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Summary:     This paper will  appear as an 
appendix  to b chapter  In a  book by E.   F. 
Beckenbach entitled,   "Mathematics  for 
Engineers,11  to be  published  by McGraw-Hill, 
195J*.     This appendix  sketches briefly some 
of  the most Important aspects of a part  of 
the  general  theory of differential equations, 
the  stability theory of equilibrium states. 

EQUILIBRIUM  ANALYSIS: 
THE  STABILITY THEORY  OF  POINCARE-LIAPOUNOFF AND  EXTENSIONS 

Richard  Bellman 

§ 1.     Introduction. 

"he  preceding  chapter has  treated  the  subject of  linear and 

nonlinear oscillations,  a  t^plc  of  the  utmost   Importance   In  the 

theory and  application  of differential  equations.     In  this  appen- 

dix  we  shall  attempt  to  sketch briefly  some  of the m^st   Important 

aspects  of another part  of  the  general  theory of differential equa- 

tions,   the  stability  theory of equilibrium  states. 

The  fundamental  problem may be  posed  very simply.     Let   us  sup- 

pore   that we  have  a  physical  system described at  any  time   t  by a 

set  of  state  variables   (x, (t) ,x2 (t), • •'x^ t)).     These  variables are 

taken  to vary with  time  In accordance  with a  syetem of differential 

equations, 

(1) dx1/lt  -   fj^x, ,x2,---,xN) ,   X1(0)   - c1,       1-1,2,•••,N. 

3y an equilibrium   state,   we  mean  a   set   of values   (H,,85 , *'*,aN), 

which  possesses   the  property that 

/ 



(2) f1(ai,aa,-#-aN)   - 0.      1-1,2,"-N. 

These values  furnish a point  solution  to  (l).     Without   the 

Intervention of an external  force,   the  system will   remain  In  the 

state  specified by x.   • a.,  If It  starts  In  this  state. 

Suppose now that  some  external   force,   of either det^rmlnlstlc 

or stochastic  origin.   Is applied with  the  result  that   (at,ag ,*'*aN) 

Is displaced  to  (a|,ai , *'* ,a^).     Will   the  system return  to  Its 

equilibrium position? 

If It does so under all possible perturbations, of arbitrary 

magnitude, the equilibrium position Is said to be totally stable. 

If the system returns to Its equilibrium position under perturba- 

tions of sufficiently small magnitude, the equilibrium position Is 

said  to be  stable. 

It  Is clear that  total stability  la a mathematical   fiction,  and 

that  In physical  problems   the magnitude  of  the disturbance  will 

play an essential   role   In determining  the   subsequent  behavior of the 

system. 

In  the  succeeding  sections  we   shall  discuss   the  m~st   important 

result   In the   stability  theory of nonlinear differential  equations, 

and   then  pass  lightly  over some   related  questions   In  the   theory of 

linear differential  equatlonr,  differential-difference  equations, 

and  parabolic   partial  differential  equations. 

Further  results   In   stability   theory  and  asymptotic   behavior 

of differential  equations  will   be   found   In  the  author's  book   [l], 

and  previous  survey   [2J.     A  survey  of  results  In  the   theory  of pro- 

cesses   Involving  time-lags,  which  lead   to  differential-difference 
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equatlons will  be  found  In   [3],   where  earlier results   of I7.   M. 

Wright and  the  author are cited.     Recent important  work   in the 

theory of  nonlinear  parabolic  equations  Is due   to G.   Prodi   [91, 

and   [lÖ] ,   ^nd  earlier work   is  summarized  In a  paper by  the  iu hor 

§2.     The  stability Theory of  Poincare  and Liapounoff. 

Let  us assume,   as  Is   true   in   the   formulation  of most   physical 

problems,   that each  function  f, (xi ,Xg , • • • ,xv,}   is  a  power series   in 

the variables  x,,Xa , *••,xN,   and   take,   without  loss  of  generality, 

eacn a.   to  be   zero. 

The  basic   system of differential  equations  has   then  th^  form 

N 

(1) dx1/dt   - 2_^ a^Xj  +  g1(xl ,X2,"" .x^,) , 

where  A   -  (a««)   Is  a  constant matrix  and each g*(x)   Is   ^  power 

serler  containing no constant  or  first-order  terms. 

Let us   take  as  initial  conditions 

(2) x1(0)   -  c1,       l-1,2f---,N, 

wner^ w»3 assume that the c^ are chosen to be small enougn so that 

each gj^x) Is small compared to the linear terms. 

It is now plausible that the stability of the equilibrium posi- 

tion Xi - X2 - •••• ■ x.. ■  for (1) will depend upon whether or 

not this state Is stable for the linear approximation 
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That this is indee~ so is the substance or t he classical 
I 

result of Poincare an~ Liapounorr. 

Before presenting a formal statement of the theorem, le t us 

consider the asymptotic behavior of the solutions or ( ). As is 

well known, cr. [1], we may obtain all solutions of ( 3) in .erms 

of simple solutions of the type x1 • e~ tci, toge t her wi h limi t ing 

for.s. Substitution in (3) yields the algebraic sy tem 

i•1,2,•·•,N. 

Eliaination of the ci' Which cannot all be zero, yields he 

~eter.inantal equation lA-AII • O, the charac teristic equa i on of 

A. The roots or this equation are calle~ the character1s 1c roo s 

or A. If .ultiple roots occur, we may ob ain solu t ions of the form 

xi • e~tpi(t), where the pi(t) are polynomials in t. 

In an7 case, we see that the asymptotic behavior of the solu-

tions or the linear differential equation i s determined by t he 

algebraic oharao-.r of the char~cterist1c roo s. I 1s clear tha 

a necessary and sufficient con~1t1on tha t all solu t ion of (3) t end 

to zero as t ---+ oo is that all charac t eris t ic roots have nega t ive 

part s. 

Th1 con~1t1on can be t e s ted wi thout explicit caleula i on of 

the root s by use of the Hurwitz er1 er1a, cf. [~) , once he char

acteri s tic equation, IA-1\l l • 0 , has been wri t en ou in p~ lyn )mial 

form. 
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I now state the fundamental re sult of Poincare and 

Liapounoff: 

• Theorem 1. Consider the system of differential equa ions appear-

1ng in (1). Le t us a ume that 

(4) 
a. all character! t ic roots of A hav negative real par s, 

• I g i ( x t , x2 , • · · , xN ) I ( I x t I + I x2 I + · · • + I x N I ) ~ 0 a s 

l x l+ lx21•···• 1x I~ 

Then any s olution of ( 1) tor which lc, I + lc2l + ••• + l c I 1 

~uffic1ently small approache t -~) oo. 

T is t heorem affirms h correctness of us 1 he linear 

approxim tion o t e s t h ability of an equilibrium pos i t ion. 

Several proof , each of independent in eres , will be found tn [t]. 

§ . ~ ta bl lity Theorz of Linear Equations. 

Th a o e mathema t ical f ormulati on of he behavior o f a sya-

tem a s sumed sta tionarity, whic h is to say tha t the laws overn1ng 

the ehavi r of the system were aken to e lnvar1an 1n t ime. In 

many ap lica t ions this i s no he case. 

Let u consider a s1 uation where the sys tem 1 overned by 

a y em of linear equa tions with varia 1 coeff1cien s, 

N 

( 1 ) dx 1/ d t • ~ (a 1 J+ ij( ))xJ, 1•1,2,···, . 

It 1s rea s onable to susp c t at if bij(t) --) 8 -~> oo , 

the asymptotic ehavior of t he solution of (1) will mimic he 

• I he original result of Poincare and L1apounoff a s sumed tha t he 
i(x ) were power serie s in the x1 ossessing no c ns a n or firs 

order erms . A sta a o , n re s ul 1 ue o Perron . 
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Unfortunat@ly for @ngineers, and fortunately for ma hema t lciam, 

this is not un1v@rsally tru@. Let us give a s imple example. t 

can b@ shown that not all solutions of 

(3) d2 x/dt2 + (1 + sin2t/t)x • 0 1 

are bouud@d, d@sptte th@ fact that th@ solu t ions of th@ approx1ma -

tng @quat1on 1 d2 x/dt2 + x • 0 1 are. 

We have here a typical problem tn th@ theory of he s t ab111 y 

or the properties of an equa t 1on under p@rturba ions of the f orm or 
th@ @quat1on. 

A us@f'ul resul du@ to Hukuwara 1 see [l] 1 i s t e following : 

Th@orem 2. I r 

(5) 
a. all solutions of (2) are bounded as t ~ oo, 

00 
b. J I bi J ( ) I d t < 00 I i I J•1,2 I • •• N, 

t hen all s olu ions or .(1) are bounded. 

If more i known concerning the b1J( t ), hen c orre spondingly 

mo~ can be d@t@rmin@d conc@rning t he solutions . A ca e of par-

ticula r importance i s t hat where each biJ( t ) possesses an a symp

totic s@rie s of h@ form 
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In thi s case, asymptotic series for the solu t ions may be found. 

A fUr t her di scussion of this very import ant aspect of he theory 

of asymptotic behavior will be round in [], where fur her refer-

ence s may be found. 

§ 4. Differential~1fference Equations. 

I n many important applica i ns involving automa t ic control, 

an appreciable time !s required f or the controlling mecha nism o 

rea c t . I n problems of th i s t ype, in place of a differenti 1 equa -

tion we obtain a different1al~1fference equation, and occasionally 

a fUnctional equa t ion of more complica t ed type. 

Thus , for example, in de scribing the mo ion of a damped pendu-

lum, in place of the tradi t ional equation, 

( ) " x( t ) + ai(t) + bx(t) • O, 

we obtain the equation 

(2) " t x ( ) + ax ( t- t) + bx ( t ) • 0 , 

if the damping con r ol pos se sse s a t ime lag ~. 

The characteris t ic equation corresponding t o (1), ob ained 

by se tt ing x • e '-t , 1 

( 3 ) l\2 + a'- + b • 0 • 
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If a and b are pos itiv~ quantities, i t i s t ri vially seen ha t 

ev~ry s lut i on of (1) goes to zero a s t ~ oo. The ~qua i on 

obtain~d from (2) in the corre sponding f ash ion i s 

(4) ~2 + a ~-~ + b • o. 

It is no longer a trivial matter t o determine he reg ions of the 

(a,b) plane which yield e qua t ions wi t h t ht- proper y th l'l t 11 the 

root s have nega t ive real parts . 

An important paper at t acking this problem is by Pon t r j gin 

An English summary or this, together wi t h s ome applications of 

[8] , 

he 

methods contained in th~ paper, will be found in [3]. An i ndepe n

dent approach to a part icular equa t ion will be found i n Haye s [6] . 

The s tability theory of nonlinea r diff~ren t ial-differe nee 

equa t ions wa s inaugura t~d by t he au t hor and E. M. Wr1~ht , [11] , who 

has inve s tigated the se que st ions in e ons i~erable de t ail. A bib

liography will b~ found in [3] . 

Finally, we no t e t ha t the theory of periodic solu t ions of 

diffe rential-difference e qua t i ons has been d iscus sed by Minor s ky 

[7] a nd by Brownell [5]. 

§5. The H~ a t Equa t ion . 

t a bili t y pr ob lems Gf ~ ntire ly ana l ogous t ype ari se in eon-

n~e t ion wi t h th~ nonlinea r h~a t e qua t ion , 

( 1 ) 
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where the boundary and Initial conditions are of the form 

(2)    u • 0 on B, the boundary of a region P(x,y,z), 

u - fCx.y,? ) In R at ♦. • 0. 

From physical considerations It Is to be expected that the 

condltlonn, 

a. Ma/ |f| sufficiently small, 
O)       R 

b. g(u) • o(u) ae u  > 0, 

will  guarantee  that   the  solution of   (l)   approaches  zero  as   t    > Oo, 

assuming  that  H  Is  a  bounded  region  with no particular  oddities. 

There are many wa>s  of attacking  this  problem.     A  bibliography 

of  previous work  will   be   found   In   [4j ,   where  a  solution   Is  obtained 

for  the  case where  R   Is  a  rectangular  parallelepiped.     A   comple'e 

solution   for sreneral   regions  was  obtained by P.   Lax,   In  private 

communication,  and   In  published   form  by  G.   Prodi   Q}] ,   who  ^as  ^Iss 

Investigated  other  interesting  questions   In   this domain,   cf.   [lÖ] . 
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