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SQtf: PROBLEMS IM THE THECBY OF DlllAMIC PROGRAMMING 

Richard Dellaac 

The theory of dynaMc progr^uoming treats 
probiere involving oulti-stage processes by means 
of a tr&nsfonnation of the problem from the space 
of decisions to the space of functions.   This is 
accooplishad by deriving a functional equation 
whose solution is equivalent to the solution of 
the original probleu.    To illustrate this approach 
most clearly, free of extraneous analytic details, 
we cuustdei  a simple but nontrivial multi-stage 
investnent problem.    We show bow exact solutions nay 
be obtained in some cases, approximate solutions 
in others, and how these approximate solutions nay 
be used to obtain more accurate solutions in the 
general casef    Of particular importance is the 
decrease in the number of independent variables 
made possible by this approach,    '.his is not only 
iflportant from the theoretical standpoint, but is 
also of great value in reducing the cost in time and 
effort of nunerical confutation. 

1.    Introduction. 

The purpose o£  this paper is to provide an introduction to a class of 

mathematical techniques that are useful in treating a variety of probleos 

arising in the planning of multi-stage processes.    These are programndng 

problems, to use the Currently popular teruinology, and the adjective 

"dynamic" emphasizes t\uxz iu thsae probions time plays an important role. 

This characterization of Car subject matter is not merely one of nomenclcture— 

the problems before us are of a conceptually distinct type.    Moreover, the 

mathematical techniques employed prove  LO be especially powerful for the 

resolution of problems of this type. 

The multi-stage problems in which we are interested are cos^osed of 

sequences of operations  in which the outcome of preceding operations nay be 
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used to guide the course of future operations.   Iwo types of operations 

nay be dlstlii£uished ianedlately, those tn which the outcone is predict- 

able on the basis of a probability distribution, and those in which the out- 

coos is completely determined.    Depending upon one'L point of view, either 

type may be considered to be an approximation to the reality represented by 

the other. 

Since laoct of the probleias which arise arc of er entirely novel char- 

acter, frequently offorii£ forcdduble uatheuatical difficulties, we have 

rectricted ourselves to the consideration of h uinple yet important problem 

in order not to obscure our techniques by extraneous analytic and algebraic 

cora{:lication£. 

Ihe basic idea underlying our analysis is that of replacine the decision 

problem by a functional equation.    We show then that the solution of the 

functional equation yields a solution of the criminal procraBBaine problem. 

It is precisely at this point that the question of uniqueness of solution 

acquirer  in economic as well a^: a nathenatical importance. 

Uiir^; tine functional equation approach we consider a very simple version 

of an oj tinal allocation crcblem.    We be(jin with a statement of the problem 

and then contrast  the ciascical approach with the dynamic programming approach, 

h'e next rapply an existence and uniqueness proof, and then derive some impor- 

tant properties of the solution. 

Following this we formulate the stochastic version of the same problem, 

and then in the concluding section discuss the essential features of the 

mathematical Lecnniques empi.oyed. 
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2.   Tb» ForiauatloD of a Problem of Qptlaal Resource Allocation. 

A very ciin;;le proble« relatinc to the allocation of reaources Is tha 

following:    Wev have x dollarc; which nay be split into two parts, y and x-y. 

From y we obtain a return of g(y), from »-y a return of h(x-y).    How does 

one choose y so as to naxlmize the total return? 

The analytic probieo is that of finding the naximum of g(y) -»- h(3fr-y) 

subject to the constraint 0 < y 1 x. 

Let us now complicate the problem by changing this one-stage problem 

into an N-stage problem in the following way: At the end of the first stage 

let us assume that vre have loft, as a result of our division into y and »-y, 

the quantity of money ay ^ b(x-y), where C < a,b < 1, and vie are to continue 

this process for N-i additional stages. How does one allocate at each stage 

in order to maximize the total return? 

There is no difficulty in setting tnls problem up In classical form, 

^ 'J\t /o» "*» ^N ** t^e s6^'-*5^6 of choices at each successive stage.    The 

total return will be 

N N 
(2.1)       R^i, y2,---,yN; =   21 e(y1)-f-Z.   h(xryi) 

where 

(2.2) x1 = x, 0< vl<i *lf 

X2 = ayj^ -h b(x1-y1), ^ < V2 - ^2 

^ = ^ll-l "♦" ^Vr^i-^'       G ^ ^ ^ ^ 



The problem is to maxiialze R subject to the above constraints.    Since 

several of the y nay be G or x^ endpoints of their allowable intervals, any 

naive application of calculus is a bit hazardous. 

3.   The Functional Equation Approach to Qptinal Allocation. 

Since the above formulation presents all the unpleasant features usually 

involved in a maximization problem over an N-dimensionai region, let us cast 

about for an alternative approach.    The clue to another formulation is the 

observation that at any sta^je it is necessary only to choose the correspond- 

ing y in order to continue the process. 

Let us set 

(3.1) ^N^ " tota^ return obtained from an N-stage process starting 
with x dollars and using an optimal procedure. 

Whatever division of x into y awi x-y is optimal on the first step, the remaix» 

ing amount of money ay \- b(x-y) must be treated by an optimal procedure for 

the next 1J-1 steps if a maximum return is to be obtained for N steps.    Thus 

the return for the U-step process due to this initial division is g(y) -f- 

b(x-y) -f fj^Cay-»-bU-y)).    Since an optimal selection of y subject to 

C i, y i. x would maximize t-his, we must have the equations 

(3.2) f^x) -     Max    [g(y) ^ h(x-y)] , 

fN(x) =     Max     Qg(y) \r h(x-y) + fH.1(ay + b(xHy))]      (N > 2) 
i£y*x 

We have Lhus reduced the original programming problem to the solution 

of the system of functional equations civen in (3.«^). 

If we are interested in the case where ;. is larfe, we obtain a great 

simplification by making the approximation, fjj(x) = ^QQW • The case of an 
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unboimded number of operatione, which is, of course, neanij^iesc in any 

practical situation, possesses a very in^ortant raathenetical property of 

invariance, because after any finite nunber of initial operations, there 

still remains a process with an infinite number of steps. 

Introducing 

(3.3) f(x) » total return obtained fron the infinite process starting 
with a quantity x aid osin^ an optimal policy, 

we obtain, formally, the equation 

(3.A) f(x) =     Max    [ciy) +* h(x-y) + f(ay f b(x-y))1 
CSy^x L -i 

for x ^ ü. 

'Ihe advantage of the above equation over the system in (3.^) lies in 

the fact that we have now a single unknown function.    Ihe disadvantage lies 

in the difficulty usually associated with infinite processes, namely that of 

proving existence, uniqueness, and attainal ility.    We shall show in the next. 

section that in this problem this is a minor difficulty, 

4.    Existence and Linirueness. 

Here we establish the existence and uniqueness of the solution of (3.A), 

under certain natural assumptions of continuity.    Ihe method of successive 

approximations wnioh we employ is equivalent to uhe obvious idea of showing 

that, as U -—► oo we have fN(x) ^T f (x).   Vhere are alternative approximation 

techniques, also based upon economic principles, which wo discuss elsewhere, 

in  pTl. 
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Iheorea 1.   ^ 

(4.1)      (a)    r(y) agd h(y) are coptlnuous and aonotoae Incrfff^y ^ 
(p,xj JiÜh g(0) = h(C) = 0, ^d   ^^ 

(b)     ^    1"^%) f E(b,*x0) 4- h(anx0) f h(bnx0) 1  < oo, 

there is a unique solution to (3.4) which is bounded in l^»^"] and is COD- 

tinuous at x = G with the value C at this point. Thia eolution is actunlly 

continuous throughout the whole Interval [o,^ . 

As v« shall see from the proof the condition that g and h are monotone 

increasing is not needed. Use of this condition, however, which is satisfied 

in any application, simplifies the proof notatlonally. 

jyoof; We use the successive approximation»   defined by (3.2), Since 

f^ i. 0 it is clear from (3.^) that f0 i f^, which yiexds, vi« an induction, 

the obvious result that C *s f^ S f^ < ••• < f . Let c ■ Max(a,b) and let 

us show that 

U.z)       fn(x) £   j^ re(cnx) t h(cnxn  . 

ihic will be proved inductively, using the fact that the inequality clearly 

holds for n a 1,    Since ay -f b(x-y) ^ ex, we have 

(4.3) f   iW ^   flax    r^^)^h(x-y)   +  Tl   ^(cN + Mc'Sc)) 1 

^   L(x)+ h(x)   +  ^    ^(c^Sc) tMc1^)] 
rPi 
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iience the sequence (f  (x)j  Is oonotone Increasing and bounded, which 

means that f (x)  convorces to a function f(x).    Ihe function satiafles x-he 

equation 

U.A) f(x) «    Sup     u:(y) -»- h(x-y) f f(ay ^ b(x-y))"l   . 
L^4X     ^ ^ 

In order to prove that the aaximan is attained, \n oust pra/e that f 

is continuous.    To accon^iish this, we use the fact thr.t each f    is a con- 

tinuous function of x, and establish the uniform convergence of the series 

2__     l^rn-l " ^nl    ^ nBanß 0^ the fo^-lovine technique: 

Let yn s y (x)  be a point where the maximum is attained in the expres- 

sion for fn>1f i»5'» 

(4.5) f    .(x) =    VAX   rL-(y)  +  h(».y) -hf (ay + bCx-y))] 

= e(yn) t li(x-yn) ^fn(ayn -f b{x-yn)). 

Then we iuve the following obvious ineqoalities, 

(i.O    fr+i(x) • din) + h(»-yn) -t- fri(vr. t" t.(x-}n)) 

^ dVi) i-h(x-Vl) +fr,(«yn.1-»-t(x-yn.1)), 

fn(=t)  = C^n.!) •t-h()(->n_1)+l-I>.i(vn.1 + l'(x.yn.1)) 

It foilowr that 
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Hence 

|fn(ayn -»- b(x-yn)) - ^(^ -»-M»-yn))|] 

Let for n > 1 

(4.9)        u (x) =   Max     If ^(y) - fn(y)| . 

From U.8) we obtain 

(4.1C) |rn4l(x) - fn(x)|<ltox   [un(cx), u^cx) J  =    ^(cx). 

Hence ^^(x) £ u (ex) f03* n ^1» while for n = 0, we have 

(4.1i) u (x) -   Max     f^y)^ ^(x) 4.h(x). 
O^.tx 

From this we conclude that Lhe eerieß ^ a  is najorized by tha series 
n 

^ [^(c1^)-*- h(cnx)j  .      Hence Uie series ^a   converges uniformly in thi 

interval ^»XQJ, w^iich means that f    converges uniTormly to f (x), \Aiich must 

then be continuous, 

Ihis con^letos the ; roof of existence.    To establish uniqueness, we 

j roceed similarly.    Let F(x)  be anotljer solution of the equation which is 
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conoinuouG at x = 0.    Then as in (^.S) -  (4.( )  wo obtain the inequality 

(4.12) |f(x) - F(x)|  ^  :^ax      [f{ay+ l(x-y)) - F(ay ^t(x-y))   , 

f(az -♦■ b(x-z)) - F(az -♦- b(x-z))"j. 

where y = y(x)   is a point at which the maxinum of t-;(y) 4- h(x-y) 4- f (a^-j-b(x-y)) 

ic attained and z ic a corresponding point, acsociatod with F.    Defining 

v(x) s    Sup   |f(y) - F(y)|    we ob ain from (4.12)  the seriej of inequaliiies 

(A.13) v(x)   < v(cx) ^ v(c*:x) CvCc1^)      (npl,2,"-). 

Since v(x)  is continuous at C and has* the value 0 there, we oee that  as 

n —^ oo  (4.13)  leads to the conclusion that v(x)   is idontically zero through- 

out [ofxQ. 

This con|jletes the proof of existence and uniqueness. 

5.    Analytic ResiuLs    i; and h both Convex. 

Since  the basic functional equation is nonlinoar, it is too much to 

expect  that the solution may in general oe obtained in ex{.licit, form.    Instead 

wc oust focus our attention upon derivin.; simple general qualitative proper- 

Lies of   the solution from s.üa{ le assumptions concerning c anci h«     ^e term 

solution  is used  :c include botn the func*ion satisfying the functional equa- 

tion and  the policy yieidinc the optimal return,    ^he fact  that this duality 

exists is of tremendous importance in connection with bo~h  theoretical and 

coiuputational invustigat,ions. 

In  this section we obtain a sin^Ae corise ;uenee of convexity. 
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Theoreia .'.,    If 

(5.1) (a)    g(0) = h(0) - 0, 

(b) ß»(x), h'(x)   >C,    c"(x), h"(x)2 0 fjs 0 <x £x , ^ 

(c)     >    [clAj-r h^nx)] ^   oo 

whsre c = Max (a,b), the 0[ tiaal policy consists in choosing y * C or x 

for x In [^»XQI. 

iroof:    'ihe proof is readily obtained by showing that each of the funcLione 

f    is convex.    It is clear  that g(y) +■ h(x-y)  is convex as a function of y 
r. 

for 0 < y ex.    Hence 

(5.2) f (x) =      Max      r-(y) 4- Mx-yjl    = Max ^(x), h(x)l  . 

From thi^ It follows tha'. f  (x)   is convex, ami hence tJiat g(y) -f h(»-y) 4- 

i\ (a^- + b(xr-y))  as a function of y is convex in [^»x | .    Thus 

(5.3) lUx) » Max Q(x) -v- I'^a:;),    h(x) -f-f  (bx)]   , 

whicli is again a convex function.    1.   is clear now that the general-result 

follows  indue, ively. 

''.he resulting functional equation 

b.O f'Vx) :  Max Qj^x)   -»-f(ax), h(x)  +-^(Ix)] 

nii\>   be reived in certain special c .."  ;;, which \JV.  shalu not enter in o liere, 
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6, Analytic Results. 

Let us now return to the equation 

(C.l)   f(x) » Max rg(y)4- h{»-y)^ f(ay-»-b(»-y))],   f (0) » 0 

and assume that g and b are both concave increasing functions of x.    The 

problea is now much more complex, and in general, the optimal y will not be 

at an end point. 

We shall prove 

Theorem 3.   Ut 

(a)    c(C) = b(C) = C, 

(6.2)       (b)    c'U), h'(x)  > 0      forx>0, 

(c)    gH(x), hn(x} > 0     farx>öt 

aoü coneider the sequence Q$ am)r9x1inationfi to f defined by 

f  (x) =    Max      |rg(y) + h(x-y)1 
0 C<y<x    L J 

(6.3) 

fn 1(x) =    Max     ft^y)-»-li(x-y) H-f    (ay-f b(36-y))1,     ri?i,2,---. 

For each n, there is a unique y   = y (x)  that yields tlie naxliaiiiL   2X b £:•» 

we laive y^t. y^ < yy • •, and the reverse inequalities for b > a.    In parti- 

cular, if y (x) = x for some n in the case t < a, tiien ym(x) = x J^ m > n, 

and the soiuiion of the original enuation in {( .1) will be furnished by y = x 
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This result is iapartant In conntctlon with dstsrmlning appraxinst« 

solutions, sine« it is quit« sl^le to detemins y^, y2# and rwn y. nus«ri- 

cally. 

We shall bei;in by assumii^ lYuil all the aaxicm occur within the int«]> 

vol |ofxj and shall then consider the case in which one y (x) • x.    Consider- 

ing the function r,(x), we see that Its aaximun, y, ia deterrained by the 

equation 

(e.^) g'Cy) = h»{x-y). 

Since the left-hand side is eonotone increasing and the right-hand side is 

monotone decreasing, there le at most one solution.    If we aosune h*(x)  > 

gHt), gMx) > h»(0)l there will be exactly one solution of (6.4), which ws 

call y^ « y1(x).    Differentiating (C.U), we obtain 

(6.5) y^"^) = (1- yl)h"(x- yj, 

which yields 

(6.6) yJ =  Ü^LU^         o, 
1 g" (y^-•• h" (x - y^ 

and 

(6.7)        i - y»  >  o. 

Turning to the expression for f, ws have 
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(6.8) ^(x) = gO^) 4-h(x- y^, 

whtnce 

(6.9) q(x) = g«(y1)-»- (1- y|)h»(x- y1) = h«(x- yj, 

uflirg (6.^).    Thua f|(x) > 0 and f![(x) =  (1 - y{)hl!(x - y^^) < 0, which n»*ns 

that f.(x)  Is concave. 

Let ua now turn to the function ^2^» 

(6.10)       f-U) «   Max     R(y)^ b(x-y)-»-f^ay 4-b(x-y)) 
Ciy^ic 

Assuming that there Is a maxlnum inside the Interval, we obtain 

(6.11) g«(y) - h'(x-y)+ (a-b)f|(ay+ b(».y)) - C, 

which we write 

(6.12) g«(y) -f (a-b)f|(ay-V-b(36.y)) » h'(x-y). 

The left-hand side Is again strictly decreasing and the right-hand side 

strictly Increasing, so that there Is at most one solution which we call 

yr ■ y^W » U ^ «xlstc.    Note that if there la no solution of  (6.12), thsn 

(b.13) f2(x) • c(x) t ^(«t). 

Let us, however, assuxoe that there is a solution.    Then 
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(6.U) f2(x) = g(y2)-e h(x- y2) ^^(^^Kx- yj), 

whance, as above, using (6.12), 

(C.15) f^(x) = h»(x - y2) +• bf[(ay2 + b(x - y2)). 

Using  (6.12) again, this aay be written 

(6.16)        f..   »h.U-^-bgMyg)    _ 
^ a - b 

This procedure is perfectly general, and we obtain, under our aosus^tion 

concerning the existence of an internal mevlmntn, 

ah«(x-y ) - bg«(y ) 
(0.17) f' =  2 S  ,     n-1,2,3,*". 

n a - b 

We now wish to show that if b <. a, then y, ^ y2S***» an^» oonveraely, 

if a < t, that yi > y2 ^ * • • • The tvo  c*fl*ß «r« really one, since we ney 

interchange the roles of y and x - y if we so wish. Since f' ? 0, we see, 

on coa$>aring (6.12) and (6.^), that y,^ y . 

The equation for y, is 

(C.18)    g»(y) 4- (•-b)^(ay ^ b(».y))= h'(xHy). 

If we can show that f^U) > f|(x), the sane arguaent as that for y1»y2 

shows that y^ > y2. Conparing (6,8) and (6.15), wo see that fl ^ ^!» since 

h»(»-y2)> h»(»*y1). 

lo obtain the result for general n, always assuming that the eaxina occur 

at inner po^ts, we use (C.17).    We know that fn(x) > f    , (x)  in^lies that 

yn41 y ^n*    Si110* th* function 
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Ah'(*.y) - bg«(y) 
(6.19)   r(y) =   

a - b 

Is monotone increasing in y and y ^ y ,, vie on inductive hypothesis, it 

follows that f* } f^, and thus that yI>4,i> yn. 

Let us now consider the situation in which some y (x) • x. If n = 1. it ^n ' 

is easy to see that yn{x) ■ x, n £ 1, since y1(x) • x means that ^'(y) 2. ^'(x -y) 

f or 0 < y < x. Since 

(6 .20)    -i. f5(y) -h h(».y)^ f (ay-»-b(x-y))1 
9y L i        J 

= g^y) - h'(^y)-». (a.b)f{(ay-t.b(x-y)) 

and a > b, we see that this expression is positive if g^y) ^h'lx-y) for 

O^y £-3c.    Hence, yAx) a x, and, similarly, y (x) = x. 

Let us now i-ake '.ho case in wnlch y2(x) = x, y^ix) ji x.    iiince y-,(x) ' x 

ia^liee that g» (y) - h»(»-y) -^ (a-b)f{(ay+• b(x-y)) > Ü for all 0^-y £-x, 

we have, in particular, g'(x) - h'(C) + (a-l)f'(ax) Z C'    3^nce 

(6.21) f^x) • g'(x)4 af'(ax) 

= gt(x) - h'(C) t (a-b)f{(«.)-»• h«(C) -hbf{(ax) 

2 h«(0) 

and f.^x) = h»(»-yp C h«(0), we see that f'(x)  >f'(x).    This, as above, iapües 

that y^ > yp - x» und the procees continues. 

Let us note, finally, that if g»(y)   >hf(x-y)  for all y in  (Ö,xl, then 

g'(y) > h'(a~y)  for y in  [c,zl for all z ^x. 

In closing,  this diacuüsion of the functional equation, let us observe 

that if an interior oaxiinu:. exists, we must have 
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(^.22) g«(y) - h'Cx-y) 4- (»-b)f»(ay-hb(x^.v)) s C, 

and 

U.23) f'(x) = h«(x-y) + hf'(ay + b(».y)). 

This system of functional equations for y and f (x) nay be solved explicitly 

if g and h are quadratic, which ie a fact of some use in obtaining approxi- 

raate solutions. In general, however, the system does not seem to be of much 

use for this particular equation. However, for other cloaely related equa- 

tions, equations Blmilar to (c,22) and (t.23) play a very ij^ortant role In 

ieierndnlng the solution, as we shall show elsewhere. 

7.    Stochastic Case. 

Thus far we "nave considered a situation in wnich the outcome of a pur- 

ticular division ot resources  is coc^ietely determinate.    Let ue now briefly 

sketch the modifications required to treat the case where there is a proba- 

bility distribution of outcomes.    Let us assume If a division in-o y and x-y 

is made, there is a probellllty p  , which in some cases might very well be a 

function of y, that Ute return will be g (y) -J-n (x-y)  with ay 4-bi(x-y) 

dollars available for distribution In the next stage, anl a probability p 

that the return will be g.,(y) -h h (x-y) with a^y -^b^(x-y) dollars remaining. 

Jincc we are dealinr with stochastic variables, it ic necessary to intro- 

duce the metric of probability theory and speak of expected values.    Let us 

define 

(7.1) f(x) 3 expected  total return starting with x dollars and usin^ 
an o; t ioel j.oi-icy for an infinite number of stages. 
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Usinc tht Baffle ar^oraents as lief ore, we aee that (formally at leact) 

f(x)  eatiafias the funcilonal equation, 

f(x) =    Max        }p1 ^(y) ^ hi(*-y) -»- f(aiy ^^(x^y))] 

-»- P2 [gnCy) t ^(x-y) -H i^a^y -r U (x-y))j I 

ireclsely the same tecimliues as applied alove may now be used to show exiet- 

ence and uniqueness, and to derive results coiresponding to the previous 

analytic results. 

3,    conclusion. 

i.et us now attest '-o abstract anne of the essential features of the 

preceding problem, features which are common to a lar^e class of probieme 

amenable  to the techniques of the thoor> of dynamic pro^Tamminc. 

(6.1)       (a)    We have aii econoodc system descriljod at any  time by a set of 
parame tor.-, i ,  which wc calx the s-ate variables. 

(b) At certain * Lacr wc are to choose one of a set of decisions, 
L, widch will nave the eflect of tranaforain^ these state 
varialle.   ii.to a sindiar set.    The  outcone  of a docision may 
or may no1   be com; xetely known. 

(c) The choice of decisions is governed by the desire to maximize 
some function of  the filial state variables, a criterion function. 

What  is desire... is a rule which wixi yiexu the optimal decision at each 

i:ta,je,  knowing the values of  the  state variablei- ami  the permiGcible decisions 

at that stape. 

In the problem treated above,   there were Tor the N-stace jrocess throe 

state variables, naoe.^   (a)   the quantity of money available for division at 
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each statje,  (b)  the number of renalnine stages, and (c) the return obtained 

from the preceding ctaces.    Our aim was to maxlnlze the state variable of 

(c)  at the end of the process. 

We have purposely left the description a bit loose, since we feel that 

it, is the spirit of the technique that is in^ortant.    Once grasped, the pro- 

;ier formulation of any particular problem becomes a matter of ingenuity, a 

.ualit> which cannot be altogether banished from oetheoatics. 

In order to obtain a mathematical formulation of the general problem, 

let  as define 

(8.2) f(P) = the function of the final state variables obtaiiied 
ucijig an optima] policy starting with the initial 
variables represented by P. 

Let us also represent the transformation effected by a choice by P* ■ 1   (P) 

where k represents the parameters describing the particular choice.    To 

obtain a functional equation covernin^ the process, we use the following 

ObvioUS 

Irlncijdo of Optiraality;    An optimal policy has the property that whatever 

the initial state and the initial decision may be,  the remaining decisions 

must constitute an optimal policy with recard to the state resulting from 

the first decision. 

The mattieinatical translation of this statement  is the equation 

(8.3) f(P) - Max f(':k(P))   . 
k 

lliis equation may now be used, as in the preceding sections, to determine 

various propoties of optimal policies .aider suitable assomjtions concerning 
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T  (P).    Of particular iaportanc« fron the mth«i»itical   and practical view- 
it 

points are those criterion functions that possess invariant properties and 

that reduce the number of state variables required.    Expected return is an 

iaportant function of this type, perhaps the most inportant, since a know- 

ledge of the return over the preceding stages is not needed in order to 

determine the optimal continuation.    Infinite processes are important for 

a like reason, since the number of stages remaining stays constant. 

A more extensive and intensive study of the various types of functional 

equations arising from (8.3)  will appear subsequently, [(,], [ Vj .    The 

interested reader may also wish to consult the references listed below. 
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