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Summary: This paper will appear as an
appendix to & chapter in a book by E. F.
Beckenbach entitled, "Mathematics for
Engineers " to be published by Mclraw—Hill,
1954, This appendix sketches briefly some

o! the most important aspects of a part of
the general theory of differential equations,
the stability theory of equilibrium states.

EQUILIBRIUM ANALYSIS:
THE STABILITY THECRY OF POINCARE-LIAPOUNOFF AND EXTENSIONS

Richard Bellman

§1. Introduction.

The preceding chapter has treated the subject of linear and
nonlinear oscillations, a topic of the utmost importance in the
theory and application of differential equations. In this appen-
dix we shall attempt to sketch briefly some of the m~st important
arpects of another part of the general theory of differential equa-—
tions, the stability theory of equilibrium states.

The fundamental problem may be posed very simply. Let us sup-—
vpoce that we have a physical system described at any time t by a
set of state variables (x,(t),xz(t),°"xN(t)). These variables are
taken to vary with time in accordance with a system of differential

equatlons,
(1) dxi/jt = ri(xl'x2p.."x:‘v), xi((:) - ci' 1-1'2'.00’N.

Hy an equilibrium state, we mean a set of values (a,,a;,"',aN),

which posscescses the property that

/
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(2) fi(alpaai..'aN) = 0, 1=1,2,° " °N.

These values furnish a point solution to (1). Without the
intervention of an external force, the system will remain in the
state specified by X, = a,, if 1t starts in thils state.

Suppose now that some external force, of either deterministic
or stochastic origin, is applied with the result that (al,ag,"'aN)
1s displaced to (a{,a},"',a&). Will the system return to 1:s
equilibrium position?

If 1t does so under Aall possible perturbations, of arbitrary

magnitude, the equilibrium position is said tc be totally stable.

If the system returns to its equilibrium position under perturba-
tions of sufficiently small magnitude, the equillibrium position is
said to be stable,

It 18 clear that total stability i1s a mathematical fiction, and
that in physical problems the magnitude of the disturbance will
play an essential role in determining the subsequent behavior of the
gsystem,

In the succeeding sections we shall discuss the mrcst important
result in the stability theory of nonlinear differential equations,
and then pass lightly over some related que=stions in the theory of
linear differential equations, differential-difference equations,
and parahollc partial differential equations.

Further results in stabllity theory and asymptotlc behavior
of differential equations will be found in the author's book [1],
and previous survey [2]. A survey of recults in the thenry »f pro-

cesses involving time-lags, which lead to differentlal-difference
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equations will be found in [3], where earlier recults of 7. M.
Wright and the author are cited. Recent important work !n the
theory of nonlinear parabolic equations is due t» G. Prodi [9],

and [10], and earlier work 1s summarized in a paper by the au hor
[4].

§2. 7The ‘tability Theory of Poincare and Liapounoff.

Let us assume, as 1s true in the formulation of most physieal
prohblems, that each function fi(x,,xg,'--,xN) 1s a power serles in
the variables X1 X2, Xy, and take, without loss of generality,
eacn a, to be zero.

The basic system of dAifferential equations has then the form

N
(1) dxi/dt L ;- ainJ + Si(xlvxl’"'.:xN)l

where A = (aij) 1s a constant matrix and each gi(x) 1s a power
cerie: containing no constant or first-order terms.

Let us take as initial conditions

where we assume that the cy are chosen t0o be small enough so tha-
each gi(x) 1s small compared to the linear terms.

It 18 now plausible tnat trne stabllity of ~he equ!llibrium posi--
tion Xy = X, = ++-- = x,. w ° for (1) will depend upon whether »or

-1

not this tate 138 stable for the 1lnear approximation
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N
(}) dxi/dt Ed ; ailxdp i=1 ,2..'..No

That this is indeed so is the substance of the classical
result of Poincare and Liapounoff.

Before presenting a formal statement of the theorem, let us
consider the asymptotic behavior of the solutions of (3). As 1is
well known, cf. [1], we may obtain all solutions of (3) in ‘terms
of simple solutions of the type X, = eztci, together with limiting
forms. Substitution in (3) yields the algebraic system

N
(n) %cl - ; ‘130.1' 1=1,2,°"°,N.

Elimination of the Cq» which cannot all be zero, ylelds the
determinantal equation |A-Al| = O, the characteristic equation of
A. The roots of this equation are called the characteristic roots
of A. If multiple roots occur, we may obtain solutions of the form
X, = eAtpi(t). where the pi(t) are polynomials in t.

In any case, we see that the asymptotic behavior of the solu-
tions of the linear differential equation 1s determined by the
algebraic chareacter of the characteristic roots. It is clear that
a necessary and sufficient condition that all solutions of (3) tend
to zero as t —>» 00 18 that all characteristic roots have negative
parts.

This condition can be tested without explicit calculation of
the roots by use of the Hurwitz criteria, cf. [?], once the char-—
acteristic equation, |A-Al| = O, has been written out in p-lynomial

form.
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Let us now state the fundamental result of Poincaré and
Liapounoff:

Theorem 1.  Consider the system of differential equations appear-

ing in (1). Let us assume that

a. all characteristic roots of A have negative real parts,

(4)
be |gg(xi,x2, %) /(Ixy | #|x2 |+ +|xy|)—> 0 as

le+|xg|+"'+lxN|——) 0.

Then any solution of (1) for which [c,| + [ca| + *** + Icul is

sufficiently small approaches zero as t ——> o00.

This theorem affirms the correctness of using the linear
approximations to test the stability of an equilibrium position.

Several proofs, each of independent interest, will be found in [1].

§7. £Stability Theory of Linear Equations.

The above mathematical formulation of the behavior of a sys—
tem assumed stationarity, which is to say that the laws governing
the behavior of the system were taken to be invariant in time. In
many applications this is not the case.

Let us consider a situation where the system is governed by

a system of linear equations with variable coefficients,
N
(1) dx,/dt = ; (a13+bu(t))xj. 1=1,2,°°",N.

It 1s reasonable to suspect that 1f bij(t) ——> 0 88 t =P 00,

the asymptotic behavior of the solution of (1) will mimic the

3 The original result of Poincare and Liapounoff assumed that the

£4(x) were power serles in the x, possessing no constant or first—
order terms. As stated above, tﬁe result 18 due to Perron,
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behavior of the solution of the approximate equation

N
(2) dxi/at = ;;; ainJ' 1=1,2,°°°,N.

Unfortunately for engineers, and fortunately for mathematiciars,
this 1s not universally true. Let us give a simple example. It

can be shown that not all solutions of
(3) a2x/dt® + (1 + sin2t/t)x = 0O,

are bounded, despite the fact that the solutions of the approximat-—
ing equation, d°x/dt® + x = 0, are.

We have here a typical problem in the theory of the stabllity
of the properties of an equation under perturbations of the form of
the equation.

A useful result due to Hukuwara, see [1], 1s the following:

Theorem 2. lﬁ

a. all solutions of (2) are bounded as t —3 oo,

(5) oo
b. [ lbij(t)ldt < oo, 1,3=1,2,°°°N,

then all solutions of (1) are bounded.

If more 1s known concerning the bij(t)’ then correspondingly
more can be determined concerning the solutions. A case of par-
ticular importance 1s that where each blj(t) possesses an asymp-—

totic series of the form
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(6) bij(t)'V b1JO + bijl/t + buz/'t2 + v,

In this case, asymptotic series for the solutions may be found.
A further discussion of this very important aspect of the theory
of asymptotic behavior will be found in [1], where further refer-—

ences may be found.

§4. Differential-difference Equations.

In many important applications involving automatic control,
an appreciable time is required for the controlling mechanism to
react. In problems of tnis type, in place of a differential equa-
tion we obtain a differential-difference equation, and occasionally
a functional equation of more complicated type.

Thus, for example, in describing the motion of a damped pendu-—

lum, in place of the traditional equation,
n

(1) x(t) + ak(t) + bx(t) = 0O,

we obtain the equation
" '

(2) x(t) + ax(t-T) + bx(t) = O,

if the damping control possesses a time lag T.
The characteristic equation corresponding to (1), obtained

by setting x = e’t, is

(3) N +4ax + b =0,
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If a and b are positive quantities, it is trivially seen that
every solution of (1) goes to zero as t —>» oo. The equation

obtained from (2) in the corresponding fashion is
(%) A2 +ae ™,y a0

It i1s no longer a trivial matter to determine the regions of the
(a,b) plane which yield equations with the property that all the
roots have negative real parts.

An important paper attacking this problem is by Pontrjagin [&],
An English summary of this, together with some applications of the
methods contained in the paper, will be found in [3]. An indepen-—
dent approach to a particular equation will be found in Hayes ﬁﬂ.

The stability theory of nonlinear differential-difference
equations was inaugurated by the author and E. M. Weight, [11], who
has investigated these questions in considerable detail. A bib-
liography will be found in [3].

Finally, we note that the theory of periodic solutions of
differential-difference equations has been discussed by Minorsky

[7] and by Brownell [5].

555. The Heat Eguation.

Stability problems of entirely analogous type arise 1In con-

nection with the nonlinear heat equation,

u__ Fu P¥u , Fu
(1) - . - +&z2 + g(u),
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where the boundary and initial conditions are of the form

(2) u =9 on B, the boundary of a region R(x,y,z),

u = f(x,y,z) in R at * = 7,

From phyasical conslderations 1t 12 to be expected that the
conditicn:o,
a. Maz |f]| sufficlently small,
5 R

b. fg(u) = o(u) ag u —>» 0,

will guarantee that the solution of (1) approaches zero as t —> no,
accuming that K is a bounded region with no particular oddities.
There are many ways of attacking this problem. A bibliography
of previous work will be found 1in [k], where a solution 1is obtained
for the case where R 1s a rectangular paralleleplped. £ comple'e
solution for general regioncs was obtalned by P. Lax, in private
communication, and in published form by G. Prodl [?], who has alsc

invectigated other interecting questlons in thils domain, cf. [hﬂ.
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