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"mi— i y;     A  number of  repressntatlve 

approximation   techrlques   In   tr\<>   theory   of 

dyr.amlc programming are  llluütrated   1-.  a 

discussion   of -4he equation 

f(;-)   -    '/AX    I   g(y)   + h(x-y)  + f(ay -»- o(x-yi>   i 
^<v<x   L 



COMPUTATIONAL  PROBLEMS   IN THE   TH£0RY  OF  DYNAXIC   PROGRAMMING 

By 

Plchard   Bellman 

^1.     Introduction. 

In  recent years,  as multl—etage processes have come  to 

assume a  role  of greater and greater Importance   In  the  Industrial 

and  economic  arena,   a number of   Interesting and  novel mathematical 

problems have  arisen,  many of  formidable  caliber.     The  theory  of 

dynamic  programming was created   to furnish an approach to thes» 

problems.     The essential  aim of  the  theory  Is  to   translate  these 

questions   from the  unfamiliar   field of policies,   strategies,   pro— 

grammlng and   scnedullng,   and  such seeming  Imponderables,   Into 

functional  equations which can  be attacked  by  the  precise  techniques 

of analysis.     These  equations  are,  however,   nonlinear In  general, 

and possess  the usual  feature   of problems which  occur In applica- 

tions,   namely  resolute and   Impartial   Insolubility. 

Since  a  theory   that  has  pretensions  of application  stands  or 

falls  upon   Its ability  to  produce  numbers,   It  Is   of paramount   Impor- 

tance   to derive approximate   techniques which may  be used   to deter- 

mine  numerical  solutions. 

In  the   following pages we   shall  consider a  simple  problem 

Involving a  sequence   of decisions,   first   formulating It   In  classical 

form and   then  In terms of  the  dynaiulc  programming approach.     We 

shall  then use  this   resultant   functional  equation   to  Illustrate a 

number  of approximation  techniques,  employing  the   particularly 

Important  concept of approximation In  strategy  space. 
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In  closing we  shall n»entlon briefly eoine  protlems  of more 

complicated   form to which the  same tech.- Iques are applicable. 

^2.     Optimal  Allocation. 

Ae a  slTiple exapple of a  large  class of problems  that  occur 

In  appllcat lors,   let  us  cor.alder the   following.     We are  given a 

quantity  x  > 0 that may  be divided  Into  two parts  y and  x—y.     From 

y we  obtain  a  return  of g(y),   and  frorr  (x-y)   a  return  of h(x-y). 

In  so doing  we exper.i  a  certain amount   of  our  original   resources 

and  are   left  with a new quantity ay >♦■  b(x-y),   where a and  b  are 

positive  constants   less   than   one,  wltn which   to  continue   the  pro- 

cess.     How does  one  proceed   to  maximize   the   total   return  obtained 

over N stages? 

The  conventional   approach   to   this   problem  begins  by  listing 

the allocations yi,  yz ,   •••,   v\.  at  the   first,   second,   •••   and  N 

stages.     The   total   return   from  this  seque  ce   of  choices  will   be 

N N 

(i)       J(yi. ye» •••. ys) ■ /    «(y^) ♦ /     h(x1-y1), 

where  the   variables  are   ccnstralner!  ty   the   conditions 

0 ^ yj  < x^ 

(2) x,   -  x 

Xj>   -  ay,   +  b(xl-y1 ) 

x:-   -  a>rM-l   ^   fc(xN--!   " yM-l^ 
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The  problem  1B  now to maximize  J  subject  to the above  restric- 

tions.     Since  several  of  the  optimal  y.   may  be boundary  points, 

and   In  some cases all are  boundary points,  an unrestricted use  of 

calculus   Is not  possible. 

We  are now confronted  with a problem possessing the  typical 

nasty  features  of maxlmlzatlor. problems over N-dlmenslonal  regions. 

Furtherraore,  we  observe   that solving  the  problem  in   Ita present 

form yields  too much  Information  In  the sense  that we determine 

yi »  y2»   '•*.  *nd  yv.  simultaneously,  whereas all  that  Is  actually 

required   to carry out  the   process  Is  yi   as  a  function  of x and   the 

number  of  stages  renalnlng. 

In  the n^xt section we  shall  formulate   the problem from  that 

point   of  view. 

§3-     Functional  Equation  Approach. 

Let  us  define 

(3) f..(x)   - total   return  obtained   from  N-stages using an 
optimal  policy 

It   Is   clear that   the  maximum over-all   return   Is a  function  only  of 

the   Initial an.ount  x and   the number of stages  remaining. 

If the  Initial allocation  Is y,  the   total  return will  be 

g(y)   -f  h(x-y)   •♦•  the  return   from  the   succeeding   (N—1)   stages.     Since 

It   1B  easily  seen  that  an  optimal  policy must have  the  property 

that   its  continuation after the   first  stage  must be  optimal  with 

respect  to the new Initial  amount ay + b(x-y)   and   the   remaining 
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(N-1)   stages,  w*  obtain as   UIP  total   return  due  to an  Initial 

choice  of y 

(*) RN(y)  - g(y)  ♦ h(x-y)  4-  fNM(ay  4  b(x-y)). 

Since we wish  to maximize  the   total   return, y  Is  now chosen 

to maximize  th^s,  yielding  the  functional  equation 

(5) fw(x)  -    Max    My) 

0<y<x 
'x     !   g(y)   + n{x-y:   +  f.    .(ay ■»•  b(x-y))      . 

for v.  i. 2,  with 

(6) f,(x)  -    Max     fgCy)  ♦ h(x-y 
(Xy<x 

We   shall assume  henceforth  that g and   h  are continuous   func- 

tions   In   the  Interval   [P»x] ,  so  that  the  maxima are  all assumed. 

We  have  thus   replaced   the  original  problem,  as described 

In   (l)   and   (2)   of ^2,   by   the  sequence   of  recurrence   relations   in 

(5)  and   (6)   above.     Altnough   these   recurrence   relations are   r.on— 

linear,   the  reglo:.  of variation  is  one-dimensional.     To  Justify  this 

trans format lor.  of  the  original  problem,   we  must show  that   these 

equations  above   can   be  utilized   to  yield   both   theoretical  and 

numerical   results. 
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^4.     A Preliminary Approximation. 

Let UB begin  by making a preliminary approximation  that N 

is  Infinite,     In place   Df tne system of recurrence relations of 

(5)   and  (6)  of ^3 we  obtain one  functional equation 

(7) 

where 

f(x)  -    .Max     j   g(y)  ♦ h(x-y)  ♦  f(ay + b(x-y))   | 
0<j<x   - 

(•) f(x)   -     lim f.,(x). 
:;—> oo 

This  is  Just iflei  by  the   following  result: 

Theorem 1.    Consider equation  (1) and assume  that 

(a)       g(0)  - h(0) - 0, 

(9) (t>)       0 < a.   b < 1 

{c)  g(x) and h(x) are continuous and monotone Increasing 

In [ö.xj. 
oo 00 

(d)   2        g(cnx) < oo»  Z_  h(cr'x) < GO, 

where c ■ Max(a,b). 

Under  these  conditions  there   is  a  unique  solution  wnlch  is 

c ^ntir.uous  in   [0#x^]   and possesses  the  valae 0 at 0. 



P-423 
-6- 

If 

f»  -    Max     rg(y) + h(x-y) 1 
(Id 0^y<x   L J 

fn>1 -    MAX     ^g(y) ♦ h(x-y)  ♦ fn(«y + b(x-y)) j. 
CKyOt 

we have 

(U) f(x)   -    11m f (x). 
n—> oo 

- 

For the proof of this and the five results stated below, we refer 

■io [2j and [6]. 

55«    Approximation TechnlqueB—Successive Approximstions-I. 

Let us write our functional equation  In the  form 

(B) f - T(f.P). 

where f represents the unknown function, T represents the trans- 

formation    Max I g(y) 4- h(x-y) -f r(ay + b{x-y))  , and P 
0<y<x L -1 

represents the set of known parameters, the functions g(x) and 

h(x) and the constants a and b, that appear In T. 

In theory there Is only one method to be used In approximating 

the solution of a functional equation, namely the technique of 

solving an approximate functional equation.  It Is In the choice 

of these approximate equations that practice varies. 
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•n-ie method of successive approximations  In Its usual guise 

relies upon solving the   following system of equations: 

<»> rn+l  " 
T(fn'p)' 

where  fx   Is a guess at the solution.     In more  refined applications, 

CO)  1B replaced  by 

(*1 rr.+l  -
R(rn+l'  "  •<rn'P)   -R'f.>) 

where R  Is a  transformation so  chosen as  to force   f     to possess 

certalr  desired properties or to  'ncrease  the  rapidity of conver- 

gence. 

A simple  way  to proceed  Is  to mimic  the physical  process and 

take 

(15) fi   -    Max     I   g(y)  ♦ h(x-y) ~| , 
rvv^x   L J 0<y<x 

and 

06) f        -    Max    I   g(y)  + h(x-y) > fn(ay * b(x-y))   1. 
O^y^x  L n J 

The  computations are  quite  easy  to perform and  possess  tne 

merit  of  furnlchlng useful  Information at  the same   time.     However, 

It  Is not  to  be expected   that  the  convergence will   be  very  rapid 

Initially.     Consequer.tly,  we  shall   Investigate some  other procedurea 
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§6.     Approximation  Techniques—Simplified  Equation. 

In place  of  the  abovp  approxlmatior ,  we may approximate  by 

replacing  the  equation  f • T(f,P)   by 

(17) f - T{T,?* ) 

where  P'   represents a different  set  of parameters,   or.e  which per- 

mits a  solution  ir.   toto,  or whl "h yields a stronger hold  or.   the 

solution. 

Thus,   for example,   ir.  our equation 

(LB) f(x)  -    Max     [ g{y)  + h(x-y)  ^  f(ay + b(x-y))   |, 
0<y<x   L J 

we make the further assumption that g and h are convex functloi.s. 

The following result then holds: 

Theorem 2.  !£ g and h are convex functions and the conditions of 

Theorem 1 hold, an optimal policy consists of choosing y - 0 or x. 

Although this simplifies the finding of the solution. It lo 

still not easy to find an explicit solution. 

If WP wish to obtain an explicit approximate solution, we can 

make the further approximation that 

(19)    g - ax' , h - ex1 , 

This corresponds to the approximation of log g(x) by ^ -f /, log x 

or log g(ex) by Q^ ♦ Ax. 
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In  the  case  where g and  h  have   the simple   forms  given  In 

(l5)  above,  we  have   the  following  result: 

Theorem  3.     The  solution  of 

(^ f(x)   - Max   fcx05  4  f(ax),     exf ♦  f(bx) 

subject  to 

(213 (a) 0 < a,  b < 1,       cfd >  0 

(b) 0 < d  <  f 

la   giver,   by 

(22) f(x)   -  ex     +  f(ax) 

»ex     +   f(bxj 

3   < x   <  Xü 

x,  <  x 

wnere 

(23) 

L_ 

-    1/(M) 

1   - a 

1   - b J 

In   the  general   case  wh^re   g  and   h are   convex  and   we  kr.ow   that 

y  ■       or  x  at   each   stag*-,   partial   results  similar   to   the  above   can 

he   fourd.      It   would   be   Interesting   to  k-.ow  ur.der what   further 

assumption   in  additlor.   to  convexity   one  has  a   solutl m   similar   to 

02). 
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If  g and   h  ar^   not  convex,   but   cor.cav«»,   we  "Ay  use   the   follow- 

ing result   to  ofctalr   a solution: 

Theorem  k.     Let 

(24) (a)     g(0)   - h{C)   -  3, 

(b) g'(x),   h'(x)  i 0 

(c) g'-Cx),   h"(x)   <  2 

for   x  ;> 0, 

for  x  > 0, 

and  consider  the  sequence   of approxinatlons   to   f defined  by 

(25) 
f0(x) 

fr.+ '^ 

Max 
0<y<x 

g(y]   + h(x-y)   |, 

Max     |   g(y)   +■  h{x-y -f   f    ay -t-  r (x-v 
n *- ^ ■ 

,1,2. 

For each n,   th^rc   1B  a unique  y     -  v   (x)   that  yields   the maxlxura.  »    a— ^ n n  

If  b  < a,  WP  have  yi   < ya   $ y3' ' ' ,  a-.d   the   reverse   Ir.equalltles 

for b ^ a.     Ir.   particular,   If yn (^)   " x  for  some   n   In   the ca8o 

b  ^ a,   then  y   (x)   -  x   for  m > r.,   and   the  solutlor.   of  the  original 

equation   In   (lö)   will   be   furnished   by  y  ■ x. 

Let  us  notp   finally  that   If ar.   Ir terlor maximum exists we 

must  have  simultaneously 

(26) 
g'(y)        h' (x-y 1   ♦   (a-l    1 • (ay   ^  t (x-v 

f • (x )   -  b ' ( x-y j   4   ; r ' ( a y   +   n ( x-y) ) . 

Thee^  pquatl   na   r.r-y  VP  SO". VP>:   explicitly   for  y  and   f   11' ^ 

and  h are  quadratic. 
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§7 .     Approxl-natlon  Tech:.!que—Approxlmatlor.   1 r■  Strategy  Space . 

Up   tc   now we  h8,.,p   toe'.  discussing  co-veMlor.al   approxlmatlor. 

t^ch'.lqu^s,   comr.on  to  tn^1   functional  equal lor.s   tnat arise   In  mathe- 

matical   physics.     Lr't  us   now  discuss  a   technique   that   Is  particu- 

larly  suited   tc   ly.amlc   programming. 

In   following tn^  above  approact. w^  pstatllsh^d an  equivalence 

between   the  space  of all  allowable allocations,   a  strategy  space, 

and   the   function space   jf  all   conceivable   solutions   of  our  func- 

tional   equation,     Ar    optimal   policy yields,   by  direct  computation, 

the   solutlor.   of  the   finctlonal   equation, a  d  conversely, the   func- 

tional   equatlor.,   tfirjugh   Its   determination  of  y{%) ,   yields an 

optimal   sequer.cf  of allocations. 

It  follows  therv that we  have  a duality  between  the  strategy 

space and  the  function space with the prerogative  of attacking the 

problena on  the grounds of our own choosing. 

This  immediately furnishes us with a new,  powerful  technique 

for  finding  a{proximate  solutions.      In  plac^   of approximating   In 

functlor   space  w^ may  approximate   In strategy  space.     It   Is   In 

this  way   that   we  may  m~st  efflcler.tly exploit   the   Insight  and   Intui- 

tion  galn.ei   fro'"  experience. 

For  exa-nple,   we  -night   argue   that   tne  unit  cost   Is   the deter- 

mining   factor  and   set  y   ■   .   whenever 

of gU;       N       h(x) 

ani   v   =  x   otherwise. 
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Using   this  policy   we   compute   a   function   fj(xN.     This   Is   r.cw 

used  as  »   first  approxlmatlor.. 

The   great  advantage  of  this   techr Ique   lies   lr.   the  fact  that 

It  ensures  monotone  convergence.     We  know  automatically   that   the 

next  approximation will  yield  a   superior  policy.     To demonstrate 

this,   let   fi(x)   be generated   by  a   rule which   fur- Ishes  y  given  x. 

Then 

(36) Mx)   - g(y)  4  h(x-y)   4   f, (ay >  b(x-y): 

It  follows   that   If  Mx;   Is  determined  by 

(29) f2(x)   -    vax     |   ^(y)   ^  n(x-y)  +   ft(ay   +   b(x-y:,|, 
Xy<x  '- 

we  havp   f2   ^   f,   with  equality   only   If  fj   is   the   actual   solutlo: 

Having esrabllshe-i   ".hat   f2   ^   f»   It   Is   Irmella'e   that   fa  as  dot^ 

mined   'r y 

(3d f3(x)   -    vax     i   g(yj   + hfx-y)   +   fa(ay   *   b(x-y;) 
<y<x   - 

is  greaten   thar    ")r   ^aual   t'    r2 ,   ari   Inductively   that   ft        ^  f^ 

for  n-1,2,' • • . 

The whol«  point of solving a simple model  of a decision problem 

Is  not   so much   thit   It   furnishes   an approximate   functloi ,   hjt 

rather  that   1*   furnishes a:,  approximate  policy,   which   is  row use i 

to  furnish  at.  approximate   function   f~r a mor^   compllca'ed  a';d 

r*'b 118 tic   prot lerr,. 
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§8.     Some   Ge:ierallzatior.8. 

Let   us  consider  several   Immediate  generalizations.     We  may 

first   of all  consider  the   case  where   the   return  and   the   cost  are 

both   functlor.s  of  the   stage.      Thp   resultant   functional   equations 

then  have   the   fonr 

bi r,(x) Max     |   ak(x,y)+fk+ibk(x,y))I 
3^y<x   L *"-   '^ J 

A  more   Interesting  generalization   Is   that   vrh^r*1   the   return 

Is   not  deter^ilred,   hut   subject   to a  probability   distribution. 

Thus,   as an   Illustration,   let us  assume   that   If  tne   Initial 

allocation   la  y  there   is  a  probability  pi   that   the  return   Is  gi(y) 

■f  hj(x-y)   a: d   that   the   quantity  remaining   Is  &iy  +  b,(x-y),   and   a 

probability   p2   =   1   - Pi   tnat   the   return   Is   ga(y)   + h»(x—y)   and 

the  quantity   l^ft   Is  a2y  -♦•   b2(x-y). 

Since   the   returr.   Is   now  a   stochastic   quantity,   It   Is   r.O   longer 

possible   to speak  of maximizing  the   return,   but   rather  to  speak   of 

maximizing   tbe  average   value   of some   function   of  tnls   return.      The 

simplest   T^asur*1   Is   tne   expected   return.      Let, 

52 f(x)   - expected   total   :«turT.   obtained   using  an  optimal 
p. o 11 c y . 

t.f n,   as   atove,   we   cbtalr:   tne   functional   equation 

03. f(x)   =     •'ax p, ^g,(y)  + hl(x-y:   ■»■   f(aly 4  b,(x-y))> 
<y<x  L      t ) 

+   Pz rg5{y)   +  b2(x-y)   ^   f(a8y  >  b2(x-y))J   I 
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Results analogous   to   those described   In   tne  preceding  sec- 

tions  hold   for  this  and   the   still  more  general   form 

1 

(34) f(x)  -    Vax     f   J     ia{*,y.z)  *   f(b{x,yfz))j   dG(z,yj    |, 

where   th^  distribution   of  outcomes  depenis   upon   the   outcome. 

Functional  equations   ^f  similar  type   occur  In   the  work   or. 

the   optimal   Inventory  problem of Arrow,   r.arrls,  and  Marschak     1^ , 

and  Dvoretzky,   Kiefer,   and   Wolfowitz   [-] . 

§9-     A Particular Example. 

In  the previous  sections we have discussed approximation 

techniques which are  particularly applicable   when g and  h are 

either  concave  or convex.     Since,   In applications,   curves  with 

points   of   Inflection  are   of   frequent  occurre-.ee,   it   Is   Df   nom^ 

Interest   to see wf^at   occurs  wher. p and  h   nave   neither of   the   simple 

forms. 

A   particularly  simple   pair  of  easily    -onputa;.!*1   functions 

possessing  points   of   Inflection are 

(35) g(y)   -   r^/y   ,        h(y,   -  e 

The   equation  r. ^w  has   the   form 

(V5) f(x)   -    ''ax     |   re"^ 4  ^^/(^-v)   +   f(av +   [(x-v);    I    , 
O^y^x   - 

with 
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(37) fi(x)  -    '-'ax 

f2(x)   -    Max 
O^x 

re 

re 

:/y    ^     ^-d/ix-y 
]■ 

-^/y + e^/(x-y) 4 fi(ay + b(x_y)) 

These   functions  were  computed   for various  sets   of  values;   the 

curves  for a -   .8,   b  -   .9,   r ■  1,   c   «   10,  d  •  13 are  appended. 

What   Is striking  Is  that although  the   graphs  of f(x),   f,(x)f   faU) 

arp>   quite  smooth,   the   graph  of y  ■ y(x)f   the  maxlmlzlr.g  choice  of 

y.   Is  quite disjointed.     It  Is  probably  true,  although  WP  have  r.ot 

verified   It,   that   therp  exists ar   approximate  strategy  which   Is 

slowly  varying  In  x and  yields almost  as   large a  total   return as 

the  exact   strategy.     This  property   Is   typical   of many problems  of 

this   type. 

bjc 
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