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On the Bayesian Estimation of Multivariate Regression 

by 

George C. Tiao and Arnold Zellner 

University of Wisconsin 

1. Introduction and Specification of the Model. 

In this paper we discuss some Bayesian estimation procedures for the 

parameters in the following m-equation multivariate regression model: 

(1.1) y„ = XA * u„ a a a a 

o=l, 2, ..., m. 

where y is a TXI vector of observations, v a T x * matrix of fixed 
o f “a a 

elements with rank k , ß a k Xl vector of regression coefficients and u 
o’ a a a 

a TX1 vector of random disturbances. It is assumed that the u 's are jointly 

normally distributed with zero means and covariance matrix I X 1^, where 

^ = aol is a m X m positive definite matrix and 1^ a TXT identity matrix. 

By wriUng y' = (yj, ..., y* ), u' = (u¡,..., u' ), ( ß = ßj,..., ß') and Z as 
m 

the Tm X q block-diagonal matrix , (£ = T k ) 
o=l a 

‘ X, 7 

z = 
• X 

m 

We have for the jointly likelihood function of I and ß : 



•2 

"T "* 

<1.2) l(P,r |y) a Ir I 2 expj-M'Z XITU| 

J " 
alrl 2 exp 

We shall be concerned mainly with the situation where X|*Xxs... sXmaX 

so that k, = #. « k * k). In this case our model Is then the traditional 
m 

multivariate regression model. Estimation and testing procedures In the 

Neyman-Pear son Theory are fully discussed In for example Anderson (1958). 

For the special case that X£ is a vector of means, 1. e. is a single 

parameter and X is a (T X 1) vector of ones, the problem has been considered 

by Savage (1961) and Gelsser and Cornfield (1963) from the Bayesian peint of 

view. In the more general situation where the X's are not assumed to be 

identical, some recent work on the problem within the Neyman -Pearson framework 

has been done by Kellner (1962,1963 ) and Telser (1963). The main difficulty 

seems to be that the minimum variance Aitken estimator for ß Involves the 

unknown Z; and the estimators proposed by both these authors are -optimal** 

only in the asymptotic sense. 

In Section 2, we discuss the prior and posterior distribution of the parameters 

ß and Z. Properties of the posterior distributions of these parameters for the 

traditional model are derived in Sections 3-6. In Section 7, we give some 

finite sample Bayesian results for the general model. 

2. Prior and posterior distribution of ß and Z. 

For the prior dutrlbutlon of p and the üläSLÜi distinct elements of Z, 

we assume that the experimental situation is such that little is known about 
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these parameters. Adopting the Invariance theory due to Jeffreys (1961, pp 179), 

we take, 

(2.1) p(p, D * p(ß) p(E ) 

with 

(2.2) p(P)ak 
_ m+1 

(2.3) piriolrl 2 

In the special case mxi, (2.3) reduces to 

(2.4) p(a„) a -J- 

which coincides with the usual assumption about the prior distribution of 

a scale parameter—see e.g. Savage (1962), Box and Tlao (19tt, 1963). It Is 

also Interesting to notice that if we denote aai as the (*, f )th element of 

TV 
2 

the Inverse E then the Jacobian of the transformation of the 

variables {r.. W'»• — >.»mm, 

is 
dfff... ir.«_ it \ 

- Ir lm+1 

(m-1), m 
) 

(2. 5) J 
8<»n. vu...., »mm> 

8(.‘y .) mm. 

Consequently the prior distribution of the SiSlil distinct elements of E is 

(2. 6) Pfl '*) c |e“| 

m tl 
-i. 2 

which Is the prior distribution used by Savage (1961), arrived at through a 

slightly different argument. 
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Utlllzlng the prior distribution In (2. 2) and (2.3) In conjunction with 

likelihood function In (1. 2) the posterior distribution of ß and Z is 

(2.7) p(ß, E I y) o IZ I 

T-Hm-fl) 
2 

exp /-i(y-2ß)‘ r‘VilUy-Zßlj 
* 

In what follows we discuss the properties of this distribution. 

3. Posterior dlstrlbuüon of p and S when X, =... = Xm = X. 

In the situation where the X's are identical, it Is well known that the 

statistics 

(3.1a) 

(3.1b) 

tin = (X'Xf ‘ X'y a a 

Sot * (ya-^ay (yl • 1 

û“l, . . , It) 

f ~1, •. , rn 

are jointly sufficient for p and z; and the likelihood function In (1.2) 

can be written 

T 
2 

(3.2) l(p,r |y) o Jr I ¿ exp i-itr E “'S - i(p-ê)' 2“ ^^(ß-pij 

where L is a )0dc identity matrix and S s ( s . ) is proportional to the 
* ol j 

sample covariance matrix. Using (3. 2), the posterior distribution of p and 

£ in (2. 7) can be expressed as 

(3.3) p(p,rly) = pipil y) p(rly) 

with 

(3.4) p(plE,y)o|rl 2 exp|-}(p-p)' E‘‘(gyp-plj 
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and 

(3. 5) 

V 

p<rly)olrl 2 exp i - |tr Z 

with V * T-k-Hn-H. It Is seen that the conditional posterior distribution of ß 

for given value of Z is multivariate normal with mean ß and covariance 

matrix as noted by Dre're (1962). In particular, if interest centers 

only on ßff, its conditional distribution is mulUvariate norma; 

(3.6) p(ßalr,y) « (ß - ß )• X’X (ß-ß 
a Q 

which depends only on r . The posterior distribution of I in 
QCt 

(3.5) may be called an "Inverted" Wishart distribution. In the following 

section, we discuss some properties of this distribution. 

4. The wInverted" Wishart Distribution. 

We show in this section that the marginal posterior distribution of the 

elements of any principal minor matrix of Z is also in an Inverted 

Wishart form. From this result, we then deduce the distribution of 

and that of the correlation coefficient pa|. 

Without loss of generality, we now derive the marginal distribution of 

the elements of Z „ where Zn is the pXp upper left-hand principal 

minor matrix of Z (p<m). DenoUng 

Z = 

P , m-p 
Z h j Z U 

I 

^ II 1 £ « 
» 

p 

m-p 
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and remembering that Z is assumed positive definite, we can express the 

determinant and the Inverse of Z as 

( 4*1) I r I = I £ h ¡ I £ u* 11 where £ u* i * ^ u * n ^ h 

and 

M.2) r-. 
-I -1 -I -I -> -I 

£ii + £ii £ ia ^a, i ¾l ^ h 2*i* » 

-i . i 
£ii* » ^ i» ï i» ZtL i J 

e"1,! 0 

0 ,0 

+ w 

say. Thus, the distribution In (3* S) can be written 

(4.Î) p(I ly) - J t r W sj 

where Su Is the corresponding pxp upper left-hand principal minor of S. 

For fixed £ consider the transformation 

j Y * Zu Z „ 

^R=£U(|sru>£||£|i£u 

It Is easy to verify that the Jacobian of the transformation is 

J 8(riiizii) 
a(Y,c) IZ ul 

m-p 

Consequently, we have that 

(4. 4) 
p<£,„Y,n|y)o |r,,1 

v-2(m-p) V 
2 Ini 2 exp |^-lu r'ÙSn - |tr W sj 

is Implies that the marginal distribution of the ~ elements of r u is, 

(4. 5) - v-2(m-P). 
p(£„ly) « lzi,l exp |^- J tr £ h S,t j 
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In particular, If p*l, th« distribution of o^n Is 

v-2(m-l) 

(4.6) piauly)« a,, 2 exp 

which is In the ferai of an '’Inverted*' x1 distribution. It is of Interest 

to compare the result in (4.6) with the posterior distribution of *1, in 

the single equation regression (1. e. m=l). The latter is given ;in Savage 

(1962) and can be obtained by setting in=l in (3.6) to yield: 

T-k+2 

(4.7) pfffuly) a <T|, 2 exp 1 

We see that as the value of m Increases, the distribution in (4. 6) becomes 

less and less concentrated about sn. This Is an Intuitively pleasing 

result because when m increase^ a larger and larger part of the Information 

from the sample is utilized to estimate ffU, a0,... <rim. In fact the exponent 

of 0-,1 * in (4.6) differs from that in (4.7) by m*l. We may pay, as is usually 

done, that "one degree of freedom is lost for each of the m-1 elements 

*ii> • • • » *im< " By sotting p=2 in the distribution In (4. 5), we can then 

follow the development In Jeffreys (1961 pp 174) to obtain the posterior 

distribution of the correlation coefficient pu as: 
n-3 

(4’8) 2 
p(pii!y)®—^-t"t sJpiirn) 

/i »n*j n 
ü"Pl2 r»l) 

with n = T - k - (m-2) 

fu s si2/(snsi2)^ 

and 
oo 

Sn(Pu r,j) = 1 4 Z 
1*. 3*...(2I-1)* 
(n+¿).. . (n+í-J) ' 8 1 



Except for the changes In the "degrees of freedom", this distribution Is 

in the same form as the one given In Jeffreys for the case of sampling 

from a bivariate normal population. 

5. Posterior distribution of 

In many practical applications of the multivariate regression model, 

an Investigator's main Interest may be centered on the regression coefficients 

of a particular equation. As we have seen in (3.6), the conditional posterior 

distribution of given Z depends upon only *ii. Thus from (3.6) and 

(4.6), we have for the marginal posterior distribution of ßi, 

(5.1) p(ßily)s / PU,»!/) P<ß,lr,y) ¿'n 
T-(m-l) 

z 

Expression (5.1) is then in the form of a multivariate -t distribution --- see 

e.g. Dunnet and So bel (1954). As in the case of the posterior distribution 

of on, if we set m=l the distribution reduces to that for a single equation 

regression, e.g. Savage (1961), the only difference is then the change In 

the "degrees of freedom" due to the Inclusion of the m-1 parameters ru,..., 

In the model. 

We may mention that in some economic applications of the model, there 

may be reasons to restrict the values of a subset of the paramters ßi, say 

= (ßu,• • •,ß»r» P»(r♦!)♦••»whefe P»(r*fi) = »«* = Pile = 0* This is 

sometimes called a "restricted" equation. From the properties of the 

multivariate-t distribution, the conditional posterior distribution of 
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pn.P,, given that p,(r+1) = ... ' = 0 ls a«aln of multlvarliite 

t form-- for details see e.g. Ralffa and Schlalfer (1961, pp. 258). 

6. The Joint Posterior Distribution of ß. 

In this section, we give an alternative derivation of the posterior 

distribution of ß, by first finding the joint posterior distribution of 

ß * (ßii • • • » ^0110 the iolnt P°sterior distribution of 2 and ß In (3. 3) 

and the Jacobian In (2. 5), we Immediately deduce the distribution of ß and 

Z 1 as 

(6,1) p(ß, r 1 ly) o Is ' I “ exp^-HrZ 

where B = ^ 18 a mXm matrtx wlth 

T-(mil) 
-i, 2 Í-1 tr r '‘(S *t)j 

bal =‘V V X'X <pl -Pf'- 

For fixed B, the distribution in (5.1) Is in the Wishart form. From the 

properties of the Wishart distribution, Integrating over the elements of 

£ ** yields the marginal posterior distribution of ß as 

T 

(6.2) p(ßiy) a iS ♦ Bl 2 . 

In the special case of sampling from a m-variate multinormal distribution, 

(6. 2) Is the Joint posterior distribution of the m means, as first derived 

by Savage (1961). It was subsequently shown by Geisser and Cornflelo (1963) 

to be in the form of a multivariate t-distribution with covariance matrix 

proportional to S. Unfortunately, in the multivariate regression case 

considered here, It Is not possible to extend the result by putting (6. 2) in 
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t he mul U vari at e-t form, even though we have seen from ( 5.1 ) that the 

marginal distribution of p, 1 s of thls form. We now show, however, 

that If we express the j olnt dlstributlon of p as the product 

(fc.3) p(ply) = p(P,ty)p<PilPi,y).P<PmlPi.pm.i*y) • 

then each of the factor s on the right of ( 5. 3) can be expressed 1 n terms 

of a multi vari ate-t distribution. We fir st derive an expression for the 

product p(Pi...P . ly)p(P_lßi,.».,ßm .,Y)* m-i m m-» 

Denote the deter minant ISfBl in(6.2)as: 

(6.5) IS-fBl = 
S-fB 

(s+b)1 

(s+b) 

s +b mm mm 

where S+B is the (m-l)x(m-l) upper left-hand principal minor matrix 

of ( S4B) and 

(6.6) s'r(s ,...,s . 1V) and b' -(b_t,...b . .) . mj* * m(m-‘) mr m(m-i) 

Using Cauchey's expansion formula for determinants, we can write ( 6. 5) as 

(6.7) |S+B| * |S+B| ft 4-b - (s+brtS+Bf'ts+b) ) . 
mm mm j 

In the second factor on the right of ( 5.7), let us write 

bcr! = Ve Vl With V1-X(p|-p|) o=l,...,m 

i=l,..., m 

b‘ = vJn V where V = ( Vi, • • • » Vm., ) • 

(6.8) 
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After a little alegbralc rearrangement, we have that 

(6.9) |s+b| « |S*B| 

where D = I - viS-^B) y' m 

^ = D'* yíS+Q)-1 s 

and c = s - s' (S+9 s - ji' Eiu . 
m mm 

We now make use of a theorem due to Tocher (1951) which says that If 

A Isamxn matrix and B Is a nXm matrix, then 

(6.10) (I - AB)"' = I ♦ A(I - BA)"' B m m n 

Applying ( 6.10) and noting that y' y « B, we obtain 

D“1 * I + y* B"1 y m 

(6.11) n * y S s 

.-T-l 
C e S - S S S 

m mm 

and c is In fact the reciprocal of the (m, m)th element of S . In terms 
m 

of p , the second factor on the right of (6.9) is 
m* 

<6- 1Z> {cm Dm( V »>} = ¡Cm + <Pm' V X‘ DmXii>m * V } 

with r\ - p +dS s and d = (pt-ß»,..., ß ■ ß , ) • mm in • 

Using (6. 9) and (6.12), we can therefore write the distribution in (6. 2) as 

- I J* 
(6.1Î) p<ßly) = ls^'2 jcm + (Pm - V X1 DmX(Pm- 2 
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Now the determinant of the matrix jC* Dm X 

(6.14) IX'D X| « IX'Xl ll - (X-X)*' X‘y(S+E)" y'X| 
m 

= |)CX! Il - d( S+B)"1 v'Xl 

Since X'E^Xis positive definite (this is seen by noting in (6.11) is 

clearly positive definite), the second determinant on the right of (6.14) is 

positive. By taking logarithms, it is easily verified that 

ln I I - d(sVI)'1 v’Xl « *»|l-(SfBfVxd I . 

Hence, 

(6.15) IX’ D x| = I X'X| 11 - (S+if ' y' y I 

= ix'xi i si is+er1. 

Consequently, we can write the distribution in (6.13) as 

(6.16) p(ply) = tfP,.PmMly) p(Br,IPi,...,Pm.l.y) 
ri ^ 

with _ ' * £- 
(6.17) p(ß»#«»*»Pm Jy) a I m - * 

and 

(6.18) (Xp |p1(...,p y). kD xlMc +<p -nl'X'D X{p - 
m m-* m ^ m m m mm 

The conditional distribution of ß can therefore be expressed in terms of a 
m 

multivariate t distribution, while the mrrctml distribution of ß»»**‘tßm„r 

is of the same form as the original distribution of ß except of course for the 

changes in the dimensions of the matrix S+B and the value of the exponent 
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of the determinant. Repeating the same process m-1 times, we can 

then express the Joint distribution as the product 

(6,19) T-(m-l) 
• a "—?- m 3 

p<p|y) o fsll^p,.Pi),X'X(ß,-p,): n I X' D Xl*/c_+( 'X' D_X 
1 J „=2 ° 

a a a 

T-m +o 

( P -n^)? a a ) 

where D , n and c are defined In exactly the same way as In the case 
ar a a 

arm given in (6.18). The factors In ( 6.19) correspond precisely to the 

distributions set out in (6.3), and clearly the first factor is the marginal 

distribution oí pj as obtained earlier in (5.1). This is an interesting example 

showing that even though the conditional distribution and the marginal 

distribution of certain subsets of variables are of the multivariate-t form 

the Joint distribution fails to be of the same form. 

At the end of Section 5, we have discussed restrictions on coefficients 

of a single equation. In general, these may > ' '*rirt^rs on the coefficients 

appealing in several or all equations. The J' ' rocU.iic* distribution of the 

remaining unrestricted coefficients can read.-*/ bo obtained by inserting the 

values of the restricted coefficients in (6. 2). Tu,s result mav he regarded as 

the solution of a special case of our more go'" \ - v. : :i set out in (1.1). That 

is, suppose for a two-equation model, wc V. 

(6. 20) y, * X,p, + u, 

Yi a X2p2 + u2 
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If we form the augumented matrix X such that 

where 

Then (6. 20) can be written as 

y, = Xp, + u, 

Yi = X&* ♦ u, 

provided that particular subsets of ßi and ß2 compatible with the 

partitioning of X have zero values. Note however that this approach for the 

general model requires that the augmented matrix X must be of full rank. 

7. Posterior distribution of ß for the general model. 

We now return to the analysis of the general model considered In Sections 

1 and 2. From the Joint posterior distribution of ß and Z In (2.7), it is 

clearly that the conditional distribution of ß given Z Is normal with mean 

and covariance matrix 

(7.2) Cov(ß) 

It is seen that p, the center of the conditional distribution, depends upon Z 

and only in the case in which the X 's are identical lor proportional) will 
Q 

(7.1) reduces to (3.1a). As regard the marginal distributions of Z and of ß, 
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unfortunately because of the dependence of ß on rthe analysis In Sections 3-6 

can not be extended here. However, by an argument similar to that given in 

Section 6, the posterior distribution of ß and T, 1 can be written 

T-(m-l) 

(7.3) p(ß,r’‘|y)a !r"‘l 2 exp j-ltrZ'* uj 

where 

and 

U = j u' u ) 
i 'i 

u 
û 

- X ß 
o a 

a - 1,. ., m 

t ~ 1, * • • i m • 

From (7. 3), we obtain the marginal posterior distribution of ß as 

.ï 
p(ß|y) o lui 2 

properties of this distribution are currently being investigated. 
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