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NOTATION
a Length of run of wedge strut
an Coefficients of polynomial representing source
distribution for a ship
bn Coefficients of polynomial representing concentrated
singularity distributions for a bulb
B Beam
f(%,2) Ship hull form
FH’FL Froude numbers with respect to draft and length
respectively
g Acceleration of gravity
H Draft of ship
Hn Struve function

K, = gH/V®
k1 = gL/V2

L Length of ship

m Nondimensional source strength

R Nondimensional wave resistance

\', Uniform veloclity at x = -

X,¥,2 Right handed rectangular coordinate system with

Zz positive upward, x in the direction of the uniform
velocity V, and the origin on the mean free surface

Y Bessel function of the 2nd kind
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a Half entrance angle

€, First order wave height

ie Second order wave height

LT Coordinate system equivalent to O - Xx,y,z
- Nondimensional doublet strength

A Nondimensional guadrupole strength

w(é) = (x-£) cos 6 + y sin 6
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INTRODUCTION

The history of the bulbous bow on ships may start in the early
19th century with submerged rams on combatant vessels projecting
forward along the waterline at the stem, or with the projecting
underwater hulls of many old French war ships built about the same
time., Later, the British armored cruilser Leviathan had such a
projecting ram bow. D. W. Taylor suspected that this ram bow
played a definite part in the ships superior performance, and he
based the parent model for his famous Standard Series (D. W. Taylor
1911 or 1943) upon the lines of Leviathan. Systematic bulb bow
experiments were made by E. F. Eggert in the early 1920's and the
general data were reported upon by D. W. Taylor (1923). It had
been generally understood that the decrease of resistance due to
a bulbous bow is a wave-making phenomenon, such as a decrease 1in
bow wave height due to a bulb wave. This understanding was more
strongly supported when Havelock (1928) calculated the surface
wave due to a doublet immersed in a uniform stream. A deeply sub-
merged sphere is equivalent to a doublet. Hence according to his
calculation, a sphere moving through water at a constant speed
causes the surface wave to start with the trough just aft of the
sphere. It 1s natural to imagine that this trough has something
to do with the bow wave crest which is seen to start Just aft of
the bow in ordinary ships. However there was also some other sus-
picion that the bulb effect 1s due to a change in the effective
ship length owing to the alteration by the bulb of the position
of the bow wave. This suspicion was removed by Wigley's mathe-

matical and experimental investigaticn (1926). He used Havelock's
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formula for wave resistance (1934) in terms of the regular wave
helights due to the ship hull and a point doublet. He separated
the wave resistance into three parts: the hull wave reslstance,
the bulb wave resistance and the interference resistance of the
hull and bulb. The most favorable case occurred when the nega-
tive interference resistance was largest. He derived the follow-
ing six rules for the bulbous bow as the conclusion of his 1n-

vestigation (W.C.S. Wigley, 1936):

"(1) The useful speed range of a bulb is generally from
\Q”VE-= 0.8 to V/VL = 1.9 (or in Froude numbers based on ship
length, from 0.238 to 0.563), V belng the speed in knots and L the
ship's length in feet.

(2) The worse the wave-making of the hull itself is,

the more gain may be expected with the bulb and vice versa.

(3) Unless the lines are extremely hollow the best
position of the bulb is with its center at the bow, that is, with
its nose projecting forward of the hull.

(4) The bulb should extend as low as possible con-
sonant with fairness in the lines of the hull.

(5) The bulb should be as short longitudinally and as
wide laterally as possible, agaln having regard to the fairness

of the lilnes.

(6) The top of the bulb should not approach too nearly
to the water surface; as a working rule 1t is suggested that the
immersion of the highest part of the bulb should not be less than

its own total thickness."
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G. Weinblum (1935) dealt with this same problem by expressing
the form of a ship with a bulbous bow in terms of a polynomlal ac-
cording to Michell's thin ship approximation. His theory was also
supplemented by model experiments., He expressed a different view
from Wigley's, concerning the best vertical position of a bulb,
(Wigley's rule (4) and (6)). According to Weinblum's result for
an extremely hollow form of ship,a uniformly distributed bulb along
the stem line was superior (taking into account the wave resistance
only without conside. 'ng other effects like spray) to the bulb lo-
cated near the keel, both having the same sectional area. How-
ever neither Weinblum or Wigley suggested any optimum variation

of bulb size with the speed.

Since then, some experimental investigations on bulbous bows
were performed by Lindblad (1944) in calm water and by Dillon and
Lewis (1955) in smooth water and in waves. However, after Wigley
(1936) and Weinblum (1935), no significant theoretical development
on bulbous shirs seems to have been made, until Takao Inul and
his colleagues made a great contribution on this subject. This

will be discussed 1n a later section in some detail.

In this report, first the necessity of a bulb for minimizing
wave resistance will be discussed, followed by a brief review on
Inul's explanation of the bulb effect. 1Inul, using the concept
of Havelock's elementary surface waves brought us a clear under-
standing of the mechanism of bulbs and an easy approach to their

design.
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Yim (1963) found the 1deal bulb or the doublet distribution
on a semi-infinite vertical stem line which completely cancels
the sine regular waves starting from the stem of a given ship.
For the cosine waves from the ship bow, a source line or a quad-
rupole line are considered. The separation of waves and the wave
resistance into the components as in the dlagram of Figure 1, sim-
plified the analysis of the bulb effect at the bow or the stern
of a ship. The size and the form of the bulb, which are functilons
of ship shapes and Froude numbers, are supplied extensively. The
Jocation of the bulb 1s of course related to the ship shape and
the type of bulb. However, the higher order effect 1s found to

be non-negligible. These are discussed in the next sections.

Througnout this report, inviscid, homogeneous, lncompressible,
and potential flow around a fixed ship 1is considered. The origin
of the right handed cartesian coordinate system 1s located on the
bow of the shlp and on the mean free surface. The intersection
of the ship's center plane and the mean free surface is taken as
the x axis, with the z axlis perpendicular to the free surface,
positive upward. The flow at x = - » 1s considered to be uniform
with the velocity V parallel to the x axls in the positive x di-

rection (see Figure 2).

SHIPS OF MINIMUM WAVE RESISTANCE AND BULBOUS SHIPS

Since Michell's wave resistance formula (1898) was found,
problems of finding the Michell's linearized ship which has the
minimum viave resistance have been attacked by many hydrodynamists

in various forms and ways. Sretenskii (1935), Pavlenko (1937),
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Karp, Votik and Lurye (1958) and Maruo and Bessho (1962) treated
symmetric infinite vertical struts. Weinblum (1930, 1957),
Krein (1955) and Martin (1961) dealt with three-dimensional sym-
metric ship with a given vertical distribution of volume. 1In
their solution, they all found either some singularities in the
functions representing hull shapes at the ends of ships, or bulb
like forms around the bows and the sterns. Wehausen, Webster,
and Lin (1962) treated the optimum fore bodies of ships with a
given after body as well as three-dimensional symmetric ships
wlthout any restriction on the vertical distribution cf volume.
However they took the ship surface area into account to minimize
the wave and friction resistance, and they too found big bulb like

forms near the bottom of bows for higher Froude numbers.

Havelock's wave resistance formula (1934) from the regular
waves due to the singularity distribution on the center plane of
a ship 1s essentlally the same as Michell's , as long as the
linear relation of the ship hull form with the singularity dis-
tribution

vV df )

m(<ya) = 77 ax (%2

[1]
1s used, where m(x,z) is the source strength and f(x,z) 1s the

ship hull form.

Inui (1957) calculated an exact hull form (body streamlines
of a double model) from a given source distribution for zero

Froude number (flat free surface), and he used this hull form for
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his model experiment to test waves and the wave resistance., He
compared his experimental results with his calculated wave heights
and the wave resistance due to the source distributions. He found,
that the calculation agrees better with his experiment on his model
than the corresponding Michell's model satisfying (1). The way
Karp, Lurye, and Kotik (1958) interpreted their result to a ship
form of infinite draft 1s similar to the idea of Inul's which we
have Jjust described. The singular behavior of Michell's ship hull
can be easily treated by reinterpreting Michell-s ship hull as

the distribution of various singularities like sources or doublets

either distributed or concentrated.

Krein (1955) proved in a rigorous manner the existence of a
lower bound for the Michell's resistance of ships with a given
center plane, a given velocity, a given displacement, and a given
vertical distribution of volume. However he concludes that the
lower bound of the wave resistance due to a submerged ship 1s ob-
tained only with generalized functions (i.e. linear combinations
of Dirac delta functions) of a ship hull shape: and for floating
bodies the wave resistance achleves a lower bound but only for
functions of hull shapes having integrable singularities at the
ends of the ship.

In the Michell's ship hull representation (1), it is easy
to see that the hull shape f(x,z) i1s proportional to the doublet
strength distributed on a given center plane of the ship. There-
fore, if we consider the body streamlines due to the doublet dis-
tribution in the uniform stream instead of considering f(x,z) as

a hull shape, we may be readily convinced that the ship form of
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minimum wave resistance has a bulbous bow. In addition, it 1is
worthwhile to note here that, the Dirac delta function of the
distributed doublet at the bow is the concentrated line doublet,
and the integrable singularity of the doublet distribution at the
bow may also be interpreted as a doublet concentrated around the

bow,

ELEMENTARY WAVES AND THE WAVE RESISTANCE FORMULA

By Lord Kelvin (1887), it was found that the surface wave
due to a point disturbance in a uniform stream consists of two
parts: the local disturbance which is limited to the neighborhood
of the point disturbance and the regular wave which propagates far
aft of the point, mainly restricted to the sector of !6| < 19030'.
This 1s a mathematical solution of the equation for the potential ¢
perturbed by the disturbance,

V30 = 0 [2]

with linear boundary conditions at the mean free surface z = 0O,

considering the wave height 1s small compared to the wave length,

o d¢

ax.? + ko oz 0 [3]
where B = g/V° (g = acceleration of gravity)
and at Xx—= - o and z —- - o

70 = O. (4]




JYDRONAUTICS, Incorporated
-8-
Now it is well known that a polnt source of strength m lo-

cated at a point (x,,0,-z,), where z; > 0, produces a regular

wave height { at a large x

T/2
@ 4ko‘/r m exp(-kozl sec®6 )sec36
-r/2
X cos [k, sec®8 ((x-x,)cos 6 + y sin 6)]d8 (5]
where
kl=L—g k='Ii‘;—

v ° vy \
is the ship length,

L
H 41is the ship draft, y (6]
m 1s nondimensionalized with respect to LHV,

X,

X1,Y,C 18 nondimensionalized with respect to L,

-2; = 2 18 nondimensionalized with respect to H.

For a distribution of sources at a ship center plane

So(y =0, 0<z2< -1, 0<x < 1) represented by a series

m(x,z) = m (x)ma(2z)

my (x) =Zanxn s (7]

n=0

mg(z) = 1
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the wave height will be, by the integration of {5)] with [7] in

the domain So’

Cs - csB * Css (8]
T/2
csB ~ 4J[. (1 - exp(—ko secze)][sl(O) sin w(0)
-m/2
+ S2(0) cos w(O)] dé (9]
/2
Log ™~ - 4 (1 - exp(-ko secze][sl(l) sin w(1)
-m/2

+ S2(1) cos w(l)] de [10]
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where

w(a) = k, sec?6[ (x-a) cos 6 + y sin 6)]

o0

(2
saw Y Ll e o)

ki (ky sec 9)2n

n=0
20 MR

6 ]

1 (2n+1
s:e(a)=z“(-l)n+ n?") (o)

ki (k1 sec 9)2n+1

n=0

n
oy ) |

X =a

According to the theory developed by Havelock, CsB and Css are

understood as bow waves and stern waves respectively.

The regular wave heights [5], [9]) and [10]) all have a form

T/2
& =-/f S(6) sin [k, sec®6((x-a) cos 6 + y sin 6}]d6
-m/2
T/2
+‘/' C(6) cos[k, sec®6((x-a) cos 6 + y sin 6}]de [12]

-m/2
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Havelock (1934a)showed that the integrands in [12] indicate
one-dimensional waves propagating from the point (a,0,0) with the

speed V cos 6 in the direction 6.

Indeed it can be easily understood if we recognize:

(x - a)cos 6 + y sin 6 = r [13]

is the equation of the straightline £(r,6) on the plane z = 0
with the distance, r, from the point (a,0,0) to the line £, and
the angle between the normal to the line 4 and the x axis, 0;

the wave speed C = V cos O 1in the deep sea satisfiles

C® = =2 = V® cos® © [14]

where A\ 1s the wavelength. Hence the one-dimensional wave in the

direction angle 6 is

A sin %F (r - Ct)

ia)
i

A sin [%;-sec2€[(x-a)cos 6 + y sin 6 - Vt cos 6}

If we replace x - Vt by x and nondimensionalize by L

, = A sin [ky sec®9((x-a)cos 8 + y sin 68)] [15]
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Therefore these Kelvin regular surface waves are a superposition
of the one-dimensional sine and cosine waves with the respective
amplitude S(6) and C(6) in the direction -r/2 £ 6 £ 71/2. He

named these oné-dimensional waves "elementary waves" and S(6) and
C(6), amplitude functions. We may omit the word "elementary" in
this report except to avoid ambiguities.

He further considered (1934b) the energy carried away by
regular waves far aft of a shlp 1n connection with the wave re-
sistance, and he derived the wave resistance formula related to

the regular waves [8]. From [9]) and [10], [8] can be rearranged as

/2

L= [A1(6)sin(kyx sec 6) + Ax(6)cos(k;x sec 8)]

x cos(k,y sin 6 sec®0)d6 [17]

where

Ap(6) =8 [1 - exp(—kO sec®6)][S,(0)

S1(1)cos(k, sec 6) - Sz(1)sin(k; sec 6)] (18]

A2(6) = 8 [1 - exp (-k_ sec6)][(S2(0)

+ S1(1)sin(k, sec 6) - Sa(1)cos(k, sec 6)] [19]
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Then Havelock's wave resistance formula is
1
R = -Q—f (A5(6) + A:(e)] cos®6 do

where R 1s related to the wave resistance R byR=

T/2 pLPV® .

Since the integrand of [20) is positive definite, R is zero

if and ey 48

A1 (6) = A2(8) = O, for 0 £ 6 £ /2

The wave resistance [20] can be written as

R=R, + R+ K
S

B Bs

RB = bow wave resistance
/2
2 2
- % [(S1(0) + S2(0)]K® cos®6 d6
o)
Rs = stern wave resistance

m/2
f [S3(1) + S2(1)]K® cos®6 de

o

e
2

[21]

[22]

[23]

[24)
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R = stern bow interference resistance

T/2
: -J/- [51(0)[Sl(l)c08(k1 sec 6) + Sz(1)sin(k, sec 6)]

(o)

- S2(0)[S1(1)sin(k; sec 6)- Sa(1)cos(k, sec 9)]]
x K? cos®6de [25]

K= 8[1 - exp(-ko sec?8)]

From [23] we can see that the bow wave resistance consists
of the sum of the wave resistance due to sine elementary waves
and that due to cosine elementary waves. The same 1s true of the
stern wave resistance in [24]. The expressicn for the interference
resistance [25] shows that there 1s no interference between tne
elementary sine waves and the elementary cosine waves starting
from the same point either at the bow or the stern. The humps and
hollows of the wave resistance are due to the interference re-
sistance, and this 1is usually very difficult to evaluate. How-
ever, i1f the bow or stern wave resistance 1s zmall, the interference
resistance is also small. The idea of bulbous bows or bulbous

sterns 1s therefore to reduce the bow or sterri wave resistance.
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MECHANISM OF BULBOUS BOWS

We consider the bow wave [9], and the bow wave resistance [23]

due to a sine ship with its source distribution
m(x) = cos (rx) In0<£x<1,02z2-1 [26,1]

which has no cosine elementary waves but only positive sine waves
from the bow in all direction of propagation. Namely So(0) = O
in {9] and [23] and S;(0) > O, or we may write

T/2

SsB = A(6) sin w(0) a6 [26,2]
-m/2

with A(6) = 0, for IGI < m/2.

Now we observe the regular wave helight due to a point doublet of

strength - u at (0,0,z,), which was calculated by Havelock (1928),

/2
o = ukijf. m exp(-kozl sec?6)sec?9 sin | k; sec®6
-1/2
/2
X (x cos 6 + y sin 8)|d6 = B(6) sin w(0)do [27]

-m/2
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Inul, Takahei, and Kumano (1960) noticed these doublet waves
also consist of sine elementary waves and that the amplitude func-
tion B(6) 1s purely negative for all 6 which is in |e| < r/2.

Therefore the superposition of two waves [26] and [27] becomes

':EE'hf [A(6) - B(6)]sin w(0) db [ 28]

-m/2

and the bow wave resistance 1s

/2
R, = [A(8) - B(6)]%cos®6 d6 [29]

B
-m/2

By matching B(6) to A(6) graphically to make [A(6) - B(6)] as
small as possible, especially for small 6, Takahei (1960) found
the most favcrable doublet strength g and the position of the
doublet z; in [27]). They built cosine ship models according to
Inui's method, observed the wave patterns by the method of stereo
photographs, and tested numerous spherical bulbs fared at the
cosine ship. Finally they obtained the models (-201F2 with the
so-called waveless bow. Namely, they observed a remarkable re-

duction in the bow wave heights due to the bulb at the design

speed.
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If we notice in [7] and [11]

m(n)(O) =n! a_ [30]

We can readily see in [9)]) that the bow wave consist purely of
sine waves if the source distribution [7] is an even power series
and consists purely of cosine waves if [7] 1s an odd power series,

If we consider (7] with only an even power series and in addition,

(-1)" a, = 0 1in [7] [31]

2n

(as in the cosine series) the waves will always be positive sine
waves. (However, [31] 1s a necessary but not a sufficient con-
dition). Yim (1963) showed that these positive sine bow waves

due to a source distribution of even power series can be completely
eliminated by a doublet distribution along a semi-infinite line
Xx=0, y=0, -» >z >0, with the doublet strength in the negative

X direction,

n+1l
bn21
- < = - <
w(z,) o for 02z, = -2 <1
n=0
[32]

bn n+1l n+1l

L(zy) = ] [21 - (zy - 1) for z, 21
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having the relation
n
b = (-1)" {2n)! © [33)
n n! K 2n+l “2n
1

Namely the amplitude functlion of the elementary waves from
the bow for all angle 6 in [28] can be made zero by attaching at
Lhe bow a concentrated doublet line which extends to infinite
12pth. Since the deeply submerged part does not influence too
much the surface waves (Yim, 1963) this clarifies the mechanism
of the bulb and backs up the approach made by Inui (1962).

SHIPS WITH ZERO BOW WAVE RESISTANCE

Krein (1955) proved that there is no finite ship which has
zero wave resistance. Therefore it was essential for the latter
to have an infinite doublet line. Nevertheless, ships of zero
resistance 1s not only of academic interest but also gives us a

good physical insight and directs us 1n practical usage.

Although a doublet 1s good to cancel positive sine waves, it
is not applicable to cosine bow waves. Yim (1963) considered
one step higher order singularities than a doublet, which is
called a quadrupole. The wave height due to a point quadrupole
with the strength Ao ( in x direction) at x = 0, y =0, z = -2,

in the uniform flow V generates the wave helghts
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T/2
Cq ~ - 8k24[- A exp(-k_z1 sec®0)sec®6 cos(kyx sec 6)

0]

=) Q=

X cos (kiy sin 6 sec®6)de

where

A= ?\o/(HaLV)

[34)

[35]

We notice here that [34] consists of cosine elementary waves

with the same sign,

-\ in all direction 6,

It was found that the

cosine waves due to the source distribution [7] of odd power

series can be completely eliminated by a distribution of quad-

rupoles along the semi-infinite line (x = 0, y = 0, == > z 20

with the strength

- n+2
_l— < =
N+ 2 in 0 £ 2z, =
n+e n+2
[z, 7 - (23 - 1)7°]
n + 2

) [36]
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and

2n + 1)!

(_1)n+1 kon+1 (
on+3 qon+1 [37]
1

bn+1
(n + 1)k

A quadrupole itself 1n a uniform stream does not produce a closed
body, but it may, when combined with the doublet 1line. Therefore
tnese quadrupoles could be used to improve the bulb form used to

Jecrease the coslne wave helghts as well as to cancel the sine

wdaves.,

Another idea to cancel negative cosine waves 1s to use a
source line, In the same way as we found the infinite doublet or
quadrupole line to cancel sine or cosine ship waves, we can find

the line source distribution

o n+l
bnzl

m(21)= P — for 0 £z, £1 \

n=0

y [38]
bn n+l n+1l

m(zy) = ) [z, - {21 - 1) 7] for z, 21 |

n=0
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with

(2n + 1)11<o”+1

b, = (-1)" 2(nt1)  22n+l [39]

n'k;

which completely eliminates cosine bow waves due to the source
distribution (7], of odd power series. Of course, we have to take
care to employ a sink distribution at the ship afterbody in order

to have a closed body.

Bulbs at ship sterns can be dealt with exactly in the same

manner as for ship bows in an ideal fluid, neglecting the effect

of propellers and other attachments. However, the influence of
the viscosity and the wake near the stern is so important that the
stern problem should really be considered separately. Therefore
we deal here only with bulbous bows and bow waves. Henceforth

we may omit the word "bow'" except to avoid ambiguities.

In all three kinds of bulbs mentioned above, the strength of
concentrated singularities along the vertical line increases with
the depth, starting with zero strength at the free surface, This
suggests the shape of a bulb to be used for a practical ship.

PRACTICAL APPLICATION OF THE THEORY OF WAVE CANCELLATION

In understanding the mechanics of cancelling regulér ship
waves through the concept of elementary waves and for the practical
application we can note here three important characteristics of
an elementary wave in each direction of propagation between the
the angles -m/2 and m/2: (1) the point where the wave starts,

(2) the phase of the wave, (3) the amplitude. 1In general, regular
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bow waves consist of elementary waves which have different charac-
teristics In each direction of propagation, despite the fact that
poirt or line singularities by themselves produce negative sine
clementary waves (pt. doublet) and cosine elementary waves (pt.
source or quadrupole) in all directions of propagation from the
point of the singularity's location. Therefore 1t is impossible

to match iIn all directions the aforementioned three characteristics
0f elementary waves from bulbs with those from a general ship bow
80 that all wavas are cancelled everywhere. Indeed, we have to
‘hcese carefully the ship shapes or the source distributions [ 7]

for ships for which we adopt bulbs: Namely ship shapes for which

thé bow waves are elther positive sire waves (aen_Ll = 0,

(-J)n a, = Q) for the application of a doublet bulb, negative

en

a = 0) for a source bulb, or
2n+l

. - n
cosine waves (a,?n =0, (-1)
strong positive cosine waves plus weak (positive or negative)
sine waves for a doublet bulb combined with either a source (sink)

or a quadrupole bulb.

Since no waves from a finite singularity distribution for the
bulb can cancel the bow (or stern) waves completely, the best
bulb 18 such a distribution of singularities which produces waves
so as to minimize amplitudes in all directions (statistically).
This 1s equivalent to minimizing the bow (stern) wave resistance.
In fact, it is not very difficult to obtain the optimum distri-
bution of concentrated singularities in a power series of z along
a finite vertical 1line at the bow such that minimum bow wave re-
sistance 1s obtalned corresponding to a given power series for

the ship source distribution.
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Indeed, the bow wave resistance [23] can be represented in

a quadratic form in a of [7]) and bn (coefficients in z for the

distribution of singularities as in [32], [36], or [38]) with
coefficlents represented in terms of Bessel functions. There-

fore we have only to solve the simultaneous equations,

oR
aT(bl,ba’.oo; 81,82,83...) =O
n
[40]
n=1, 2,

for bn when an are given. Since the bow resistance due to sine

waves and that due to cosine waves are additive as shown in [23],
the concentrated singularities for each case can be dealt with

separately.

The optimum distribution of the concentrated singularities
at the finite stern line for several given ship source distri-
butions are calculated (Yim 1963) and shown in Figures 3-7. These
indicate that the strength of the singularities at the deepest
point (the same level as the keel) is the largest. Especially
for the higher Froude numbers, the optimum distributions appear
to be almost concentrated at the keel. This rather supports
Wigley's fourth rule, However the optimum size of the bulb 1s
extremely sensitive to the Froude number. We notice in Fig-
ures 3-7 almost a linear distribution of the doublet for the low

Froude numbers. If we were given the volume of the bulb, the
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optimum distributiosn would be also sensitive to the Froude number
and the displacement of the bulb would gradually move from the
keel closer to the surface as the Froude number increases, since
the effect of a bulb 1s stronger at a smaller depth. This would
clarify the difference in the opinions of Wigley and Weinblum
mentioned before in our introduction. However, in actual ships,

the wave resistance 1s not the only problem.

There are many side problems even with the bulbous bow alone,
i.e. spray, slamming, cavitation, form drag due to separation, etc.
in this respect, the bulb made of a source line for a hollow ship
seems to be more favorable than a doublet bulb, especially for
lower Froude numbers, since the source bulb will not produce any
marked swan neck shape. It may be worth noting here again that
the bulb is not necessarily made of a doublet, but it can be a
concentrated source at the bow near the keel, or a doublet plus

a source or a quadrupole depending upon the original hull shape.

Of course 1t i1s possible to consider the adjustment of the
location of bulbs instead of considering only the shapes of bulbs
with a fixed location. However, 1in this case, 1t 1s not easy to
find the best location from the theory of wave cancellation only,
since cancellation of elementary waves in one direction of propa-
gation does not mean that cancellation occurs 1n the other di-
rections. Yim (1962) considered a most simple case of a point
source and a doublet in a uniform stream under a free surface as
in Figure 8. As mentioned already, a point source produces posi-
tlve cosine waves while a polnt doublet produces negative sine
waves. By using Lagalley's theorem, he obtained forces at the

doublet point and the source point separately as shown in Figure 8
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corresponding to the optimum distance "a" between the two points,
(shown in Figure 9) which was calculated so as to minimize the total
force in the x direction. If we consider only the wave phases
along the centerline through the two points, the distance "a"
should always be one quarter of the wavelength xo for cancellation

of phases,

However, it is shown in Figure 9 that the optimum "a" 1is always

less than Ao/h. Figure 8 shows the remarkable reduction of the

total wave resistance in this case. 1In addition, the negative
force at the doublet 1is rather an interesting phenomena. The
shape of bulbs made qf these singularities can be produced by
plotting the body streamlines as Inul does for his double model,
or we may use an approximate sphere for a point doublet and the

head of a Rankine ovoid for a point source.

HIGHER ORDER EFFECT ON THE ELEMENTARY WAVES

In the case of a sine ship [26,1] which has theoretically
only positive sine waves starting from the bow and the stern,
Inul and his colleagues observed in thelr experiment with Inuil's
model of the sine ship a forward shifting of the wave phase.
Therefore, they had to stick their bulb quite a bit forward of
the bow instead of locating the bulb center at the stern. They
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seem to have had a serious concern about this discrepancy between
the theory and the experiment. It has been speculat.d in Japan
that the explanation may be in the orbital wave motion on the ship
boundary (Takahei, 1960), or in the non-zero Froude number effect
(Inui, 1962), since Inui's model is exactly right for his source
distribution only in the case of zero Froude number. Inui used
two correction factors which are determined by experiments to cor-
rect this observed effect together with the influence of viscosity.
We will now discuss an explanation for Inul's observations which

4re based on higher order wave theory.

For a long time since Havelock's representation of a ship by
a singularity distribution, people have been very curious about
the exact ship form generated hy these singularities which satisfy
all the conditions including the linearized free surface condition
for a non-zero Froude number. Havelock (1936) and Bescho (1957)
considered submerged simple bodies including the free surface ef-
fect on body representation, and indicated this effect could be
large. Sisov (1961) formulated a higher order theory of wave re-
sistance of sur“ace ships. However the calculations involved are
so complicated rhat no one seems o have succeeded yet in producing

a significant result {from this higher order theory of surface ships.

Recently, in connection with the theory of wave cancellation
in bulbous bowed ships, Yim (1964) considered the Froude number
effect on the ship representation near the free surface, and its

influence on the regular wave far behind the ship.
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We consider a uniform source distribution whose strength

m = a [41)

in O<x=<1l, y=0, -2<2<0, in the uniform flow con-

sidered in this report.

The y component of velocity at (x,y,z) 1s

o) 1 1
5 & S 1L L
y de ag oody|r rs
o o
an
k(1o - |z + ¢|)
2 %Re ¥ o dkdo [42]
k - k sec®6-1iu sec 6
o
-y ©

where

1
)

((x- €)% + ¥°+(z - )]

3
(9
li

1

[(x - £)2 + y2+(z + £)2)° [43]

rs

w=(x-¢)cos 6 +ysin 6

At a point (x,y,0) which is not on the singularity plane, the
last quadruple integral J(x,y,0;¢), say, can be written
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J(x:y:O;l) = J(ny)O;O)

I

T e
ik[(%x-1)cos 8+ y sin 6]
Re sec 6 s8in 6 e dkd6
k -k sec®9-1u sec 6
-T ©

L
. R ik(x cos 6+y sin 6)
-iaeff Weopnde dkd6 [44]
v
k -
-T O

- Ky sec®9-1y sec 9

When we consider the limiting case of y = O in J(x,y,0;1), this
becomes zero for any ko since the integrand is antisymmetric in 6.

Now if we change the variable

k= k k
o
T2 ikk (x cos 8+y sin 8)
1 sec 6 s8in 6 e ©
J(x,y,0;1) = = Re dkd6
(2 k - sec?9-1ipu sec 6
-T 0

[45]

This 18 a function of only kox and koy. The case when x = O,

y —- O for a certain ko is exactly the same as the case when
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ko- O for certain fixed values of x and y. For ko-» 0, or the

case of infinite Froude number,

¢ =0 onz =0
y
Therefore, for any ko
46}
®
¥
X — 0 = 0 on €.= 0

y—0

The atove argument can also hold for a point (1 + x, y, o) as

¥ =0, y=20

Although we considered points only on z = 0, we notice from
the potential theory that physical quantities change continuously
into the potential flow field from the boundary. This indicates
that every surface ship which i1s represented by a centerplane
source distribution has as strong an influence of the free sur-
face on the shape of the ship in a certain neighborhood of the

free surface as in the case of infinite Froude number.

The influence of the free surlace can be explained much more
eloquently by Green's formula for the velocity potential ¢ which

satisfies the Laplace equation [2] with the boundary conditions
(3], [%) and
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d0 - R
¢ = <—=-nV k7
on !

(n is the normal vector at the ship hull surface

into the fluid).

On a given ship hull,

t - = fj[#EEm.',)anﬁ.n-"-h?-'-ﬂ

- o (€,n,0)G(€,n,8,%,¥,2)]dS [48]

where S includes the free surface SF and the ship surface Ss

(see Figure 2) G is the well known Green's function (see e.g.
Stoker 1957) which is a harmonic function for [ < O except at
(x,y,2z) where 1t has the singularity 1/[(g-x)2+(n-y)2+(C—z)2]%;
and G satisfies the boundary conditions (3], [4] and

G =0 on = 0
n n

The integral on the free surface SF in [48] can be written by
using (3]
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szf[cac -oG]dS= f[[c»c -Go]dgdn

1
. E;- 4; (oGg - @ic)dq (50]
L

where £/ 1s the intersection of the shlp surface and the z = 0O
plane. Since the ship beam length ratio B/L = ¢ 1s considered to
be small, in general, [50] is omitted in the first order theory.

Wehausen (19652) considered a systematic, formal, yet thorough
estimation of the order of magnitude in the Green's formula with
the exact boundary conditions of the potential . For a ship with
the draft H as small as the beam B, he estimated I in [50] is
0(¢®) while the main integral around the ship hull in [48] 1is
0(e®). 1In fact it has been known that the effect of the draft be-
haves like exp(-CH) where C is a function of Proude number and
even for the case H/B = 2, the wave heights was comparable to the
case H— = (Wigley, 1931). Therefore the above estimation may

be true even for the case of an infinite draft ship, and the
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line integral I, in thils case will be the most important con-
tribution to the higher order terms which have been previously
neglected. Indeed, in [50], 1 is the influence of the free sur-

face on the potential.

However it 1s extremely difficult to understand the higher
order effect just by the formal estimatlion of the magnitude and
without actual evaluation, since the property of Green's function
s very complicated particularly near the free surface. As a

mplest case for the evaluation of the line integral Yim (1964)

ccnsidered a source distribution
InO0O<ssx<a, y=0, -« 2z2<50

on the forebody of a semi-infinite wedge shaped strut,

y = X tan a in 0 £ x <
- £ 2 =<0

y = tan a iIn 0 £ ¥ €=
- £ 2 <0

For ¢ or ¢, inside the line integral [50]) he used the first order

g
solution obtained by Havelock (1932),
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k€
- m aO ]dt
Ly = - = [Ho(t) + 3Yo(t)
© (o]
k (a-£)
-/ [H (t) - Y_(t)]at

where H 1s the Struve function and Y is the Bessel function of
the 2nd kind. If we use the relation from the pressure condition

on the free surface

and the Green's function represented on the free surface

ko 00ik sec 6 ekiw
Gx(g,0,0,X,0,0) = - ;F-Re dkdo
k -k sec®6 - 1y sec 6
-T O

o 15 2 4d
~ ‘fTTko dt Yl(t)

2 42

- v

+ vko . [Ho(t) .O(t)]
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we can evaluate the line integral [50] at large x and y = O

neglecting higher order terms,

g . ko(x-a)
lie = E;' ~ - 2 tan a o(kox»t) = Yy (t)
tsk x
0
4
+ 4 tan ok €1 é% Yy (t) dg
t=k_(x-£)

If we take only the lower limit of the above equation, 1t can be
consldered from the equation for the surface wave to represent a
regular wave starting from the bow due to the influence of the
free surface, From here Yim (1964) calculated the amplitude and
the phase of the regular bow wave [,. far behind the ship on

Y = 0 due to the line integral,

m
Lie ~ P sin(kox A T B)

It i1s easy to see from Havelock's result that the regular

bow wave [; from the first order theory is,

T
Ly ~ Q sin(kox + E)

Q- irlo 2
Tk V
(0] 0
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In Figure 10 are shown the phase difference B and

= f(k_ a)
Q tan a @

which are functions of only koa. The amplitude of the total

wave Ct

]
]

€1 + Ca¢

= WV[QE + p® + 2Qp cos B sin(kox + %—+ r)

and the phase difference [ between the total wave Ct and the
first order wave {; are shown in Figures 11 and 12, B8 and { are
shown 1in radian, considering that one wave length (EW/ko) is

Just 2w.

These show that the total wave phase 1s indeed advanced
considerably compared w#ith the first order wave, while the ampli-
tude of the total wave height does not differ too much from that
of the first order wave. Namely the second order effect is quite
large. It 1s proportional to the slope of the entrance on the
free surface, for a given run, a. Therefore, the smaller the
entrance slope near the free surface is, the less the second order
effect to be expected. As we see In the integrand of the line

integral [50], this effect mainly depends on the potential and
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the wave on the free surface waterline where the waterline slope
1s large. Since the local effect is usually blg near the bow

and the shoulder, the influence of the local effect on the second
order wave may be quite important. We notice that when we cancel
the regular wave by the bulb, the line integral due to this wave

will be also cancelled.

This study of the line integral [50] has Just started. How-
ever 1t seems to be quite promising for furtherance of a proper

understanding of ship waves and of theilr reduction.

CONCLUDING REMARKS

Theory and experiment are always stimulating and helping
each other. Although this report is on the theoretical side, it
does not mean that the influence of experiments are underestimated.
This report 1is merely intended to further appreciation of our
great predecessors, Michell, Havelock, Wigley, Welinblum and Inuil
for the theories related to the bulbous bowed ship, and to add a
slight theoretical illumination to them.

The mechanism of the bulb at the ship bow (or stern) is com-
pletely clarified. The type of bulb for a given ship hull, and
the size and the vertical area distribution of bulb for a given
Froude number are derived. The higher order influence 1s known
to be the maJjor reason for the phase shift of the regular waves.
Although the stern problem in the non-viscous fluid 1s exactly
the same as the bow problem, it should be studied separately due

to the large influence of viscosity, wakes, propellers, etc.
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Because of these influences, the bow waves are more important ’n
practice than the stern waves. The humps and hollows of the curve
of the wave resistance due to a ship without a bulb may be applied
to that for the ship with the bulb without any considerable error.
The bulb has an elfect of smoothing out the humps and hollows of
the resistance curve to a considerable extent (Yim 1962) in the
vicinity of the designed speed or for larger speeds. Pien (1962)
seems to have obtained this effect using the principle of wave
cancellation by distributed singularities rather than concentrated
ones, Naturally, a ship with a bulbous bow would have much the
better performance 1f 1t has a better stern. At the present time,
shapes 1lilke the transom stern seem to attract the interest of many

naval architects for high speed ships.

The higher order effect and the influence of viscosity are
extremely difficult to analyze, yet they should and will be
gradually exploited in the near future. The theoretical study
on the seaworthiness of the bulbous s3hips remains to be done, al-
though it 18 known from experiments that a bulbous bows are still

effective in waves.
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