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(K) ^   -   CpKy^nr'   ooa  Kx 

(12: ^2  -  De 8ln Kx 

(13) p2 - P0 - (p+gtV^y 4. />2(02)t 

wnrr»3 

(1^) mf   -  K2   ^  A-iL_ 

In order  that   the   velocity  com^ orients   remain   finite   for y —> — oc , 

It  Is  necessary  that  the   r^al  parts   of rl   and  m8   be   positive. 

Let  the   Interface  be  giver   by  y  - T)(x,t).     Th.-n 

(15) ^t   * 

or 

(l6) /Jt   -  K(A^B)ent  cos  Xx 

from which 

(17) 71 .  K(A+E)n   1ent  cos   Kx 

The  boundary  conditions  at   tnp   Inten'af e  ar^ 

(l8j Uj     -   Ua 

(19) v,   -  v2 

(20) -  Pl   +  2^   -^     -   -   P.   -   2/^.   -^ 

v / dx dY ^ ÄX dy   ; 





A,   B,  ani  D.     Th*»y have  non-trlvlal  solutions   If ard   only   If  the 

determinant  of  the  coefficients   vanishes, 

(26) 
K 

2AK8 

m 

A(KÄ+m!) 

n 2^^1111 

2A
K2 

^n  +  2/^K2 

m? 

-/ad^mi), - C 

-2^2 fOn; 

J 

This equation  reduces  to 

(29) [-(>   +   (fi   ^p2)n2jr(^K ^/^ma)  4   (^K  +>i,Tnl) 

>   ^nK   l^iK  +/^m2J^K  -f^mj   - 

Equation {2')),   together with (10) and (14), gives a polynomial 

equation of *pnth legree In n.  Since th^ roots cannot be directly 

determined, It will be more profitable to avoid rationalization 

and see what 'nfonnatlon can be obtained by other neans. 

In Section 1 we found that n was oosltlve, which Irrplled that 

Instability occurred, when (g+gi) was negative.  There 

(50)    n* - -(SyO^-fOK 

The   value   of n whlcn  determined  chiefly  ^ow  fast   the  amplitude 

of  the  disturbance  grew was 

(,1) n - +    L=iSi&ll.{£iz£LlL 
1      f,   ft 
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In   th*»   prt'Hent  chse,   then wo expect   that  when p»  -(g-^-gi ) (^»-/'i )K 

is  punitive,   therv1   will   be  al   leact   jre  r   ot  of equation   (29)   with 

positive  real  part,  and   that  for  ihiv  root, 

(32) Re(n)  ^ Ö 

We shall determine whether equation (2C^ has a root with posi- 

tive real part by considering n a complex variable and applying 

th«» principle of the argument to the rlf.^t half plane.  So long 

as n remains In the right half plane, the quantities mi • v/K2-»- -£-i— 

and  m2   "\/K
2 remain  on  one  brar.ch  of  their domain  of 

values,  so we will  run   Into no  confusion  1 f we write equation   (29) 

as 

(3?) [-£+   (pi + ft^f^K 4^/^F    ♦A>/0*n    4^2K ^fT^T/V»] 

■^nK    /SK  ^K2   V^^ir^K  \JW   ^  ^i/3»"]   " 0 

Let  us  use   the  contour  C  consisting  of the   part  of  the   Imaginary 

axis  between   (0,n)  and   {0,-K)  and  the  seml-clrcle   In  the   right  half 

plane  with   this  segment  as  diameter. 

If we  denote   tne   left-hand  nlde  of equation   ();)   by   f(n),   the 

principle  of  the  argument  states  that 

W J  —.Alii    dn  -  l[changeln argument  of f(n) arovnd (T] 

« 2Trl [number  of zeros   of  f(n)  within C] 
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flctore  of  the   first  term and   Increase  the  second   term,   to 

counterbalance   the change   In of-     Thus  the  root  of equation   (40) 

of Section 2  Is an upper bound  on  the root  of   (8).     ThlB  la irerely 

a statement  of  the physical   fact  that  the  rate   of growth when both 

viscosity and  surface   tension are  considered   la  less  than  that 

when viscosity alone  ie. considered. 

From  the   study made  of equation   (39)   In Section 2 we  can give 

an upper bound   for the  root  of   (8),  namely. 

(12)       n <    -(A +r*}*2 ± ^J +/V^_- (s^M/VAM/^V^ 
(ft + ft) 

and   for all K, 

il3)       n<    C-(g^)(fi-Afl2/3 

The upper bounda  on n given  by  (9),   (10),   (12),  ar.d   (13)  will 

not uaually be  of great practical  value.     For particular caeca, 

numerical methoda muat be  uaed. 

A  little  can be said about  the  frequency  for »*ilch  (8)   haa 

maximum  root.     The effect  of  viscosity Is  to shift   the maximum toward 

smaller K,   or f-eater wave  lengths.     Furthermore,  n  haa a unique 

maximum aa  a  function  of K. 



Sec11 on  ^;     Nutnerictl  ExaaplftB. 

In  order to demonstrftte   the  r-ffects  of  surface   tension and 

vlBcoRlty,  we give   some  exAmplea   for ordinary fluids. 

Kxample 1.     If  the   two fluids  Involved  are air and water,   sur- 

face   tension would  be  expected  to play an   Important  role   In  the 

development of Taylor  Instability.     We  use 

(1) fair - 0 

(2) fwaler  •   1   g/cc 

(3) Tj   - 71»  dynes/cm 

(*♦) g ■♦-  Ri   - -2  x   10*  cm/sec2 ^ ^20g 

Figur*»  1   shows  values   on n  vs.   k when  surface   tension   Is   con- 

sidered  and  when   It   Is  neglected.     The   corresponding equations  are: 

(5) ns  - 2-104   K  - 74K3 \nd, 

(6) n*  - 2  x   10*   K 

For the  surface  tension case,  n has a maximum of about  355 

at  K  - 9.5  ( /\ - 0.66  cm)  and drops   to zero at K -  16.4   ( ^- O.38 cm) 

The  deviation  from  the  no-surfac«  tension  case  Is   Indistinguishable 

for  K  <  3   { ?\  > 2.1   cm) . 

Experiments have bem made by Lewis [j] for accelerations on 

the order of that used above, at wave—lengths on the order of one 

centimeter.     However,   the  published   results  are not   In a   form which 










