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A FUNCTIONAL EQUATION IN THE THEORY OF DYNAMIC PROGRAMMING
AND ITS GENERALIZATIONS

Richard Bellman and Sherman Lehman

81. Introduction.

We propose in this paper to study a particular functional

equation

f(x,y) = Max [ pr(rix + £((1-ry)x,y)), pa(rey + f.(X.(l-ra)y))].
x,y > 0. (1.1)

together with some of its generalizations and extensions.

The equation arises, as we shall show in the following section,
? in the following way: Let us assume that we possess two gold mines,
i Anacon&a, which possesses an.amount of gold in quantity », and

p Bonanza, which possesses an amount y, together with one gold-mining
ﬂ machine. If the machiine is used in the Anaconda mine, there i8s a

’ probability p, that r;x of the gold will be mined without damaging
the mﬁchine, which means that the operation can be continued, and

a probability (1-p;) that the machine will be damaged beyond repair
and mtne no gold. Similarly, the Bonanza mine has associated the

probabilities q; and (1—q,) and the quantity rey. The problem is

g AT SIS A S, sl

to determine the course of action which will maximize the expected

amount of gold mined before the machine is damaged.

If we allow for a greater variety of outcomes, we obtain an

extension of (1.1), namely,

gt TR S ER—
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f(x,y) = 12:23 ?:—r Pglrygx + 8,4y + f((l—ru)x.(l-au)y):]. (1.2)
where

(a) x,y20

) 0L ry nyy < (1.3)

R .
(°) o<§:pij <1, 1=1,2,:-°,8.

It is a simple step from this to the consideration of a con-

tinuum of outcomes, in which case the equation assumes the form

po
tx,y) = Max | f [ry(6)x + 83(t)y + £((1-ry(e))x, (1.%)
115 )
(141(c>)y)]aai(t>]
where

(a) x,y> 0

(b) 0 < ry(t),s,(t) <1 / (1.5)
(o) day > 0, G,(00) < 1, i=1,2,°**,8.

The general problem will be one invdlving a number of differ—
ent mines together with a number of machines of different performance.

There is no difficulty in deriving similar, but more complicated

equat ions,
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f(p) = H;x [;[s(p.q.r) + f(’l‘(p.q.r))]doq(j } (1.6)

where p is a point, (x,,xg,'°'xn), and T(p,q,r) is a transformed
point.

We shall begin our discussion by establishing an existence and
uniqueness theorem which, while not nearly the most general which
may be obtained, illustrates very clearly the methods that may be
used. The basic nethod 1s, of course, that of successive approxi-

mations. We also discuss the dependence of f(p) upon parameters

b

appearing in g and T.
As might be expected from the nonlinear nature of the functional
equations, the solution of these equations is, in general, quite

difficult to obtain or descridbe. Up to the present, only a handful

have been completely resolved. In what follows, we shall consider

(1.1), (1.2), and some immediate generalizations. The case where

only a2 finite number of operations are permitted will also be

tvoatod \ . *ﬁﬁ
— -4 U
‘Nming from the problm of maximiging the expeot.ed roturn, ;’

we shall consider the more general question of maximizing the

expected value of some function of the return. The simplest ana—

logue of (1.1) 1s then P
o f(x,y,t) = Max Crit((1—r)x,¥,t + Pyx) + (1-p, );(t).

(1.7)
pef(x,(1-re)y,t + ray) + (1-p2)b(t) ]

Under certain assumptions concerning t(t), this equation can

be solved, possesaing a solution similar to that of (1.1). A par-—
bt

ticularly important case is that where $(t) = e “, b > 0. The

L -
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asymptotic form of f(x,y.t) as x,y —> 00 can then be obtained.

It can be shown by means of counter-examples, cf. (8], that
the diffioculties encountered in the discrete formulation generating
the preceding equations are due to the intricate form of the solu—
tion and that simple solutions, possessing an intuitive origin, are
not to be obtained in all cases.

To overcome some of these difficulties sufficiently to obtain
some approximate knowledge concerning the solutions, we have intro-
duced conctinuous versions of the problems. Thesa lead to problems
in the calculus of varia lont which are fortunately sutficlently
nonlinear to be susceptiple to a variational attack. The problems
are, however, not completely straightforward and require a non-
classical type of argumentation.

Guided by our previous results, we consider in turn the two-—
choice, the three-choice, nonlinear utility and two—choice, finite-—
time problems, obtaining complete solutions.

We have treated only particular, simple cases of the ceatinu—
ous versions in order nct to enmesh ourselves in conceptual 4diffi-
culties. The general formulation requires a separate treatment
which will be given elsewhere.

The central problem we have discussed in this paper is a
particular maximization problem connected with multi-stage processes
of deterministic and stochastic type. The general theory of these
processes constitutes the theory of dynamio prokramming which has

been discussed in a number of recent papers, [1] — [7].
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2. Mathematical Formulation.

To derive (1.1), let us set

f{x,y) = expected amount of gold mined before the machine
is damaged when A has an am-unt x, B has an amount Yy,
and an optimal policy is rpursued. (2.1{

If we choose to mine Anaconda, an operation we shall denoté
by A, with probabllity p, we obtain r,x and the privilege of con-
tinuing; while with probability (1-p,) we obtain nothing. Since
an optimal policy must have an optimal continuation, the expected

return from an A—:hoice will be
Ep = pr{rix + £{(1-r,)x,y)). (2.2)
Similarly, the expected return from a B-cholice 1is
Eg = pa(ray + f(x, 1-r2)y)). (2.3)
Since our purpose 1s to maximize the expected return, we have
f(x,y) = Max (EA,EB), (2.4)
which 1s precisely (1.1).
We can increase the possibilities without increasing the com—

plexity of the equation. Let us assume that an A—choice has the

following prcbablllities assocliated:
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g
(a) p, = probability of obtaining r,x and continulng

(b) p2 = probability of obtaining O and continuilng

(c) pa = probabllity of obtaining x and con*inuing (2.5)
(d) pe = probability of obtaining O and terminating

the grccess

In a like manner, let B have the probablilities q,,32,33,Q4

attached to 1ts chnice. Then we obtain

_ 1
Ar pr[rax + £(Q-ry),xy]] + p2fi(x,v) + pa[x+£(0,y

(|

f(x,y) = Max

B: qi[ray + f(x,(1-r2)y] + azf(x,y) + 3a[y+r(x, ]/

|
— —

(2.5)

Since

£(x,0) = pi[ rix + £((1-r1)x,0)[ + p2 f(x,0) + pax, (2.7)
we have setting f(x,0) = c,;x,

lEary + pa)x '
f(X,O) = I—$2LD|<Y—P;) p (2.8)

and a corresponding expression for £(0,y). Tne equa:ion in (2.6)

reduces to

(AX + Copy ¢+ plf((l—rl)x,y)

1BX + CeBy + qlf(xp(l-rQ)y)
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using (2.%) and the rorresponding expression for f{0,y) and
solving for f(x,y) where Cypr c18 are readlly fetermined positive
constants. 7The treatment of (2.Q) 18 Af the same order of difficulty
ds that of (lmb).

LLet us now derive (1.7). Consider the same mhdel as above
in 1 and assume that we wish "c maximlze the expected value of
¢(R) where $ 1s a glven function and R is the total return obtained
before the mining machine 18 damage-.

Setting

f(x,y,a) = expec-ed value »f ${(R) obraine! when A has x and (2.10)
B has y with an amounct a already mined, using an

optimal policy,

we Hbtaln, vlia the same argument as above, 'he functional equatlon

6*. Exlstence ani Unlqueness.

Our first result s

Theorem 1., ZConsider the enuat!inn
*(p) = Max [gk(n) + nk(p)f(TKp)J. (3.1)
1<Km

where we cnall sccume that

(a) Tne pnin: p I8 resiricted *o a regin R
wlith the property that péR ImrIfes That

™ o]
*kféﬂ.

—_——
'pg
7‘
x
7N\

>, [or peR (.2)

ce < 1 for pe€R.

@]
o
=
-
I
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Under these conditions thcre is a unlique bounded solution to

(3.1).

Proof: Let fo(p) be an arbitrary bounded function for péR. Define

fo1(P) = Max [sk(p) + hk(p)rn('rkp):]. n=0,1,2, " ". (3.3)

Let k = k(n), dependent also upon p, be a value of k which fur-—

nishes the maximum, then

Fre1 (P) = &) (P) + by (PICL(Ty () (P)) (3.4)

n)

Z gk(n-l)(p) + hk(n—l)(p)rn(Tk(n—l)(p))’

and similarly

rn(p) - gy(n_l)(P) + hk(n—-l)(p)rn—l(Tk(n—l)(p))

Z gk(n)(p) + hk(n)(p)fn—l

(Tk(n)(p))’

From these relations we obtain for n > 1,

et (P) = £a(0) > My 3 (0) [0 (T gy (D)= (T (o) (P))]

IA

hk(n)(p) [}n(Tk(n)(p)—fn~l(Tk(n)(p{] (2.6)

Let us define

ug -.S;p Ita(p) = £, (p)i. (3.7)
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Using the bound given in (3.2c) we oL ain from (2.6) the result

£, (P) = £ (p)| < epup, (3.8)

n+1 n

0 ¢) '

whence U < c2un. Thls shows that the series 2 u, converges,

which means that

(p)-f.(p)) (3.9)

converges uniformly for pgR. Hence fn(p) converges uniformly

as n —> oo to a functisn f(p), a sclution of the functional equation.

To establish the uniqueness of a boun~ted solutlon we prnceed
similarly. Let F(p) be another solution of (1) and let k be an
index which yields f(p) and m be an index which yields F. Then,

as above

rle) = v o v ne(p)rirep) 2 g (p) + hp(p)f(Tep)  (3.10)

F(p) = ¢o(p) + np lo)FiTep) > g (p) + n (pIF(T,P),

whence

|h ()] e(Tp) — F(1 )] (3.11)

If we set

= Sup |f(p) - F(p)l, (3.12)

tn
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we obtain from (2.11) the inequality
|£(p) - F(p)| < ca2S. (3.13)

1f we take p to be a point for which |f(p) — F(p)| > S - €, £small,
we obtain a contradiction, unless S = 0. This establishes uniqueness.

" Let us observe that the uniform convergence demonstrated

above establishes the further result

Theorem 2. Under the conditions

(a) gk(p) and hk(p) are continuous functions of p in R (3.14)

together with the previous conditions, f(p) 18 a continuous function

o p in R

Furthermore, if gk(p) and hk(p) are continuous functions of

a set of parameters, q, f(p) will be a continuous function of

these parameters.

gu. Alternate Proof of Existence.

We have in the preceding section discussed the problem purely
from the analytic standpoint without regard for the underlyling pro-
cesses, Let us now discuss the problem wi-h regard to the basic
process, and consider the process where only N stages will be

allowed. If we define, similarly to (2.1), fN(p) to be maximum

return for N stages, we obtain

fiap) = Max (g, (p)),
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and, generally,

a1 (P) = Max [(i(p) + my(p) (1)) (4.2)

Let us now assume that g, 18 actually a non-negative return and
that hk(p) 1s a probability,

It i1s clear then that f > f; and thus generally that

fN+1(p) > fN(p). If we set

we obtain from (4.2),

UN+1 S C + C2U‘N, (u-u)

which means that Uy < cy/(1=2). Since the fy are uniformly bounded

and monotone increasing, fN converges to f(p), a solutinn.

§5. Approximation in Strategy Space.

The functional equation discussed in the previous sectlion
effects 2 transliteration of a decislon problem frowm the space
of policies, stratezies, 3chedules, etc., to the space of functions.
This 13 its principal role.

The essence of the previous section was tnat an initial
guess in function space will, ty the process of s.iccessive
iteration, eventually yield an arbitrarily close approximation

to the actual solution.
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We may, however, 1instead of guessing an ini‘*ial function,
guess an initlal strategy S. For example, we miy divide the

region R Into m sub—-regions, R, Rz. " ,R possessing only boun-

ml

dary points in common, and choose the kth cholce, {.e., set

f3(p) = g (p) + ny(p)r (T, ) (5.1)

whenever péRk. For the polnts on the boundary of two »r more
reglons, we choose either 1index.

If peR,, the transformed point 7, p will belong to k,, where
£ may or may not equal k. In any case, continuing in this way,
we can calculate an approximation to f(p) fs(p), which we can tnen
improve by successive avproximations as bef re.

The importance of thils procedure lies in the fact that the
convergence, under the assumptions of the preceding secti n, will
always be monotone. Thils 18 of great importance iIn prac:ical appli-—
cations.

To show this monotonicity, let fo(p) be the second approxima-—

tion. Then

fz(p) = Max [ g (p) + n &) (T p)]. (5.2)
1<k<m
Comparing (5.1) and (5.2), 1t 1s clear tnat fp(p) > fs(p).
From this inequality, it follows inductively that fN+1(p) > fN(*)‘
A further discussion, in connection with an equation of different

type, will be found in [%].
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85. The Solution of (".1).

~

We shall prove

Theorem 3. Consider the functional equation

/’A N —

A g pk[ckx + I‘(c}'(x,y):]

f(x,y) = Max/ z (6.1)
B: a L dy + fix,dry) ]

k’ﬁ?r

where
N N
(a) pe 20, q >0, ;;; p < 1, ;;; q < 1,
(v) 1> Cr» 4 20, cf +cp = At + A =1, (6.2)

The optimal cholce of operatlor~ 1s the following: If

N N
= 5,
bt Pk o Wk
v X > ——— y (6.3)

choose A; If the reverce Inequallty holds, chvose B. In case of

equality, elther cholce 18 satisfac:ory.

To simplify the nota'ion and the algebra:, let us consider
first the simpler form >f [(A.!) glven by 12.¢) and assume ‘*hat

D4 = 72 = 0. The resulting equation 1s
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A: pr[x+0(0,y]] + pa[rix+f({1-r,)x,y]]
f(x,y) = Max (6.4)
B: qi[y+f(x,0]] + qz[ray+f(x,(1-ra)y]J]

As noted above, we already know from Sectinon * that there is a
unique solution to this equation. Let us turn, then, *to a discus-—
sion of some of the simpler properties of f(x,y). Since

P + p2 <1, q¢ + q2 <1, 1t follows that £(0,0) = O. From the
fact that f(kx,ky) and kf(x,y) satisfy the same equation for

k > 0, 1t follows that f(kx,ky) = kf(x,y), for k » 0. Setting

y = 0 and using f(r;x,0) = r,f(x,0), we obtain

-
A:  (pi1+p2rdx + p2(1-r,)f(x,0)

f(x,0) = Max
[B= (q1+q2)f(x,0) - 15.5)

= (py+pary)x + pa2{1-r ) f(x,0)

whence
£(x,0) = {P1*Pari)x (5.6)
Q—p2(1-r,]]
and, similarly,
£(0,y) = —\d1*dare)y (6.7)

[1—qz (1-r2]] .

These results are, of course, obvious if we consider the pro-

cess generating the functlion. On these grounds we should als»
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suspect that A would ne employed whenever y was sufficlently
small compered with x. This fact follows frm the con'inuity »f

f{x,y) (compare Section 3), since wne lnejuulity
Fx,y) > (31 + 12r2)y + 31 0(x,0) + 527(x,(1-r2)y) (6.8)

must hold for small positive y = y(x), for x > 0O, since it is
valid for y = O.

It follows that there are two reglons, close tn the x ani y
axes, in which tne optimal cholces are, respectively, A and B, when-
ever (x,y) 1s contained in either of these regi-ons, as shown in
Filg. 2.

I+ 1Is reasnnable to suppose that the solutlsn has the form
shown 1in Fig. 1. 7The meaning of Fig. 1 13 that A 1s employed when-—
ever (x,y) 1u 1n RA’ the regi-»n hetween *he x—axis and L, and B 1s
employed in tne complementary reglion. On the line L elther A or

B may be usei.

Y B

Wy
~

That the bouriary zurve, 17 it exisits, must be a straight line

follows from tne homogenel'v of f(x,y). Assuming that the solutlon
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has this form, we shall show that the equati>n ~f L may be cal—
culated from the fact that 1t 1s an indifference curve. By thils
~n we mean that for polnts (x,y) on the curve, the value nf
o function f(x,y) is the same whether we employ A or B.
Observe that the effect of employing A i1s always to drive P
into Rg, whereas the use of B sends P into RA. Consequently, if
A 1s used at P, the next choice, in an optimal policy, must be B,
and vice versa 1f B is used.
This alone would not be sufficient to determine L, were it
not for another fact. Since the operations A and B operate on x
and y alone, there will be a certain symmetry in the results »btained
by using A and then B, or B ard then A, which plays a decisive
role in the solution.
Let us now do a small amount  computing. Using the values of

f(x,0) and f(0,y) obtained above, we have

—

At (pi+pery)x + Bifdi*@eTe)y o ooa((1r, )x,y)

1—q2 (1-r
f(x,y) = Max [ 2l (6.9)

B: (qi+qarz2)y + Q [py+pers )X + q2f(x,(1-r2)y)
_ -z (1-r1J] B

To simplify the notation, let us denote the coefficients of x and y
in the above equation by a;,az in A and by B8,,82 in B. If we employ

A, we obtaln, using an obvious notation,

fa(x,y) = aix + azy + p2f((1-ry)x,y) (6.10)
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Following this by B, we hive
f‘AB(X,Y) = [@1 + Pxpz(l—P1[]X + (a2 + Pop2)y
(6.11)
+ p2q2f((1-ry)x, (1-r2)y).
Similarly, the result of B and then A is
fBA(X.Y) = (11 + Q20 )x + [}2 + Q212(1—F2I]y (4 )
.12

i F239f((1-rl)xy (1—T2)Y)-

If (x,y) lles upon L, we must have fap = fpa- Equating the
two expressions, we observe tnat tne unknown functlon f((1-r,)x,(1-rz2)y)

disappears. Consequently, we ~btalin for L the equation

[@1(1~Q2) + oy (pa(l-ry)=17 x = [2(qa(l=rz)-1)+:i2(V—f2 ]y (h.13)

Using the precise vz=luer of 1,,12, 1,12 28 glven by (£.9), we finally

obtalin, &s the ejuatlon H»f L,

(Pi+pecyix  _ _(91+Q2i1y F.l14)

J—pi—vo2 1—11 Q2

This {r a3 remarkably simple equatl i, sinze, as we obilerve,
the coeffliclens of x deperds only ‘n “he A operiti~-n, wnlle tl..e
coefficien® of y depends only on t.e 2 operatlion. rurthermore, each
coefficien: =dmirs ~fa sery alrple Interpre*ati-n as the ratlo of
the expected ylel? cf "he operatisn *o the grobablllity of termination

>f the process,
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Let us insert a word of warning: Although this elegan:
result holds for some generalizations of the functinnal equation,
it does not hold in general, as we shall subsequently see.

Let us now prove that the solution actually has this simple
form. To make the previous argument rigorous, we observe that
below L, the procedure consisting of A, B, and an optimal continua-
tion 1s superior to B, A, and an optimal continuation, and that the
reverse 1s true above L. Referring to Fig. 2, let 3 be a point
above the known A-reglion, and far enough below L so that any out-—
come of 8 B—choice transforms Q(x,y) into the known A-region.

To show that A 13 used at Q, we argue by contradiction. Sup-—
pose that B were used; then the next cholce would necessarily be A.
However, we have seen above that below L the procedure consisting
of B, A, and an optimal continuatlion 18 inferior to A, B, and an
optimal continuation. Hence, A 18 used at 3. It is clear that we
may continue thls argument until we have demonstrated that the
region between L and the x—axis is an A-reglon. Similarly, start—
ing from the known B-region, we may demonstrate that the region
above L 1s a B-reglon.

We have carried through the proof for the simplest case of
(6.1). There 18 no difficulty in verifying that the argument 1is
general.

Geometrically, the pattern 1s as follows: When (x,y) 1s in

R A i1s employed untll the resultant point 1s 1in RB, at which time

Al
B is employed until the point 18 again in RA, and 80 on.
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97. A Generaliration.

There 1a nc A1fficulty in exteriing *he above analysis t- *he

following ndimensionsl equation

K
£(xy,x2," " ,xy) = Mi’x [é‘r. pik[Cikxi*f(xx.Xz,"',cikxi,“'.xn)]:]

(7.1)
where
K
(8) pik _>_ Or ,(Z pik < 1, 1-1,2....,.’1,
() 1> S 2 Oy Cqpe * i =1, (7.2)
(c) x> 7

The decisi~-n functions are again the ratios of expected gain

to probadbility of termination, namely,

Z Pik®ik
(7.3)

Di(x) - Xy

L 5

If Max Di(xi\ 1s attained for { « L, then the LLh cholce 1s

made unless there Is equallity, In which case any one of the maxi-

mi ing cholces '=s optimal.

$6. Tre Porm of f(x,y).
Having nbtalned a wery simpie cnaracterization of *he optimal
poli~y, let us now turn our a*:ention *o *he function f(x,y). In

general, no simple 3nalytic represent2°*ion will exi=t. [f, however,

we consider equation (“.&), which we write agalin as
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a;x + azy + paf(cax,y)
f(x,y) = Max ’ (8.1)
Fi1Xx + Bay + Qef(x,d2y)

(ca=l-ry, dp=1-rp)

we shall show that if c¢cp and dz are connected by a relatinn of the
type c? - d?, m and n being positive integers, we shall obtain
plecewise linear representations for f(x,y).

It 18 sufficient, in order to 1llustrate the technique, to
consider the simplest case, cp = d,.

Let (x,y) be a point in the A-region. If A is applied, either
(x,y) goes into (C,y), in which case B is used continually there—
after, or it 18 transformed into (cax,y), which may be in either an
A- or a B-region. Let L, be the line that 1s transformed into L
when (x,y) goes into (c2x,y), let Lz be the line transformed into
L,, and so on. Similarly, let M; be the line transformed into L
when (x,y) goes into (x,dzy), and so on. In the sector LOL,, A

i1s used first, followed by B, as shown in Fig. 3.

y

0

Hence, t>r (x,y) in this sector we obtaln
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f(x,y) = ayx + azy + paf(czx,y)
= a;X + 12y + pa(ficax4Poy) + p2gaf(cax,coy) (8.2)

= (a;+paBica2)x + (q24pafa)y + Paqacaf(x,y)

This ylelds

£(x,y) = {i*petico)x + (aptpePely (8.3)

1 — paQaca

for (x,y) in LOL,. Similarly, we obtain a linear expression for f

iu LOM,. Having obtained the representations in these sectors, 1t

is clear that we >btain linear expresslions in L,0Lz, etc.

§9. The Problem for a Finite Numberof Srages,

Let us now conslider the problem that arises when >nly a finlte

number of stages are allowed. If we set
TN(x,y) = expected return using an optimal N-stage (9.1)
policy,
then
f1(x,y) = Max [ (pi+p2ci)x, (qi+3241)y ] (9.2)

A P EX+rV(vaD o5 F‘?ECXX'FFN(D?vaD

oo, (x y) = Viyx
Ne1 %o
Prooq [y (00D ¢ az [y (x, 42y |,
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We know from the recul*s c-ncerning exlis:ence and uniqueness
in Section 3 that, as N —> 0o, fN(x,y) —>» (x,v). However, 1°
1s not reasonable to suspect that for each N *he ptimal policy
will be that of f(x,y). Furthermore, it 1s clear *hat, in general,
the poiicles will nor be the same for N = 1,

It does, however, follow from Hur previous argumentation *hat
if for some N the decision regions f CN(x,y) and f(x,y) coincide,
they must do so for all larger N.

Let us now show that declsln reg!i-n:s for fN converge *oywArd
that of f as N —> 0o, and that there will always be an Nn with ‘le
property that for N > NO rhe reglons will colnclie.

The proof is very simple. Consider the situation [ r N = 2,

as in Fig. 4.

(4B=BA)
Flg. 4
R
Let Lo (A7") Hderote the line that 1s transformei in- ) Lp wien
(x,y) goes 1nto (cx,y). Let . be in tnue secior between Lp and
LZ(A_I). If A {s used at Q, *‘hen B 18 used nex*t, since ‘he *rans—

formed polint ls In 'he RB—rPgion for N« 2. If { Is above L, wWe
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know that AR 13 !Inferior t» BA, reogardless of N, as = get of
firas two holces. Hence, B 12 used 3¢ .. This sh'ws us th=t the
B_reagion for the N-s'age proc-ec 1s at least that contalning ‘he

1.

sector boundaed by the y-aris and Lo(A ). “his pricess continues

unt il LK(A_l), fer some k, lies below L _, which musat necessarily
ccur after some fini*e number of ctarcecs.

"he arpgument 1s general and applies to the general equations
iiscucsczed =bove, However, wWwe canno' acser: thit *‘he convergence
{s monotone, as we suspect, un*ll we know more about the A— and
B—reglions for the N-stage pr-coa3s. It Is probably true that there
are two regicns fur erzh N, bul this 18 n result that has only
pean demonsiratedi 1in the case 7 the simple ~gquation (7.1).

To show *hils reau.*t, we use the fac* 'na*' 'nils equation’irise
from a model 1in whiclhi the results of an operatlon 1re known only

13 far as the eoxpex'ed oHut:come 15 concerned. Any N-stage pnllcy

Wi the form, ther»! ire,
T (9.3)

where the "y ind ki ire ™ r praliive Interers. Tnis notacfon
means thar *he A—cnclce ¢ made 1, 2ong2ci lve *Imes, then tne
B—cnolre y onee~itive times, 1nd Ui > ‘nere Are NOw Lwo
. N SN _ Ko .
cases: S, A af-mer sgqual #1 AT cr B, =r it has the fcrm A B
o BAc where K, f < N.
Referring *o ¥ig. &, concider a (~in* , above L. If an »pti-

mal prllecy hae the form AkB"',k < N, which may be written

(AB\... 1t may pe 1m;r‘jvp(1 by roplacin?, AB with Br‘\, since A

’
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iterated any number of times maintains Q above L. It follows then
that in the region above L, either B 18 used first or A 1s used
repeatedly; and, similarly, in the region below L, either A is used
first or B 1s used repeatedly.

Since AN is clearly the optimal policy for polints sufficlently
close to the x-axis, and BN 1t the optimal policy for points suf-—
ficiently near the y-axis, it follows from the analytic form of
the yleld for any SN——an expression which 1s linear in x and y—that
if AN 18 used at Q, 1t 1s used for all points below the line 0Q,

and similarly for BN, "below" being replaced by "above.'

It follows that there are always two regions, separated elther

by AB = BA or by a line of more complfcated form, 1if AN or BN are

still dominant. For large N i1t 18 clear that AN and BN hecome less
and less influentlal, so that eventually AB = BA emerges as the

sole dividing line.

§10. _A General Utllity Function.

We have in the previous sections conslidered only the case in

which the utility of a total yleld z was proportional to z. Let
us now turn to the more interesting case in which the utllity 1is
measured by a function é(z). The basic equation is now

A: p,f(0,y,a+x)+paf(c2x,y,a+c;x)+pad(a)

f(x,y,a) = Max (10.1)

B: q,f(x,0,a+y)+q2f(x,d2y,a+d,y)+qs(3)

r(0,0,a) = é(a)

where c; + cg = 1, dy + do2 =1, pi) Q1ZO:

P + P2 + Pa = q1 + Q2 + Q3 = 1.
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This equation {e more 1ifficult to treat of than that occur—
ring for ¢(z) = z, and we chall only be able to present {ts solu—
tion for certain classes of functions.

We heave

r_ . \
A pyf(0,y,e) + p2f(0,y,a) + pab(a)

|
£(0,y,a) = Max | (10.2)
lf: QI:‘(O){)»E*Y)/ + Q?f(/\rfiZy)q"’ily) + Q3b(a)

Since f(x,y,a) > r(0,0,a) = bp{(a) for x,y > O, with stris' inequality

1f x or y 1s pesitisg, iU follows, slnce p1+p2+p1-1,p1 > 0, tnat
r(0,y,a) = aib(a+y) + aab(a) + q21(0,doy,a+d,y) (10.3)
ani, aimilarly, that
f(x,n,2) = pd(a+4x) + pab(a) + paf(cax,0,a+c x). (10.4)

For given ¢, *nese equations may now be solved by 1teration
for the functions f(0,y,a) and f(x,0,a).

Let us 1g2In precreed formally bef- re turning to a justification
of our opera'ions. It {2 clear from *he conserva'lve nature of
the procesgses involved that *he quanti'y x + y + 21 remalins constant
throughout tne sequence of oreratlions. C(Consequently, the effect
of any choice {¢ *0o transform a point in the reglon R: x+y+amc,
X,y,2 > 0 int» anotner polnt 1In *the reglon, as shown in Flg. 5.

The problem that confronts us 1s that of determining the set

of points in R in wnicn A 1s used and "he se* in whilch B 18 used.
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If we assume, as before, that these setes constitute connected
reglons having a boundary curve P, we may proceed tn find the
boundary as before, using the fact that the boundary i3 an indif-

ference curve,.

AN

Fig. 5

However, we must assume more about the bnundary curve than
previously, where the fact that it wis 3 stralght line resulted
in considerable simplification. Let us assume that the result »f
applying A to a point P on the boundary curve 1s t»> transform it
into the B—region, and vice versa.

Having provided ourselves with a cushion of agsumptlions, let

us now go through the calculations. If A 1Is Ppmplhyed, we ohtain

f(x,y,a) = p,f(0,y,2+x) + pa(cax,y,a+2,x) + pyd(a) (o5

Employing B at (0,y,a+x) and (cox,y,a+c,x), we obtain

f(x,y,a) = o,[q:d(a+x+y) + q2r(0,d2y,a+x+d,y) + qab(a+x]]

+ p2[gif(cex,0,a+:,x+y) + qz2f(cax,dey,a+c x+d,y) (10.6)

+ qsb(a+cyxJ]

+ pad(a),




P-437%
27—

A similar ex;ression 1= obtained by using B and then A. Eguating

the two, we obttaln, for the equation of the boundary curve,

P1a3d(14x) + Daqablatcix) + pat(a)

(10.7)
= qipat(a+y) + 12rab(a+d y) + gatla)
which may bte written
praaso(aex)-¢(=]] + paaasldplatc,x) - $(a]] _—
10.

= q1pa[p(c+y)d(1]] + qap- pla+d,y)-b(a]]

in order tc establish the result rigor.u-ly, we rust ascervailn
whether or not the boundary curve has the Jesired transformation
[rooerty.

What we actually requlire 1c¢

-~

Progerty . i

F(x,y,2) = 14923 aex) b (-0 + ;2qa[blas 1 x) 42T
~ qipa[pla+y)—¢ q)] = q2p1[§(a+i,y)—$(q[] <0

(10.9)

then F(cox,y,a+c,x) ¢ . 1¢ F(x,v,a) > 0, then F(x,dzy,a+d,y) > O.

UnfHortunately, {t seemsa *o bte 17f12ult * 0o preaen' any simple
ariterion walch will ‘neure the* a senera. util. v tun~*‘on t(2)
will aa*1sfy Proper.y ™. EatLlis gt AT S e “ncw, for example,
that ¢(7z) = -2 49es not sa*is®y {* T a1l values of py and qqy.

Let ur nHYw Aemnstra'e
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Theorem 4. If
(8) &(z) 1s strictly increasing and con'inucus,
$(z) >0, (10.10)
(b) Property ~ 1s satisfled,
then the solutlon to (10.1) is given by
f(x,y,a) = pif(0,y,a+x) + paf{czx,y,a+cx) + psb(a) (10.11)
for F(x,y,a) > ©, and by
f(x,y,a) = 0.f(x,0,a+y) + qzf(x,d2y,a+d,y) + pab(a) (10.12)

for F(x,y,a) < 2.

The optimal policy 1s to apply A when F(x,y,a) > 0 and B if

F(x,y,a) < C. When there is equallty, it 1s a mat:er of indiffer-

ence as to which cholce 18 made.

Proof: The proof 1s carried through In (wnh stages. Flircst we show

that there 1s a region in the plane x+y+a=mc where A 13 always used,
namely, 3 reglion close to y=0. 7Then we conslder what happens at 13
point Q in the region defined by F(x,y,a) > © and x+y+a=c.

Let us assume for the moment that we have already established
the existence of a region where A 1is always used. If B 13 used
at ¢, 1t follows from Property T tha* the transformed point 1s agaln
in the =ame region. I: cannot be 'rue *“hat B 18 used repea‘edly

1f x > 0, since eventually the y coordinate will be 8o small that
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the point will be 1n the A—region. Hence, If at , an p'imal
pollicy employs B for the first k cnnices, the sequence Nf moves

nas the form

S = BR-*:(k times) ' -BA. (17.13)

e

Orn the basls of Property 7, we are still in ‘he reyinn
F(x,y,a) > 0, x+y+a=c after employing B (k-1) *imes. The nex'
two moves, B and ther~ &, carno: be optimal, nowever, =since the
rexion 1s defined by the proper:y that AR plus optimal c¢Hon- {nua-
tion 1s superlor o BA plus optimal continua'ion. “his shows 'hat
at ., move B cannot be used firs' in an op-imal policy.

I* remains then to es*ablish tne exis'ence ~! e A-region

\

men*ioned abtove. ince f(x,y,a) > ¢(a) for x,y > 0 end one a:

leacst pcsitive, 1t follows tha:

P f(0,y,a+4x) + paf(cox,y,a+c,x) + pad(a) : )
10.14
> W f(x,0,a+y) + q2f(x,day,a+d,y) + qad(a)

which holds at ye, muet by virtue of ‘he con‘inulty of -he func-—

*fon Involved,for any x > 7, hold for some In'erval > <y < y{(x,a).

§.!. 7The Exponen*®ial Utility Functlion.

“ne way of ~btalining utill*'y func*i-ns tha* nave the deslred
property {1 © mtke the btoundary equati-n indeperden* of a. If
we wich 1= t2 te true for all values »f the parameters Py and ayq »

we must have
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$(a+x) — b(a) = G(x)H(a) (11.1)

wnlch yields, using standard arguments, under tne assumption of

»
continuity,

(a) ¢é(z) =mz+n or
(b} $(z) = ce®? . -2)

We have already considered the first utility function: let
us now consider the second.

The 1important property of these utllity functions is that a
policy which maximizes the expected value of ¢(z) proceeds at each
stage wilthout regard for the amount already obtained, being depen-—
dent only on the remaining amount to be obtained.

If we set, for b > O,
bz)

g(x,y) = Max Exp (e (11.3)

("Exp" denoting here "expected value," not "exponential),

we obtaln for g the funct lonal equation

bx
A: pye "g(0,y) + pae g(cax,y) + pa
g(x,y) = Max (11.%)

b bd
B: qye Yg(x,0) + qze” Yg(x,d2y) + qs

bc,x

As a apecial case of Theorem 4, we obtain

Theorem 5. The solution of (11.4) is as follows: For

b b ¢
pi(e x—ll + pa(e Clx—ll N q,(eby-l) + qz(ebi‘y—l)

Ps o)

(11.5)

* This requirement of continuity can be considerably weaxened.
I e e e
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use A; Al *he reverse inequality hoids, ~mpl.y B: 1f equal, either

is appll:abl-.

Observe that, as chould te tr:e, the 1imlitiny soluti n as

b —> O is exactly tua: ob:alned from $(r) = z.

§12. Asymp'otic Behavicr of elx,y).

We now turn to tne prrobiem of de-ermining *le asymptotic

behavior of g(x,y) as x and y —> o05. We begin by Aeriving the
asymptotic behavior of g(x,7) and =(7,y). From the equation we
obtain, for large x,
A bx bc, x .
g(x,0) = pye"" + pi 4+ pae 'Tg(c2x,0). (12.1)

This equatlion may be solved by 1teration:

bx bec,x t:zx)

+ F?) + pae (La + pre (12-?)

7o obtaln tne asymp*ntic behavior, however, we musl pr ceed Afif-

ferently. Set

T2

where - c1-icfles e enyua* inn

as we rfee bty Airect apbscitutlon., Altnouch 1tera’i1on ylelds
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h(x) = pae 0% 4+ popae 02X 4 ... (12.5)

the asymptotic behavior of h(x) 1s st!{ll not apparent. We shall
show that h(x) = x_ev(x)[]+o(12] as x —>» oo, where $(x) = P(cax),
a = (log 1/p2)/{log 1/co). To accomplish this, set h(x) = k(x)x.

Then k satisfles the simpler equation
k(x) = k(czx) = paxTe™X = §(x). (12.5)

The essential fact about ¢ that we shall use is ‘h-t E }'x/cd)

converges for each x. From (12.6) we have
(x/cB) - k(x/cB™'. = $(x/c}) (12.7)

which ylelds

00

n—L_i;'n()o k(X/C?) - Kk + Z X/Cz - P(x). (12.8)

From the form of the l1imit function or from the equation for k(x),
we see tha' P(x) = l.cox) for all x. If then we wri'e y = x/cp

for 1 ( x < 1/co, we have
k(y) = k(x/cz) = [+o(10¥(x) = [+o(10b(x/ca) (12.9)
as y —>» oo.

Collecting the previous results, we see that 'he asympt-Htlic

behivior of g(x,0) 1s given by



bx b Yg
g(x,”) = FA— + ° )
’ —P2 a,

where

(a) ¥(x) = Y(cax)
R ]

The correcponding result for g(0,y) 1c

b
7(y) = —%ﬁa; e+ g—g%iil— (1 + o(1))

where

(a) 8(y) = &(d2y)

(b) b, = log 1/q5/lcg 1/d>

— 1+ o(1) ]

P—L33
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(12.11)

(12.12)

(12.13)

Turning ‘o the equation for g(x,y), we have for x and y large

—

b(X+y) bcyx

?(X!y) = Max

b(z+y) bd,y e
__{ﬂlh_@ + Qe k(x,doy) + O(e " /x" ')
—2
(12.14)
- blx+y)
Setting n(x,y) = g(x,y), we obtain
- 7]
)y € -hx —b
513; + ponlesx,y) + (e TyTY)
hix,y) = “ax (12.1-)
FLIL 4 gah(x, 1) + A=)
l
| 3

P11 o e ?(02X,Y) it
——T:%;_e P2

. b by |
(e y/y ")
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To simplify still further, we set h(x,y) = 2 + k(x,y), obtaining

-—

—qQ2
a+k(x,y) = Max

—Pa

——

If a 18 chosen to be the common sSolution of

- D1 S - 1q1
1 Y 1 TR

namely, piq:/(1-;)(1—=q, ), (12.16) simplifies to

, ==bX
pak(cax,y) + 0(e Xy ™01)
k(x,y) = Max

qek(x,day) + O(CObJX—a')

B 4 apy + pak(cex,y) + 0(eTPXyO1)

—?lgl + aqe + qek(x,dpy) + O(Q—byx—a‘)

——

(12.16

=

(12.17)

(12.18)

To estimate k(x,y) we use the fact that the solution may be obtained

by means of successiveapproxima‘ions:

po—

pzk _(cox,y) + Of

—

e—bx —bl )

y
kn+1(x,y) = Max
-by —al)

Qzk, (x,d2y) + O(e” 7x

—

, ko(x,y) = 1/xT+y"

(12.19)

considering, for our purposes, only values of x and y greater than 1.

The exponent r will be chosen in a moment.
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If we have an inequality of the type kn(x,y) < un/(xr+yr),
u. belng a concstant, which inequali‘*y 13 certainly valid for n=C,

n

we obtain

£)
— pAU —
r2 Y; - + O(P—bxy——b,)
ca(x +y )
kn+1(x,y) < Max (12.20)
-by_—8,
+ N(e x )
_dz (x"+yT) B

Chooce r 2o that paca T < 1/2, qzdz—r < 1/2. <{ince a,,by > r,

we see, since xae—bx < d, for all x, tha* o—bxy—a‘ < drx"ry—r
< dr/(xr+yr), for x,y > 1. Hence, we have
= 9 —
? un . 8o
r r r
X+ X +y
kn+1(pr) < Max % ' (12.21)
n + 8o
_xr+yr xr+yr )

for some constan' a,. If we teake uogpo T ér(un+82), the lnequallty

is precerved for Uy Since U, as defined by the recurrence rela-—

tion {¢ uniformly bounded, we obtain, in the limi', k(x,y) < aqdﬁr+yr).
Knowing the form of the func'ion, we readlly obtaln the

optimal policy, deriving In this case the :ligh'ly paradixocal

result that, asymptotically, as x and y —>» 00, 1t makes no dif-

ference which move 13 made firat.

Collecting the above recults, we obtain

oD (x4y) =

(1—p2) (1—12)

g(x,y) = (12.22)
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§13. A Contlinuous Version.

A5 we h-ve seen In the previous sectlons, the formulation of
the gold-mining problem in 1its Aiscrete form leads *o a number ~f
unsolved problemsa. We turn, theretfore, to a continuous version of
the problem {n tne hope of overcoming our 4ifficulties by use »f
the more powerful tnols of contlnulty. We can now resolve the
corresponding questions 1in complete detalil and thereby obtaln a
clear insight into the structure of the ~ptimal pollcies. The solu-
tions determined in this way can now be used as approximations in
the original discrete process.

One very interesting and crucial fact emerges. Whereas the
original discrete problem hed certain linear aspects, at least in
the case where we were consldering expected return, the continuous
verslion 18 sufficiently nonlinear to permit a varlational appr-ach
in the classical manner. In carrying through thls variational
attack our knowledge of the form of the solution In the dAlucre:e
formulation 1s of great service in telling us in advance whit ‘o
expect. It is a c-ombination of the two techniques, old and new,
which permit a successful attack on the problem.

Let us now begin by discussing soms methods we may foll w !
obtain a continuous analogue to (1.1). “he basic assumption 13 tha*
each operation 1s to have a high probabllity of ob*alining a small
amount and leaving t!.e machine undamaged, and a small probablll:y of
obtaining nothing and damaging the machine.

Let, for 8 > O and small,
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1 — 0,6 = probavility of obtaining r;xd an? leaving
the machine undamaged, If A 13 used
(13

1 — 426 = probabllity of »obtalining rov® ~ud leaving
the macnine undamaged If 7 18 '.sed,

where q,,G2 > 7.
Setting, ac before, f(x,y) esqual *n <ne total expec'ed gain
obtalned before the machine 1s damaged, we obtalin the func*lional

equation

> |

(1-q16) (rixh + f(x—r,;x8,y)

f(x,y) = Max (1*.2)

L?: (1=26) (r2y6 + f(x,y — rayt)

:f we proceed formally, letting A —3 7, we ob*aln

—

lA: f(x,y) + ryxb — q;6F(x,y) — r,x8 f(x,y)+ O(62)

Pyl
i

(x,y) = Max
[j%: f(x,y) + roy8 — 126f(x,y) - royd rigy)+ (6%)

(13.3)
or
Irf* riyx — 3, 7(x,y) - rix f"(x,y]
N = Max (17“"/
tﬁ rey — 120(x,y) - ray fix,y)|.
‘nis does not ceem to he a frul'ful approac: becausgse ~f the
difficulty of rror nisnlng any exlstence or uniquenss theorems, or,

in general, of treating *ne equa'‘on in (17.4) analytically.
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In place of using a differentisl approach, we may use an
integral approacn and then let 8 —» 0. Let us use (1%3.2) and
iterate, obtalning the corresponding equa*i>n f r n s'eps a* n

time. 71he result has the form

8n

f(x,y) = Max [Rn(x,y) + Z___ pnk(x,y)f(xnk,vnk)] (1%.-)

where

Rn(x,y) = expected return from n stages using *he (13.6)

o

policy .
Pnk(x,y)- probability of surviving and beling at (xnk,ynk)
using Sy

S = policy pursued; 1.e., the cholice of A nr B at
each stage.

If rn6 13 chosen to remain fi-ite as 8§ —> 2, n —> 0o, and set
equal to t, the analogue of (13.9) 1s a functional equation »f

the type

~ 1
f(x,y) = Me(lX) LR(x.y.t) + f f(xr,yS)dG.(r.s’.x,y,‘)J
SIC =0 :

(RIS

Functlional equaticns of this class will Hccur in mos' c¢oHn*inu—
ous verslons of dynamic programming protlems. we shall not enter

into any discussion of this formulation here because of the many
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conceptual and mathema*lica. di1fficulties ass- clated wi'n ‘e
concept of a contlnuous stritegzy, pAar lcularly when the ou‘c me
15 stochagtlic. Ins:'ead we shall use a t:;ird approach which bears
the =ame connection to (13.7) as the use »f the heat equation 1in
diffusion -heory bears to 'he Chapman—+ -1lmogoroff equation., AL
the moment it 1s sufflclen' f-r Hur purp-ses,

Let us begin by no*ing tha' according ‘o *he reisults of §f
the solution of (12.2) 1s determired by the bhoundary curve
(*—1,8)r,xb (1-z8)rsyb

- , (2R I8H)
QB 120

which a7 & —> O approichies *he line

roryx/q = roy/qs. (13.0)

The f21lowing strategy 1s the 1imit of the stra‘*egles as &t —> O:

1f (x,y) 1s below :-, ure A, c-n'inulrng acrnas rorizontally until *
1e hl1t, ard tnen con'inuing down
A atpratepry Hf thle type (s not included In the riginal formu-—

lation of *he protliem whicn all wed only norlz n*al or ver'ical




p-A437
40—

motion, 1.e., use of A or B. It 1s clear, however, tnat this
polic; can be arbitrarily closely approximated by use »f A and B
moves. This suggests that the continuous versi-n of the origi)nal
problem may no! possess a policy ylelding a8 maximum re:urn, but
only a sequence of pnlicies ylelding a supremum.

However, the introduction of mixing at a point Introduces a
number of difficulties of both physical and mathematical kind.
Mathematically, we find ourselves c-nfron‘ed by *‘he same difflcul-
ties that made us wish to bypass (12.7); physically, we are reluc-
tant to accept this type of policy as one applicable ‘o the origlinzl
problem which insisted upon a cholice of A or B.

To avold thls concept of mixing at a point, we use a fréquently
useful device. The essence of it is that for mathematical pur-—
poses mixing over small intervals is equivalent to mixing at ¢
itself, under certain natural continuity assumptions; cf. [Q] for
a further discussion.

We shall assume then that we are considering a process which
requires a cholce of A or B at time points 0,484,280, +,etc., and
that over a typical interval [EA,(k+1L§] we use A for.the part
(ka,k8+6,8] and B for [ka+tb, s, 'k+1)4], where $, depends upon k.

Assuming that A i{s small and that first—rder terms 2re suf-
ficlent to describe the process, we shall derive a set of differ—
ential equations which determine the process.

Having set up the equation, we shall, to 1llustrate the power
of .he method, 8olve in turn problems correspondlng to the two—cholce,
three-cholce, two-choice finite time, and general nonlinear utility

function.
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g14. Derivation of the Differentia) Fjuation.

We assume as above that the total time interval is divided into
small intervals of length A. In a typical interval [;zn(k+1)zg
the first part of the interval E(A,KA#blAJ is devoted to the use of A.

If x 1s the amount of gold in mine A at the time kA, there i3
a probability 1 — 3,¢,4 that an amount r,xés 18 mined and the
operation may be continued; and a probability q,;¢,4 that nothing
is obtained and the operation stops. The second part of the inter-
val [ka+¢,4,(k+1)a8] 1s devoted to the use of B. If mine B contains
an amount y, then there 18 a probability 1 — g26.0 that the amount
ra2yb24 is obtained and the operation may be continued; and a pro-
bability qz2020 that the operation ceases, where ¢, = 1 — §,.

As far as first—order terms in A\ are concerned, 1t makes no
difference in what order the operations are performed. It 1s this
feature which allows this type of mixing to perform the function of
mixing at a point.

A strategy consists of a choice of ¢, and ¢2 for each inter—

val. For any given strategy, let

x(t) = amount of gold remaining in 4 provided the operation
has continued to t,

y(t) = amount of gold remaliningz in B provided tne operation
has continued to t,

p(t) = probabllity that the machine survives until t, i.e.,
that the operatlon continues until t.

f(t) = expected amcunt of gold mined up to time t, (14.1)

where t = nj, n=0,1,2, " ".
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Ignoring the second—order terms in A, we have
x(t+a) = x(t) = ryé, (t)x(t)D
y(t+a) = y(t) - rada(t)y(t)d (14.2)

(
(
(t)(1 = qié,(t)D - qz62(t)A)
(

t+d) = £(t) + p(t) [b:(t)rix(t) + ba(t)roy(t)]D.

Lettirg A——> B, we obtain the system of differential equations

dx/dt = — ¢, (t)r,x(t), x(0" = x_,
dy/dt = — bz t)ray(t), y(0) =y, (14.3)
dp/dt = ) (o (t)ar + ba(t)aa], p(0) = 1,
df/at = ) [br(t)rix(t) + ¢2(t)ray(t)], £(0) = 0.

The problem is now to determine &,, where

O bi(t) <1, ba(t) =1 - ¢,(t), (14.4)

so as to maximize {(T). A cacse of particular impor.ance is * = oo.

We shall derive similiar equations for the three—choice problem.

1. The Variational Procedure.

Let ¢, and p> be functions furnishing the maximum, a-d let

by = 6 + &1 y(1) (15.1)

\N

where ¢ 1= a small positive quantity, B;,: 2 are :w> functions

satisfylng the conditlons

pibi"' £:1Slv (152)
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(wnich means "1i < 1/€), And 4 =0, £ tha' Lne by are 1lso
aimisciple ¢$'=.
It follows that :(t) < N Af $4() = 1, ce(t) 2 2 ar 51{‘) - 0,
and , can Me n{ elther sign of 2 ( éi(‘) C 1, “he reglinn where

free varlatinn {2 jermitted. Perf-rming -he variation, we find

reailly th3at

where we rave cet

ard *he bars ref{er to 'he gerturbed vari-hlen,

snteyract i,y ty parts to eliminacte *ne ?1(:), we f1ind
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Since T(T) - f(T) € O, we see that whenever Ki(t) > KJ(t) we
rust have ¢4(t) =1, bJ(t) = 0. These relations yleld implicit

equations for ¢; and ¢’,1' In the next section we shall discuss the

behavior of the K—functions in more detall.

816. The I-havior of K, .

The “undamental relation is

-%-E—(Kx—xz) = (qu—q2)f'(t) - p'(t)(ray-rix)

(16.1)
=p [ qiray — qarix .

Thus a "mixed policy," one for which more than one of the bi 1e
positive for a given t, which implies K;(t) = Kz(t), can be opti—
mal only on the line q;ray = qaryx. This line 1s precisely the
toundary line that one obta;ns by passage to the limlt from the
solution in the discrete case as & —» 0, as in (12.9).

I1f a mixed policy is pursued along the line, ¢; and ég must
be chosen to stay on this line, which means that the slope 8 = y/x

must be kept constant. Since

S (v/x) = L - %' 8(t) = [[rid1 —rad2] 8, (16.2)

we gee that we must have

- r - T3
1 —;T;%;— y b2 Fi¥rs (16.3)
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©17. The Solution for T = oo.

With these preliminaries out of the way, let us determine
the optimal policy for the infinite process, T = 00o. The infinite
probleé is, as usual, simpler than the finite case because of
the homogenelty introduced by inrliiite time; after any initial
actions, we are confronted by a problem of the same type, with
‘Afferent initial values. Let us note that a consequence of this

+ the homogeneit, of the equations with respect to x and y s
that the decision at uny point 1s a function only of the slope
8 = y/x.

Let us begin by observing that above the 1'ne q,rzy = qanrx
in the (x,y! e 1f policy A 18 ever used, 1t 1s used thereafter.
This follows immedliately from (1) of $16 which shows that K,;-K, is
in- easing when q;ray — qerix > 0. Since use of A decreases x

and leaves y unchanged, once K; > Kz the use of A maintains the

inequality.

Near the y—-axis, however, the use of A continually is not as
rewarding as continual use of B. For if ¢, =1, ¢ = 0, for t > O,

we have

(17.1)

fa(00) = ryx_/(qi+ry)
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However, ¢, = 0, b2 = 1 for all t ylelds similarly fglo0)
- rzyo/(q2+r2). For yo/xo sufficiently large fB(oo) > fA(oa).
Thus, there 13 a region near the y—axis where B is used.

This region where B 1s used extends down to the line ,rpy
= g2r;x. To prove thils we observe that a mixed policy cannot be
pursued above the line and If A 1s ever used above the line 1% is
always used thereafte... Using A indefinitely, howe.er, would
eventually take (x,y) into the reginn near he y-axis wher= B is
known to be optimal, a contradiction. Hence B is always used
above the line. Similarly, bel- he 1ine A 13 always used.

When the line q;roy = qzr;x {s reached, the roint (x,y) must
remain on the line thereafter. For if not, then an A po...y mus!
be used in a B region or vice versa, which {: impossible. :ence,
on the line itself the mixed policy ~f (14.3) must be employed.

Ae have thus demonstrated

Theorem /. With reference to ‘he equat.ons (14.3) and the con-

straints (14.4), the maximum value of f(o ) is attained by us- of

the policy

6, = 1 for q,roy < qar X,

b2 = 1 for qirzy > qariX, (17.2)
r r
b1 = ;e b2 = —pp- for qiTzy = QzraiX.

Note tnat ¢, and ¢, are determined almost everywhere by the

above argumentcs, 4nd hence are ecssentially unique.
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glt. “olution for Finite Total Time,

n finding the solution for finite 7, we shall begin by

determining what pollcy 1s uce?d last. [ince an ~p*imal follcy
hao *ne (roperty ‘nat 1te continuation af*er any initial part 1s
aley Hprimal, we shall conslier the care whepe 7 15 small. We

have, for close tHY 9D,

£{r) = \( p(=) Codils)rix(s) + ¢a(s)roy(:) Jas
. (1&.1)
0
= r‘lx) J vl(.’)dt' + r‘;v \Y ¢)? dQ + O( )
o
I* follows then that for esmall © the maximum 1s obtalned bty taking

6y(c) =1, ¢2(-) = 7 for ryx > rpy and ¢,(s) = 7, bo(s) =1 for
r.v > rix. Ac 1« to be expected, for small durati-ns expec'ed gain,
without worry 2b~u: termination, 15 the determining fact-r.
If 7y = np the llnes roy = ry;x and q;rpy = qor;x cnoincide,
and *he optimel pollicy 1s eatily found to be the same acs that
for 7 = oco.
Let us conrider the general case where q; % qo. Assume, with—
~ut lore of generali'y, tha:t the line rpy = ryx .les above ‘'he
lire 1yrpv = qoryx. “he positlive quadran' Is ‘hen divided iInt»

three regslone, which we label [, 11, IIT.

. ¢ Faymr, ¥

- X
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As before, 1t follows that 1n region I a b—policy once used
must be continued thereafte:r, while 1in regions 1I and 11l the same
holds for an A—policy. Also, in reglions I and II an A—policy 1is
used if the time resulting 1s sufficiently small, and in IlI a

B—policy under the same conditions. From this we c-nclude that

an A—pollicy 1s alway= used iIn I, and a B-poll y always while in III.
Let us now estanlish that an optimal policy never swltches
from A to B. [Let us suppose otherwise and le* ‘o be tne *ime a-
which the change occurs, Finée at L, A 18 terminated, the poin:
(x(to),y(to)) must be 1n region I, or on the boundary be'ween |
and I]. Using B wiil keep the point (x(t),y(t)) in I for all
t v to Since we know that B once used in I must be continued. H w-
ever, this contradicts the fact that A {8 used in I whenever ‘'he
time remaining 1s sufficiently small. Simiiarly, the combination
of using the mixed policy and then B cannot occur, since the change-—
over must occur on the boundary between I and II, and B usei 'here—
after in reglon I, a contradictlion.
This reducecs the number of types of s8olutlons *o six: A always,
B always; the mixed policy foll-wed by A; A then the mixed pnlicy
and finally A; B then the mixed policy and then A; B followed by A.
Let t  be the value of t at whizh *he last cnange of po.lcy I8
made in an optimal strategy, if such a change occurs. For by < Ik

{ T, we must have é,(t) = 1, $(t) = C. We now c-mpu‘e the value

of I,(t.) — Kg(to). We have for t, < * < T,

(0]
~ry(t—t_)
x(t) = x(t)e ', y(r) - y(t,)
t{t-t )
p(t) = p(to)e_q °, (18.2)
~(ar+ry) (t-ty)

£ (r) = p(r,)e rox(t,),
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and, after some gimplification,
—(01‘”‘1)( ~t )
€ (1) = Kalt)) = plt Jrox(c ) [ = 2 >
O 0 \ ® L J1+ M (1“).‘)
ray(s )
T zy(oj
i) R
r,x(to)

For any fixed point (x(t_),y(t )) ir Ii, the righ* side i3

o
positive for T—to smi1ll, =#nd newxa‘*ive for T—tﬁ large. ' 13 equal
to zero for preclicsely one value of T—fo. "nis zerH Adetermines w'ien
the changenver coccurs. When 1* occure, A {8 used f{or the remaining

time, with any of tne six beglinnings above, depending upon the

locat ion of the Inl:ial point.

019. The "hree—htiolce Problem,

“he continuous version of ‘'he three—cholice prnblem men* ioned

pbove 1¢ rhie following: Glven

e - Th(t)ry + ()T, x(0) = x_
Y Tk (e 4 el )r Tylt), y(0) = v (19.1)
JE- = — ) Th(thar + b2(t)az + ea(t)a ], p(0) = 1,

A p() D + a0 )ra)x(e) + (ba(t)me + 20 )ra)y(s) ],

wnere for all ¢

SRR TER SR TR PRE SIS (19.2)
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it 18 required to determine the ¢1(t) so as to maximlize f(T).
We shall conslder only the case where T = 00. t

As before, let us set 31 - 61 + By, and Bi(t) - Lr Bi(s)ds.
0

We obtain
x(t) = x(t)(1 —grBi(t) —£raBa(t)) + o(¢)
(3) y(t) = y(t)(1 —eraBa(t) — erBa(t)) + o(t)

3
5(t) - p(t)(1 - e?_-f ayB,(t)) + ol€)

g%“ - EE (;lrl + ;gra)—x‘ + (32!‘3 + 331"‘);]

Consequently, following the same technique as before, we Hbtain

T
(8)  T(T) = £(1) =€) KBy + KeBa + KaBs Jdt + ofg)
0

where
T T
Ki(t) = - au tf £1(s)ds + ryp(T)x(T) - ry tf p'(8)x(s)ds
(5) 7
K2(t) = — qz f f'(s)ds + rop(T)y(T) - r2 tS’ p'(s)y(s)ds
T

Ks(t) = — qs tJ r1(8)ds + p(T)[ rax(T) + rey(T)]
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920. Some Lemmas and Preliminary Results.

The statements in the lemmas below concerning the dependence

of the ¢1 upor. the Ki are, of course, taken to hold almost everywhere.
-«

Lemma 1. 1 Ki(t) > KJ(t), then éi(t) = 1 or ¢J(t) - 0.

Proof: et £ be the 8et of t for which the assertior does not

hold. Let Bi = 1, f} = -1 fort in ¥, and let the 3'B be zero
otherwlse. 7The varlatlion 1is admissible for & sufficlently small

and makes T(T) - £(T) positive if m(E) > O.

Lemma 2. 7 Ki(t) > KJ(t) for J ¥ 1, then ¢1 = 1.

The proof follows immediately from the atove.

Lemma 3. If there 18 a J such that K;(t) < KJ(t), then ¢i - 0.

Agaln a simple conseq.ence of Lemma 1.

Let us now compute the derivatives of the Ki' A scraight-

forward calculation ylelds the symmetric results

x3(t) = p [ Cid2 + C2¢3 ]

(20.1)
Ka(t) = p [=C161 — Csb, ]
Ka(t) = p [=Ca01 + Cs02_, ,
where we have set
Ciy = quray — qamXx (20.2)

2 = q1T4y ~ (Qari—qira)x

N
!

C3 = (QaT2 — Q2Te)Y — QaTaX
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The relative positions of the three lines C1 = 0 are deter-

mined by the quantity
D = gqirary + qQeriT'e — Qanirz (20.3)

If we assume that a2ll three lines lie in the positive quadrant, a
straightforward calculation shows that 1f D > O the lines have
the position shown in Fig. 8, while 1f D ¢ O, they 1lle as shown

in Fig. 9.

Fig. 9

It is possible for both cases D > O, D € O to occur. The
case where one of the lines Ca = 0, Cq = O lles outside the posi-
tive quadrant ylelds an immediate simplification of the following
argunents without changing the over-all structure. Consequently,

we shall discuss iIn detail only the above cases.
-

- &

©21. Mixed Policles.

As above, we denote by the term "mixed policy" a situation

in which the bi have values different from O and 1. By an A—policy

—_———



P—433
53

we shall mean ¢,=1, a B—policy édo=1, and a C—oolicy éa=1. Let
us prove

Lemma 4. No optimal pollicy contains a mixture of A, B, and C

policles.

Proof: Let us assume that in some 1iriterval we have simultar.eously

¢, 2, 63 > 0. In this interval we must have K, = Kz = Kj.

This ylelds

¢1 + P2 + 65 = 1

Ky — Kp = D [Cibr + C292 + (Ca2+4Ca)bs_ =0

(21.1)
Ki — Ky = p "Cady + (Ci—Cs)0z + Cads | =0
The solutior for ¢, b2, ¢35 18, 1f Ci — Ca — Cs $ 0,
- ;—C - —Ca ; e C,
b2 rldjﬁq , b2 ey L) - (21.2)

Since tne ii must e positive i1 this irnterval, we must have
Cy, L2, an1 —C4 all of the same csign. [t 1is easlly verified upon
referring to Figs. 8 and @ that i1 both cases D > 0, D < O, this
can never o cur.

furthermore, Cy — "5 — C4 = 7 Only if the lines C, = O,
Co = 0, Cq = colncide. When thi1s occurs the problem 18 equiva-
lent to the two—cholce protlem,

Let us now investigate the possibllity of uslng mixea policls

involving only two cof the three policles, A, B, or C.
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Lemna 5. Concerning the mixing of two ard or.ly two pollcles, we

have the following results:

(a) A mixture of A and B 18 permissivle only along

C; = O, where bl = rz/(r,+r2), ¢2 = r,/(r,+r2).

(21.%)
(b) A mixture of A and C 1s permissible only along

Cz2 = 0, where

P,—FS i
¢ = s by m .
i+ 4¢—Ty ry1+I'4-Tg

(c) A mixture of B and C is permissible only along Ca = O,
Ce = 0, where

b2 = —33Te = 4 0. T2
o+I'g—T4 g+I'e—Ty,

Proof: If by, 2 > O, és = O, we must have K; = K > K5. In an

interval where this occurs,

O =Ky —Kg = p L Ciléi+é2) ] . (21. 4

Hence C, = 0. The vaiues of ¢, and ¢o which keep (x,y) on this
line are determined as in the two—choice case. The other ssser—

tions in Lemma 5 are obtained similarly.

§2. The Solutlon for Infinite Time, D > 0.

Having obtalined these auxiliary results, we now proceed
to find the solution to the problem of maximizing f(oo). We snall
assume that rj > re, 8lnce the case rq » r, can be handled bty
interchanging the roles of x and y and A and B. The degererate

case, ry =r,, will be discussed separately.
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Let us make an initial observation that when rs > ry the mixed
AC policy 1s never used, for by (21.3) é, and é, cannot both be
positive. The solution takes two distinct forms depending upon
whether D > O or D ¢ 0. Let us begin by conside.ing D > O. We
shall establish the principal results in a series of lemmas.

Lemma 6. In an optimal policy, B 1s used near the y-axis.

Proof: There is a region near the y-axis where A 1s not used.

For 1f Cy > O, Ca > O and A is used, 1i.e., ¢,(t) = 1, we have
Ki = 0, Ka < O, K < 0. This means that K; remains the largest
for t; > t. Hence if A 18 used in this region, it must be pur-
sued thereafter. Let us now compute the results of a continued

A-policy, a continued B—policy, and a continued C-—policy. We have

fA(OO) - P;Xo/(Qg'fl"g )

fp(00) = ray,/(qz+ra) (22.1)

= _I'sXg TeYo
fc(OO ) qQa2+4+rs e Qs+r'e

A comparison of rA(oo) and rB(oo) shows that fB(oo) > rA(oo)
for y/x sufficiently large.

Let us now show that in the region above Cy = 0, if C is used
it 18 used continually thereafter. Using C increases the slope

s(t) = y(t)/x(t), for with ég3 = 1 we have

| 8'(t) = 8(t)(rs—rs) > O . (22.2)

| On the other hand, using B decreases the slope. Hence, we cannot use B

-




i

after C, for to do so would return us to a region where C was

to be used. We have already shown that A cannot be used after C
when close to the y-axis. A comparison of fB(oo) and fc(oo) shows
that it is better to use B rather than C near the y-axls if
r.y/(qe+r2) > ryy/(qa+ra), Or Qara—qers > 0. This, however, 18
precisely equivalent to the condition that Cy = O lie within the
positive quadrant, which we have assumed.

It follows then that neither A nor C is used in a reglon

near the y-axis, and we know that no mixed po’icy 1s pursued there.

Consequently, B must be used in a region adjoining the y-axis.

Lemma 7. The lower boundary of the B-reglon adjolning the y-axis

is the line Co, = 0. On that line a mixed BC—policy 13 employed.

Below C5 = 7, B 18 never used.

Proof: Let us begin with initial values (xo,yo) near the y-axis

in the region wiiere B is used and consider what form an optimal
strategy can have. B cannot be used indefinitely since this would
eventually take (x,y) near the x—axis where comparison of TA o)

and f_(oo) shows that A 1is superior. However, since both A and C

Bl
increase the - iy y/x, B cannot be followed by A or C since both

of these put the point (x,y) back into a region where B is to be used.
It follows that B must be followed by one of the mixed policles

AB or BC.

Let us show, however, that for D > O, the mixture AB never

occurs in an optimal strategy. For 1f AB 1s used we have, by

(20.1),
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Ky = p [Caba — C261 ] ¢ O. (22.3)

Since Ky (co) = Kz(00) = Ka(00) = 0 and K] = Kz = 0 while AB 1s
being used, 1t follows that K, > Ky = K; while the AB-mlxture 1s
being used. This, however, implies that ¢, = 1, ¢, = ¢ = O, which
1s a contradiction.

The remalining possibility then is that BC 1s ugsed after B -n
the 1line C, = 0. B cannot be used below this line as a consequence
of the above arguments.

Lemma 8. C 1is used in the region between the line C4 = O and a

line L = O which is below Cy; = O.

Proof: A 1s not used 1n a region near the line C, = O because

when the BC—mixed policy 1s used we have X;(t) = p [Cid2 + Cabs ] > O
and also Ko (t) = Ka(t) > Ky(t). Hence, immediately before BC 1is
used K; < Kz and K; < Ki; therefore A 18 not used. Consequently,
C must be used lmmediately below Ca = O.

The C region actually extends below the 1line C; = 0. While
C 1s followed, K; (t) = pCz, which 1s positive wher (x(t),y(t)) 1s
above C» = O. Hence, K; < K5 when Ix,y) 1s in that region, and
C is employed. Also immediately below C, = O we still must have
Ky < K5 s0 that C 1s still used there; but now K, decreases as t
increases.

There are two conceivable possibllities. Either C is used 1in
the whole region between C; = 0 and the x—-axis, or the line
L = 0 (which 18 the lower bound of the C region) is between Cp = 0

and the x-axis. In the second case the position of the line L = O
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1s determined by where K, = K. The following lemmas show that
in fact only this second possibiiity can occur.

Lemma @: A 18 used in the region between L = 0 and the x—-axis.

7

Procf: The statement 1s vacuous unless L = O 13 above the x-axis.

If 1t 1s above, let t, be the time of changeover from A to C, so
that K,(t_) = Ka(t ). But when A is employed, Ki(t) = 0,

Ka(t) = —pC;, > 0, Ka{t) = —pCo > 0. It followe that K,(t) > Ko{t)
and K;(t) > Ka(t) for all t < t_, so that no other policy can be

used before A.

Lemma 10: The region where A 1s used 18 nonvacuous; that 1is, the

line L = 0 i1s above the x-axis.

Proof: We proceed by contradlction. Suppose that the assertion
were false and L colncided with the x—axis. Let (xo,yo) be chosen
below C5; = 0. 1f C 1s used until the mixture BC 18 used along

Cs = 0 we must have Ka(t) = O for ail t > 0. Since Ks(oo) = 0, we
have K,5(0) = 0. Since C is preferable at (xo,yo) we must h-ve

O = K3(0) > K,(0). Hence since X,;(oo) = 0, we have

t:'

(6]
Ky(00) — K,(0) = 1[ p(t)Cadr + f'o p(t) [Tié24Cabaldr > O

t

(22.4)

where t' 1s the time of changeover from C to BC. Keeping Xq fixed,
let y, —> 0. This entails t' —> oo. Since C,$> + Cods 18
uniformly bounded, the second integral tends to zero. We have

then, using the expressions for x, y, p,obtalned frcm a C-—pnlicy
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t7 —qatl —ret —rat

i J € UTaYy € ~ (qari—qira)x e dat > 0,
Yo—>0 o
(22.5)
or
00 -
~(qatra)t (
qsr r
_'Sj‘ (03P|—q‘r3)xo e dt = — ;q;:3; a) x, >0,

(22.5)

which contradicts the assumption that the line C, = O passes
through the positive quadrant.

Thls completes the consideration of the case D > O when both
C2 = 0and C, = O are contained in the positive quadrant. The com—
rlete result 1is

Theorem 7, l£ D = gq,rars + qgarreq — qQarir2 > 0, the solution to

the problem of maximizing f(oo) subject to (19.1) is given hy

Fig. ID.

Cg-o

Fig. 10

It does not seem possible to specify L in any simple way.
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Finally, let us discuss the degenerate cases in which Cy = 9
or C = 0 do not lle 1n the positive quadrant. If C, = 0O lies
outside, the C—region extends all the way to the y-axis. 1If

C2 = O lles outside, the C-region extends all the way to the x—axlis.

§23. D < O.

Let us now conslder the case 1n which D < 0. 1In this case 1t
turns out that C 1s never used,which meatns that the solution 1s as
given in the two—cholce problem.

Lemma 11. B 18 used near the y-axis.

Proof: Preclisely as before.

Lerma 12. 7The lower boundary nf the B-reglon adjo?ﬂlQE_EEE y-axis

lg Cy = 0. On that line AB 13 used. Below the llne B 1s not used.

Proof: As iIn the case D > O we conclude that a B—policy must be

followed by one of the mixed policles AB or BC. However, in the
present case where D ¢ O, the mixed policy BC cannot be used in an

optimal strategy. For when BC 1s used, we have

Ki(t) =p [Cidz + Caby] < 7, (23.1)

because C, = O 18 below Co = 0 and Cy = 0. Also K, (0oo) = Kz (00)

= Ko{00) = 0, and K2(t) = Ki(t) = O when the mixed policy BC is

used. Hence K, (t) > Ka(t) = K4(t) when the BC-min 18 used. This,
however, 1s a contradiction since it implies that ¢, = 1, $o = b5 = O.
Hence, a B—policy must be followed by use of AB on C; = 0.

Agaln the same argument as above shows that B 1s not used

below C, = O.
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Lemma 12. A 18 used in the entire region between C; = O and the

x-axls.

Proof: First, C i1s not used just before the AB-mixture. While AB

1s employed, K;(t) = Ka(t) = 0, ~nd Ki(t) = p[cCa¢,+Cabg] > 0, as
can be seen from Flg. 7. 1t follows that Kg < Ko and K, < K; imme—
diately before the changeover to AB occurs. Hence C is not used
immediately before AB.

It follows then that there 1is a reglon below C; = O and
adJoining this line, where A 1s used. However, 1t 13 impossible
to vse another choice before A in an optimal policy. When A is
used below C,, we have

Ki(t) = 0, Ka(t) = —pC; > O, Ki(t) = —pC2 > 0. (23.2)

Hence, K, is largest for all smaller t, and the A-region extends

to the x—axis.

Collecting the ahove results, we nave

Theorem 8. If D = j3,rzr; + gar;ry — Qaryrp < O, the 8-5latin to

~

the problem of maximizing f(oo) never uses a C-policy and has "he

two-choice form:
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24, “he Ci=e r, = rg.
.ome of the preceding arguments fall in this case because
tne C—pollcy keeps the slope y/x constant. It follows from (21.30)
and (21.3c) tha' neither of the mixed policies AC or BC 1s ever
used.
Let us fipret of all show tha' if D ¢ O, C 1s never used. "o
do thilc we compare “he recult of using A2 repea“edly wlth tha!
obtained from veinz C.

when At} 18 uced contlnually, an easy calculation ylelds

F
fy-(00) = o= (x4, (24.1)
where
L r,ro - _J1ra+3or, )
T & g s B e . (24.2)

1mllarly 'he result of uslng C con'inually 1=

f;(ao) - —Egg%;(xo+yo). (24.3)
"He inenuality fAh(oo) > fc(qo) is equivalent 10 D (

If' D> C, the above aprgument provecs tiat nn mixed policles
are purcued. Different crcses arlse depending upon whlich of the
lines T, = 0, C. = 0 pass +‘hrough 'ne positive quadrant. As before,
it can re ectablished *‘hat 1f C, = N 1s tne positive quadrant, 1t
1% better to use B ra‘her than - near the y-—axis,. Le* us now

determine where the changeover from B *o C c¢c2n b» made. Let to
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be the time of changeover. for to {t £ 00, we have

[

Ki(t) = pCa, Ka(t) = —pCsy, Ks(t) = (24.4)

Also, we must have K,(to) < Kz(to) - Kg(to). Using again the

remark that K, (oo, = Kz(00) = K,(00), we see that for ¢t ) t  we

must nave C, = O, 7Thus, B 1is followed until the line C, = 0O 18
encountered and then T is followed. 1In this degenerate case C

plays the role of BC. Similarly, changeover from A to C »ccurs

when Co = 0 13 reach2d. 1If Ca does not 1lle within the pnsitive
quadrant, C 18 used up to the y-axis. If Cp, = 0 does not lie within,

C 1s used up to the x-axlis.

825. Nonlinear Utility—Two—cholice Prcblem.

Let us now consider briefly the two—cnolice pr-blem treated in
913—12 under the condition that we wlsh t»> maximize the expected
value of some function of the total return P.

In view of the results obtalned for tne discrete problem, it
is somewhat surprising to find that for every utility function u,
which 1s strictly increasing and has a continuous derivative, the
-optimal strategy 1i1s precisely the same a8 th-t for the linear utility
problem snlved above.

Since any monotone—increasing utility function can be approxi-
mated arbitrarily closely by a function of the above type, it fol-
lows that this policy 1is optimal for any monotone—increasing utllity
function, although not necessarily unique. A function of thls claas

of great theoretical and practicsl importance 1is




u(R) = © for 0 ¢ R RS
(2.1,
-1 for R > R_.

he expected value of u{F) 12 the proatil!'y that R 1= greater
tnan or equal to PO.
Let the variablec have thelr previnuc connotatins-ng; we obh*ain

15 before

R I GLEI x(7) = x,
- () ray (), y(0) = v, (25.2)

Let z(t) = X, * ¥ - x(t) — y(v), tae quanti'y wnich reprecents
the total amount of yold mined up to t. 1f the machine has survived

unt!'l tnen. The expected value of u(P) 1s ziven by 'he inteyral

“his {s easlest seen by consideriny tha' we are pald for 'he
‘otal amoun: of gold triar 'he macnine has mined ar *re time *nat
the machine 1: deztroyed.

Nur aim i¢ to find ‘he functions é, (1), é-(*) sublec

A I G T LRI (25.4)

whlcn maximi-e G,
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Pursuingz the =ame perturbetion techniques - s 1bove, we Sbialn

after some straign' forward calculation

00
T -6 a€f [Ki(1) a(t) s %p(t) ot 0ar + o(€),  (25.9)
o)

whie re
o0
2= e (i) = Bk A e )
8 ALy e
- (25.6)
ke = azp(t)ulz(1)) = J [p'(s)u (z(s))rav(~)
t _ aapt(e)ulz(e) Gar.
Furthermore,
' ' (25.7)

Ky(t) — Ka(t) = o{t)ur(z(t)) [gQiray(t) - qaryx(t)].

It follows that If we assume that u'(z) > N wien z > O, the

arzuments an® results of tihe linear cacse carry over wl h very slicht

modifica'ion:.

$25. General Remarxs.

An eccential feature of our iInvestlira lon lles in viewing 13
pollicy in 1ts extentive rather than normal form, to borr w ‘he
terminolcgy of the von Neumarn theory of games, fno'ner way of
stating *nl= 1¢ thiet instead of determiri -~ *ne c mplete s~lu'ion
for one set »f initlial parame'ers, which would correspond ‘o deter—

mining rthe exiremal curve: 1In tne ¢l =clical tnecry »¢ tne calcilus
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of variations, we attack our protlem by imbedding it within the
family of problems of this type with arbitrary initial parameters.

Having performed this imbedding, we seek to determine the
optimal continuation from each position. A knowledge of the best
next move from an arbitrary position ylelds the complete set of
moves from any given position.

This 1s the approach used throughout the theory of dynamic
programming. Although it may be considered a variant in problems
of deterministic type, it is in many ways a necessity . problems
of stochasti: type.

It 1s possible to treat many of the classical problems in the
calculus of variations by means of this technique. We shall enlarge
upon this point in the near future, cf. [7].

To 1llustrate these remarks let us consider the result con-
tained in Theorem %, Policy A is to be employed when (6.3) holds,
and Policy B when the reverse inequality holds. Each term in the
inequality has an i{important interpretation. The left-hand side
represents the ratio of the expected gain obtained using A to the
probability of losing the machine. Similarly, the right-hand side
represents the same ratio for B.

We see then that the verbal statement of the solution is that
at each stage we maximize the ratio of expected gain t» expected
loss, Attractive as this seems as a general principle to describe
the solution of general classes of problems of this character, it
is unfortunately, or fortunately, not correct. A counter-example
of Karlin and fhapiro [?] shows that in the discrete 3-—choice prob-
lem it 1s possible to determine the parameters in such‘a way that

the (x,y)—quadrant is divided into four regions,
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Fig. 12

inside of which the designated policy 1s optimal.

It might, however, have been expected that in the contlinuous
version, these difficulties would disappear. The substance of
Lemma 8 1s that even in the continuous case the solution will not
~ be determined by a simple criterion of the above kind. However,
as Theorem 7 states, there are only three regi-ns, as indicated
in Fi1g.10,1f D > 0; and as Theorem S asserts, two regions 1f D < O.

Referring to Fig.10, we see that one boundary, that determined
by Cq = O, 1s precisely the equality of two ratios, for the B and
C actions. Furthermore, it 1s an absorbing boundary, in the sense
that a point stays on it, once it hits 1it.

The second boundary, L = O, seems to be of more complicated
structure, and we cannot give any simple interpretation of 1its
equation. The reason for the changeover from A to C 1s nonlocal,
in contrast to the state of affairs at C, = 0.

In addition, the boundary is translucent rather than absorbing.
A point which encounters it passes through and continues across

the C—region until it strikes the line C, = 9,
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Finally, let us emphasize the interesting result of §25, which
states that the solutinon, in the two—choice problem, for a non-—
linear utility function 18 the same &s that for the lirear case.
This result 1is actually representative of a wide class of similar
results for related probiems, of both ~ne-parson and two-person

type. We shall discuss this at another time.
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v This paper may now be found in Proc. Nat., Aead. Seci.
pp. 1077-1082.
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