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Abstract

\\:§The model used 18 that of two fluids of infinite depth, with
the interface initially in the form of a sine wave with amplitude
small compared to wave length. The fluids are considered incom—
pressible, and only the linear terms in the equations of hydro—
dynamics are used. The first four sections discuss the effects
of surface tension and viscosity. The fifth gives a few numerical

results to i1llustrate the main points of the preceding sections. ( )



EFFECTS OF SURFACE TENSION AND VISCOSITY ON
TAYLOR INSTABILITY

Richard Bellman
Ralph H. Pennington

Introductionf

If two different fluids having a common plane boundary are
accelerated in a directicn perpendicular to the boundary, any small
irregularities in the boundary will tend to change in shape. If
the acceleration is directed from the more dense to the less dense
medium, the irregularities will tend to smooth out (in the absence
of external forces). Thus the plane configuration of the inter—
face is a stable one. This can be 1llustraled by th=2 usual example
of a glass of water sitting at rest. If one considers the force
of gravity to be replaced by an acceleration which produces the
same effect, the water and the air are undergoing an upwerd acce-—
leration. Since the acceleration 1s from the more dense to the
less dense medium, the air-water interface 18 stable.

Returning to the general case, if the acceleration 1s directed
from the less dense to the more dense medium, irregularities of
the interface will tend to grow. This 18 the eifect known as Taylor
instability. An example 18 the case of glass of water turned
upside down. Here again the force of gravity may be considered to
be replaced by an upward acceleration. The acceleration is from

the air to the water, and the air-water interface is instable.

* The results in this paper were obtained 1. 1951 while both authors
were in residence at Princeton University.
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The water, instead of maintaining a nearly plane lower surface
as it falls, will tend to Jet out into long spikes. It 1s the
formation and rate of growth of these spikes which we wish to
investigate, taking into account the effects of surface tension

and viscosity.

Section 1: Taylor's Results.

Let us begin by presenting an account of the work done by
Taylor himself [4] (see also [2]). The model used 1s that of two
fluids of infinite depth. The interface (neglecting perturbations)
is the plane y = 0, the y axis being vertical. The initial pertur-—
bation will be of the form cos kx, with amplitude small compared to
wave length. The problem is then two-dimensional, and the true
equation of the interface at any time 18 y -47(x,t), where the func—
tion'y(x,t) is to be determined from hydrodynamic considerations.
The fluids will be considerec to be Incompressible, and only the
linear terms in the equations of hydrodynamics will be used.

The linearized hydrodynamical equations in either fluid are:

(1) u + N = 0
1
(2) ut+—f-x-0
(3) vt+—%,—py+s+sl-0

Here, a8 usual, u = component of velocity in the x direction,
v = component of velocity in the y direction, p = pressure, /9 -
density, g = acceleration of gravity, and g, 18 the upward accelera—

tion of tie system. These equations have solutions of the form



P-403

(l’) u-"on V'-Qy
(5) P =D, — (g+81) Py + 0y,

where ¢xx + ny = 0 and p, is the mean pressure at the interface
in the unperturbed condition.

For the upper fluld we take
(6) 0y = Ae XY £(t) cos Kx
(7) Pr = by — (8+81) Pay + A(d1),
gnd for the lower fluid,
(8) 0o = — A"V £(t) cos Kx
(9) Pz = p, — (8+81) Loy +/2(02),

the lower fluid being the more dense, 1.e.,ﬁz > f,. The above
relations satisfy the conditions that velocities are finite at
y = © and y = — oo, and that v, = vz at the (approximate) interface.

The free boundary condition at y = ”(x,t) is that
D
(10) —D'f_(y -Q(I:t)) =0 or,

(11) 1?‘{' ~MNx 1?%“ Mg =0 or,
(12) v—)lxu-—r[t-o

neglecting the non-linear term,
(13) N = v = KA f(t) cos Kx or,

t
(14) ‘q = KA ef f(t)dt cos Kx
o
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The pressures at the interface must satisfy the condition

(15) P1 = DP2.

Substituting from (7) and (9), we have

(16) e (8+81)/917l +/01(®1)t . = (8‘*81)/27[ +/02(¢)2)t or,
(17) - (g+g1) (P2 —-fﬁ)AK JE f(t)dt cos Kx + /02 (Af'(t)cos Kx)
t

0
— Pi (A £'(t)cos Kx) = 0 or,

(18) - (g+81)( P2— P1)AK j f(t)dt — (P2 + PL)A £'(t) =0

2

or, differentiating with respect to t,

(19) - (&+81) (L2 = P1) Kf(t) — (P2 +L)L"(t) = 0
so that we may take

(20) f(t) = sin h nt

(this cholice makes the fluid velocity zero at t = 0). From (19),

(21) n? = — _(&+gy) (P2 = P)K
/Da*'fx

and the interface 18 given by
(22) q = KAn~! cos h nt cos Kx

If (g+gy) 1s negative, (21) has a positive root. The dis—
turbance grows like cos h nt, 8o the motion of the interface is

instable. Thils Iinstablility exists for all positive k, i.e., for
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all wave lengths of the initial disturbance. Note that the smaller
the wave length (= -%1), the more rapid the growth of the dis—
turbance. This 1limits the use of the above result for arbitrary
disburbances. Since the differential equations used were linear,
one would expect to discuss an arbitrary disturbance by Fourier

analysis. Let the surface at time t = O have the equation

Q0

(23) v = f(x) = gc 8, cos Kx

Then at time t, we have

®
(24) y = E ay cosh nt cos Kx
where n is essentiallyVﬁE. For t ¢ 0, the series (20) will

oo
diverge unless the convergence.cﬂ‘ ? 8, cos Kx 18 extremely rapid,

since cos hVKt grows so rapidly.

8ection 2: Viscosity.

The effects of viscosity on the arguments of Section 1 are
clear intuitively. Viscosity 18 not to be expected to remove the
instability, but only to reduce the rate of growth of the amplitude
of the disturbance for any particular frequency. The amount of
tnis reduction fcr small wave lengths 18 rather startling, however.
In particular, as the frequency —> 00, the rate of growth of
amplitude —> 0.

The model to be used here 1is that of Section 1. The (linearized)

equations governing the motion of an incompressible, viscous fluid
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are
(1) U, + v =0

(2) ut+-%—px-$—(un+uy_y)

(3) vt+7—py+s+81-——(vu+vyy)

where J 18 the coefficlent of viscosity.

These equations are satisfied by
(%) u-—ox-wy, v--¢)y+y/x
(5) p=p, — (e+81) py + PO)
provided that |
(6)  Oxx * Oy = O 7’?- (Vex +Vyy) =, or. [, [.

For the upper fluid we take

(7) 0, = Ae XYL (58 Kx
-m; y+nt
(8) Y, = Be sin Kx
(9) p1 = py — (8+81)Ay + Px(O:)t
where

(10) ng = k2 + D10

1

For te lower fluig,
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(1.) O TS ALLLIPPRS

may+nt aln K

(12 V2 = e ain Ax

(13) P2 = p, - (g+zy )foy + Pa(b2),

wnere

(14) m8 = K% + ._/0_2_2___

Sa

In order that the veloclty comjonerits remain finite fory —> r @ ,
it 18 necessary that the real parta of m; and mg bLe positive.

Let the interface be glver bty y = q(x,t). Th:n

or
(16) nt - K(A+B)ent cos Xx
from which

—lent

(17) N = K(A+E)n cos Kx

The boundary conditions at tne interiare are

(18) u; = up
(19) vy o= V2
(200 —pr v 2p 2Zh e - pp oM, 22

v du; AV Q2
(21) /H‘( —5;1 + 2y /“2( >X + 5y
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The last two equations state the equality of the components of
the stress—tensor.
Substitution in equations (18) to (21) gives four conditions
on the constants A, B, C, and D.

From (1&),

(22 KAent s8in Kx + m,Be"t 8in Kx = KCent sin Kx — szent sin Kx
or
(23) KA + myB — DC + mgD = O v

From (19),

(%) Kae™t cos Kx + Be™' cos Kx = — Kce™? cos Kx + Kpelt cos Kx
or,
(2 ) A+B+C-D=0

Using (20) we have, after some simplification,

(26) r ‘(8+81)r§p2—ft)f( - Ain _2}“(2];\ % [:— +81) (Pe—p1 )K _2/“0,,1]3

| n
—_

+ Dogn + 2/QK2]C ~ 2MgKmeD = O

Henceforth, we will let —(g+g,)(fe—fi )K -ﬂ . Similarly, using

(21) and some algebra, we obtain
(27) 2 KEA + My (KB + mf)B + 24K3C - Me (K2 + mE)D = 0

Equations (23), (25), (26), and (27) are linear and homogeneous in
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A, 3, and D. They have non-trivial solutions 1f ard only If the

determinant of the coefficients vanishes,

=
1 1 1 1 _]

K m -\ mp
oM K2 M (K2+m3 ) 22 o (42 +m3

g - Pin=2p K? B _ 2y Kmy Pan + 2upK? —2 M2 Kmp

n

This equation reduces to
(29) E‘b + (f)x + P:)nzj [(}‘ﬂ( +/‘~2'“2) + (}‘2< +}‘lml)]

+ 4nK r)l,}( +/A2mzj, &49?( +/u,m.:} = )

Lquation (29), together with (10) and (14), gives a polynomial
equation of _Lenth degree In n. OSince the roots cannot re directly
determined, it will be more profitable to avold rationalization
and see what ‘nformation can be obtained Ly other means.

In Section 1 we found that n was voslitive, which irplied that

instability occurred, when (g+¢,, was negatli.e. There

(30) n? = —

The value >f n which determined chiefly uow fast the amplitude

of the disturbance grew was
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In the present case, then we expect that when ﬂ- —(g+g1) (P2=p1 )K

is poaitive, there wlll be at least ore 1. ot of equation (29) with

positive real part, and that for this root,

(32) Re (n) ¢ \/TF’\TQ/T{T’ - . _—(m/go:)y;z)z— A1 K

we shall determine whether equatior (2¢' has a root with posi-

tive real part by corsidering n a complex variatle and applyling
the principle of the argument to the right half plane. So long

K2+ lln

as n remains in the right half plane, the quantities m;, = o

and mp \/(2 P—n remain cn none branch of their domain of

values, 80 we will run into no confusion if we write equation (29)

as

(33) E-B+ (Pl*lpi’"‘ﬂ [/A,K +\4(§ + Mo an + MoK +quf +,u,/’,n]

[}HK + g K2 +/u2f3n] [}&QK :/ﬁ«f K2 +/‘~,/’,n:l =0

l.et us use .he contour C consisting of the part of the imaginary

axis between (O,R) and (0,—) and the semi—circle in the right half

plane with tnis segment as dlam~ter.

.f we denote tne left—hand slde of equation (3:, by f(n), the

principle of the argument states that

N
(34) J —-f‘;.{%;—— dn = i1[change In argument of f(n) arovnd (]
C
= 271 [number of zeros of f(n) within (]
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80 that
(35) 1im Jé__;%i%_ dn = 27i[numdber of zercs of f(n) in
s S right-half plane]
Now
r
(36) 1im f fg dn = 11w £'(Re ") 4 pel®4¢
R—> 00 R—> o f(Re™ ")
’ —r/2
—-iR
+ lim f f,;r(l%” ir.
R——>» 00 R

provided that the limits on the right-hand side exist. Since they
do, we shall evaluate them separately. To evaluate the first term,
note that the highest power of n appearing is ns/?. In the 1limit
this 1is the only term which will matter, so

T/2
el
(37) 11moo q{ L(—}&E;-v?liﬁew’d¢- 1im féé%’—m a0

R—> R—> 00 7/2

17/2 5/2 (R 10))/2 1® 17/2
= 1im —%57?—" 1Re ¥d} = 5/2 149 = 5/2 i
R—> oo _;g; (Re™Y) _;;;

Hence, in the limit the change of argument of f(n) when n
traverses the semicircle 1s 57/2. The second term in equation (36)
18 1 times the change of argument of f(n) as n traverses the imagi-—

nary axis from +1 oo to -1 oc. This change of argument can be seen

directly.
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Combining the various changes, it 1s not difficult to see
that change in argument of f(n) as n traverses the imaginary axis
is from 5v/% to 3w/4 or -r/2.

Hence

f'(n
(38, 1im go-—T{E%— dn = 571/2 + (-1/2%)1 = 271

R—> oo

Therefore, f(n) has one zero in the right half-plane, which
means that instability does occur for (> 0.

We next ask for an upper limit on the value of the real part
of this rcot. We note first of all that the root itself 18 real.

For positive reai n, f(n) 1s real and continuous in n for all k.

For n = 0, f(n) = - 2B(M +M2)K < 0. For n -V8/pitpfe

f(n) = 4nkK [J4K +\ﬁ§K2 + M2 fon] [MeK +v;/(—¥x2 +Mafun] > o.

Hence there 1s a positive real root between n = O and n -\/Zby%+f3 .

We already have, then, an upper limit on the root. At the root,
n <\/ﬁ/f,+'a‘. - This 1is just as we expected, for the positive value

of n when viscosity was neglected (Section 1, Equation (1%)) was

\/B/7ﬁ+f5 .

We can find an upper bound on this root which shows more about

the nature of the root. To do this, we rewrite Equation (33) as

1 1

i
) 1 -1 1 " B-T———-— '-?T\
(39) [(g +8) (Fe—f1)K + (P +t°z)n:’{‘ﬂ‘x+ P + ey

+ 8nK = 0
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(bear in mind that g + €1 18 nerative). Consider also the comparison

equation

_]
.+ 42K = O

(%0) [-(sm: ) (Pa—fi)K+ (Pr+fe) _l[_AHM JRK+ JA ?K 0

For any K, the positive root z of (40) must Le greater than the
pogitive root n of (39). The second factor of the first term has
been increased, and at a root this must be counter balarced by &n
increase in the second term or a decrease in the first factor of
the first term, both of which require an increase in the root. For
an upper bound on n, then. we have only to give the value of z. We

rewrite (40) as
(%1) (Pl*’f’z)zz + 2zK® (M+/R) + (B + 81) (P2 — 1) K =0

The pceitive rcot 1is

(42) — —(My +M2)K2 "')/(}‘1 + M2 )2K* —(g+g, ) (Pe—f1) (P2t A )K

fz +f1

The most interesting thing about this root 18 the fact that

it has a maximum for some K. Thus the introduction of viscosity has
eliminated the tendency for disturbances of small wave—length to
increase without bound. Wwe would like to know the value »of z at ths
this maximum, since this value will Le an upper bound on n for all K.
Differentiating (42) with respect to K and setting dz/dK = 0, we

obtain
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(43) K = —(g+gy) (Pe—p)
‘&st, +/J~2)

Substituting this 'alue in (41), the result is

( ) ] 73

This occcurs for

(45) X = E—!&*g;)ffg—f:%1/3§fx+£221/3
2(M+pMe )

so that for all K we have

2
(16) o< Elemleep®?

20psfe) T (Parye)

One can, of course, make better approximations for n. For
the general case this process does not seem to offer much, 8since
the general state of affairs 18 now established.

A quite complicated, but straightforward, calculation shows
that n has only one maximum.

Note that in this present Section one cannot satisfy the con-—
dition that the velocities be zero when t = 0. Apparently because
of the linearization performed, one obtains no motion at all if

one attempts to satisfy this condition.
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Section 3: Surface Tension.

We now introduce the effects of surface tension into the
arguments of Section 1, [2]. It 18 to be expected that the pres—
ence of surface tension will remove the instability for suffi-
ciently small wave lengths. This is indeed the case, as will be
shown.

To introduce surface tension into the arguments of Section 1,

we merelv replace equation (15) of that Section by the condition

(1) /Dz-fxTxY]u'o

Substituting from equations (7), (9), and (21) of Section 1,

we have

(2) - (%81) (Pe=P)T] + Palba)y = Pili)y + TN =0 o,

(3) — (g+81)(Fo=F1) A Kn7! sinh nt cos Kx — (Pz+/A)An sinh nt cos ¥x
~ T, AXK® n~! 8inh nt cos Kx = O

so that

(%) 2 e —teter)(fo—f1) kK - T K3

/ﬁ + P f% 4'f§

The condition given for Taylor Instability was that g + g; be
negative. But we see from equation (4) that the amplitude of the

initial disturbance grows only when

(5) - (grg) (fe=fi) x _ MX® 5

Fz + /% fﬁ +f2



P—403
16

or

(6) K <\// - (S*Sx%f 2= 1)

or

(7) A D> er/ 4!
—(g+&1)( 2— 1)

where A = —%1- is the wave-length of the initial disturbance.

Thus for wave-lengths smaller than those satisfying condition (7),
there is8 no instability’

Another fact of importance 18 expressed by equation (4). Since
the right-hand side has an absolute maxinum, there is a "most dan-—
gerous frequency,” 1.e., a frequency for which the amplitude of
the disturbance grows most rapidly.

The most dangerous frequency is that frequency for which n, or

n?, 1s a maximum. At this frequency, then,

8 d _ (g+ 2'—1) K———TL——KS = 0
= /oz*/ox Pz"[ol

from which

(9) K - (g+&1)(P2-Q) -

-

This explains the hanging of water droplets on the underside of a
horizontal surface, such as a ceiling. Such a droplet is under-
going an upwerd acceleration of 930 cm/sec? and will tend to drip
because of Taylor instability unless its effective wave—length 1is
too small t> satisiy (7). For water, the critical wave-length is
about A= 2v,/757590 = 1.73 cm. Droplets of larger diameter will
tend to drip, while smaller ones will tend to hang. (Actually,

of course, the true critical diameter will be different because of
circular s try, etc., but the above at least contains the prin-
ciple invo ved.gy
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Substituting this value in equation (4), we have

)3/2

2 —(g+g1 ) (P2—f1

}3-'1‘_1 /)2+F1

(10) n? =

It is remarkable to note the small effect which the numerical
value of the surface tension has on the rate of growth of ampli-
tude. Although 1t 1s the quantity which places a 1limit on the rate
of growth of amplitude, 1t is felt numerically only in the one-—

fourth power, as equation (10) shows.

Section 4: Viscosity and Surface Tension.

In this Section we combine the results of the two preceding
to give an over—all picture including both surface tension and
viscosity. We would expect that as in Section 3, there would be
no instability for small wave lengths; and that for longer wave
lengths, the rate of growth of amplitude of the disturbance will be
less than that given in Section 3.

The procedure will be to take the argunents of Section 2, where
viscosity 1s considered, and alter them to include the effects of
surface tension. To do this we must replace equation (20) of

Section 2 by

X 2
(1) D2 + 2 Mo g;"‘»,p,—z/u»,%;_‘_'r,_a_ll_-o

Substitution in this equation from equations (7) — (17) of Section 2

yilelds
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(2) [- =+ fin + 2 K2 ]A + [_ -+ 2/4,Km1:]B
+ [- 2/u3x3 - p,rﬂ C + 2MzKmeD = O,
where a = p(g+g- )(ez—rx JK — T,K3.
The other three conditions on A, B, C, and D are the same as those

in Section 2, namely:

(3) A+B+C~-D=0

(equation (25) of Section 2)

(%) KA + my B —-—KC + mpgD = O

(equation (73) of Section 2), and

(5) 2 JuK2R + pM (K2 + mf)B + 2 JUK2C — Up (K2 + mB)D = O
(equation (27) of Section 2)

Equations (6) — (9) are linear and homogeneous in A, B, C,
and D. They have non—trivial solutions if and only if the deter—

minant of the coefficients vanishes,

—

1 1 1 1
K m, —X mg
(6)
2py K2 M (K2 +mf) 2/ K? M (K2+md )

—Tt fmgar® - Tegpkm 2Kt 2fekn

—
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This equation reduces to

(M [ & (Arfein®] [k + pema) + (faK + fam) |

-

+ br K EA,K +/43ma] {24,}( +’1le,_’ =0

This is preciecly equation (2G) of Section 2 with ﬁ = —(g+g1)(P2—A )X
replaced by & = —(g+g:)(P2—f1)K — T1K3. 1In Section 3, where sur—
face tension alone was considered, we found stability for € O
and instability for « > O. We shall show that these conditions still
hold.

For « > O, the result is immediate from Secticn 2. Para—

phrasing the results of Section 2 for « > O instead of 6> 0, we

have: for « > 0, equation (7) (where j;m, -//LfK’+,‘ﬁP,n and

Melg -\ﬁtixz-c»}(,f’gn ) has just one root with positive real pa-t. This
root is itself real and 1s less than,/&/A1+f2 . We will return
to the problem of a better estimate of this root after proving
stability for « < O.

To establish stability for « < O, we again apply the principle
of the argument, as in Section 2. The result i1s established by a
series of straightforward but laborious arguments which we shall
omit.

We turn now to the instable case, &« > 0. We found that in this

case the equation
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(¢)

Y2 1 1
[:—( + (A +/°2,n][/“x +ﬂﬂ e +/‘2K +/m]
+ 4nK = O
had one positive root.

There are two immediate upper bcunds for this root. The first,

already given, is

(9) " <\/'__g_ . | —(e+gs)(Fe—f)K — Tik>
i+ P 1+ FP2

and for all K,

vz [—(g+gy)(Pp-£)] 37
(10) < ==
; L o Ti (Fl*ﬁ)

Relations (9) and (10) state merely that the rate of growth
when both viscosity and surface tension are considered is less than
What when surface tension alone is considered.

The second upper bound on n comes from comparison of (8) with

equation (40) of Section 2. Since

(11) a = —(g+g1) (P2—fA)K — T1K® < (g+g:1) (P2—P1 )K,

the root of (8) must be less than that of equation (39) of Section 2
for given K. This may be seen in the following way. Suppose the
value of & in (8) is increased. The first factor of the first term

tends to become mo.2 negative. An increase in n will decrease both
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factors of the first term and increase the second term, to
counterbalance the change in ®. Thus the root of equation (40)
of Section 2 is an upper bound on the root of (8). This i8 merely
a statement of the physical fact that the rate of growth when both
viscosity and surface tension are considered is less than that
when viscosity alone 1¢ considered.
From the study made of equation (39) !in Section 2 we can give

an upper bound for the root of (8), namely,

(12) n < =W+ A2+ V(R s pgPrt — (gg1) (Pa=fi) (Pasf )X
(fl + P

and “or all K,

(g4 _p 273

(13) n < Vol
<(ftfa) 72 (fa+ )

The upper bounds on n given by (9), (10), (12), ard (13) will
not usually be of great practical value. For particular cascs,
numerical methods must be used.

A little can be said about the frequency for which (8) has
maximum root. The effect of viscosity is to shift the maximum toward
smaller K, or g ~eater wave lengths. Furthermore, n has a unique

maximum as & function of K.
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Section 5: Numerical Examples.

In order to demonstrate the ~ffects of surface tension and
viscosity, we give some examples for ordinary fluids.

Example 1. If the two fluids involved are air and water, sur-
face tension would be expected to play an important rule 1in the

development of Taylor instability. We use

&) fair - 0

(2) fwater =« 1 g/cc

(%) T, = 74 dynes/cm

(&) g+ g = = x 10* cm/sec? =~ 20g

Figure 1 shows values on n v8. k when surface tension 1is con-

sidered and when 1t 18 neglected. The corresponding equations are:
(5) n? = 2-10% K — 74K?3 and,

(6) n? « 2 x 10* ¥

For the sur®ace tension case, n has a maximum of about 355
at K = 9.5 (A= 0.66 cm) and drops to zero at K = 16.4 ( D= 0.38 cm).
The deviation from the no—surfac~ tension case i8 indistinguishable
for ¥ <3 (A >2.1 cm).

Experiments have been made by Lewis [3] for accelerations on
the order of that used above, at wave—lengthas on the order of one

centimeter. lowever, the published results are not in a form which



P-403
23—
allow conparison with those given above. It would arpear that
experiment:tl verification of the effects of surface tension should
not be difficult to obtain with apparatus like that used by Lewis.
Example 2. If the two fluids involved are air and glycerine,
both surface tension and viscosity would be expected to play an

important role in the d-velopment of Taylor instability. We use
(7) Pair = 0

(8) Pglycerine = 1.26 g/cc

(9) Mair =0

(10) JMeglycerine = 14.9 poises

(11) Ty = 63 dynes/cm

(12) g + g, = 2:10* cm/sec?

Figure 2 shows values of n vs. k under four different condi-—
tions:

1. Nelther surface tension nor viscosity acting.

2. Viscosity only acting.

3. Surface tension only acting.

4. Both viscosity and surface tension acting.

In this way the relative importance of the two effects for
various wave lengths are made apparent. The corresponding equations

are:

(13) 1s n? = 2-104K
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1 + 1

(14) 2. [=2-10*(1.26)K + 1.26n% ] |

+ 4nK = 0
2 _ n.104r _ 03 a2
(15) 3. n 2-10%K 8 X
(16) b, [2-10%(1.26'K + 63K + 1.26n% ]| 1
-/(14.9)2K2+(14.9)(1.26)n
% 1
14.0K

+ 4ni =

It 1s seen that the viscosity 1s unimportant for K < 1 (A > 6.28 cm)
and that the surface tension is unimportant for K < 3 (A > 2.1 cm).
Experiments have been made by Lewis [3] for accelerations on the
order of that uced avove, at wave-lengths on the order of one centi-
meter. It would seem that the viscosity effects would be apparent
in thege experiments. This would lead to an otserved value of n
much smaller than that preducted by the theory for non—viscous
fluids. !lowever, the experiments gave an observed value n greater
than that predicted by the simple theory. Lewis explains this on

the vasis of viscous drag cn the channel sides in the apparatus.
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