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BOTTLENECK PROBLEMS, FUNCTIONAL EQUATIONS, AND CYNAMIC PROGRAMMING
Richard Bellman

@1. Introduction.

The study of inter-industry processes is one to which a
great deal of attentlion has been given ln recent years. 1. par-
ticular, it has become a matter of more tnan tneoreticual irterest
to determine the most efficlent utilization or wmulti-=Indusir,
complexes.

In this paper of essentially expository nature we s.ialil
present a new tneoretical technique, based ipon tne principles
of the theory of dynamic pro.raumin;, w~hich ay be used to treat
some of the novel types of mathematlcal proeblems waica arise
from these studies. Subsequently, a paper will be presanted
contalning the solutlions to a nwnber of specific provlems, bpased
upon Jolnt work by the autnor’ ana Shcrman Lehman.

The problem we shall discuss 18- a "bottleneck problem” i
the sense that the level of economlic activity will be determineu
by tne resource 1rn shortest 8upply,.

To vegin with we shall, in the next section, present a
typical problem of the bottl:neck type Llnvolving the auto indus—
try, the steel ind:ustry and tne tcol lnaustry. Followlns thls,
we shall formulate the problen matnematically empluyln,, a dis—
crete approximation. After a snort ulscussion of tue uifflc.dties
of thils approach we 8snall iturn Lo 2 contlnuous approximatior. W
will nuow e in a position to apply tne functlional eq.atlon approucn
e; tne theory of dynamic pro_rammirn.c. Thls met:.od used witn rulth

and resolution will often yield the solut.iorn qulite rapiuly.
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To prove in a simple fashion that what we nave 1is actually
a solition, we exploit the linearit, of the problem and con-—
struct a dual problem. This aual problem may be used both
to verif, and derive a solution.

To illustrate these éecnniqaes we snall conside} in detalil
the problem of detemmlining tne y;'t; and ya(t) wnich maximize

x2(T) siven tne equatlions

(1) g%l = a;yi1(t) x;3(0) =c, ,
$eE = (ae=1)r2(t)=vi(t), xa(0) = ca ,

and the constraints

(2) (a) J1, y2 2 0 ®
(b) vi1 + ye < X
(c) va < bz x3/a2
(d) xa2 > O.

This problem s a particularl, slmple example o the mat:i.—
ematical problems wiich inter—=inuustry analyses raise.

Firally,, we shall brlelly Indlcate tne extenslion ot our
metnods to otaer t pes of varlational provlems walca Invcive ron--
linear [functicns ana functienals. For those w:i0 are lnterested
In other aspects ¢! tne theor, of dJd.nanilc pro,/ramming, we reler

toc tne papers [1) — [3] listed in L.e blolios.raph; .
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§2. A Typical Problem.

Let us consider a model of a three-industry production
process, where the individual industries are t..e auto indust,,
the steel industry,and the tool 1industry. These 1lndustries
are to be used to produce as man, autos as possible over a
glven time perioa of length T.

To simplify matters we 3hall ass.ume that eaca ifndustyy is
characterlized at any time t, which to vegin witn we snail allow
only to take the values 0,1,2,...,1%1, by 1itsg capacit; and its

Stockplle. Let

(1) X3(t) = number of a.tos prodiced up to tlime i
xa(t) = capacit of auto factorles
xa(t)

Xe(t) = capacity of steel mllls

stockplle of steel

Xs(t) = stockpile of tools

xs(t) = capacity of tool factorles

We shall assume a linear productlior process in tie seusc
that output 18 always directly proportional to the minimun
input. Thus, production 1is directl; progorticnal to capacit,
whenever there 1s an abundance of raw materials and directly
proportional to the quantlt, of raw materials allocate! wihcn-—
ever there 1s an abundance of capacit,. To be more preclse, we

postulate that

.

(2) a. An lncrease in auto, 3teel or toul capacit, requires
steel and toouls

b. Production of autcs reqg.lres auto capac.t, and slee!
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¢c. Productlon of steel requires only steel capacity
d. Production of tools requires tool capacit; and steel.
The process proceeds 1n the following fashion. At tne
beginning of eacn unit time period, say t to t+', we allcocate
various quantlties of steel and tools, taiken from tneir res-—
pectlive stockpliles, for tne purposes of prod.cing autos, steeil,
and tools and of lncreasing the auto, steel, and tool stockplles.

Let

(5) (a) zi(t) = amount of steel allocated at time t for
the purpose of lncreas:.ng xi(t),

(b) wi(t) = amount ol tools allocated at time t for
the purpose of lncreasing xl(t).

Upon referring to tne assumptions In {2), we sec tnat

(4) (a) z3 = 0

(b) wy = w3 = ws = 0 ,

Combining tne assumptione ln (2) wit:l tnose of tue pr-vio.s
paragraph, we ottailn the followin; equations whica relate xi(L+1)

to X‘\u), zi(t) and w, (t):

1
()) ('(,+1) = X1 + Min (“Xa(t), Q;Z;(L), ‘1'&1(?,))
x2{t+1) = xa + Min (*gce(t), €awa(l))

+ Min (deog({l), Cewelt))

—- wa(t) - WQ(L) - NQ(L) + Ml [‘_rﬂ(g(t),dsi.’.g(()]

Ag(t‘fl) = X(.

(

’(u(t“fl) = Xa t) + Min (‘QZQ(L),@QWG(L)),

(a4
+
—

) = Xs

>
]

(t)
(v)
a(L+l) = x3(1) = 23(t) = wa(t) = z4(t) = zs(t) = za(t) +¥xg(L)
(t)
(t)
(

wiere o, ,f, and ¥, are constants.
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The censtrelnts upon zy and W, are obviouisly

(o) (a)
(b)
(c)

2
1M 20
2y + 22 + 24 + 25 + 20 £ X3

Wa + We + Weg < Xs

together with tne "commnon sense" constralnts

(7) (a)
(b)
(c)
(d)
(e)

By means of these adaitional constraints we may ellnlnate w.

“z; = Bw; < Mxa
gzg = Bgwp
Agzg = Bewy
dszs < ¥sXe

xgze = PgWe

WL

completely, obtalning in piace of (») tne system of equations:

(8) xy(t+1) = 3 (t) + Mqzy(t), x,(0) = ¢, ,

x2(t+1)

Xa(t+1)

x2(t) + %222(t), x2(0) = ca2 ,

Xa(t)=zy(t)—za(t)-ze(t)—2s(t)—2e(t)+¥axe(t), xa(0)=cs ,

X;(t+1) = X;(t) + =L424(?.), X¢(0) = cq ,

Xxs(t+1) = xs(t)—egzg(t)—6‘24(1)—foZe(t)+°535(C)» élzﬂy/ei,

xS(O) = Cs ,

xo(t+1) = Xo(t) + deZg(L), A@(O) = Ceo.

Tne constraints, in turn, nave ine forwa, for eac.: t:

(2) (a)
(b)
(c)
(d)
(e)

21 + 22 + 4 * 25 + 28 < Xa
€a2p + €424 + €g2g < Xs
2y < f2Xa

25 ( che .



We must now choose the zi(t) for t = 0,1,2,...,T=1, subject

to the above constraints, so as to maximize x;(T).

§5. Discussion.

As fornulated, the problem above lles wliltnin the domain of
linear programuing. The problem of maximizing x{(T) may be
solved for any glven set of constants by a stralghtforward iterative
process of the type developed by G. Dantzligz and others.

A rapld count of the number of variables involved for T of
moderate slize, say 50, will show that even thils simple three-—
industry problem with lumped capaclties and stockpiles leads to
a provlem of huge dimenslions. If we wish to determine the form
of tne solutlun corresponding to different initial states and
corresponding to aifferent sets of constants of proportionalit,,
we are !aced witnh a numerical task of vast magnitude. This type

of anal;sls of the 3olution, a "sensitivity analysis,”" 18 required
whenever we make tne crude assunptlons of lumping, linearity and
so forth made above,

The questlon then arises a: to wheivher or not 1t 's possitle
Lo determuline the intrinsic structure of an optimal pollcy, rcga;&—‘”“
less of any numerical values which we may subsequently ass3lgn.
This knowledse is not only of lmpcrtante in itself, but 1is also
of the utmost impourtance in determining approximate solutions 1in
cases wnere any explicit analysis is too difficult.

For further discussion of this point we refer to [5], [4].
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§4. A Continuous Version.

It is well-known in the physical world that continuous
approximations are more amenable to mathematical analysls than
discrete approximations, that calculus is a more powerful tool
than algebra. lLet us follow this lead and derive a continuous
version of the equations in (2.8) and (2.9).

In passing, let us note that it may very well be that the
continuous version we discuss may correspond more closely to
the actual economic problem than the discrete versions which
have heretofore been treated.

In the continuous version of the problem the allocations
z,(t), over the time interval [t,t+1] are replaced by the
allocations z,(t) t over the time interval [t,t+At]. The
quantities zl(t) are now rates of allocation. Writing out
the equations corresponding to (8) and letting At>0, the new

equations take the form

(1) {a(t) = %z (t)
kg(t) = Sgza(t)
X3(t) = —z,(t)—zs(t)=ze(t)=2s(t)-2a(t)
Xe(t) = dgzq(t)
Rs(t) = —€pzg(t)—€zq(t)—<oze(t)+ogzs(t)

ke(t) = *qze(t)
The constraints upon the z, are now

(2) (a) z, 2 0
(b) 2z3+zg+z4+25+426< ®
(c) €aza+€qz4+€azag 0O
(d) Zy < TaXa

(e) Zs S I'QXQ
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This means that the constraints of (2b) and (2c) disappear

and are replaced by

(3) (b') xs >0,
(c') Xs _>_00
inequalities which were obviously satisfied previously.

The importance of these new constraints resides in the fact

that when x3 = O, we must have

(%) Zy + 23 + 24 + 25 + 2¢ V2 Xq
and similarly when xg=0 we must have

(5) €gia + €42¢ + €826  HoZs

Subject to the above equations constraints we wish t¢o

maximize x,(T).

§5. Some Remarks on Notation.

Before presenting our general theoretical approach, let us
‘ntroduce a small amount of vector-matrix notation. Let x(t)

and z{(t) denote n—dimensional column vectors

xi(t) zy(t)
x(t) = xa(t) ’ z(t) = | za(t)
x (t) z,(t)

and Ai' BJ, for such values of 1 and J as occur, denote n x m

matrices.



Ty 2 non-ne~ative vector x(t) we shall mean one .Jor wh' . h

v

all o7 tho -~ormon~nts are non-ncrative, 1.e., X. > 0, and write

FY

x > C. The inequalitv x > vy 13 to be equivalent t2 X non-

—

negative..

In terms ol this notation the 2hove equatisns an?d concirnints

have the form

(2) (2) $ = Mix + Az, 2(0) = ¢,
(b) z>0

(¢) Byz ¢ Baz.
To express our criterion {unction in simple form, let us

introduce th2 vector inner product
0

(3) (a) (20) = %3, -

Ne nay tnen write

(4) Xy (T) = (x(T),s) ,

wilere the first component of &A i3 1 and the remaining components

are 0O,

Finally, we shall write

(5) Sup (r(7),) = (c¢,T) ,
where £ 18 a scalar fnetion of than vecter o and tne ' me variable

T, L.e.,

(b) £(c,T) = f(c,,:g,...,cn;T) .

Observe that we 3¢ Cup in (9) since the maximum may not be

attalned. We sn2.l «dlncuns tnin polnt azain below.
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o. Lnc kasi: Functlonal Equatlon.

in writing (5.9) we have tacitly made use Gf tne extreicly
Laportant “ict tahat L.e optimal yileld, x,;(T), is a tunction
only otf tn: 1nitlal state and the duration of the process, oncc
the laws governing the process hav: been codirlicd,

Let us [{urtner abscrve tnacv tne nature ol an optiaal al-
locatlion poliicy 18 3uch that its continuation over a sub-interval,
say [S,lj, .3t be an optimal poilcy tor a process ot ducsation
T-S starting from the initial state c(S).

‘The matiematical tran:cliteration of this truilsm willl ylela

vne basic fwictionas equation, namely

g
LS
g A

(1) I'(c,S5+T) -rMax t'(c(s),1) ,
where by Max_ wc¢ mean maximization over all z(t) for O ¢ t < 8,

(v,S,
4
satdof,ing Yie ronitralnta, Let '8 Jop olippliclty assume ot ire

meiment ftar e naxtmgn 18 attalined.,

§7. Infinitesinal Analcrue.

Let us now assume trat ¢(S) = x(S) possesses pircewise
continuous derivattves and ret £ nas the same property. Then

talrtng S = O tc be & well-behaved noint, "te have,

) x(8) = ¢« 4+ [Ajc + A22(0)]8 + O(S) ,
ol
. c 1 o’ r 2 1"
(") f{c, 5:T) = ti{e,T) + 3 %T + 0(S)
F(c(S),T) = . ¢ Arc 4 Ra 1 (0)]S,T)



where

) Al

(5) L. |55
f

o,

Sutsti:ting in (6.1) and letiing S =50, we see that in—

finitesimal yenerator of (1) is

. 2 L o [ Y
(') Z‘T = ’zdz(’-g) L(Alc + AgZ(O), 2‘5- ’

where the maxinunm i3 now taker over an n=dlmnsicnal z—rexglo;
determined Ly “he constrainis.

iMie Lportance of the infinlitesinal aralojuc 1L Lral 1t
permits us %o determine Lue solutlon over [0,7+aT] if we have
1t detemmiined cver [O,T] for all initial svates. Since in
most ©i th28e proolems 're “lrficultles are readilly resoived
for smail 1, we nave a fea8ibl: approach.

As an illustraticr. of tunese rvem .ien w2 Shall plougn ‘hrcugn

-~

the detell: . a relatio: cimplée prob.lem below.

3. A Particulsr krotle.

Let us row congider the rrovler of naximiz!ng xg(T) glven

the followiny eguavicns end constrcints

1 X ,
(1) ETL = by, x3.0) =

ax o
Hfa = aglg—t,, Xa(L) = Cc2 ,
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1O

where 2z, and za are subject to the constraints

(2) (2) =:1,22 >0
{b) zy + 22 £ X2
(¢) z2 ¢ x4
(1) 3(2 Z C)o
NN
(j) X Lz(:} = f(C;,Ca,T).

[0,
It is easy "o gee, using either ciassic&l theorems in the calc.lus of
sarlations, >r a weey convergence argument, that the maximun lo
asaumed Iin Luig c¢nge,

As in §u, { usatisfles the lunctlonal equation

() Uy 1,C2, S+1) ’_M¢x ?(x‘(S),xg(S),T) ’
10,8]
wilcn leaus o as in §7, the non-linear partiai dirferential

®udt lon

: 27 ‘ .oaf 2f
() ST ™ Max |a;z, 3¢, + (t2za—2y) 5;2.]-

20) ' -

Tod naXinus Lo Ladeas el Ve reglos acllned by
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Let us now sketch the analytic proced.re that will yleld
a solution. We begin with the most complicated case, that
where cg < C€i1.. Por a prccess ¢f short duration, the solution
is triviel. We have

(8) z, =0, 2g = X2 ,

r - caeagT .

Tnls policy 1s pursuea until a "bottleneck" develops,
winich is Lo say cg exceeds ¢;. Usinug the optimal policy describea
in (8) we sce that tnie situation will cccur as soon as T exceeds
Ty = log (ca/ca)/as .

To obtain the solution for T > T;, we rewrite (5) in the
form
() ¥f ..."r‘-»azd-f—-z

— Mas . f
aT 2?3) z1 (e 337 ca’ a {] '

1he location of the maximizing point (z,(0), zg(0)) will depend
upcn the siegn and magnitude of the ccefficients of g3 and gg.
For T < T, we have
aL - Lr- £l - aaT % = b2 '11.2?

(10) a‘ ac‘ ac. e ’ aa c. a2 .

Using our assumptlicn concerning the continuity of éﬁ_ of

e S SRS i 2¢y * aca

we suspect tnat the solution tor 1 slightiy greater than T, will

have the foru

(11) (a) zy =0, zg =xg for 0SS Ty
Jy = O, g = X3 for Ty <S8 S T .



Avplying thls policy, I tekes tne form
(12) { = bgcy + (1-T;) agbge, ,

where Ty 15 as above. In order to determine how long this
policy endureu wnen 17 > Ty, we consider the process as starting
from S » Ty. In terms of ¢y = ¢3(13), ca = ca(Ty), £ has the

form
(13) {f = cag + agey(t=Ty).

The equaticn which replaces (9) has precisely the same

form with cy,c2 replaced by c{, c}, nanely

’q 2t . 4 of af
o14) ST = 2?;0 zy (2, g:T'— 33;') + 82 3T 22 ] .

Wwe have, using (13),

(15) a1 §or = 3 - aiaa(tm) - 1,

Tne coefficient of z; i3 negalive for T < T* = T, + 1/a,a,,
C at T*, and positive thereafter.
It follows that the new policy given by (11) remains optimal
Tor Ty T LT,
Furtnermore since '*-T3 is independent of ¢, and cg we s2=e
that we know the focrm of the optimal policy over a tail intervai.
It remains to determine what Lhe policy is in the middle in
tne general case when 1T a2xceeds T:. we suspect that it has the

formm

(16) - Zy = Xa — Xy , 28 = X3 .



in placz of verifylng this directly, which may be done,
we sholl deseribe in the next section a more elegant tecrnique

which explolts the linearity of the equationas.

§9. A Dual Proolem.
Let as take our basle equations to have the fom

(1) éxf = Az, 2(0) = ¢,
wich constraints of tine form
(2) (a) z 20
(b) B2 ¢ x .
L
Since x = ¢ + [ Azdt, tae constreini may be written
o
L
(3) Bz + [ Czat ¢ c, (C = —A) .
(®)
The provlem of naximizlng [(z{T),d) 18 equivalent to tnai of
T

D

T
maxinizing f (Az,)dl = f (z,a!)du .
16 (
Beginning a.i over again, we start with the prcblem of max—

T
imizing J = [ (z,¥)di over uil z satisfying the constraints

0
(4) a) 22 0 n

(b) Bz + J Czat,)dr < ¢
o]

Let w(t) be & non-negative vector of the same almension as
Then by virtue or (%b), we nmve

= ’

C.

(5)
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Let B' denote the transpose of B. Then, as 18 easlly seen,

(Bz,w) = (z,B'w), Integration by parts yields, for any constant

matrix C,
4 T t T T
(o) !(w, SCzdty)at = /([ C' wdt,z)dt.
0 o t
Combining these two results, we nave
T J T T
(7) f (w,Bz +[ Czdt,)dt -f (B'w +f C'wdt,z)dt
o) o t

Let us now assume that 1t 1is possible to finu a vector

w = w(t) which 1s non-negative and s@tisfles the inequalit;

T
(8) B'w + {f C'wity >
We tnen have the cnain of equalities and inequallitles
T T t
(9) %( (wyc)dt > JP (w,Bz + JP Czdt)ut =
0 0
T T
-f (B'w + C'wdt,z)dt 2[ (A ,2)dt .
o t
From tnls it 1s clear that
T T
(10) Inf[ (w,c)dt > Sup f (z,a)dt ,
W z ¢

where tne infimum and supremum are taken over all w and z
satisfying the lnequalitlies of (8) and (4b). If the minimum

and maxirum are asswied, tne detalls are as above. I1f, however,
the minlmwn and maximum are rot asswed, then delta-functions
will occur, which 13 to say, we must reformulate tne problems

in termns of Stieltjes integrals. A number of !Interesting and

difficult problems arise in thls way, which we shall not discuss

here.
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If the two extremes in (10) are equal, we see that the
f~Ylowing relations must hold,*

(11) W

t
1 =0 if ¢, > (Bz+[ Czdt.)1
1y

z, =0 if o, < (B'w + S C'wdt),
J J Y J

The important fact which we now wish to establlsn is that,
conversely, any pair of non—tiegative z and w satisflying (11)
and the original constraints will furnish solutions to the
maximum and minimum problems,
To demonstrate this, let us note that 1f (12) holds, all
the relations in (9) are equalities. Assume now that 2z is anotrcr

vector satlsfying all th~ constraiinis ana ror wnich
T T

(12) J (z,a)dt < [ (Betlut
o

Then with the w assoclated witin z we have

T
(13) f (z,0¢)dt < f (z, B'w + S A'wdt,)dt =
0 C

0

‘/T (B?_T+f Azdt,,w)dt < f (c,w)it =

o) o) O

T
f (z,d)dt,
o

a contradiction,

* Apart rom sets of meacure zero, Lc be technical.
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Iv follows then that we have a systematic procedure for

verifylng a conjectured solution.

Given z, we determine w by

means of (11), and then see whether or not w satisfies the

given constraints.

the detalls for the problem of §3.

ln the next sectlcn we shall carr, through

§10. Verification of the Solution G ven in §€.

Applying the techniques describea above, we find that the

dual of the problem proved 1in §3 18 tnat of minimlzing

T

S (ciwy + cawg)dt, where

5

(1) dyy . -8 Wy + wg, Vi

%%l = -8agWg,

and the constralnts have the torn

\2) (a)
(o)
(c)

wy,wg > 0
Wy + W2 > Ve

wa

Y
(]

S

The ~qiations of (9.11) are now:

Ir

(3) (a)
(b)
(c)
(d)

22 < X3,
2 + 2g < Xg,
W2 D Y,

Wi + W2 > Yya,

then
then
then

then

ya(T) = aa

OO O O O
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We have omitted the condltlons corresponaing to xg 2 U
3ince we suaspect that tne optlnal allocation policy automatically
keeps xz > 0.

We wish to verify that ithe pelicy, which maximizes x(T) is

(#) (a) For T-1/ajag <t < T, 2z3(t) = 0, zz = Min (x;,x2)
(b) Por 0 ¢t < T-1/ajag, (1) 1If Xxa2 < X3, 23 =0, 22 = xa
(2) LI Xxa > Xy, 1 = Xaz—X;
Zg = X3 .
It 15 easily seen that this 1s a permisslble policy 1n
that 2z, = xg—X; 13 actually non—negative when 2z; and zg have the
above values,
daving prescribed z, we caa deierulne w using (5) and then
test for consistancy. There are tvio cases to consider, dependiny
upon whether xg ever exceeds Xx; or not.

Let us assumc then that T > T;, in which case xz can exceed

X, if appropriate policles are used.

Case I1: T - 1/ajazg < T,< T. The sol.tlon is given by

TO : zZ, =0, Z2g »w Xyt .

For v ¢ Ty these rcsults ylelc, In conjunction wita (J),

for t

v

t

ya(t)

ya(t) .

(b) for t <T wi{t) = O, wa(t)

o’
o & 2 TO, Wg(t) = 0, Wg(t,)

For t > T_ we obtaln, using (1)

(7) YZ(t) - 8g, yl(t) = -1 + axﬂz(T—t) <0,
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while for © ¢ 2» w2 nave

(S) vali) = &aﬂaa(mrt) > 9,

aa(Ty-t)

yiit) = =1 + a,8p(T-T,) — e <0

Hence, the lIncqualities wp,wa > 0, wz2 > 1, W3 > ya are satis—
fied 1n thelr respectlive intervals.

Case 11. T, < T — 1/2122. Tals 18 ihe most lanterestling case,
The vectors z and w are now determined as follows:

(3) for T - 1/a38pa <t <T: 2z, =0 wze =0

22 = X1, W1 = Y2

for To <t <T—1/aa: 2y = Xg—X; Wa = ¥,

22 = X, Wi = Y2 — Y1
for 0 <t % 'I‘o zy = 0 wy = 0
Zg = X2 wWg = Y2

For T — 1/a,aa ¢ t < T we have
(10) ya(t) = aa, /3(t) = =1 + a,ag(T-t).

Hence, in thls interval yj(t) (O = wa. Ncte tnat y;(T-1/a,a2) = O.

In the range TO <t T~ 1/a,a2, we have the equatlions

(11) T = —aaya + ai+l)in

Let .s show that y; > 0 anu yg > yi In this rarge. Starting
fromt = T — 1/a,8a, where tne inequalities are satlsfled, let us

reverse the tlie. The bac«4ward =qg.ations are
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(12) g*l = agya — (1+a1)ys

%*‘ = asys

From this we obtain

(13) 3% (ye=y1) = (1+a4)ys

Hence, if y, remains non-negatlve, we will have yg-y: 2> O.
It 18 clear that dy,;/dt starts out positive and stays positive
as long as (yi,ya) remalns above agys — (1+4a;)ys = 0. If it
hits the line we have dy,/dt = O, which means that y, has a maxi-

mun or a point of inflection. Both are excluded, since

(14) 953 o op LB _ (14a,) S 2 af ya > 0.
dt® dt dt

This shows that w; and wg remain non-negative in this interval.

Finally tor t ¢ To we have

(1) g{-l - ya, g{l = —agys -

As t decreases, yg increases and y; decreases. Hence, yg > ¥

remains valid.

This completes the verification.

§11. Non-—Linear Problems.

A great number of problems 1in matnematical economics seduce

to the maximization of an integral of the form

T
(1) Ts= 6/ P(x..x.,....xn, 23,23,...,Zn)dt
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and there a nunber of constraints of the form
(3) R (X1,Xg)c.0Xns Z1,284.4422n) <O,
ofs £ 1s L2 5
These problems may also be approached by the functional
equation outlined above. A brief outline of the procedure,

together with an extension to eigenvalue problems, will be

found in [ ] .
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