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BOTTLENECK PROBLEMS AND DYNAMIC PROGRAMMING
Richard Bellman

§1. Introduction.

\Eﬂmhe purpose of this paper 1s to indicate how the theory of
dynamic programming provides a mathematical formulation and a sys-—
tematic approach to an interesting and significant class of pro-
duction and allocation problems, which-we-shall call "bottleneckd
problams. -The follewing two pro;Ih-.»are—typto.§v~
Problem 1:
At some initial period we possess a quantity x; of steel and
& capacity xp of steel production, with the privilege of
dividing the quantity x; into three parts, y:, Y2, ¥s Where y,
is to be used to increase the capacity, ya2 to be used together
with the present capacity to produce more steel, and y,; to
remain in the stockpile. Given that this allocation and pro-
duction process continues for a fixed number of time periods
and given the increase in capacity determined by x; and y, and
the increase in the quantity of steel determined by x and y,,
the question 18 to determine the allocation policy which maxi-
miges the quantity of steel in the stockpile at the end of
the final period.

Problem 2:
We are engaged in the manufacture of an item which requires
two component parts. We possess resources which may be used

to increase the rates of production of these items. Assuming

A
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that we know the relation between rates of production and
the rate of allocation of resources, what policy of allo-
cation of resources do we employ in order to maximize the

output of complete items over a fixed time interval?

These problems in their discrete forms where decisions are
made at a finite number of fixed times may in some cases be attacked
by the computational techniques of the theories of linear and non—
lirnear programming. However, not only do the simplest problems,
taken over time intervals of quite reasonable length, give rise to
matrices of unreasonable dimensions but, more serious from the
esthetic and mathematical point of view, this approach takes no
cognizance of the intrinsic structure of the process.

If we consider the problem in its continuous form (an approxi-
mation technique which almost always results in a great analytic
simplification), simple assumptions of linearity yleld the system
of differential equations

%‘-— = a;y1, X3(0) = ¢y, (1)
%%L = =¥1-¥2 + Min (b;X;,82y2) = (82-1)y2-¥1, Xe(0) = cq,

with y; and yp subject to the restrictions

(a) yi1,y2 20
(b) yi+ye € x2 (2)
(¢) ye &
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The term Min(b;x,,agys) represents the bottleneck condition and
is the mathematical equivalent of the limitation on the growth of
the steel stockpile due to insufficient capacity. Our aim is now
to maximize xg(T).

In this form the problem may be attacked by classical methods
of the calculus of variations utilizing Lagrange multipliers. How-
ever, once again this method is too general and the particular
features of the problem are overshadowed.

A third attack on problems of this genre is afforded by the
very interesting techniques developed by R. Isaacs in his study of
a class of continuous games. Although there are some points of
contact between our methods, the conceptual bases and the analytic
continuations are quite distinct. In particular, his techniques
would seem to lead to grave computational difficulties.

Let us mention that a simple interpretation of the second
problem above leads to the mathematical question of maximizing

¢
6f Min(x,y)dt over all f, and fp satisfying O < f,,f2 < M,

3} (fy+fe)dt < ¢g, where

-g-:—-l.x+agy+f-, X(O).C;
(3)

-%{—-aax-o-n.y-o- fo, (0) = ca.

§2. The Dynamic Programming Approach.
We shall consider only the first problem in discussing the

application of dynamic programming techniques. For a brief dis-
cussion of the theory and some typical problems we refer to [1], [2].
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Our first step 18 to imbed the prohlem within a continuous
family by taking the quantities x,, x and T, the duration of the
process, as the basic state variables. The effect of any deci-
sion, where by a decision we mean a choice of y;, v2 and ys, will
be to transform these state variables into a similar triple. The
eriterion function Max xp(T) may be written f(x,,x2,T). Using
the intuitive and obvious property that an optimal policy has the
property that its continuation after any initial decisions must
also be optimal with respect to the new state variables, we obtain

the characteristic functional equation of dynamic programming

f(cyi,c2,84t) = DM@::’] f(x,(s),x2(s),t),

(1)

r(ct .Czno) - Ca, Ci1,C2 2 o,

where x; and x; satisfy (1) of o1 and by Méx] we mean that the
D|O,s

maximum is to be sought over all y, and ye which satisfy the res—
trictions in (2) of §2 over [0,8]. It 1s quite easy to prove by
elementary arguments that the maximum is assumed. Purthermore, it
follows readily from (1) that the solution is unique. For setting
t « 0, we obtain, using the initial condition

f(cy,c2,8) = Max_ f(x,(s),x2(8),0) = Max xa(s) (2)

p[®,8] p[0,8]

Hence the functional equation is equivalent to the original pro-
cess. Alternatively, it is easy to establish directly by successive
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approximations that (1) has a solution.

Assuming that f has well-behaved partial derivatives with
respect to the basic variables, we obtain via a limiting process,
as 8 —> 0, the partial differential equation

f f
3¢ - e, [.,,, 4L 4‘((‘:—1)12-71)—%;;] (3)

where by D[0] we mean the region in y,,ys space described by

0 < Y1472, Yi+y2 £ ca, ya2 £ bicy/ag (%)

Since it seems rather difficult to prove directly that the solu-
tion of (1) possesses the requisite continuity properties, an
indirect approach is used. It is first shown without difficulty
that any solution of (3) satisfies (2). Having obtained a solu-
tion of (1) by the use of (3), the uniqueness theorem tells us
that it is the solution of (1).

Turning to the task of finding solutions of (3) we first con-—
sider the case of small t where the solution is immediate. Having
cbtained f for small t, the partial differential equation is now
utilized to deduce the form of solution as t grows. Since this is
a "bootstrap"” method it 1s necessary to verify with great care
that the f obtained in this fashion is actually a solution of (}).
Having found f we can now determine whether or not the optimal

policy is unique. It turms out to be so in this case.
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B4. An Outline of the Analytic Procedure.

Let us give a short sketch of the steps to be followed in
obtaining the solution of the maximization problem. We shall con-
sider the most complicated case where no capacity restriction exists
initially, 1.e., ¢c2 < byjc,;/ag. For processes of short duration the
solution is clear, y; = 0, yz2 = Xg, ylelding f = c;e(."l)t.

This policy 1s pursued until a bottleneck develops. Using the
above allocation program, this will occur as socon as t exceeds

Ty = (10g bycy/aeca)/(8e-1).

| In order to obtain the solution for times greater than T,, we
rewrite the right side of (3) of $3 in the form

? f
-g-{——- gtgj [yx(a. 2,’_." - a:. ) + (a2-1) ’%G Ya] . (1)

The location of the maximizing point (y,(0), y2(0)) will depend
upon the sign and magnitude of the coefficients of y, and yg. For
t < Ty, the coefficient of y, is uniformly negative, while that
of yz is uniformly positive.

Proceeding on the assumption of continuity, we suspect that
the solution for t slightly greater than T, will have the form
Y1 =0, yoa=Xp for 0 s<T,and y;, = 0, ys = byx,/ap (due to
the capacity restriction) for T, (s S t.

The function f will now have the form

f = -;b-{—s-l- + (t—’r;) %:llb10g (2)
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In order to find out how long this policy endures, we apply (3)
of §3 at the point s = T;. Starting from this point we see that
f has the form oy + (ag—1) D303 (t-T;)/ae-
The coefficient of y, in (1) 1s a, ¥/ 203 — 3/ decs
= a;by(ap-1)(t-T;)/a2 - 1. This is O at t-T; = az/a;b, (ap-1) = T*.
This shows that this modified policy is optimal for Ty { t { T
+ ag/a;b; (az-1).
For larger t, there will be an interior interval during which
y1 = Xp—b;X;/28p. This corresponds to allocating steel to increase
the capacity of steel mills. For large t, the optimal policy has

the form

y1 = 0O, y2 = X2, 08Ty

by Xx b o
yl'x2"—g';“" Y2-'_&§L, Tls_sst"l (3)

b
yi =0, y2=2A4, t-T"¢<sgt,

where T" 1s as above.

Since we have pursued a bootstrap method it is essential as
mentioned above that this solution be verified. With application
to inter-industry problems in mind, it is vital that this verifi-
cation be analytic rather than numerical. The detalls of the veri-
fication are not trivial and we shall postpone any discussion until

a future time.

§5. Discussion.
The method we have presented in skeleton form is applicable

to a large class of problems related to the maximization of functions
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or functionals depending upon the solutions of differential
equations. It is also applicable to various classes of multi-
stage continuous games, such as games of survival.

If—as is necessary in more realistic mathematical models
dealing with the production of capital goods—time lags are taken
into account, the complexity of the problem increases.

A complete and detalled treatment of the above problem will
be presented subsequently, together with a discussion of extensions

in the directions Jjust cited.
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