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Summary : ‘Uaing the technique of continuous
approximation, approximate solutions to a
number of important multi-stage scheduling
problems are determined. In addition, the
functional equation approach of the theory
of dynamic programming is used to derive an
alternate proorﬂgfra result of S. Johnson,
contained in P-402.



Some Combinutoriul troblens Arising in ths Theory
Of Multi-Utupe rrocesses

By
Richard Bellmsn and vliver Gro s

1. lntroduction.

A prublem of some importince in industrisl applications which
ives rise to some interesting and quite difficult combinatoriul pro=-

blems Is the followling:

"There nre n items, not all identicul, which huve to> be processed
tirough 8 nunber of wnuchines of aif ferent type., 1he order {in which the
macnines are to be used 1Is not immuterial, since some processes must be
curried out befors others. Glven the tines required by the i-th ltem on
the j-th machlue, wjj, 1= 1,2,.0.,0n, j=1l,2,...,m, détermine the order
in which tue 1tems stiould be red 1nto the apchines so as to minimize the

total tlie required to cowmplete the 1ot."

As 4 simple example of the ubove, conslider the ce8e whére we have
a number of books which must be printed and then bound., Clearly the

printing uwust precede the hinding.

Mathe:uticully, the jroblem is one of arran;emsnts, which can be
golved In wuny jarticulur cuse by enumeruation. However, a ;ulick count
o1 the jcssible urrangements will show thet as soon as the number of

ftems reuches ten, the snumerutive technl ue becomes unwieldy.

AL tie suppestion of oune of the wut.ors, thils jroblem was investi-
vtited vy o, Jomnnson, who found & number Of interestiung and important
résulty which we simll cesc:ite Lelow., 116 .us uble to s80lve coumpletely

the two-st.pe jroblem for any number of dissimilar {temws, ''he three
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stuge problem, however, poses difficultisas of an entirely new und

tormiuable type, und has 80 far reslsted solution.

An lmportant tool in Johnson's work was an explicit formula for
idle time on the second machine in the two stuge jrocess. It is thia

quantity which determines the efficiency of & particular routing order,

ln this paper we shall tackle the simjlified problem of determining
the optimnl order when there are a lurge number of items of only s few
dif ferent types. This 18 perhups the most importunt probiem ss f{ur us

prectice 1s concermd.

BEven here, the original problem seems difficult to resoive, Con-
sequently we shall use a device which works uniformly well throurhout
the theory of dynumic jrogramiaing, numely tiie repluceusnt of a dlscrete
problem by u continuous version. As {3 fre uently t'e cnse, the coutinu-

cus version mey be solved with great euse und glegance,

For thoee {nterested {n other jroblems involving muiti-stape pro-
cesses which rey be approximnted by continuous proces. €3 und thereby
resoived, we refer to L3, Lv] nnd L5] , where otunr references to

the tusory ol vynamic progrwning way be 1 ound,

Filnuiity we shall show how the two-:tupge process mnay be uttuckaed
by the functiornsl e uation approacn of the theory of dynamic programming,
ct [2] , #nd resoived without the uue 05 nn expllicit formula for
tre 1dle time. I'nls method {8 imjportant since it i3 not always possiSlo
to obtuin a tracteble explicit unuiytic rejresentation of the quentity

thut {3 to be winimi- ed or wuxinived in oy snelosous problems.,
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The methods presented here .uy 84i1305 be uted to to treat the
cnse where there are luterchun,enble mchines, operators trauined to
work sowe or all Of the nschines, and so on. Ne feel thut it is best
to ex;ose the msthod {rn its native simplicity and leuve the extenslons

to thuse to whom the jroblem nay huve some iumediste interest,

<e the Hesuits of Johnson.

ln thias sectlon we shsll present the resuits alreuady Obteulined by
Johnaon, He first ot ali estublished b, a slinjle arguwent that for the
cases 0f twd and three muchines the order of jp.oocessing on euclt muchine
can be tucen to be the samws in un optimul urrengemsnt. '‘his resuits in
a conslaserubie siuplitication and permits an explicit formulse for the
ldle time tO be derivecd, AR

Let us note {n pussing thut Johnson showad by meamns of & simple ex-
amplie that this iaentical orcering may not be valid for four or more

Sty es.

Theorem l(Johnson ). Let x. be the inactive time on the second machine

imiedinteiy before the i-th item 13 frocessed on the second machine.

Let (s ,b. ) be the tiwes rejuired to jrocess the i-th item on the first

ané second machines resjectively, snd assume that the items are arranged

in numericui order., Then

w |
v
(1)  Top = * = Ma 2 “-~zb“]

- d [ =
"\ L=' H \—' L.'

whers | represents tne totul idile time On the seconc aschiue,

Lmy

w8 shull pgiva the proof for the saxe 01 cumjleteness, since it is

quite anhcrte.
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‘e have
Kl, O.,
(<)
Xy = mep (3o mbyimx,0)
whence
(3) %ow, 2 wox (e~ by &) .
Similarly
4 2 ‘_
(10) X:. = R ALY B¢ ( .(; LS & bu - [:‘ J‘) (,)
and , X .
2-1‘ = mw ol -:g'-(‘\, - '_Z' b.' 3 d ‘I.)
(5) L

The remainaer of the proofr is inductivae,

The two muchine problem 1s equivalent to determininy the errange-

ment of n itema which will ongrimize the right side of (l). The solution

is given by

Theorem 2(Jonrnson). An optimal oraering is determined by the foilowing

rule: item 1 precedes item j if

(0) min (& ,b;) < min \a; L0

L

Af there 18 equulity, either ordering 1s optimal, proviaed thast it

18 consistent with sii tins defluite frufermences.
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For the three-stuyre ;roblem, ths corresponcing formule for the

totaul idle time on the third machine, ulso cderived by Johnson, is

Rd - v Ll
(7) I = reOan [Z%—.Zbi*zb.*ZciJ

c v . [
3w, ISug vem ! e

where &, ,b,,c:, denote respectively the times requirsd by the ith item

on the first, second and third aschines,

3, Continuous Verslons - ¢ machines,

To 1llustrate our techni ,ues, let us begin by considering the
simplest cass, that of two machines ané two different types of items,
ussuming that the total number of items is largs compared to the times
foquirog.to process any i{individual {tem, ln place of the expression

;:ab - ?ibl , we consider the integral
w
(1) I(u) = g(a(t) - bit))dt.

The vrnalopue of an urranpement of items 1s a characteristic function
$ defined over the lnterval [p,T] . thls function determines a(t) wund
bit) In the following way

uit) = ad + 4 0-4)
bit) = kg ot o (-9)

where (u, ,b ) uni (a,,b,) represent the tiues required on the first and
second mrcnines for the first unc second types respsctively. I'he functiaon
$ (t) 1a the characteristic function of thse set over whicn the first item
lg jrocessed, nmd l-¢ i3 the characteristic function of the set oOver

the second item is jrocessed. The ccrstraints upun ¢ are that it take
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on only the values O and 1, and in addition satisfy
-

(3) & $Ar = R

°

which 1s equivaelent to the statement that k of the T items belong to
the first type. If we set

X = (Q“-’I‘OLL‘*}‘)

bt e = (2-b)

the problem is that of determining the quantity
w
(5) I = Nin Max [ « ?Ax‘g]
¢ osuceT 5 >

and determining the correspording functions ¢ .

It istobeexpected that in general to obtain a winlmum we must ex-
tend our class of functions and consider those which correspond to "mixed"
policles. This is to say we must allow $ to satisfy the weaker condition
O< ¢< 1, ratler than be restricted tc vealues of C or 1. For two machines,
there is & solution in the narrower class. For three machines, this wiil
not be true in the majority of cases. 'I'nis 1llustrates the complexity of

the solution of the corresponding discrete problems.

Let us now demonstrate

”

Theorem 3. A ainimizing ¢ is glven by
(6) If wde, $al in  [7%7]
. $=o in Lo, Tx]
If  oa<o, 4 = | in Lo, k]
ol ‘1-& [.k).r'k]

¢ is arbitrary.
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Proof: Let us consider w> ( first, Dendote the ¢ described above
by '@r . Then for eny ¢ satisfying (3) and O< p¢l, it is clear that
w e
(7) ot\Q $ AL + (R 2 o g.., ‘bcw..r\su.
Hence " - “ b
(8) ™oL { u\§ 4)&1‘4»%&] > S 7 2 L“S‘ Q‘u‘@t]
osueT : GtustT

which shows that ¢? furnishes the minimum. The case where * < ( 1is
treated similarly. It is clear that for ««0, ¢ plays no role. This

comrletes the proof,

The ¢ we have found is not necessarily unique, It is, however, the

simplest solution, and the most important in applications.

Let us now consider the error mude in using the 8 lution to the

cantinuous cese us sn a;proximation the solution of the discroto‘ cuse.
=

s= v 7y oy

- .\
e . .
We =2¢e that the difference between 2 n=~ & b and 2o - Z b
Is b, or b, , hence negligibls Iif n is large. Now consider the difference

between

() Tlys= %0; - % by = i L(“-‘ )4, + (“*"")(“*L)] = w2t

v (W

us l,<,...,n, where ¢. 18 1 if the first item occuples the i-th position
w

und zero otherwise, and the continuous analogue, J(u) = u< Yure pu

It is clearly sufficlent to consider the difference at i ntegral values

of u. We have
7 A
) T =T o« (G eu- 24y
For euch *’; consider the corresponding ¢(t) which has the property

that S:‘}At . _24

vl

, when u =1,4¢,...,n. The difference will then be zero.

L
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It follows then that if we minimize J(u) over all 4§ and find that
the minimizing ¢ , or a minixzizing ¢ , corresponds to a ¢, , we obtaln
a very good approximation to the solution of the original problem. Even,
as below, in the case where there is no minimizing function corresponding
to a characteristic function, we may still bs able to approximate by means
of chamacteristic functions, and obtain a useful answer. For example, if
$=8a, where C< a<l, in the intervel (0U,s8), ws may consider an approximute
¥ given by ¥=1 in (0,8, and O in (a,s). Stili finer subdivisions will
yield more accurate =zpproximation. For a discussion of this concept of
replscing mixed strategies by pure strategies, see (3] ; for an application
see 57

I'he case where there =are more than two types of items is treated
in a similar manner. Taxke, for instance, the case of three types of
items. Let ¢, ¢, ¢, be the respective characteristic functions of the
sets where eacn is processed. Them, corresponding to (5) we have the

problem of determining the minimum of

(11; T(e)= g [§:[(a.-..)g,(a-s,)ﬁf(«,.mbaj‘x

ceus T

over all ¢, &y and % satisfying the constraints,

(@) © s & =
() 6"0 ¢L’ Q.’ = | - N
S & ¢ 4ix =k.‘ S ¢¥&.1 ‘*‘) \ ‘3u=&3')
@ ©
/«.’ k._' k" = T

(12)

Using the result of (7), it is clear that the order of the items
is determined by the quantities a,- b =d; , which are to be arranged

. ?

in increasing order of magintude. This yields the optimal ordering.
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L. Continuous Version. Three Machines.

Let us now discuss the three-machine problem assuming two distinct
varieties of items. The method given here extends to any number of stages
and any mumber of items, provided that we assume that the ordering on

each machine is the same.

As the continuous anelogue of the expression given for I, in (2.7)

we heave
(1) I, =  mex [ . »
(T) U¢ uevs T g\a(t)-b(t))dt +S(b(t)-c(t))dtl
© . :
= max [ « $ats B 1\»‘#&1’* Sv]

QsusvseT

upon setting

(2) alty=s o, ¢+ q‘_(‘—¢\‘ b(t)= b,‘.' bx(!-Q)) clt)= ¢, @+ c‘(loﬁ))
and
(3) o> G-9% +hy-h,, &= 4G-b,, V= b~ b,+4 c,.c.)ﬁt by ¢a

#e wish to determine the minimum of I( ) for all ¢ subject to
™ T
(&) o€ s, ( eat =k,
o

A solution is given by

Theorem 4. The minimum value of 1 is

V{xeTy= ~op (0 skssT, u.ph(ns)r),

(5)
A minimizing ¢ 1s given by
(6) Yo= /T

for C£t=<T, ln generel, the solution is non-uniqus.
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rrouf: Ne have

(7) :r’[u) > o, setting u v C,
2 sk T setting u o,v T,
2GR+ (89T setting u T,v T.

Or the other hand, if wa take ¢= k/1, we wish to determine the meximum
of the linear foram

ok ¥ R
(8) L (u,v) = — * Ru+ _._’__V + v

over the reyion (s u¢ ve¢l'y The waximum occurs st the of the vertices

(¢,0), (O,r), or (T,T), und hence 1is ue piver In 15},

The ine-ualities of (7) show that M{%nI 2 V, I'ne arruuent above

shows thuat iv::%n $ < V. Hence we have syusallity,

1f, for examjie, 0 ¢ ¥ ¥ +5T & (v s) %+ (3+5)T #0,
the solution Is non-unique. '1'0 show tin18, lct us observe thuat thie above
conditiam implles tnat the vulues ot the linuar farm at the v-rt%ces ure
such that one lles strictly abcve tha other two, Lt 1ollows that If we
perturb ¢. by a sufficlentiy esmail awount over sr irnterior intervel in
such 8 way as t o _eave {its total intecrul over (o,T) unchunged, the efr-.ct
or. L will be tO 1euve 1ts values at the v-rtices unchunged, nence we can

]
obtuin uwrbitrarily meny solutlions from the oriplinal =aoiution ¢

It i3 wuia0 jossible to derive various conditions of quite special

nuture which will ensure unl ueness.
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Incidentally, the foregoing minimizetion problem hus a determinate
two-rsrson zeéro sum game interpretation in which the minimizing player
picks the ¢> (subject to the same constraints as above), &nd the maxi-
mizing player picks & point (u,v) in the triangle O<u<v <T, with the
payoff given by u2“¢a+ But X g:‘*“ t by . The value of the
geme is given by (5), an optimal strategy for the minimizing player 1is
¢iven by (6), while the maximizing player has an optimal pure strategy
consisting of choosing the vertex which yields the largest value for the

linear form,L .

5. alternative Derivetion of the Decision Kunction,

Let us in this section show now the Johnson criterion, given in
Theorem <, may by derived by use of the functional equation approach of
the theory of dynamic progruming.

Let
(1) fla, ,b, ,8,,b,..0p8y,,b3 it) time consumed processing the N

items with required times a ,b

on the first ana second machines
when the second mecnhine is committed
for ¢t hours ahead, and an optimal
scnedul ing procecure is employed.

Then if the first item is processea first, we have
(2) £(a,,b ,e.008y,b ;)= a,+ £(0,0,8,,b,,..0,8y,b,;b,+ Nax(t-a, ,u)).
if we choose the second item to folilow, we obtain

(3) S(ayby,... Ay, by t) = a+a,+ §(0,0,0,0, 9, by, 5 Cin, bR’ b+ May [h"‘;_‘f

Mas (t-0,,¢), 0] ).,

On the other hand, 1f we interchange the orders, we obtain
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(10) i’(";h;' - )a")bﬂ;t)" O'I’Ql*é(o)o)o)o)a“b.’).”) QN) b"‘) D+ MM i_ b;' Q}f

Mag (¢ -as,0), °] )

It follows from these formulee that the order of the items which mini-
mizes the new t-term is optimal., 1t is not lumedistely obvious thet this

order is independent of t. We huave

(5) by + May [ b=y s Mox (t-0,,6),0] = Moy ): Mo (t- a0y &by | + bap,-ay

= “w Lt-Q;J O) a\:bll 0 o b" b".ql

wa [ c.,) v+ 9y bJ + by+by~ 4~ A,

lt is eusily seen from this that regsrdless of the value of t,
the interchange which minimizes Max 1.“‘) q‘.al-b,] cannot increess

the totel time, =znd may decrease it.

The remeinder of the proof proceeds as in Johnson's pajer.
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