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SOME PROBLEMS IN THE THECRY OF DYMNAMIC PROGRAMMING

Richard Bellman

* The theory of dynamic progrruming treats
problems involving multi-stage processes by means
of a transformstion of the problem from the space
of decisions to the space of functioms. This is
accomplished by deriving a functional equation
whose solution is equivalent to the solution of
the original problem. To illustrate this approach
most clearly, free of extraneous amalytic details,
wo—consider a simple but nontrivial muitl-stage
investment pro We show how exact solutions may
be obtained in son‘ cases, approximate solutions
in others, and how these approximate solutions may
be used to obtain more accurate solutions in the

general caao‘;h Of particular importance is the
number of independent variables

mde possible by this approach. 7This is not only

important from the theoretical standpoint, but is

also of great value in reducing the cost in time and

effort of numerical computation,

1. Introduction.
The purpose of this paper is to provide an introduction to a class of

mathematical techniques that are useful in treating a variety of problems
arising in the planning of multi-stage processes. These are programming
rroblems, to use the currently popular terwinology, and the adjective
"dynanic" emhasizes that in these proLlems time plays an important role,
This characterization of our subjoct matier 15 not merely one of nomencleture--
the protiems before us are of a conceptually distinct type. Moreover, the
mathematical techniques employed prove to be especially powerful for the
resolution of problems of this type.

The multi-stage problems in which we are interested are composed of

sequences of operations in which the outcome of preceding operations may be

l
4
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used to guide the course of future operations. iwo types of operations
may be distinguished immed:ately, those in which the outcomes is predict-
able on the bacis of a protability distribution, and those in which the out-
come is completely determined. Depending upon one's point of view, either
type may be considered Lo be an approximation to the reality represented by
tie other,

Since most of the protlems wnich arise are of er ertirely novel char-
acter, frequently offerirg fornldavle mathematical difficulties, we have
restricted ourselves to the consideration of & :imple yet important problem
in order not to obecure our techniques ty extransous analytic and algebraic
complications,

The basic idea underlying our analysis is thal of replacing the decision
problem by a functional equation. We show then that the solution of the
functional equation yields a solution of the criginal programming protlem.

It is precisely at this point that the question of uniqueness of solution
acquires an economic s«s well as a mathematical importance.

Using the functiorai equation approach we consider a very simple version
of an o7 timal aliocatior rrcblem, We be;in with a statement of the problem
and then contrast the classical approech with the dynamic programming approach.
we next supply an exicterce and uniquenecs proof, and then derive some impor-
tant properties of the solution,

Feollewing: this we formdate the stochastic version of the same problem,
and then in the concluding section discuss the essential features of the

mathematical tecnniques empioyed.
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<. The Formuiation of a Problem of Optimel Regource Allocation.

A very sim)le problem relating to the allocation of resources is the
following: We have x dollars which may bLe split into two parts, y amd x-y.
From y we obtain a return of g(y), from x-y & return of h(x~-y). How does
one choose y so as to maximize the tctal return?

The analytic problem is that of finding the maximum of g(y.) + bL(x~y)
subject to the constraint ¢ < y < x.

Let us now complicate the problem by changing this one-stage problem
into an N-stage problem in the following way: At the end of the first stage
let us assume that we have left, as a result of or division into y and x-y,
the quantity of money ay + b(x-y), where C < a,b < 1, and we are to continue
this process for N-1 additional stuges. low does one ailocate at each stage
in order to maximize “he total return?

There is no difficulty in setting tnis problem up in classical form.
et J1r You s YN be the sequence of choices at each successive stage. The

total return will be

=

N
(2.1) R(yls Yo" ady, = > 8()’1) + ; h(xi-yi)

u)

where
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The problem is to maximize R subject to the above constraints. Since
several of the y may be C or xy, endpoints of their allowable intervals, any

naive application of calculus is a bit hazardous.

3. The Functional Equation Approach to Cptimal Allocation,

Since the above formulation presents all the unpleasant features usually
involved in a maximjzation problem over an N-dimensional region, let us cast
about for an alternative approach. The clue to another formulation is the
observation that at any stage it is necessary only to choose the carrespond-
ing y in order to continue the process.

Let us set
(3.1) fy(x) = total return obtained from an li-stage process starting

with x dollars and using an optimel procedure.
whatever division of x into y and x~y 1is optimal on the first step, the remain-
ing amount of money ay + b(x-y) must Le treated by an optimal procedure for
thie next l=l steps if a mexdimum return is to be obtained for N steps. Thus
the return for the N-stsp process due to this initial division is g(y) +
L(x-y) + fN_l(ay +b(x-y)). Since an optimal selection of y subject to

Sy £ x would maximize this, we must have the equations

(3.2) £(x) = Max | g(y) + K(x=y) |,
100 = e [t ¢ 1]

fu(x) = vax  [e(y) + hlx=y) + £  (ay + b(xy)) ] (N2 2).
(eyex
We have thus red.ced the original programming ;roblem to the solution
of the cystem of functional equations given in (3..).
If we are interested in the case where ! is larie, we obtain a great

simlification Ly making the approximation, f,.(x) = f__(x). The case of an
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unbounded number of operations, which is, of courcse, meaningless in any
practical situation, possesses a very important rathemetical property of
invariance, because after any finite number of initial orerationc, there
still remains a process with an infinite number of steps.

Introducing

(3.3) f(x) = total return obtained from the infinite process starting
with a quantity x ard using an optimal policy,

we obtain, formally, the equation
(3.4) 1) = Mex [i(y) ¢ h(x-y) + ey + b(x-y))]
(gysx
for x 2 0.
The advantage of the above equation over the system in (3.z) lies in
the fact that we have now a single unknown function. The disadvantage lies
in the difficulty usually essociated with infinite processes, namely that of

proving exdstence, unigueness, and attainalility. UWe shall show in the next

section that in this problem this is a minor difficulty.

4. Ltxistence and Unijueness.

liere we establish the existence and uniqueness of the solution of (3.4),
under certain naturel assump.tions of continuity., “he method of successive
aprroximations wnich we em.loy is equivalent to .he otvious idea of showing
that, as li —3 0o we have fr‘.(x) ¥ f(x). “here are alternative approximation

techniques, also based .pon economic principles, which we discuss elcewhere,

in [4]
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iheorem 1. If
(4.1)  (a) g(y) and h(y) mem
¢,x) s 5(0) = H(O) = G, sad
(b) i} E:(a”'xo) + g(blx,) + h(a™) + h(b"xo)J C o,
=
there 4s a upjque gsolutjon to (3.4) which is bounded in [O,xoj and is con-
tinuoug at x = O with the value C at this poiat, This solution is actuslly

sentinuous throughout the whole intervel [0,%o) -

As we shall see from the proof the condition that g and h are monotone
increasing is not needed. Use of this condition, however, which is satisfied

in any application, simplifies the proof notationally.

Exgef: We use the successive approximations  defined by (3.2). Since
£} 2 0 it is clear from (3.2) that f, 2 {,, which yleids, via an induction,
the obvious result that C £ f; £ f, ¢ «++ (f . Let c = Max(a,b) and let

us show that

(4.2) f (x) & g [g(cnx) + h(cr&)] ;

this will be proved inductively, using the fact that the inequality clearly

holds for n = 1, Since ay + b(x-y) € cx, we have

(4.3) £, S dMax | ¢(y) 4+ hix=y) + nﬁ [g(cnx) + h(c“x)]]

ey ex

S o(x) + b{x) + f [{;(C"X) + h(C“XB
=1

< ; E;(cbx) + h(c"x):!
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llence the sequence {fn(x)} is monotone increasing and bounded, which

means that fn(x) converges to a function f(x). 7The function satiafies ithe

equation

(4e4)  f£(x) = Sup [g(y)»«h(x-y) +r<ay+b<x-y>)] .
(eygx

In order to rrove that the maximum is attained, we must prove that f
is continuous., 1o accamplish this, we use the fact that each fn is a con-

tinuous function of x, and establish the uniform convergence of the series

; |fn+l - fn' by means of the following technique:
m s

Let yn = yn(x) be a point where the maximum is attained in the exyres-
sion for f .., i.e.,

(4.5) £ g% = C:xsx c(y) + hix-y) + 1 (ay + b(x-}')ﬂ

= clyy) + blx=y) + 1 (&y, +U(x=y.)).
Then we have ine following obtvious imequalities,

(4.7) £ = oy )+ h(x-yp) + 1 (&5 4 blx=y )

= £‘-(yﬂ-l) Al h(x.yn-i) + i‘n(a"’/n-l i+ b(x":"n-].) )

£o(x) = i) 0=y () 4t (v g + b(x=yy 1))

v

clyg) +ilx=y ) ¥ £ (ay 4+ b(x-y,)).

It follows that
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(4.7) f

nd =~ fn 2 £ o(ay )+ b(x-y, 1)) - £ 1(ay, | + b(x-y, ;)

¢ £ (ay, +b(xy)) - £ (ay, +b{xy.)).

Hence

(48) £ 00 - 1) & vex[| g (e )+ by, ) -4 ey, by, )]

| fnley, + blx=y,)) - £_;(ay +b(x-yn))|J .

Let for n 21
@) 0 = dex |70 - £, .

From (4.8) we obtain

(4.1¢) I, 4 (1) - £ (x)|& tiax [un(cx), a(e0)] = (o).

lience uml(x) < un(cx) for n 21, while for n = O, we have

(4.11) u(x) = dMax f(y) & c(x) +h(x).
Oy«
From this we conclude that the series }'_Jn is majorized bty the series
S [g(cr&) + h(c"x)] . lience the series idn converces uniformly in the
interval E,xq], which means that f converges uniformly to f(x), which must
ther be continuous,
“hls completes the ;roof of existence. %o establish uniqueness, we

jroceed similarly. (et F(x) be another solution of the equation which is



F-455
-

continuous 8t x = U, 7Then as in (4.9) - (4.') we obtain the inequality

(4.12) |£(x) - F(x)| & ax [f(ay+ L(x=y)) = Flay + L(x=y)) ,
f{az + t(x=2)) - F(az + b(x-z))].

where y = y(x) is a point at which the maximum of (y) 4+ h(x=y) 4 {(ay+ b(x=y))

ic attained and z is a corresponding roin® associated vith F, Defining

v(x) = Sup |f(y) - F(y)| we oL ain from (4.]2) the series of inequalities
C&yex

(4.13) vix) 4 v(ex) £ v(e™x) & vic™)  (oml,,ee0).

Since v(x) is continuous at ¢ and has the value U there, we see that as
n == 00 (4.13) leads to the conclusion that v(x) is identically zero through-

oub [U ,xcg .

ihis completes tlie proof of existence and uniqueness.

5. Analytic Reswls : and h both Convex.

Since the basic functional equation is nordincar, it is too much to
expect that the solution may in generar ve obtained in explicit form, Instead
we must ocus our attentiorn upon derivirn;: sim le peneral quiiitative proper-
ties of cthe solution from sim le assumptions concerning ¢ and h, 'The term
solution 1is used .o inciude bo.n the func'ion satisfying the functional equa~
tion and the ;olicy yleidin the optimel retwn, .he fact that this duality
exists 1c oif' tremendous importance in connection with boin lheoretiical and
cougrutational Investigations.

In this seciiorn we obtain a cimple consequence of convexily.
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Theorem ... If

(5.1) (a) g(C) = n(v) = ¢,
(b) g*(x), 2'(x) 2¢, "(x), »"(x) > 0 far 0 € x &x , ad

(c) i [cte™)~+ nie™)) € oo

e

where ¢ = Max (a,b), the o;timml policy consisis in choosing y = C or x
faor x in [_C,xQ]

iroof: ‘'le proof is readily obtained vy showing that each of the functions

f‘r is convex. It is cliear vthut g(y) + hix-y) is convex as & function of y
4

for U0 € y ¢ x. lence

f.(x) = Max E;(y) + h(x-y)_‘] = Max [g(x), h(;;)] .

(G &

From this it follows ‘ha'. i‘l(x) is convex, and hence that g (y) 4+ h(x=y) +

l'l(ay + b(x~y)) as a funciion of y is canvex in [O,x:] . Thus
(©.3) i‘:(x) = Max [,'(x) + 1‘l(a>:), h(x) +1‘l(bx)_] .
which 1s agnin a convex function. . is clear now that tle cnerai-result
follows induc:ively.
“he resuiting functionul equation

(o184 ) L) = Max E:‘X) + t(ax), hL(x) 4+ f‘(LX):]

maey be cc.ved in cer.oaln cpecial ¢y which we sladl nol eonter into here,
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0. Analytic Results.

Let us now return to the equation

(C.1) £ = Max [ g(y)+ hixey) + flay +b(xy)),  £(0) = 0
Lo

and assume that ¢ and h are both concave increasing functions of x. 7The
problem is now much more complex, and in gensral, the optimal y will not be
at an end point,

We shall prove

Theorem 3. let
(a) C(O) = n(C) = O,

(6.2) {b) g'(x), h*(x) 20 for x 20,

(¢) g"(x), h"(x) 2 ¢ far x 20,

apd copsider the gequence of epproximations to ' defined by

fo(x) = Max e(y) + h(x—y)]

Ceyex
(€.3)
£ 1(x) = Max c(y) + W(x-y) £ (ay + b(xf-;/))]. =1,2,000,
. n
(oyex
For each n, there is a unigue y =y (x) that ylelds the mamm, Jf b <a,
we_have yi &£ ¥y, ¢ y3°°'y 8 the rever ualit for b >2a. In parti-

gular, if y (x) = x for some n in the cage L £ &, then y,(x) = x for m 2 n,
agd the sojutlon of the opigingl equation in (.1) will be furnished by y = x
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This result is important in connection with determining appraxinate
solutions, since it is quite simple to determine Y19 Yo and even Yy pumeri-
cally,
We shall begin by assuming that all the maxima ocour within the intere
val [_O,x and shall thern consider the case in which one yn(x) s x, Consider-
ing the function fl(x), we see that its maximum, y, is determined by the

equation

(t.4) g'(y) = h'(x=y).

Since the left-hand side is monotone increasing and the right-hand side 1is
monotone decreasing, there i1s at most one solution, If we assume h'({x) 2
g'(C), g'(x) > h'(C), there will be exactly one solution of (6.4), which we

call y; ® y;(x). Differentiating (C.4), we obtain

(€.5)  ye"(yy) = (1 = yPr"(x = ¥;),

which ylelds
h"(x - y;)
6.6 z A 0,
(6:6) 1 €"(yy) + b (x - y))
and

(€. 1-y > o

Turning to the expression for f, we have
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(¢.8) £,(x) = glyy) +hix -y,

whence

(€.9)  £1(x) = g (y))+ (1= yPh'(x - y;) = W(x=-y,),

using (6.4). Thus f](x) > O and £1(x) = (1 - y])h"(x - y;) € 0, which means

that fl(x) is conocave.

Let us now turn to the function fy(x),
(6.10)  f,(x) = Max g(y) + b(xy) + £, (ay + b(x-y)) .
Coy ox

;ssuming that there is a maximum inside the interval, we obtailn

(€.11)  g"(y) = h'(x-y) + (&=b)f (ay + b(x=y)) = G,

which we write

(€.12)  g'(y) + (8=D)f) (ay 4 b(%-y)) 3 hf(xy).

The left-hand side is &gain strictly decreasing and the right-hand side

strictly increasing, so that there i1s et most one solution which we call

vz ® yo(x), If it exists. liote that if there is no solution of (¢.12), then

(0.13) f5(x) ® ¢(x) ¢+ £, (ax).

let us, however, assume that there is a slution. Then
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(6.14)  £,(x) = g(yy) + hix = y,) + £ (0, +b(x = y.)),
whence, as above, using (¢.12),
(C.15)  £1(x) = B (x = y,) + bf) (ay, + b(x = y,)).

Using (€.12) again, this may be written

ah! (x - ya) - bg'(y;)
a-0b )

(C.16) f

) ==
]

This procedure is perfectly general, and we obtain, under our assumption

concerning the existence of an internal maximum,

ah'(x -y ) - bg'(y )
(6,17) fx') o "b 3 , n1,2,3,°°".
8 =

We now wish to show that if b { a, then ¥, & Yo&0tty and, conversely,
if a ( b, that Y2200 The two cases are really one, sinoce we may
interchange the roles of y and x - y if we so wish, Since ti > 0, we see,

on comparing (6.12) and (6.4), that Y, & Yoo

The equation for y3 is
(C.18)  ¢'(y) + (e=b)f)(ay + blx=y)) = ht(x-y).

If we can show that f;;(x) > fi(x) , the same argument as that for Y 0¥y
shows that y; > y,. Comparing (£.8) and (6.15), we see that fé > fi, since
h' (x=y5) > h'(x=yy).

To obtein the result for gemeral n, always assuming that the maxima occur
at inner po.nts, we use ((.17). We know that f}i(x) > f;_l(x) implies that

Ynel 2 Ype Since the function
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ah! (x-y) - bg'(y)

(6.19) r(y) =
a->

i1s monotone increasing in y and Yn > Y10 vie an inductive hypothesis, it

' '
follows that fn ) £ 9 and thus that y .. > yp.

Let us now consider the situation in which some yn(x) = x, If n=s1, it
is easy to see that y (x) ® x, n 2> 1, since yl(x) = x means that g'(y) 2 h'(x -y)

for 0 £ y & x. Since
©20 < E) + ne) + £ G+ b))
= g'(y) - b'(xy)+ (s-b)f](ay + blx-y))

and & > b, we see that this expreesion is positive if g'(y) 2 h'(x-y) for
0Ly ¢ x. Hence, y2(x) 2 x, and, similarly, yn(x) s x.

Let us now take -he case in wnich y,(x) = x, y, (x) ¥ x. Since yo(x) = x
implies that g'(y) - h'(x-y) + (a~b)f](ay 4 b(x~y)) > 0 for all 0Ly & X,

we have, in particular, g'(x) - h'(C) + (ao‘.)f‘i(m;) 2 C. Since

(6.21) f‘—;(X) B ¢t (x)+ afi(ax)
= g'(x) - h'(C) + (a=b)f}(w) + h'(C) 4 bf | (ax)

& h'(0)

and fl'(x) = h'(x~y) & h'(0), we see that fé(x) Zi‘;(x). Tkis, as above, iuples
that Y3 2 ¥ = x, and the procecs continues.,

let us note, finally, that if g'(y) 2 h'(x-y) for all y in E),x , then
g'(y) 2 h'(z-y) for y in [O,ﬂ for all z {x,

In closing, this discussion of the functional equation, let us observe

that if an interior maximu. exists, we must have
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(C.22) g'(y) - L' (x=y) + (a=b)f'(ay+b(x=y)) = C,
and
(¢ .23) f1(x) = h'(x=y) + tf ' (ay + b(x~y)).

This system of functional equations for y and f(x) may be solved explicitly
if ¢ and h are quadratic, which is a fact of some .se in oobtaining sapproxi-
mate solutions. In general, however, the system does not seem to be of much
use for this particular equation. ilowever, for other closely related equa-
tions, equations similar to (¢.22) and (¢.23) play a very important role in

deternining the solution, as we shall show elsewhere,

7. Stochastic Case.

Thus far we huve considered a situation in wnich the outcome of a pur-
ticular division ot resources 1s completely determinate. iet us now briefly
sketch the modifications required to treat the case where there is a proba-
bility distribution of outcomes, let us assume if a division inio y and x=y
is mude, therv i; a probacility Py which in some cases might very well be a
function of y, that the return will be {l(y)-+-nl(x-y) with 8y A—bl(x-y)
dollurs availuatie for distribution in the next stage, ani a probability P,
that the return wili be CJ(Y)‘* hZ(XFy) with 8.y i-bz(X-y) dollars remaining.

oince we are dealing with stocnastic variaties, it ic necessary to intro-

duce the metric of probaliiity theory and speak ol expected values. Let us

define

(7.4) f(x) = expected ‘otal return starting with x dollars and using
an o timal poiicy for an irt'inite number of stages.,
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Using the seme arguments as before, we see that (formally at least)

f(x) eatisfies the functional equation,

) f(x) = oi;xg { Py [(fl()') +h (x-y) + f(a)y + bl(xr-:r))_]

+ b [:gp_(y) + b (x-y) + £(a,y - b;(x-y))_‘]}

trecisely the same teclinijues as applied avove may now be used to show exist-

ence and uniqueness, and to derive results corresponding to the previous

analytic results,

3. sonclusion,

~et us nuw attem. L o abstracl come of the ecsential features of the
preceding problem, features which are common to & large class of problems

amenat le to the techniyues of the theory of dynamic programming.,

(8.1) (a) We have an economic systerm described at any time by a set of
parumeter.s, :, which we calli the s.ate veriables,

(£) .t certain *imec we are to choose one of a set of decisions,
U, which wiil nave the effect oy transforming these state
variatle. into o oiciiar set, The outcome of a decision may
or may no' be comyietely known,

(¢) 7he cholce of decisions is poverned by the desire to maximize
come tuwactlion oY the final stute variasvles, a rriterion function.

What is desire. ic a rule whici, wiil yleud ~he optimsl decision at each
stuge, rnowing: the values o “he state variatler anc the permicsible declisions
&t trat stage,

In the problem troated atove, there were {or the h-stage jprocess three

state variables, namei) (a) the uyuantity o! mone; available for division at
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each stage, (b) the number of remaining stages, and (c) the return obtained
from the preceding stages. Our aim was to maxinmize the state variatle of
(c) at the erd of the process.

We have purposely left the description a bit loose, since we feel that
it is the spirit of the technique that is important. Once grasped, the pro-
per formulation of any particular problem becomes a matter of ingenmuity, a
juality which cannot be altogether banished from mathematics,

In order to obtain a mathematical formulation of the general problem,

iet us define

(8,2) f(P) = the functior of the final state variables obtained
using an optimal policy starting with the initial
variables represented by P.

et us also represent the transformation effected by a choice by P! = Tk(P)
where « represents the parameters describing the particular choice. To
ot.tain a functional equation governing the process, we use the following
otvious

‘rinciple of Cptimality: /n cptimal policy has the property that whatever

the irnitial state and the initial decision may be, the remaining decisions
ruist constitute an optimal policy with regard to the state resulting from
the first decision,

“he mathematical translation of this stutement is the equation

“iis equation may now Le used, ac in the preceding sections, to determine

various proparties of optimal policlies .nder suitable assumptions concerning
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Tk(P)' Of particular importance from the mathemutical and practical view=
points are those criterion functions that possess invariant properties and
that reduce the number of state variables required. Expected return is an
important function of this type, perhaps the most important, since a imow-
ledge of the return over the preceding stages is not needed in order to
determine the optimal continuation., Infinite processes are impartant for
a like reason, since the number of stages remaining stays constant.

A more extensive and intensive study of the various types of functional

equations arising from (8.3) will appear subsequently, (¢}, [ 7] . The

interested reader may also wish to consult the references listed below.
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