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BOTTLENECK PROBLEMS,  FUNCTIONAL EQUATIONS,  AND DYNAMIC  PROGRAMMING 

Richard Bellman 

§1.    Introduction. 

The study or  Inter-industry processes  is one  to  which a 

great deal of attention has been ^iven in recent years.     In par— 

ticalar,  it has  become a matter of more than theoretical  Interest 

to determine  the most efficient  utilization of multi—industrj 

complexes. 

In this paper of essentially  expository nature  we  snail 

present a new tneoretical technique, based   ipon  the principles 

of  the  theory of dynamic pro^rai.imin,;,   which May  be  used  to treat 

some of  the novel  types of mathematical prgblems  wnica  arise 

from these studies.     Subsequently,   a paper will be presented 

containiiig the  solutions  to  a number of specific problems,  DaseJ 

upon Joint  woric by  the autnor ana Sherman Lehman. 

_The problem we  shall discuss  is  a "bottleneck problem"  in 

the sense that  the  level of economic  activity  will be determined 

by   tne resource   in shortest supply. 

To begin witn  we shall,   in  the  next section,  present a 

typical problem of  the bottleneck  type  involving  the  auto  indus- 

try,  the steel Industry and  tne  tool  inaustry.    Pollowln£ this, 

we  shall formulate  the problem mathematically employin^ a dis- 

crete approximation.    After a snort alscussion of  tue  uifflc ;lties 

of   tnls  approach  w«  snail  turn  to  a  continuous  approximation.     We 

will now be  in a position  to apply   tne  functional  eqiation  approacn 

e^  tne tneory of dynamic projrammin.-,.    This metnod  ^sej  witn faith 

and resolution will  often yield  the  solution quite  rapluly. 
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To prove in a simple fashion triat what we nave is actually 

a sol ;tlon, we exploit the linearity of the problem and con- 

struct a dual problem. This dual problem may oe »äed both 

to verify and derive a solution. 

To illustrate these tecnniques we snail consider in deuail 

the problem of deteminln-; the ji[tj  and ya(t) wnich maximize 
xa{T) hjiven tne equations 

(1) 3^ ' a^»^) x^0) * ^   > 

3Y1 - (aa-^yaCt^y^t), xa(0) - oa , 

and  the  constraints 

(2) (a)    jXl  ya  > 0 • 

(b) yi  + ya  < x 

(c) ya < ba xx/aa 

(d) xa  > 0. 

Tliis problem is a particularly simple example  of the math- 

ematical  problems which  inter—inaustry analyses raise. 

Finally,   we shall  briefly   indicate  tne  extension of our 

metnods  to  otner twpes of  variational proulems wnici  Involve  non- 

linear functions ana  functlonals .     For ihose  wiiO  are   Interested 

in other aspect.s of tne  tneor;,   of dynamic  programming,  we  refer 

tc  tne  papex's   j^l]  -  [3]   listed   in   l.ie blbliograph;, . 



§2.    A Typical  Problem. 

Let us consider a model of  a  three—Industry production 

process,  where  the individual  industries are  tue auto industy, 

the steel  industry,and the  tool   industry.    These  industries 

are  to be used  to produce as many  autos as possible  over a 

given time perloo of length T. 

To simplify natters we  dhall asaame  that eaca  inaustry   is 

characterized at any  tine  t,  which to begin  ^itn  we  snail allow 

only  to  take  tne values 0,1,2,... ,T,  by   its  capacity  and  Its 

stockpile.     Let 

(1) Xi(t)  •■ number of a^tos produced  up  to  time   t 

xa(t)  ■ capaclt.   of auto  factories 

X3(t)   =  stockpile  of  steel 

^♦(t) • capacity of steel mills 

Xs(t)  » stockpile of tools 

Xa(t)  - capacity of tool  factories 

We  shall assume a linear production process   In  tie sense 

that output  is always directly proportional to the minimum 

input.    Thus,  production  is directly proportional  to capacity 

whenever there  is an abundance of  raw materials anä directly 

proportional  to  the quantity  of  raw materials allocatec1  wncn— 

ever there  is an abundance of capacity .    To be more precise,  we 

postulate that 

(2) a.    An increase  in auto,   steel or tool  capacity   requires 
steel and  tools 

b.     Production of autos  requires auto  capacity   ana  steeü 
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c. Production of steel requires only  steel capacity 
d. Production of  tools requires  tool  capacity and  steel. 

TMe process proceeds  in the following  fashion.    At  tne 

beginning of eacn unit  time period,  say  t  to  t+1, we allocate 

various quantities of steel  and tools,   ta.cen  from tueir res- 

pective stockpiles,  for the purposes of producing autos,  steel, 

and  tools  and of Increasing  the auto,  steel,  and tool stockpiles. 

Let 

(-5)   (a)  Zi(t) ■ amount of steel allocated at time t for 
the purpose of Increasing x.(t), 

(b) w.(t) » amount of tools allocated at time t for 
the purpose of increasing x,(t). 

Upon referring to tne assur.ptJons in (2), we see tnav 

(4)   (a)  Z3 - 0 

(b)  wj = ws » Ws - 0 . 

Combining tne assumptions In (2) wit;, tnose of tne pr^vio^s 

paragraph, we obtain the following equations whicn relate x.(t+l) 

to x,(t), 2.(t) and w.(t): 

( )    *i(t+l) - ^i(t) + Min (TiXa(t), «IZ^L), Irw^t)) 

xa(t + l) - xa(t) + Mir. (^-«(O» ^aWa(t)) 

X3(L + 1) - X3(t) - Z^l) - Za(t) - Z4(t) - Z5(l) - Zd(t) +>aX4(l) 

X4(t + 1) - x«(t) 4 MIn (ol4Z4(t), e«w4(t)) 

X5(t + 1) - X»(t) - W2(t) - W4(l) - Wa(t) + Min [^5X,(t),dis^ait)] 

xu(t + l) « Xa(t) + Min (^z0(t),PoW6(t)), 

where c^.,ß. and T. are constants. 



The constraints upon z. and w. are obviously 

(o)   (a) zi,w1 >  0 

(b) Zj + Za + Z4 + Z5 + za ^ X3 

(c) W2 + W4 + wa < X5 , 

together with the "common sense" constraints 

(7) (a)    ^jzx  -   ßjwj   <   ^xa 

(b) ^az« •  ^aWa 

(c) ^4Z4  «  94W4 

(d) ^5^5   <   ^sXo 

(e) OLOZO » ^oWa 

Qy means of these  aualtional constraints we ma^ eliminate  w. 
.1 

completely,  obtaining in place ol  [j)  the  system of equal ions: 

(8) xtU+l) - xi(t)  + ^xzl(t)l x^O)  « cl   , 

X2(t4l)   =  X2(t)   +   ^2Z2(t),   xa(0)   =   ca    , 

X3{t+1)   -   X3(t)-Zi(t)~Za(t)-Z«(t)-Z5(t)-Z.(L)+raX4(t),    X3(Ü)=Cj    ( 

X4(t+1)   =  X4(t)    +   ^4Z4(t)#   X4(0)    »   C4    , 

X5(t + 1)    "   Xs(t)-eaZa(t)-€4Z4(t)-foZä(t)+^25(t),    €,»^/^, 

X5(Ü)    »   C3    , 

Xo(t-fl)   » Xölt)   + =<aZo(l),   t«(0)   =  c©. 

Tne  constraints,   in  turn,  nave   tne  form,   for eacn  t: 

(9) (a)    z1 > 0 

(b) zi + za + Z4  ■♦■ 25  + zo < X3 

(c) €a2a +  ^424   ^   €eZo  < x5 

(a)     Zj   < fgXa 

(«)     25  < feXo   . 
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Wr; must now choose  the zi(t)  for t ■ 0,1,2,.. .,T—1,   subject 

to  the above constraints,  so as to maximize XJCT). 

§3.    Discussion. 

As fom.ulated,   the problem above  lies wltnln the domain of 

linear programming.     The problem of majclmlzln^ Xi(T)  may be 

solved  for any given set of constants by  a straightforward iterative 

process of the type developed by G.  Dantzlg and others. 

A rapid count of the number of variables  Involved for T of 

moderate size,  say ^0, will show that even this simple  three- 

industry problem with lumped capacities and stocKpiles  leads to 

a problem of huge dimensions.    If we wish to determine  the form 

of tne  solution corresponain^ to different  initial states and 

corresponding to different sets of constants of proportionality, 

we are faced with a numerical taslt of vast magnitude.    This type 

of analysis of tne solution, a "sensitivity analysis,"  Is  required 

whenever we make  the crude assumptions of  lumping,  linearity and 

so  fortn made above. 

The question then ürlses a^ to whether or not  It   Is possible 

to determine tne   Intrinsic structure of an optimal policy,   ro^rJ^--'* 

less  of any numerical values which we may  subsequently assign. 

This knowledge Is not only of importante  in Itself, but  is also 

of  the utmost  impurtance  in determining approximate solutions  In 

cases wnere any explicit  analysis  is too difficult. 

For farther discussion of this point  we refer to   \J\ ,   [4]. 
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§4 . A Continuous Version. 

It is well-known in the physical world that continuous 

approximations are more amenable to mathematical analysis than 

discrete approximations, that calculus is a more powerful tool 

than algebra. Let us follow this lead and derive a continuous 

version of the equations in (2.8) and (2.9). 

In passing, let us note that it may very well be that the 

continuous version we discuss may correspond more closely to 

the actual economic problem than the discrete versions which 

have heretofore been treated. 

In the continuous version of the problem the allocations 

z.(t), over the time interval [t,t+l] are replaced by the 

allocations zAt)  t over the time Interval [t,t+At] . The 

quantities z.(t) are now rates of allocation. Writing out 

the equations corresponding to (8) and letting At>0, the new 

equations take the form 

(1) *i(t) - ^»(t) 
s 

*i(t) -*tza(t) 

iCs(t) - -Zl(t)-Z3(t)-Z4(t)-2s(t)-Ze(t) 

*4(t) - ^4Z4(t) 

*s(t) - -««Za(t)-€4Z4(t)-€eZ«(t)-H*«Z5(t) 

*.(t) -*dze(t) 

The constraints upon the z. are now 

(2) (a)  z^O 

(b)   Zi+ZÄ-«-Z4-»-Z5 + Zo< 00 

(c) €aZa+€4Z4+€aza< oo 

(d) Z! ^ fax« 

(e) Zs < lex«, 
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This means that the constraints of (2b) and (2c) disappear 

and are replaced b; 

(C)    xt > 0, 

inequalities which were obviously satisfied previously. 

The Importance of these new constraints resides In the fact 

that when x» ■ 0, we must have 

CO Zl   +   Zs   +   Z4   +  Zs   +   z«  ^  r«  X4 

and similarly when x»«0 we must have 

(3) €«^a + €4Z4  + *o2o < c^aZs   . 

Subject to the above equations constraints we wish tv 

maximize Xi(T)• 

§3. Some Remark» on Notation« 

Before presenting our general theoretical approach, let us 

introduce a small oir.ount of vector-matrix notation. Let x(t) 
* 

and z(t) denote n-<iljnens.lonal column vectors 

i(t)\ /zt(t) 

x(t) - x.(t) 

w») 
z(t)   -       Zl(t) 

zn(t) 

and A., B.# for such values of i and J as occur, denote n x 

matrices. 

m 



ly 2  non-ne'at'.vc ''octor x(t) we shall mf^an ono /or whl:;h 

all of thn '•or'.pon^nto are non-ac^at've, I.e., x. > 0, and write 
x — 

x > C. Tho Inequality x > y 13 to be equivalent to x-y non- 

negative .. 

In terns oT thin notation the above equations and constraints 

have the form 

(2) (a) ^ => Axx + A2zt r{0) - c. 

(b) z > 0 

(c) Biz ^ Baz. 

To express our criterion function  In simple  fom,   let us 

Introduce  the vector inner product 
a 

(3) (a)     U,y)  - >_" x y,   . 
rar  1 x 

We .Fiay  tnen write 

(H) X^T)   -  (x('f),oO   , 

waere the first component of cA is 1 and the remaining components 

are 0. 

Finally, we shall write 

(5) Sup (/(T),^) - f(c,T) , 
•y 

where f is a scalar f ;n^t'on of t;ir. vectcr <■-  an^ tne '..me variable 

T, i.e., 

(6) f(c,T)   =  r(cJ,;a,...,cn;T)   . 

Observe  that  we  use  Cup   In   ('j)   since   the maximum may  not  be 

attained.     We  shoJ 1  'ilncuns   ln1n  point  8f;aln   below. 



§6.  ..r.c ba3l: J^riCtlGrial fixation. 

in wrUirig (2.5) we have tacitly made use of tne extremely 

ii:ipor^ant '-ct t.iat t.-^e optimal yield, Xi(T)t la a l'unction 

only of tnj initial state and the duration of the process, once 

tne lawa coverning t'fle process have Deen codified. 

Let Ms I"artner observe tnao tne nature of an optlaial al- 

location policy Is such that its continuation over a sub—Interval, 

say [S,T], must be an optimal poilc,^' for a process of duration 

T-S startlnc from the Initial state c(S). 

The mathematical traniliteration of this truism will yield 

the basic functional equation, namely 

(1)     f{c,S+T) -Max f(c(S),T) , 

where  by Max    we mean maximization over all  z(t)   for 0 < t  < ß, 

i'il 1--f,, :n^ V.e  .'oiu-t ralnt3.    Let.    s   ^r ^Inpllclt^  asü'ome  a1,   tre 

moment   'hat   '' o inaxlmiün   is attained. 

§7.     Inf initeslir.al  Analogue . 

Let us now aspume  that c(S)  « x(S)  poaseapes plcoewlse 

continuous derlval^vcc  einet   r,h£.t   f nas  the  same property.     Then 

t.ak?.ng S  = 0 to  bf  r   well-behaved  point,   "fe  have, 

(1) x(S)   -   c   4   [Ajc   4  A2z(0)]8  + 0(S)   , 

and 

(.) f(c,  SrT)   -   f(c,T)   +  3 IJ, 4  0(S) 

P(c(S),T)   =   . (^   •    [A^   + A2:(ü)jS,T) 

-   :-(c,T)   ^  oiktc   -  Aa2(0),  |i  )   4  0(S), 



where 

cJC» 

Subati-'jtlnr   In  (6.1) and  letl Ing S -^0,  we  see  that   in- 

finites lina]  ^eneratoi1 cf   (l)   's 

(-0 li -~ Max    [(Axe  + Aaz(0)f U) ds:    z(o) L ^c- 

where  the maxiuiun  is now  takon u/er an n—dim' nalcnal   ,:—re^in. 

detennlned L./   
r.he  con^i rajnia . 

'i^ie  .L"iporiance of  *.he inflnitr8.Li.ai a:.aiojuc  1-  lr.au  it 

pennlta UJ to determine   tae soiutlon over   [ü/i-fATj   if we have 

it detemin^d over  [O,T]   for all  initlai  states.    Since  In 

moet of  these probieau'   ' ;.e iljficuitiea are  reaaix^  resoivea 

for arnaii 'i, wo nave a  feaaibi" approach. 

As an malträtier, of tii»rse  fen, .'KM W--  shall plou^n  Lhrc u^n 

the detail.:   .f  a  rela'-l1 "iv   :1m; if  problem below. 

§8.    A Particular rrotltr.. 

Let  us now consider  the prüble;    of najcimlzing Xa(T)  given 

the  followlni/ equaviens  ?nd constraints 

(1)     if1 = a,t^   x^0) 
\   i 

ux ^f* - aati-ti,  xa(ü)   «= c5  , 



-'S 

where Z\  and z« are subject  to the constraints 

(2) (a) zi,Z2 > 0 

(b) Zj   +  Za  < x2 

(c) z2 ^ Xi 

(i) x2  > 0. 

Let 

(.}) Max    XaCi';   - flcx.Ca,?). 

it  Is easy  to  a^e,   using either Classical  theorems  in  the  calculus  of 

'/arlatlona,   ^r a weaK convergonce argument,  that  the maximur.  iti 

a33umed  in  trils  cntfie, 

Aa  in fcj'j,   I"  satisfies  tiie  lunctlonal  equation 

(0 i'(^,c2,   SVi)   »_MaX  r(xl(S),x2(S),T)   , 
L0,S] 

wnlcji ieaus   .o aa  In §7,  the non—linear pariiai differential 

equation 

^^ ^" ^)[aiZi ^^  "   (<aZa~2l) ^J- 
T.-»,j .-.»axi-rtULi i.j  iwu^ .  .. fcr vhe  re0lo:. affined by 

(o) (a)     0 < ^o   ^a 

(^)     k>j  ■*■  -2 < c2 

(c)     za  < ci , 

wltn  the additional  resr,ralnt 

(7) a2za - Zi  > 0 

:r x2 - o. 
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et ' . w ketch the anal: t; 1c t> l'Oced ·re t he. vr11 l y 1 

a s ol ·tio ·" - ~ . n w th them t complica t eu case, t. h t 

~..ml!re ca < c a· . Por a p c cess o " 3 ort ration, th._ solut :i. on 

i s tr vi al. We a ve 

(8 ) 

Thle policy is purauea untll a "bottleneck'' develops, 

wh i ch is t o aay c 8 exceed~ c 1 • ... 1:1.j .r,e opti.mal policy desc r·ibe 

in (8) we see that this iii tuat i on will N· cur as eoon as T exceed s 

Ta • log (ca/ca)/aa • 

l'o obta.' n the so l tion f orT> T1 , we rewrite (5 ) 1n t h 

foraa 

) ~ -: ~(~) [zda, s~. -J~a ) ... 8 2 ~. za] . 

'l'he location of the max111l1z1ng point (z &{0), z 8 (0)) will depen 

p n the s g an magn1tud ~ o ~ the oe f f1 c l eni s of g 1 an g8 • 

For T < T1 we have 

ar r a T (10) a 1 ---- l!- c - e • , 
aca ~-

Usi o•_r a · s ~.:mp 'J ·e n onceming 

we suspect that tt e BQlut o • fo r 'l' 

have the .Coru 

a 1!.._ , ·.,cT 
a JCi -= 2 -J 

he cont 'nui ty of~ d f 
~c a ' ~ca 

lightly gr~ater t han Ta will 

(11) (a) z , • O, za • xa fo r 0 < S < Ta 



(12) f • baca + (l~Ta) &abaca , 

P­
- 1 . 

where Ta is as above. In order to determine how long this 

policy end~reu when T > Ta, we con~ider the process aa starting 

from S • T,. In te~~ of c& • ca { a), c* • ca(Ta), r has the 

form 

(1}) 

The eql..4at1 n whJ ch replaces { ) l a pre cisely the 3 WilC 

r rm wit I I c 1 , c a replaced b·· c a, ca, namely 

, 1 't ) 4r t ;)f <J • ) ~r ] ~ = Ha.x z , ( a 1 ~ - '"i"='T + aa _, •' za • 
.7 J :! ( T~ - 1,; a ,c a -

~e have , ~& ·• ng ( 1} ) , 

T c; coeffi ; 

0 a t T•, and posit ive thereatter. 

1 . , 

t follow t at the new policy given by (11) remains optimal 

or T1 5 T ~ T*. 

Ji'urt emore 111nce 'r•-Ta is inde:p"mlent or c a and ca we s~e 

tnat we kraow the fo nn of the optimal pol cy over a tail interval. 

It remains t o dete~1ne what the policy ia 1n the aiddle 1n 

• th gene ra l case when T ~x eedd T1 • "• suapect that it has the 

torm 

( 16 ) Z 1 :s X a - X 1 , Za • X a 

' 



'. ' .... ---~,_ 

n ')l _c .:: f v=- 'i f !' lrlG h is · r ec l.ly , \'lhlch m<"\y b . do · , 

' l' sh· 11 e :1cr b• l n t l.c n~xt sec-cion a more elegant t .... ·: .nlqilo 

.zh_c 1 e :<pl0.l t:J ho 1 tncarl t~· or the equatio.rw . 

§9 • A Dual Pro·o lem • 

.et us tak our bf! .. ,lc eq Ultio ~ to hav~ the rom 

(l ) ~ • Az, z(O) • c, 

w:!."h eonat:-at.nts or tue rom 

(2) (a) z~ O 

(b) Bz ~X • 

t 
Stnce X • +I Azcl t, , tne onstrcl.ln t ay be wri t te r 

0 
t 

(') Bz + J Czdt ~ c, (C • -A) . 
\ ) 

.~.. n ~! p ·oble rt or . axltnl?.l:tg ' f.(T),cl) ls equivalent t o tr1a1.. o f 
'l' T 

lllUl.mlz tns / (A ?. ,~)u t.. • f (z,~ )u l. • 

Beg1M1ng a 1l over again, we a tart w1 th the prob.l.em of lll&X­
T 

1m1z1ng J 3 ~ ( z,~)dt ov~r ~!l z eatis fylng t1e ~onstra1nts 
0 

(' ) <~> z 2! 0 
T 

( b ) Bz + f Czdt a) d ! c 
0 

Let w( ) be u non-n~gati 'tle 'tie~ t or of the same n 1meno1on as 

c . Then by . l' t ue of { 4 b ) , we n~ :e 

T 
+ l Czdt 1 )dt !> l (5) I (w,az (w,c)clt. 

0 
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Let B1 denote the transpose of B. Then, as is easily seen, 

(Bz,w) » (zjß'w). Integration b^ parts yields, for any constant 

matrix C, 

T t T      T 
(o) /(*,  /Czdti)dt * /{f   C«   wdt,2)at. 

o o o      t 

Combining    these  two results,  we nave 

(7) 
/t T T 

(w,Bz + f  Czdt^dt - f   (B'w + /   C,wdt,z)dt 
o o o t 

Let ua now assume that it Is possible to fina a vector 

w » w(t) which is non—negative and Jttisfles the ineqaalitj 

T 
(Ö)      B'w + y C'witi > ok1 

We  tnen nave  the  cnaln  of  equalities  and  inequalities 
T T t 

(9) C   (w,c)dt  > f   (w,Bz + f C2dti)dt  » 
o oo 

T T T 
- f   (B'w + /   C1wdt,z)dt   >   /   (oJ,1 ,z)dt   . 

o t o 
From  this it  is  clear that 

T T 
(10) Inf f   (w,c)dt  > Sup  f  (z,^')dt   , 

W      0 ""      Z       G 

where tne inflmum and supremum are taken over all w and z 

satisfying the Inequalities of (8) and (^b).  If the minimum 

and maximum are assuined, the details are as above. If, however, 

the minimum and maximum are not assumed, then delta—functions 

will occur, which is to say, we must reformulate tne problems 

in terms of Stleltjes integrals. A number of interesting and 

difficult problems arise in this way, which we shall not discuss 

here. 
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If the two extremes In (10) are equal, we see tnat ttie 

fallowing relations must hold#
# 

(11) w1 - 0 if c1 > (Bz + r  Czdt^ 

^ T 
z. - 0 If o< < (B'w + / C'wdt) . 
J *<        t       J 

The important fact which we now wish to establlsn is that, 

conversely, any pair of non—ne^atlvci z  and w satisfying (11) 

and the original constraints will furnish solutions to the 

maximum and minimum problems . 

To demonstrate this, let us note that if (12) holds, all 

the relations in (9) are equalities. Assume now that z Is anotr.cr 

vector satisfying all trv constraintJ ana Tor Which 

T T 
(12) / (z,*1)^ < r   (z,^)ut . 

Then with the w associated with z we have 

/J    „ T 
(z,oO)dt   <     f   (z,   B'w +    /   A'wdtOJt  -= 

o o t 

f   (Bz   -»■ J    Azdti,w)dt   <    J    (c,w)dt   = 
o 0 o 

T 

0 

a contradiction. 

♦ Apart, i'roir. sets of measure zero, Ic bo technical . 
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li  follows then that we have a systematic procedure for 

verifying a conjectured solution. Qlven z, we determine w by 

means of (11), and then see whether or not w satisfies the 

given constraints.  In the noxl section we rfnall carry through 

the details for the problem of §3. 

§10. Verification of the Solution Given in §8. 

Applying the techniques describea above, we find that the 

dual of the problem proved in §3 Is taat of minimizing 

T 
7° (ciW! -f ctwa)dt, where 
o 

(1) äli = -ajWi 4 wa> y^T) = -1 , 

^ - -agw«,     ya(T) =- aa 

and the constraints have the form 

(2) (a) wl,wa > 0 

(b) wi + wa > ya 

(c) wa     > : x 

The oq lations of (9.11) are now: 

If 

(j»)      (a) za < Xi, then wj « 0 

(b) Zi + Za < Xa, then wa • 0 

(c) wa > yi, then Zx • 0 

(d) Wi -»- Wa > ya» then Za ■ 0 . 



i 

We have oinltted tne condltlono corresponding to xa 2 ^ 

3lncc we aispcct that the opilinal allocation policy ajtomatJcally 

keepa Xi» > 0. 

We wish to vorlfy that the pcliCj which niaxlialzea x(T) is 

(^)  (a) For T-l/aia« < t ^ T,  zi(t) - 0, Za » Min (xlfXa) 

(b) For 0 £ t < T-l/ajaa,  (1) if xa < Xi, Zx » 0, za = Xa 

{2)     ii Xa > Xt, zx -« Xa-xx 

za = Xx 

It is easily seen that this la a permissible policy in 

that Z\  ■ Xa-Xt 13 actually non—negative when zx and za havo the 

above values. 

Having prescribed zf we can ie-ormine w using (j») and then 

test for consistancy.  There ai%e tv/o cases to consider, depending 

upon whether Xa ever exceeds xx or not. 

Let us assuTiC then that T > Tx, in which case Xa can exceed 

Xx if appropriate policies are used. 

Case I; T - l/a^a < Tx< T. The solution is given by 

(3)  for t < T0 :  Zx » 0, za » ^a 

for t > T  :  Zx * 0, Z£ • xx . 

For- t < Tx these results yiela. In conjunction witn {j), 

(6) for t < T0, wx(t) - 0, wait) = y2(t) 

for t > To, wa(t) - 0. W|(t) = ya(t)  . 

For t > T we obtain, using (1) 

(7) ya(t) - a«, yx(t) - -1 + axa2(T-t) < 0, 
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while for z  < T»  w? have 

lei) y.U) - aa^62(Trt) > 0 , 

yiit) - -1 + alaa(T-Tl) - e^^"^ < 0 

Hence, the inoqualltlea w^wa > 0, Wa > Ji,  Wx > ^a are satld— 

fied in their respective intervals. 

Ca.^e II. Tj < T — l/e.iaa. This is uhe most interesting case. 

The vectors z  and w are now detemined as follov;s: 

(9) for T - 1/ataa ^ t < T : Zi - 0  wÄ = 0 

za " Xif wi - ya 

for T0 < t < T - 1/aiaa: Zx  - Xa-xl wa » yi 

z« - xi,   wi » ya - yi 

for 0 < t < T0 :        Zi « 0     Wi - 0 

za - xa    wa = ya 

For T - 1/a^a < t < T we have 

(10) ya(t) - aa, yi(t) = -1 -»- alaa(T-t). 

Henco, in this 'nterval yi(t.) < 0 » wa. Note tnat yi(T-l/aiaa) « 0 

In the range T < t <J T — 1/aiaa, we have the equations 

Let ^Q  show that yj > 0 ana ya > yi in this rar.^e. Starting 

from t - T — l/axaa where tne Inequalities are satisfied, let us 

reverse the tiiae.  The backward equations are 



( 12 ) W. • ••Y•- (1+a&)y, 

Prom this we obtain 
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Hence, if Ya remains non-negative, we will have Ya-Ya ~ 0. 

It is clear that dy 1/dt starts ou t positive and stays positive 

aa long as (Ya 1 Ya) remalns above aaYa- (1+aa)Ya • 0. If it 

hits the line we have dy 1/dt • O, whic means that Ya has a maxi­

mum or a point or inflection. Both are excluded, since 

(14 ) ~ • a8 ~- (1+aa) ~ • a: Y• > 0. 
dt• dt dt 

T.nia ahows that w1 and wa remain non-negative in this interval. 

P1nally t'or t < T
0 

we nave 

( 1S) g.p. • Ya, W. • -aaYa • 

Aa t decreases, y8 increases and Ya decreases. Hence, Ya > Ya 

remains valid. 

This completes the verificat i on. 

§11. Non-Linear Probleu. 

A g:-eat number or problems in mat,lematlcal economics "•ed uce 

to the maximization or an integral of the form 

(1) T • 



and there a nwnber or conatrainta or the ronn 

cr.[],[]. 
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Theae problems may alao be approached by the f unct i onal 

eQuation outlined above. A brief outline or the procedure, 

together with an extension to eigenvalue problems, wi ll be 

found in ( 1 . 
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