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THE PRODUCT FORM FOR THE INVERSE IN THE SIMPLEX METHOD 

George B. Dantzig 
Wm. Orchard-Hays 

SUMMARY; When a matrix la represented as a product of "elementary" 

matrices, the matrix, its transpose, Its Inverse and inverse trans- 

pose are readily available for vector multiplication. 3y an 

"elementary matrix" Is meant one formed from the identity matrix 

by replacing one column; thus an elementary matrix can be com- 

pactly recorded by the subscript of the altered column and the 

values of the elements in it. In the revised simplex method {tjv 

both the inverse and inverse transpose of a "basic" matrix are 

needed; more significant, however, is the fact that each itera- 

tion replaces one of the columns of the basis. In the product 

form of representation, this change can be conveniently effected 

by multiplying the previous matrix by an elementary matrix; thus, 

only one additional column of information need be recorded with 

each iteration. This approach places relatively greater emphasis 

on reading operations than writing and thereby reduces com- 

putation time. Using the I.B.M.Card Programmed Calculator, 

a novel feature results: when the inverse matrix is needed at 

one stage and its transpose at anothex, this is achieved simply 

by turning over the deck of cards representing the inverse. ' ) 

'\ 
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INTRODUCTION; 

The simplex method is an algorithm for determining values 

for a set of n non-negative variables which minimizes a linear 

form jubje. i to m linear restraints.  [lj|?a] Q?] It msy be 

characterized briefly as a finite iterative procedure. Bach 

iteration produces a new special solution to the restraint equa- 

tions involving a subset of m of tne variables, only one element 

of the subset changing on successive iterations; the remaining 

n-ffl variables are equated to zero. The vectors of coefficients 

corresponding to the subset of m variables are linearly independ- 

ent and constitute a basis in ra-dimension real vector space* 

In the original simplex method [2a] (as coded for the 

N.B.S. S.E.A.C. Electronic Computer [4]) or aa found in [}], 

it is required tnat all the coefficient vectors be represented 

in terma of the latest basis; since the changes of basis are 

step-wise, a simple recursion relation suffices to alter the 

representations on each iteration« 

The revised simplex method [iJJ/j] differs from the original 

method in that it uses the same recursion relations to trans— 

fonn only the inverse of the basis for each iteration. It has 

been introduced to reduce the quantity of writing at each step 

(which it does in general), and is particularly effective for 

linear programming models where the original matrix of coefficients 

is largely composed of zeros, as for example, in the transporta- 

tion model [2c] or dynamic economic and production models [2b] • 

If the original method is used, these zeros would be replaced 
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by non-zeros In tne jucceaaive iterations and this greatl> 

increases the computational effort. On the other hand» the 

revised nethod leaves those zeros intact. 

One important feature of the simplex method is concerned 

with the criteria by which one of the vectors in the basis is 

replaced by a vector not in the basis to form the basis of the 

next iteration. When the constant terms of the restraint 

equations are not general» the choice of the vector to drop 

from the basis may be ambiguous and an arbitrary selection 

(as pointed out in unpublished examples by Alan Hoffman and 

Philip Wolfe) may lead to non-convergence. Several devices 

exist, however, for perturbing  the constant terms so as to 

avoid this difficulty. The earliest proposal along these lines 

[2a| consisted In modifying the vector of conotant terms by a 

specially weighted combination of the mit vectcrs. This approach 

may be used conveniently both for the revised and original simplex 

methods, [lj, [b] . With the original simplex method, there is another 

natural wa> to form the pertubation wnich coaslJtd in adding a 

weighted linear combination of the column vectors to the vector 

of constant terms. This was suggested first by Orden am de— 

veloped independently by Charnes, [;>] . 

Although considerable attention has been paid to tne above 

difficulty (called degeneracy), it usually does not lead to non- 

convergence . The type of probleraa in which it can cause non- 

convergence appear to be exceedingly rare. To date, there have 

been only two examples and these were artificially constructed 

for tnis purpose. Accordingly, the S.E.A.C. coae and the RAND 

code use an arbitrary selection criteria in case of ambiguity. 
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In theje codes, a deliberate decision was made to use a simple 

code In lieu of a more complex one needed to cover a possible 

case that may never arise in practice. 

Tl^e present method of using the product form for the 

representation of the Inverse of the matrix, also makes use of 

this simplification. Again, provision could be made for covering 

the rare non-convergent case, but again. It does not appear to 

be worth-while. 

We shall now describe a process by which a square non- 

singular matrix may be expressed as a product of elementary 

matrices of the form (2) below. This Is Illustratively seen 

for the simplex process which Involves a step-wise change of 

baais matrix, that Is to say» two successive matrices differ 

by only one column. Using a notation consistent w^th fl] »fc] 

let B^"1^ - (P0, Pj , ... , P, ) denote the (^-l)th basis. 

If, in the next basis, Pa Is to replace P. , then It is easy 

to show that 

.   (i)   CBW]-1^^-1)}-1 

where ü£ and Ej   are elementary matrices related b> 

(2) E^ - [«,....,«WV^ uj ■ Cv-ui-i'V,W"-u. 
st where U.   is a ui.lt vector with unity in the (i^l)      component, 

/?£ is a vector whose components >?.     are related to components y^ 

of \ by 

\JL - ->Vyr/ i + r 

nrJL - i/yr/ 
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where It In neceaaary that y . ^ 0 and Y^ la defined by 

(4) y^, - [B<^1
)]-

1
PS 

Succeaalve appllcatlona of (l) for ./- K,k-1, k-2, ... f 1 

yield 

(5) (B^^"1-^^ ... E,^0)]"1 

where B^ ' la tne Initial baala. It la usually eaay to arrange 

that the initial baaia B^ be the Identity matrix ao that B^ 

■ay be dropped from (3)« 

Consider the problem of computing a row vector ßn,  defined 

by 

(6) ß0  -oiBT
1 -d^ E^j ... Et, 

«here d( u a given row vector (actually a unit vector in [l],[^]). 

Such a vector la required by the reviaed simplex 

method aa the first step in determining the vector P. to introduce 

into the baaia. It ia clear that ß    can be obtained by aucceasive 

transformations on row vectors, i.e., forming (c^E^ M£k)Ek-.1» •• •» 

etc. However, when a row vector A ■ (aotai,. ..,8,5) la trans- 

formed into a row vector B » (bofbi.. .,bm) by multiplying A on 

the right by an elementary matrix E^ one obtains aimply 

bi - a1 i + ^ 

(7) 

CO 
where^ because r may be different for different ^. we have, set r-i> 

uonsfder next the probleni of computing 1 by relation (4;.   c 

(3) V - ö-1Pa - V^l-V. ' 
It ia clear tnat Y can be determined by auccesaive tranJformations 

on coloan veclorj. I.e., forming Et(Pg),..., etc. However, when 
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a column vector C ■ {CQ, C),...^ 1 is transformed into a 

column vector D * fdgidy••• »dgl by multiplying C on the left by 

a matrix of the special form £ , one obtains simply 

di ' ci ^ii^ i ♦ r>? 

d. 
(9) 

rl 
nv\ 

From (7) and (9) it is clear that the only essential information 

contained in E^ is the set of valuesy.^ and the index x^ • Note 

further that in (8), the successive EL are used with increasing jj 

and it follows from (9) that it is necessary to know r^ before 

using theYt/* On the other hand, in (6), the E^ are used in 

decreasing sequence of^ but from (7) it is not necessary to 

know TQ  until after the ^^ have been used. The perfect comple- 

mentarity of the preceding two sentences, together with the fact 

that /nwa* can obviously be computed starting with i s m as well 

as with i * 0, makes it clear that (6) may be computed using the 

information in the reverse order of that used in (8). 

Let L^ denote the ordered &et of 'words' of information 

(10) L/ -[ifci^cX.Vl/ »?■/} 
Then each change of a column of B will produce a new L^+1 which 

may be stored in consecutive order to the previously computed 

Lf ,1*2, • • • »L^ • 

On the CPC, by punching two sets of instructions on each 

card—one being, in form, the reflection, in the vertical center 

line, of the other (with appropriate adjustments for difference 

in algorithms (7) and (9))—the transpose use of the inverse may 

be accomplished by simply turning the cards over using the vertical 

center line of the card for the axis. 
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