal 

equivalent of (3*2) is 

f(p) - Nax   ^   f(t (I) f(p)  - Nax   -^   f(i)dOk(p,r) 

Ä6.    Matheastical Ponwilatlon^>IV!    Continuous Deterainistic 
Process 

If we consider a continuous process «here a deciaion aust 

be aade at each point of a tiae interval, we are led to aixi- 

«ilzttl n prob leas over function spaces.    The siaplest examples 

of these probleas are furnished by the calculus of variations. 

P-650 



As «e shall show below, our spproseh leads to a new view of 

this classical theory. 

Defining 

(1)    f(p;T) • the return obtained over s tlae interval 0,T 
using sn optiaal policy starting fron an 
Initial stste p 

the analogue of the functional equation of (30) ia 

(2) f(p;Svr) - Max f(Tc(p);T) 

where the maxlaua ia taken over all allowable deciaiona made 

over the initial interval [T),£]. 

As soon aa we conaider infinite proceaaea» we ar^ confronted 

by the difficulty of ahowinr that the maxlnmm ia actually attained. 

Consequently, in general# we auat initially replace (6.2) by 

the rigorous equation 

(3) f(p;Svr) - Sup f(Te(p);T) sup 

and then show, under various assuuptlons, that the eztreaua ia 

attained. 

Aa will be shown below, the liaiting form of (6.3) aa 

S    > 0 yielda a partial differential equation. 

We ahall not diacuaa here the corresponding problem for the 

case of stochastic proceaaea aince a number of interesting and 

difficult conceptual questions arlae which have rot as yet been 

fully resolved. 
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Ll.    bam* E««»plee«^:i    An Allocation Proble« 

B#for# proceeding tny further with our general discussion, 

let us  Illustrate  these Ideas by means  of a number of examples, 

of both stochastic  and deterministic   type, which are repre- 

sentative of the types of problems which fall within the domain 

of the general  theory. 

Problem I.    Ve are given a quantity x > 0 tint may be divided 

into two norwiegatlve parts, y and x—y.    From y we obtain a 

return of g(y), at  the expense of reducing y to ay where 

0 < a < 1;   fro« x-y w« obtain a  return of h(x-y) at the expense 

of reducing x-y to b(x-y) where  0 < b < 1.    The process  Is now 

repeated with the new initial  quantity ay 4 b(x--y), and so on 

indefinitely.     How does one allocate at each stage s > as to 

maximize the total   return obtalnei over 'he entire process? 

This is a very simple prototype of a 1-rge class of impor- 

tant allocation and Investment problems which ^ccur In a number 

of diverse activities. 

Let 

(I) f(x)  • the   total  return obtained employing an 
optimal policy. 

Arguing as above.   It  is  readily seen  that  f(x)   satisfies  the 

functional equation 

{?) f(x)  -    5up     rg(y) ♦ h(x-y)   ♦  ray 4 b(x-y))   |    ,  x > 
0^r<x   L- -l 

f(0)  - 0 
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For a discussion of the various ways In which this equa- 

tion can arise, and so«e of the analytic results which c^n be 

obtained,  we  refer the reader t~>  W,   ß] •   DVJ»   DO« 

Treatment  of the closely related  optln^l   Inventory problwi 

y be  found   In   [2],   [29] .   Dfl. 

38«    Some Emwples—Hi     Stochastic Cold Wlnlrg 

Let us  now consider the   following example: 

Problem 2.     We are  fortunate enough  »o possess tw    gold mines. 

Anaconda and  Bonanza, and a  sensitive gold-mining machine with 

the  following characteristics:     If the machine   Is  used  In 

Anaconda,   It  will mine,  with probability p,  a   fixed  fraction r 

of the  gold   there and be undamaged;  with probability  (1-p)   It 

will mine nothing and be damaged beyond repair.     If the machine 

1» used   In Bonanza,   It will mine,  with probability q, a  fixed 

fraction  s  of the gold th#re and  be undamaged;   with probability 

(1-q)   It  will mine nothing and  be damaged  beyond   repair. 

At each  stage, as  long as   the machine  Is undamaged,  we 

have our choice of using the machine  In Anacnda   ~r Bonanza. 

Given the  Initial amounts,  x and y respectively  In each mine, 

what  sequ#»r.ce  of choices maximizes the expected amount mined 

before  the machine  Is damaged? 

L#»t 

(l)    f(*»y) • the expected amount of gold mined b*»f^re the 
machine Is damage-* using an optimal policy, 
starting with x In Anaconda and y In Bonanio. 
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it is easily seen that  r(x,yj  satisfies the  functional 

equation 

[>:    p(rit ♦  f((l-r)i.y)3 l 
(?) f(K,y)  - Wax 

LB:     qC?y ♦  f(x,(l-«)y)^ J 

The solution has the fallowing  slmp> structure: 

a.    For pnc/(l-r) > qay/(l-«),  choose A 

(5) b.     F^r pni/(l-r) < qay/d-e),  choose B 

c.     For pm/(l-r) • qay/(l-e),  choose either 

Using this prescription,   f(x,y)  »^y be computed  recurrently. 

The boundary cunre between the two declslona reglor.s  Is  the locus 

of points where  Imnedlvte expected gain   svtr Immediate expected 

loss Is  the  saiae  for both choices.     Unfortunately,  as a  counter- 

example of Karlln and Shapiro   ££   ahowa,   this aloiple and  Intui- 

tive rule la not  valid generally  in »ors  complicated decision 

processes. 

For a discussion of further results and extensions of both 

discrete and   continuous  type,  see   [3],   [JO,   [ll] ,   K»   65« 

39•     Sogt Exatrples—lilt    A Problea in the Calculus of Variations 

A simple exniaple of a  c^ntlnuoua  decision pr cess   Is   fur- 

nished  by the   fallowing problem  In   the  olculus  of variations: 

Problem  5.     Maxlalze  £  P(y,y)d*   over all y where  x and y are 
o 

connected by  the relation dx/dt • 0(x,y),     x(0)  • c. 
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The elr?ff8lcal  technique  In  the c^lculue  of varl   tl »ns, 

patterned directly ^f*er ^he  technique used   lr. m^xlwlz^tlon 

problem?  In  fInlte-^lm^nslonal   spaces,  consists  ^f "or.sli^rl  g 

the  function  yielding an  ^xtrerrum  TS a p^lr*   In   funclon  space. 

This  point   Is  now characterized  by means of  vnrlatlonal  prp^r- 

tles,   of which  the most  Important   la the Euler equ«>tl-n. 

This approach corresponds  to finding y as ^   function ^f  t. 

Instead,  we  shall  view the problem us a continuous decision 

process and   seek to determine y at any tlm«» as ^   function ^f the 

two stat^ parameters,  c and T. 

Let us  then  set 

(1) f(c.T)  - *ax   J   P(x.y)dt 
7    o 

We shall   In what  follows proceed  completely  formally,   assuming 

the maximum Is attained,   that all  functions h-.ve  the  requisite 

number of continuous derivatives, and  so on.     Using the principle 

of optlmallty,  we see  that   f(cfT)   satisfies   the  equation 

f(c.S4T)  -    Max 0   F(x,y)dt ♦  J     F(x.y)dt 

(2) 

•    ^^      J   F(x,y)dt ♦ f(c(S).T) 

where  c(S)   lsxatt»£ 
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Assuflilnf that y Is continuous, w« obtain after a  sluple c 

putatlon the  Halting form of (2) as S  > 0 

(3) fT - Hax  QPCc.v)  ♦ G(c.v)fc3 

where v • 3r(C).  Proceeding formally, wt h-ve for the ^etensln«. 

tlon of the maxlnu« 

(M P  ♦ 3 f  - e   v c 

Fllalnatlng f between  (3)  and   (4) we obtain the  first-order 

partial differential equation 

(5) (- 
PGV-CFV 

K VT - <    I.     K vc ♦ ( 

The  characterlatlcs of this equation lead directly to the Euler 

equation obtained by the usual  variitlonal approach: 

(6) 'j -it in*-)- 
fx   Fy 
\    Gy 

The sasw Is true  in  the ■uItl-<11»enslonal problea wh^re  x#y 

and 0(x,y)  are vectors and  P(x,y)   is a scalar function.    The 

case where  the  Integrand contains   t explicitly can always be 

reduced  to the above by the  Introduction of s  new dependent 

vsrlable. 



If we add to our original pr blem a constraint nuch  as 

0 < 7 < x» one which occurs frequently In connection with allo- 

cation and Investment problems, the functional equatlor. Is 

replaced by 

(7)    f . Max fpCc.v) ♦ 0(c.v)f 1 
T  O^v^ci- CJ 

Various conditions under which this problem has a  s lutl n of 

particularly simple structure are giver.  In   [l^ .    tfe might  note 

In passing that  the difficulty Irduced  by a   constraint     f the 

type above Is due  to the  fact that  free  variation Is not  per- 

mitted whenever y has an extreme value  of 0 or x, anrf c  nsequer.tly 

Inequalities  replace equalities. 

Further dlscuaslon  of these techniques will be  found   In   34 , 

a<ä. un. n- 

£13.    Sogt Examples—IV;    An Eigenvalue Problem 

This   functional-equation approach  Is also applicable  to 

eigenvalue  problem« associated with differential  equa* ions   -»f 

the   form 

it)       —irr 4 **<*)" - ^ 

u(0)    •    u(l)     - 

where we are  Interested   in  the vilues  of V  which ylel«4  n-n»rlvlal 

solutions u. 
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ünder aultable  conditions upon tit),   this problem  Is 

•qulvil#rt to that  of d^temlnlng the  successive mir !BS  of 

fu^dt  subject  t-> the constrtlnts   J ♦(tju'dt - 1,    u(0)  • u(l) - 0. 

In order to eaploy the  functional equation, we labert  the 

problea within  the a^re general  pr blen of determining  the  suc- 

cessive Bilnlaa of 

a^-t 
(?) J(u)  - J      u'»d5 

subject to the constraints 

(a) u(a) - u(a4.t) • 0. 

^J a^t a>t 

(b) J   ^(S)utd5 ♦ k J*  i(S)(a4t^5)u(S)dS - 1 

Writing Min J(u)  ■ f(*,k,t), we can  ^erive a partial differ- 
u 

ential equation for f,  which  is mnllnear.     Using rh*» fact that 

t nay be eonaldered constant, and equal   -o $(*),  tor sa^ll  t, 

this equation «ay be used  to ietenalne  the eigenvalues conputa- 

tlonally  (aee  üä .   M .59)- 

411.     Sog» gKawples—V:     Qaa^s of Survival 

Aa our last example,   let us consider a particularly interest 

Ing example  of a aulti-stage game,  the  so-cllert  "game of sur~ 

vial." 
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>*  us  Sflsune   th>t two playsrs,  A and B.  are  playing a 

zero-eum ga«^ detertnlnei by the matrix A  • (•«j)»   1. J"l .1. • •. .N, 

anrl   th-'t A  starts  Initially with an amount   ->f money x,   an«-  B 

starts   Initially with y.    Both  *re playing the game wl*h  the 

purpose   -»f ruining  the other.     How should both play' 

Let ua  define,   for x and y positive 

(I) r(x.y)  • the probability  that A  ruins B.  glv^n 
that A  starts with x,  and B with y, 
and  both play optimally. 

It   Is clear that. A wishes   to maximize this probability «nd 

B wishes  to minimize  It. 

For other values of x and y,   f(x,y)   l^   4eflned as   follows: 

(?) f(Ä.y)  - 0. x ^ 0,     y >  ^ 

• 1.        y 1 o.    x > 

It Is now clear *htt f(x,y)   satisfies  the functional 

equation 

^    N 

(3) f(x.y)  - rax win  [^   p^ff, 4 ^y  y^a^)] 

• Mln  Max 
q      P [       •■        ] 

Since  the  to*al   sum of money  In  th^   gam^   r^alns  constant,   It 

Is clear th-1 we  car   r^rlace f(x,y)   by «i   function  of one 

variable,  x. 

A 
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For furth#r developaent«,  we  r«f#r the reaier to   QjQ » 

Bt| , and  to a  recent paper by Thapley   ßä • 

Äl2.     ApproKlmation  jr.  Policy Spage and Wor.otone  Convergence 

The functional equations we h^ve derlvei above ape, lr the 

main, analytically Intransigent. The theoretical and numerical 

properties of the solutions must then be -"erlved by use of th»t 

general factotum of analysis, the o^thod of successive -pproxl- 

tions.     If our functional equation has  »he f->rm 

(1) f(p)  - T(f(p)) 

aa do those above,  we choose an  initial   function  f0(p),  ftnd 

obtain a  sequence  of  functions  by means  of the algorlthin 

^ fn^l(p)  - T^fn(P))'    n-0,1,... 

The physical background will usually provide precisely the con- 

ditions required for geometric convergence of this sequence to 

the solution of (I), where the uniqueness will be equally guor-'n- 

teed by the same conditions.  This technique «e call approxima- 

tion In function space. 

Let us recall, however, that In - sense the function f(p) 

is not of paramount importance.  Father. It is the optimal poli- 

cies which yield r(p) that are the most Important.  It follows 

that It may be wiser to approximate t  optimal pollclea mther 
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than apprcxln%te directly to maximum r^turna. 

In many ways  this  Is  n  simpler and anre  natural  technique, 

as well as more practical   In applications.     Tne principle theo- 

retical advartage lies  In  the  fact  that we  row obtain monotone 

convergence. 

To Illustrate  this  In  Its  simplest  fona     let us c-inM-'er 

the  functional  equation discussed   In 

(3) f(x)  -    Max    fgiy) ♦ h(x-y) ♦ r(ay ♦ b(x-y))1 
0<y<x L J 

Perhap?  the  simplest Initial  guess  Is to assume that y ■ 0 con- 

tinually.    This yields as  our Initial approximation   l > the 

maximum  return  the  function   f0(x)   satisfying  the   functional 

equation 

(*) foU)  - h(x) ♦  f0(bx) 

It  la  now clear  that  the  function  fl(x) determined by 

(5) M«)  -    Max    fgly)   ♦ h(x-y) ♦ r(ay ♦ b(x-y)) 
0<y^x  L J 

Is always greater than or equal   to  f0(x).     Hen?*»,   Inductively. 

If 

(6) fn*i(x)   *    M|IS     ]*(*)   ♦ h(j[-y)  ♦   fn(«y^b(x-y))   | .    n-O.l,... 
<^x   *- J 
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«• hair* 

«nd thus ■onoton» convergence,  see   QT .   [B]. 

A  cosipletely analog us  technique  Is appllcsble to con- 

tinuous processes, and In particular the calculus  Df vrl^tl^ns. 

The results are particularly Interesting in connection with 

eigenvalue problems where we obtain aor.otor.e convergence,   (j^ , 

£13.    Further Results 

We have not  the space here  to discuss any of a number  if 

other interesting and  iaportant problems in iynamic  progrnmming. 

For those  Interested in bottleneck problems occurring  in 

multi-stsge production processes, we refer t^   Q?] ,   (|l*l ,   (?7] • 

Those  Interested  in scheduling problem» may consult  C?2] , 

A number of matheiMtlcal problems occurring in connection 

with the control of engineering econ mic systems ire discussed 

in Qpcg, &0- 

Finally, we should like  to mention s number of papers con- 

cerned with the very difficult m^thematicsl  pr blems   occurring 

in the general  theory of learning processes,   D?3 •   &*] »   DSI» 

and  C?*]. 
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