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Summery: A number of representative

approximation techniques In tne theory of

dyr.amlc programming are illius.rat.2 1- a

128cussion of 4e equation

r(:) = “ax gly) + hix-y) + f(ay + o(x-y,, |.
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COMPUTATIONAL PROBLEMS IN THE THEORY OF DYNAXIC PROGRAMMING

3y
Richard Bellman

$1. Introduction.

in recent years, as multi-stage processes have come to
assume & role of greater and greater importance in the industrial
and economic arena, a number of interesting and novel mathematical
problems have arisen, many of formidable caliber. The theory of
dynamic programming was created to furnish an approach to these
problems. The essential aim of the theory 18 tc translate these
questions from the unfamlliar field of policles, strategies, pro—
gramming and scheduling, and such seeéing imporderables, into
functional equations which can be attacked by the precise techniques
of aralysisa. These equations are, however, nonlinear in general,
and possess the usual feature of problems which occur in applica-
tions, namely resolute and impartial insolubility.

Since a theory that has pretensions of application stands or
falls upon 1ts ability to produce numbers, it 18 of paramount impor-
tance to derive approximate techniques which may be used to deter—
mine numerical solutlons.

In the following pagzes we shall consider a simple problem
involving a sequence of decisiorns, first formulating it in classical
form and then in terms of the dynamic programming approach. We
shall then use this resultant functional equation to {llustrate a

number of approximatior. techniques, employing the particularly

important concept of approximation in strategy space.
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In closing we shall mention briefly some protlems of more

complicated form to which the same tech:iques are applicable.

%. Optima! Allocatior.

As a s8im;yle example of a large class of problems that occur
i~ applicaticras, let us cor.sider the following. We are given a
cuantity x > O that may be d!vided {rtc twec parts y and x-y. From
y we obtair a return of g(y), and from (x-y) a returr of h(x-y).
In 80 doing we exper.d a certalin amount ¢f our original resources
and are left with a new quant!ty ay + b(x-y), where a a;1 b are
positive ccnetants less than ore, witn which to continue the pro-—
cess. How doesg ore proceed to maximize the total return obtaired
over N stages”?

The convertional approach to this problem begins by listirg
wth

the allocations y;, y2, *°°, Y at the firs+t, secord, --- and N

stages. The total return from this seque:ce of cholces will te

N N
(1) J(vis y2, 00y v,) = ;i glyy) + Z_ hix, =),

where the variables are ccnstrained ¥y the cond!tions

X, = a8y, + bx,_, -y,
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The protlem 18 now to maximize J subject to the above restric-
tions. Since several of the optimal y, may be boundary points,
and in some cases all are boundary points, an unrestricted use of
calculus {8 not possibdble.

We are now confronted with a protlem possessing the typical
nasty features of maximizatior problems over N-dimensional regions.
Furthermore, we observe that solving the problem in its present
form ylelds too much information in the sense that we determine
Yi, Y2, °°°, and Yy simultaneously, whereas all that is actually
required to carry out the process is y, as a functiorn of x and the
number of stages remaining.

In the next section we shall formulate the probiem from that

point of view,

©3. Functional Equatior. Approach.

Let ua define

3) f,.(x) = total return obtained from N—stages using an
" optimal policy

It 18 clear that the maximum over-all returr 1s a function only of
the initial anocunt x and the number of stages remaining.

if the initial allocation is y, the total return will be
g(y) + h(x—y) + the return from the succeeding (N-1) stages. Since
it 18 easily seen that an optimal policy must have the property
that {ts continuatior after the first stage must be optimal with

respect to the new iritial amount ay + b(x-y) and the remaining
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(N-1) stages, we obtain as the tctal return due to an initial

choice of y
(¥) Ryly) = g(y) + n(x-y) + f, ,(ay + d(x-y)).

Since we wish to maximize the total return,y 18 now chosen

tc maximize this, ylelding the furctional equation

(8) fN(x) = Max R.(y)

-
.rg(y) +nlx-y) + f,_,(ay + b(x—y),_J.
L— Wy
for N > 2, with

(6) fi(x) = Max [g(y) + h(X—y)].
oLy

We shall assume herceforth that g and h are continuous fu:..c-
tions in the interval [0,x], so that the maxima are all assumed.

We have thus replaced the original problem, as described
in (1) and (2) of %2, by the sequerce of recurrence relations in
(%) and (6) above. Altnough these recurrence relations are ron-—
linear, the regio:. of vardatior is one-dimensional. To Justify this
transformatior. of the original problem, we must show that these

equations above canr be utllized to yleld both theoretical and

numerical results.
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Q4. A Preliminary Approximation.

Let us tegin bty making a preliminary approximation that N
‘8 infinite. n place of the system of recurrence relations of

(5) and (6) of §3 we obtain one functional equation

(1) f(x) = Max | g(y) + h(x~-y) + f(ay + b(x—y))]
oEx =

where

(@) f(x) = 1im A ) 2
N——)OO i

This 18 Justified by the following result:

Theorem 1. Consider equation (1) and assume that

(a) g(0) = h(0) =0,
(3) (b) O0<a, b <
(c) @&(x) and n(x) are continuous and monotone increasing
in @,x(;].

o0 00

(d) 5— g(c"x) < oo, g h(e'x, < w,
I

a)

where c = Max(a,b).

Under these conditions there 18 a uvrniique solution wnich 1is

contiruous in @,x; and possesses the value O et O.
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f1 = Max gly) + h(x-y)]

(1 oYX
rn+1 - Og;gx g(y) + h(x-y) + fn(ay + b(x—w))'].
we have
(1) f(x) = 1im fn(x).
- n—->> 00

For the proof of this and the five results stated below, we refer
‘" "to [2) and [6].

»

5. Approximation Techniques— Successive Approximations-I.

Let us write our functional equation in the form

(ﬂ) f'T(f,P),

where f represents the unknown function, T represents the trans-—

formation Max [-g(y) + hix-=y) + f(ay + b(x—y)):], and P
OSyS}
represents the get of known parameters, the functions g(x) and
" h(x) and the sonstants a and b, that appear in T.
In theory there is only one method to be used in approximating
the solution of a functional equation, namely the technique of

solving an approximate functional equation. It is8 in the choice

of these approximate equatiorns that practice varles.
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The method of successive approximations in its usual guise

relies upon solving the following system of equations:

(B) rn+1 - T(r P)D

where f, 18 a guess at the solution. In more refined applications,

() is replaced by

(1) r ~ R(f

n+l = T(fn’P) - R(rn)

n+1
where R is a transformation 8o chosen as to force fn to possess
certair desired properties or to ncrease the rapldity cof conver—
gence.

A simple way to proceed is to mimic the physical process and

take

p—

5 £ . grest EEE n(x-y)].

and

-

(16) fep = Max Lg(y) + h(x-y) + f _(ay + b(X-y))_J-
Oéygx
The computations are quite easy to perform and possess tne
merit of furnishing useful information at the same time. However,
it is not to be expected that the convergence will be very rapid

initially. Conseque!tly, we shall investigate some other procedures.
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©6. Approximation Techniques—Simplified Equation.

In place of the above approximatior, we may approximate by

replacing the equation f = T(f,P) by
(17) f = T(f,P")

where P' represents a different set of parameters, one which per-
mits a solution in toto, or whi+'h ylelds a stronger hold or. the
solution.

Thus, for example, 1: our equation

B  f(x) = Max [gm ¢ hix—y) + flay + wx-y:‘)].
Ogygx

we make tlie further assumptlion that g and h are ccnvex functio'.s.

The followirg regult then holds:

Theorem 2. If g and h are convex functions and the conditiorsof

Theorem 1 hold, an optimal policy conslsts of choosing v = O or x.

Although this simplifies the findirg of the solution, 1t is
still not easy to find an explicit solution.
If we wisn to obtain an explicit approximate solution, we can

make the further approximation that

h d
(19) g m@ax , h = cx’,

This correspords to the approximation of log g(x) by X, + A, log x

or log g(ex)tw oAy 4 ﬂ,x.
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In the case where g and h have the simple forms given in
(15) above, we have the following result:

Theorem 3. The solution of

-

29 f(x) = Max [cxd + f(ax), exr4-r(bx)J

sub!ect to

(21 (a) O<a,bgl, ¢,d>0
(b) 5 @ dle 't

1s give: by
d -
(22 f(x) = cx” + f(ax) , S < x < x,
= exf + (bx) , x < x
wiere
' e - lr(f_d)
DEE—
| |
' 1 —a’ |
@ x, s —— .
_——_(T ;

In the general case where - ard h are convex and we k:ow that
v =~ or x at ecach 3tage, partial results similar to the above can
be fourrd. [t would he Interesting to xrow urder what further
assumption In adiftior. Lo ¢convexlity one nas a solut!i »n similar to

2.
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.f g and h are not convex, but concave, we may use the follow—
ing result to ovttai: a solut!lo:.:

Theorem §. Let

(24) (a) g(2) = n(c) = o,

() g'(x), h'(x) 2 & for x > 0,
() &"(x), n"(x)

an¢ consider the sequence of approximations to f defined by

ro(x§ = Max [g(y) + hix-y) |,

(25) Ly J
fr+1(x) = Vax l R(y) + }1(X—_.', + fn:ay + r(x‘y:..
he A S.‘"Sx _ -

= .,,1,2,...

For each n, there¢ {8 & unique y_ = v (x) that yields the maximTum.
Yor each q n n

1f v < a, we nave y, g Ve § Y3, a-¢ the reverse inequalitles

for b 3 a. I particular, if yn(x) = x for scme n in the cas~

b { a, then ym(x) = x form > -, and the solutior. of the original

equation in (1z) will be furnished by y = x.

Let us note finally that 1f ar {:terior maximum exists we
must have simultaneously

g'(y) - h'(x=v, + (a2t t'(ay + 1 (x-v | =
(26)

\

fr(x) = t'(x—y) + ' (ay + v(x-y) .

Theee equat! na moy te B8olved explicitly f2or vy and £ |{r

ar.’ h are quadratic,.
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$7. Approximation Tech:ique—Approximatior. ir. Strategy Space.

Jp tc now we hgwe Leer dlsgcussing co'verntioral approximatior
techr.iques, comron to the furnctional equations tnat arise in mathe—
matical prwvsics. Let us now discuss a technique that 18 particu-—
larly suited t- dy-amic programmi-g. 0

Ir fol Xowlrg inp at*ove approact we established ar equivalence
tetweer. the space of ail allowarle allocations, & strategy 8pace,
ard the fu:ctinn space :f all -~orceivaple solutions of our func-—
tioral equatin:.. Ar »ptimal policy ylelds, vty direct computat!on,
tne 8~ lutlo:. of tre finctioral equation, a 4 conversely, the func-—
t1o:.2a]l equatio:, through its determinatic. of v(x), ylelds a:.
‘ptimal seque:ce of allocations.

It follows then that we have a duality between the strategy
space and the function space with the prerogative of attacking the
problem on the grounds of our own choosing.

This immedlately furnishes us with a 1ew, powerful technique
for firding approximate 8olutions. [n place of approximating in
functlor space we mayv appr - ximate In strateyy space. [t !8 In
tii1s way that we may m-8t efficlertly exploit the 1insight and {ntul-
tion galred o~ experience,

For example, we might argue that tne unit cost 1s the deter—

mining factor and set v = _ wnenever

g(x) hix)
27 T+ x > (Tayx

ant v = x otherwlse.
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Using this jolic, we compute a functi-n £, (x). This !s ncw
used as a first approximatior.

The great advantage of this techrique lles 1r. the fact that
it ensures monotone converger.ce. We xnow automatically that the
next approximatinn will yleld a superior policy. 7o demorstra'e
this, let f,(x) be gernerated -y a rule which fur tshes y given Xx.

Then
@ fi(x) = g(y) + hi(x-y) + fy(ay + d(x-y) .

1t follows that if fo(x is determined by

p— —

(29) f2(x) = ¥ax | r(y) + n(x=y) + fy(ay + b(x-y .|,
3§y§} = -

we have fo 2 fy with equality orly If f; 18 the actual solutio .
riaving establlished <hat f, > ) 1t 1s immelia‘e that 3 as deter-
mined ty
(30 fa(x' = Vax I—g(y,‘ + hix-y) + fa2(ay + r-(X—.v);]
A§55x -

{s greater tha: »>Sr ~qual t« 95, ar! inductively tha: fn+1 > f{
for rml1,2,° " ".

The whole point of solving a simple model of a decision problem
{y not =0 muct, that 1t furnishes ar. 8pgproximate functior, rg
ratner trhat 1* furnishes a:. approx:imate policy, wnich i8 ! ow use!

to furnish ap approx:imate functlior f-r a more complicated and

rea.letic protlen.
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bo. Some Generalizations.

Let us consider several immediate generalizations. Wwe may
first of all c¢onsider the case where the return ani the cost are
both functions of the stage. The resultant functioral equatliorns

then have the form

(31 r (x) = WMax [jak(x,y)+fk+{bk(x,y):]-
R

A more interesting ge-eralizatior 1s that where the return
{8 not determired, hut subject to a probabillty distribution.

Thus, as ar. {1lustration, let us assume that if tne ({nitlial
allocation 18 y there is a probarility p, that the return 1s g, (y)
+ hy(x—y) a'd that the guantity remaining !s a,y + b,(x-y), and a
orobarility p, = 1 — p; tnat the return is go(y) + he(x=y) ani
the quantity left 18 agy + To(x~y).

Since the returr 1s now a stochastic quantity, it 1s o longer
possible to sreax of maximizing the return, tut rather to speak of
maximizirg tlie average value of some function of t:.ls return. The

simplest measure {8 tne expected return. Let

2 f(x, = expected total :eturr. ohtalined using ar optimal
ol iey .

Trer., as atove, we chtaln trie functional equation

65 f(x) = “ax [Fx %81(3’) + hy(x=y, + f(a,y + m(x*y,‘)}

<X
+ 72 {82()'\' + ho(x—y) + f(agy + ba(X—y}}}l
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Results analogous to those descrited in tne preceding sec—
tions hold for this and the still more gereral form
1 =
(34) r(x) = Max [_ J Calx,y,z) + f(u(x,y,2)) ] 13(z,y; |,
Ogygx = © -

where the distribution of outcomes depenis upon the outcome.
Functional equations ~f similar type occur In the work o

the optimal inventory protlem of Arrow, rarris, and Marschax 1 ,

and Dvoretzky, Kiefer, and Wolfowitz [

99. A Particular Example.

In the previous sections we have‘ﬂiacusaed approximation
techniques which are particularly applicarle whe: g and h are
elther concave or convex. Sirce, In applicatio s, curves witin
points of inflection are of frequent occurre-ce, it {8 of come
interest to see what occurs wher. g and h n.ave refther of the simple
forms.

A particularly simple palir of easlly ‘computatle functions

possessing points of inflection are

i /v
(35) gly) = ™Y | n(y - e
The equation :..w has the form
(36) f(x) = “ax | re—c/y + —a/{x—y) + r(ay + (x=y,;, |,
0gygx = -

with



pP-423

-15—
(37) fi(x) = ax [re—c/y ¢ p‘d/(""y)],
ogygx
fo(x) = Max ’- rv‘c/y + e—d/(x—y) + £ (ay + b(x—y))] 

These functions were computed for various sets of values; the
curves fora = .8, b = .G, r =1, c = 10, d @« 15 are appended.
what 18 striking 18 that although the graphs of f{x), f,(x), fa(x)
are quite smooth, the graph of y = y(x), the maximizi.g choice of
y, 1s quite disjointed. It 18 probatly true, although we have riot
verified 1t, that there exists ar approximate strategy which 1is
slowly varying {in x and yields almost as large a total return as
the exact strategy. 7This property 18 typical of many protlems of

this type.

bJc
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