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OM GAME-LEARNING THEORY
AND SOME DECISION-MAKING EXPERIMENTS

Merrill M. Fiood
The RAND Corporation

5%95551 La paper reports on gameg in which a player
earng  tc improve his strategy during the course of a

seqience of plays. The fusion model developed Ly Bush
and Moste.ler to explain obvserved vehivior of rats 1n
experimental learning situations was used as the basis
for bYoth theoretica. and experimental investigation of
the efficlency of this type of stochastic process in
learning to play games. The experiments reported hewme
were with human sut jects. Their game—learninﬁ _perfor-
mance was compared with that of the’"stat—rat", repre—
sent#d vty the fi3!'sn mode) witr numerical values of the
parameters estimated to fit experimental data for rats.
The theoretical models acc¢ept Lasic assumptions of
von Neumann-Morgenstern gzame theory and Bush-Mosteller
learning theory. The theoretlical and experimental
results are directiy relevant for any situaaticn in which
a sequence of declsiona is made.a,/wq;\\

e e-,lr-km m.«,,.,,m

i1, Introustion S - ¥

The theory of games [1 provides & general mathematical

model that may sometimes be used to approximate a2 real situation.
Usually, in real cases, the situation is much too complicated

to permit its formulation even conceptually as a formal game.

And in the few cases that can pbe 36 formulated, it 1s aimos¢
always impractical to attewpt gatrering the necessary data or to
do the elaborate calculations required for a solution.

The non-—constant-sum case, even with two players, remains

unsoclved in the sense of von Neumann-dorgenstern. There gre
theoretical proposals that dispose reasonably well of the two-—
person case, and of many other broad special cases; I have dis-

cussed some of these in another paper [2.

Bracketed numbers refer to the bibliography at the end of the
paper.

I am indebted to Dr. D. R. Fulkerson for g eareful reading of
the manuscript, and for many helpful comments during the course
of the work.
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‘In this pap~r I investizate game-~like situations in
which the players are limited biologically in their chcices of
moves. These limitations are reflected in the method of play of
the formal game and stem Trom the notion that animal crganisms
sesm .0 learn by some sort of conditlionlng process that alters
the prokabiiity that some one of several mutually exclusive
alternatives will be selected in each new instance.

This spproach was suggested to me by the work of R. F. Rales
ana A. 8. Householder [3] on the group interaction process, and
i8 closely connected with the work of R. R. Bush and C. F. Mosteller
[4] on mathematical models for learning. I have profited from
discussions with all four cf these men. There is also an inter-—
esting philosophical discussion of stochastic learning models in
a recent paper by D. M. MacKay (5], and a stimulating essay hy

latter

E. G. Boring (6] on "robotology"; both of these/papers seem to me

to support the methodological viewpoint that 1 have adop'led.

2. Generalities

The approach used in this paper is applicable to situations
involving more than two organisms, but i shall concentrate some-
what on the two-player case. A player could in fact be a group
of people, or & component of personality within one individual,
but I shall only toueh upon such interpretations occasionally.
Since my main ohject 18 to treat some one case of real behavior,

1 shall usually be content with a discussion in terms of a special
real-life situation, leaving broader interpretations to the reader.

The connection with game theory i1s the correspondence

between the notion of choice of a strategy for a game in normal




—F

3

“»
,,m_..,.,.,.—.. R LT R T T e s Mg i . NN e '_-mu——-'"!
» and

the notion of individudl Bhoiee of ecurse of astism
It hovionteal potivity. A wory fundamental oeee, end g° rhaps thc

simplest one, is the problem of choosing whether or nnt to act

in & situation ... .r* trere appears to be only one cholice: acting
or not acting. Yor example, in experiments like those of B. F.
Skinner [7] with rats, the choice at some moment 1s wiether or
not to press & tar. For & human example, the cholce might be
whether or not to aecept a particular offer for a new position.
In these examples, and 1in most real-life situations, the organism
somehow reduces its range of alternatives to & relatively small
number from which 1t feels 1t must choose;’ it i1s this recognized
field of cholces; whether they are considered to be conscious

or unconscious alternatives, that corresponds to tahe set of stra-—
tegle. listed in the normal Jorm of the formal game.

In what fo;lows, I shall try to use such terms as game,

- & -

wish the meaning

—

strategy, move, Bnd player from game theory only
attached formaliy by von Neumann and Morgenstern '17; for other
purposes 1 shall use alternative words such as situat.ion, plan,

act, and sub ' -~t.

3. The problem

The games in which we shall be interested are defl:ied in
terms of expectation funetions:

J= J e . e \
Vi_vlliz . . .1Yl ro!‘ (!:‘: N 1, 2’ » mk, J 1, 2, » n)-

*»
Tr ‘s process has been most systemat!zed for the art of decision
by military commanders 8, .
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A play of the game conslists of simultanevus icdez-endent choires
of specific values 1; for the ik by the n players; the yuantity

VJO 1s the expectetion feor player j, where the units for VJo
1 1

relate to a measure of the utility attached by player j to the
payments he receives. The functions Vi are real-valued.

The actual payment to plaver j, when the cholice of pure
strategies is 1 »nn a play, is a gquantity x given by the distri-
butlior funetior “i’x) whose mean value is Vi of course (x|

is bounded, so that

J(x) = ‘x| > B9
Pi(x, 0 1f x| > by .

Our problem it to select a good metnod of play that can be used
by player { when hils information about the structure of the game
is knowledge only of

£

m 1)0)

, &nd a bound Sl.a m?x b
and where his information ahout the distribution functions Pg(x)
1s gained entirely from his experience while playing the game.
1t 1s assumed, in the prccess of passing frcom the normal to
the extended form of a game, that only the mean values Vi of these

distributions affect the situation _1); we can assume without

essential loss of genera therefore, that the variance of

P{(x) is zero so that x only assumes value Vi. Purthermore,
since the problem 13 essentially unchanged 1f the utility measure
x is subjected tc a 116ear transformation [1] we may take 5«1 and
suppose that Pi(x}-o 1f x<0 >r x>1.

The experience gained by player j in N plays of the game

consists of a record of his own cholces 1J(t), and receipts
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rJ(t) for twl, 2, ***, N. The central problem is to find a rule
of play that will tend to maximize total receipts in a sequence
of plays where the player 1s given some information about the
number of plays before he starts on a sequence; 1 am intention—
ally vague at this point in the paper about the exact nature of
the rule cf play and about the advance information concerning tlwe
length of sequence. |

We shall be interested in what follows, then, only in the
game whose normal form has the expectation funettons

og_v'i’gL

We shall be especially concerned with one extended form of this
game in which there is one chance move for each player and the
actual payments are always unity or zero, whence the probability
of & unit-payment to player J 1is Vg if the players choose the
pure strategies 1. We have noted that any game can hte reduced
to this form by suitable linear traneformations on the utllity
weasures of the individual players, provided only that there are
known fiilte bounda on the possible payments; uase wa:. also made
of t.:o assumption that games in extended form are equivalent if

their ncrmal forms are identical.

4. The game-learning model

The type of rule of play, that is investizated here, is
represented for player J by the relation

pdlerr) = MI¥pd(t) fork =0, 1, 2, +--, 2,

*
where pJ(t) 2~ = Vector of probabilities and the MJk are r-“rloes.

* The Mjk are necessarily stochsetic matrices such that the ele-
ments are non-negative and, in any column, sum tc unity.
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The components pg(t), for i=0, 1, 2, -, my, ave the probabili-
ties that player J selects value 1 for 13 on play t; og(t) has a
speclal significance %o be discussed latar. The elements Miﬁ

of Mjk, rorcx,lg- 1, 2, °°°, mJ, are given real numvesrs. The
probability that MJX 1s applied after play t depends only upon
pJ(t), and certain constants to be discussed, and so the procedure
is a Mar'tov process.

We now describe how the apprcpriate operat . MJk is chosen
after play t. The matrices MJk are first separated into two
classes of mJ+1 members each, denoted RJk and PJk for k=, 1, 2,
v, mJ, and either Rj ij(t) or PJ 1J(t\ is selected; the cholce
between these two matrices is made with probablli .y rJ(t) in favor
or rY 15(t)

We have now defined a method of play that can be used by any
player after he has made his initial strategic cnoice p1(0>’ and
after epecific values have been assigned for the elements of MJk;

17 actual practice he will need to know m, and 57 also.

J

5. The fusion game-learning model

We shall now consider a specisl parametric form for the
matrices MJk. FPor convenience, we shall omit the designation cr
the player when this leads to no ambiguity.

we set:

1

Riﬂ- (1bt—?) b;ﬁ»« ciéi+ 51‘&0» and

Pg= (1a1)f v a'd

for (14,0, 8=0, ', 2, *++, m), where ti, bi, ad c’ are in trhe

'J;g 1s the well-known Krnnecher delta, and 1s unity ou- zero
according asoC and 4 are or are 1ot equal.
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c¢losed inverval (0O, 1). This special form of the more general
Markov game--lear-ing process was developed by Bush and Mosteller
"4¢] 8o as to fit data obtained in a number of learnirg exjeriments
with rats; they have named it the '"fusion model."

We shall be interestad in the case in which all but one
player, sa; number 1, chocse constant strast.:.gles pJ, but where
player 1 uses the fusion ‘aodel; this means that the probability

1
and for player 1 it 1s pl(t). Since these choices are all nade
1

that rlayer J>1 will select the value 1 for 1J is pJ on each play,

independently 1t follows immediately Lnat the expectaticn . °

pleyer 1, if he chonses the value x for 1, on play t, is:

Mo T s
G, = 2 e ) ! p Py ccvee.. p
X 1g=1 { = xi, 1n gg i, 1!";

We may suppose, witnout loss of gzenerailty, that:

~ n G
L U e .
my 2 Pmy—y 2 2 N

it follows that player ! could do nc better than to enoose

V\‘ N =
Pi(t giml

80 that nis exrectanc; on each riay is Gxr , and we snall ‘e
LR |

interested in comparing his expectatlon when ne maxes use o7 the
fusion mode! with t:.ls maximum possitle expectation Gm,; of course,
his success with the fus.on mode. may also depend upcer hias ehoice
of the =tarting vector pl'{(:C

The component ci(t is interpretet !n the zZame situation as

the ;rotari.it: t:rat no cholce will e made Dy player ! at time t,
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and thi: 18 called "thinking.” This feature can be Introduced
mathematicaily into the game model by definirg:

Vf = if any ccmponent of 1 is zerc,
where the range of 1k has bveen extended to include zero. This
augmentation cr the origina. ghme problem will be used whenever

the fusion game-learring model 18 under discussion.

6. A speclal fusion model

We 31,2l now consider a specia.ization of the f sior model
1. wr.'ch ai, bi, and ci are positive and independent of {; we
derote their common values a, =, and ¢. We shall also Buppeosa
that tne quantities Gx, for xel, 2, -+, m. are 4istinct and non-
rerc, Aand that o =0,

+1 t
The expected value of pt , given p , is:

. ~
? o - - ¢
Padz p (B v T P T
{ otm() '
{ _

This can »e rewrlitern to vie.d the foliowing relatior for tne

. th . . 5 PR 4
¢ ¢orponent ~f tna expected valiuve of p :

n m
R t : t . o - t
E(p. " = n. + (a—b—:" L v 3 p.t + (e-a p‘t «+~b Z pG S
K P4 ~ T ek KK ~ o x XO, ,
= x w0 ,
for k=0, 1, 2, , M

o

. , . .4 :
it folliows easlily that a vectosr V' satiafles the eguatior

«7=V {7 and oniy 1€ it is the unit vector e, °or has the following
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Bush and Moateller [4b] have called thre matrix 3 the "expected
cperator” snd they have made use of the vectors Vh in discussing
the asymptotis behavior of p‘.

Rather little is known conscerning this asymptotic behavior,
and et1ll less is known about methods for estimating the pare-
meters in the fusion model from saxperimental data, sc we shall
have to resort to Monte Carlo computational methods in our

exploration ¢of the properties of the fusion model. For this

purpcee; we shall turn to some numerical examples.

7. A rat experiment

The rat Su must choose one of two rooms. Five seconds after
a warning bell the rat is either rewarded (fed) or puniahed
(shocked) by the experimenter Ex, and Su does not see what the
result would have been had Su chosen the other room on that par-
ticular trial.

Fx rewards or punishes according to a rule prescribed in
advance. The experimental situation may be summarily described

a8 & two-—person game. The payoff matrix for Su is:

?\\‘\\\\\Ey Places food in:

Su Room 1 FRoom 2
§
Sits Room 1 1 -y
In: poom 2 -y j 1

At the moment, I am not interested in the payoff matrix for Ex
but shall simply suppose chat Ex has chosen a stratexy {(w,, ma)

such that Ex places the food in Room 1 IOOw1 per cent of the time.
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The axpected payoff for Su is then Vip,)=p;(27y—1) (14y)e(V—w,-%y),
where y is non-negative and pi_denotes the proportion of the
time Su sits in Room 1. Now in thias situatior, even 1f Su hed
superior human intelligence, game theory would give Su little
reel help in chocsing a strategy because there 18 no mesning to
attach to the rotion of payoff matrix for Ex; even if there were
a payoff matrix for Ex, the game would probably be non—constant
sum and the value of y would: vary frog Su to Su, vary from
time to time, and be difficult to eatimnie. Neverthsless, &
rat or a human found éﬁ“thia situation does behave in some fashion,
and our scientific problem is to explain end prediect actual
pehavior as well as poszlble.

Before turning to the game-learning theory appro&sh, it may
be instructive to discuas the situation in the usual manner,
from the =tandpoint of rttionality. For example, 1if Tywl /2, 1t
does not matter what Su does, since the result 1s independent of
hie cholces. If w,%1/2, then Su should choose pi=1 or p;=0
according a8 ¥, > 1/2 or 7y < 1/2. On the other hand, if Su feels
that its past behavior (including its blologlcal characteristics)
may be analyzed intelligently by an Ex that strives to minimize
the paynff to Su by choosing a time—dependent strategy in terms
of past behavior of Su, then Su should somehow protect against

this unwanted result by concealing its pattern of behavior from

Perhape this is a wey out of the so-called "free-will dilemna."
1t leaves lots of room for the conscious convietion of cholce
with no requirement that main trends be affected thereby! From
a game-theoretic standpoint this corresponds to the case in
which all available pure strategies are includeC in a solution.
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Ex (psrhaps by rendomization as proposed in the theory of games).
These dynamioc cases are entirely outside the scope of present
formal gsme theory, of course, and are the principal cases of
interest herc.

The basic sssumption from learning theory is that Su varies
its benhevior acoeording to the pattern of its past experience.
The special mathemsticel form assumed here for this effect is

. 1
the special fusion model of f 6, with m=2. The matrices R‘1
and Pu are, therefore:
1-¢ b b 1-¢ b b
R!! = ¢ 1-b c . Ri? o 0 1-b-c 0
0 0 1-Y-e c ¢ 1—ﬁ/
1 0 0 l-a 0 0
P!! = a 1 a P! = 0 1-a o
0 0 1-a a a ?/
/
a a 1
pl0 « 0 1-a 0
o) (6) 1-8
i

R™ 183 used after Room 1 is chosen when the food was placed there,
and P1 is used after Room 1 1s chosen when the food was ot pleced

there. Of course, Ex, as player 2, may be represented by the

0 | 1 0 O
‘ )
p‘(O) - L& R mdﬂ";- P.i - 0O 1 0

1-w, 0 0 1

relations: \
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The v, correspond exsetly to the G, of §5. In this case, Ted
Harris has shown [Apperdix A] that the asymptotic value of

pi(t) 1s
iIfr0o ¢ €1

®
L
O O

whatever the value of p!(0); indeed, the probability is one that
there will eventually be an unbroken sequence of applications
of P° that terminates the process.

Monte Carlc computations were made for this model with
numerical values for the parameters, chosen in agreement with
astimates by Bush and Mosteller [4c] on the basis of data from
learning experiments with rats, as follows:

asbedw0.01, ¢=0.10.
These computations were made for a rather careless assortment of
values for p!(0) and 7y, and the main results are shown in

Tables 1A-1G. All the computed cases show a strong tendency for

Py to seek an equilidbrium near the value 0.1, and it is interest—
ing also that pp seemed always to go to sero when vy > 0.5; this
constitutes a tendency toward optimal behavior sinee only choice
of Rooms 1 and 2 represent actual decisions by the rat under our
interpretation of the fusion model. There is not enough data in
Table 1 to permit any real analysis of the moments of the distri-

bution of pN.




TABLE 1

Stat-rat Stratggles

1A: 74=0.5
t Po P1 Pz
0 100 450 450
5 9% 555 350
10 oh 450 456
30 91 512 397
50 108 446 446
P1 Pe
0 0 500 500
5 | 19 579 402
10 | 46 -- 617 -- 337 -y
30 g .
60 [106.-806- 90 -
90 g7 869 33
115 | 97 897 4

1C: my=0.5
t Py Pi Pa
0 900 50 50
5 895 58 47
10 900 53 46
30 900 52 48
60 692 281 25
90 355 374 271
120 193 472 335
150 111 589 299
180 130 7122 .39
210 97 762 141
240 98 866 36

1D: w,=0.51
t Py P1 Pz
0 800 100 100
5 717 196 87
10 717 202 80
30 398 337 265
60 337 497 165
90 148 606 247
120 116 815 69
150 98 393 9
180 115 623 262
210 | 98 371 31
240 | 85 906 6
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Ty=0.55

TABLE 1 (Continued)

—1h-

1G: my=1.0
t Po "P1 Pa
0 114 100 786
5 109 9% 795
10 104 179 715
30 | 107 716 177
60 99 892 8
90 107 892 1

1E:
t po P P2
0 800 100 100
5 721 193 86
10 656 262 81
30 411 439 151
60 239 715 45
oG 118 875 7
120 98 901 1
1F: T1=0.9
t Po P1 Pe
0 900 100 0
5 735 265 0
10 T44 256 0
30 593 406 0
60 126 874 0
90 106 894 0
120 90 908 0
150 111 889 0
180 g2 908 0
210 g8 90?2 0
240 101 898 0




8. Human sudbjects

All that has been said about the game-learning model is
applicable in the anslysis of experimental data with human sub-
jects. There may be a considerable advantage in using human sub-—
jects since the conditions of the experiment can be explained
to them easily, and because their choices are made quite rapidly.
Some very tentative trials were run in order to gain some experi-
ence with the experimental situation, as a first step toward a
design of more conclusive trisls.

In the first series the subject Su was asked to call "head"
or "tail" in an attempt to match the random hoice made by Ex
with fixed probability »;. The success of Su was compared with
that of the special fusion model (stat—rat) used in §7, where
random numbers were used to yield 7,=0.55. The number of trials
was too small to permit any quantitative conclusion to be drawn,
but 1t seemed likely that a more extensive series of trials would
be worthwhile. The acheme was diacontinued in favor of more
promising ones to be discussed next.

The general >x3 zero-sum symmetric game, which has no pure
stratezy as & solution, is represented by a three-paraxster

payoff matrix for its normel form:

where u, v, and w are positive. The solution of this game 1is

the unique mixed strateg::
1

Uu+v+w

(w, v, uj.
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Three trials were made in which & subject played a 3x3 zero-sum

symmetric game against the stat—rat, as defined numerically for

the special fusion model in 57, where:

(a) The absolute values for u, v, and w were taken
directly from a table of random numbers,

(b) The subject was not told the payoff matrix but was

,.told the exact method used to select 1t,

te é}"’ subjeot was told that he waa playing sgaipat &,

rat in mathematical form.

The three payoff functions were:

Subject u \/ v Solution
RF -6 6 8 Col. 2
MD 6 -8 7 Col. 1
MF 6 10 4 Col. 3

These three games each have a pure strategv for a solution, as
showr in the final column of the table just above. The results

of the three trials are summarized in Table 2. The trend in the
stat-rat's mixed strategy is shown for each game in Table 2, along
with an estimate of the mixed strategy in use by the subject

based on the avertge of his ten chcices centered at the play
listed. Again the dats are tco few to justify careful analysis,
or quantitative conclusions, and this tvpe of trial was dlscon-

tinued in favor of a more promising one to be discussed next.
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TABLE 2
s

>x3 Symmetric Games

¢

RP game MD game MF game
RF | Stat—rat] MD | Stat—eat | MF | Stat-rat
No. of plays 19 19 25 25 20 20
No. of wins 6 13 5 20 10 10
Percentage wins| 32 Al 20 80 50 50
1
Througn Play Frequency of Use of Solution —_
1 -— 33 -— .33 —_ .33
6 .3 " " .61 .8 .55
10 i .55 5 .68 1.0 .66
15 .8 .72 .6 .70 1.0 .70
20 — L6 N A — LBD
25 — —_ — 74 —_— —_

For the stat-rat tre {requency through play x is com-

puted as the ratio of x

pa ., + (143
Scl ol

and for the sublects it is one-tenthi the number oOf
wins in the ten ~lavs ceitered at play x.
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There are really two rather different types of problems
involved thus far in our discussions of game-learning situations
in which the payoff functions are unknown:

(a) (Static) Those situations in which it is assumed that

the opponents of the main player choose and use a
fixed mixed strategy for the duration of a sequence
of plavs,

(b) (Dynamic) Those situations in which it 1s assumed that
the opponents of the main player may vary their strategic
behavior during the sequence in a manner that somehow
takes account of the results they obtain on e:rlier

plays.

The static case, with known payoff functions, is the usual one
considered [1] whereas our interest centers here on the dynamic
case with essentially unknown payoff functions. The static case
always reduces to one in which there is a set of numbers Gx’ in
the closed interval (O, 1), that represents the payment expecta—
tion if our main player chooses pure strategy x on & given play—
and the numbers Gx remain constant for the sequence of plays; the
dynamic case takes the same form except that the numbers 0x oy
vary in some manner that is aependent upon the cholces made by
our main player in preceding plays. The game—learning model 1is
equally applicable in either the static or the dyramic case.

The game of Morra is a convenient one for our purposes both
because it 1is ,f handy size (3x9) and recause it has been com—

r ]
-

pletely uolvod.. The static case was examined experimentally

-~ <

' Yorra is discussed in Appendix B.
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for Morra by having two subjects and the stat—rat play the game
knowing only that it was Gx9 and symmetriec, and that their oppo-
nent would not be using a game—theoretic solution. Subject BC
has no knowledge of game theory and Subject RE is a mathematician
who 1s expert in game and decision theory. Actually, a fixed pure
strategy, not in the snlution mixture, was used in opposing the
subjects and the stat-rat; it is represented by the fcllowing set
of values for Gx that were used against BC and the stat—rat,

those for RB being 2/3 as great:

0x = (.500, .500, .833, .2%0, 250, .500, .500, .500, 1.000).

The results of play are summarized in Tahle 3. The data are still
too skimpy to permit any conclusions to be drawn. There 18 no
particular reason, in the static case at least, why the experi-
mental values chosen for 3x should come from a zame that has a
welldmown extended form. Consequently, we have come to the
followinz type of experimen’ as the most promising one to use in
obtaining data on the behavior of humar sutjects to be used in
estimating parameters in the fusion models and thus eventuglly to
test the hyrothesls tnhat this mathematical model represents human
learning hehavior. The Gx are chosen from & rardom—number tavle
and tre subject then 12 asked to rvlay a number ~f times fix ~ 1r
advance in an #ffort to maxizize his total numoer of wins; R:

and AM, botn experts in the relevant mathematical theories, served
as sublecte for trials in which there were 1,000 plays and:

-

a, = [.C%, .23, .25, AL, .H4, .33, .44, 3448, .75, .81,
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TABLE 3

Static Morra

RB BC Stat-rat 1 | Stat-rat 2
No. of plays 67" }72' 29 43
W°' of wins 24 213 14 21
Percentage wins 40 57 48 4G
(fThrough Play Frequency of Use of Solution
1 — — .100 .100
8 .1 .2 077 .186
10 .0 .1 . 058 .155%
20 .5 .1 .030 . 260
30 — 1 017 .304
60 —_— .1 —_— —_—
|
i S0 — 1 — —
120 — .2 —_— —_—
1890 _— .2 —_— —
210 —_ . — —
270 — : —_— _—
337 — 2 —_ —
302 —_ Ai 9] _— —

The sur lect arnounced at this point that e wculd contirue
laying pure strategy No. Q indefiritelyv, ard s0 nad in effect
solved”’ the game. R:3 made thi:s tentative decision after 32

plave and :sec¢ the ~tner 3- simoly t2 ¢onfirm nie decisicn.
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The results are given in Table 4; it seems unlikely thet the stat—
rat would match this performance, but it would probably take a
good many trials to give & statistically significant test of
this corjecture.

One static-nine game has been played by the stat-reat with
ten rcplicationn. In this play, QK = 0.1 for o(- 0.1, **-, 9, and

-wa "T

w{ QM “‘“‘:.',,‘" —mmm = £ e Mﬂ&g&_#j
s et

‘ "= (. 097 .510, b)}, 274, 442, 364, .503,. ,929, .256)

. _
SRS U S N S
!lag*-uo fire$ IEM mohine rnn ll‘”ﬁl.*ﬁil!!i!&id!l were

- sEyrted to etght Jecimdl places Tor two hundred steps each. In
ey 200

nine out of the jen ocsses, the value of p was essentially suen
that p3°=0.9, BA% 0.1; in other words, the stat-rat nad reached

the optimum strategy in 200 trials. In the tenth case the value

of peoo, if rounded off at the third decimal place, was essentilall:
goo-O.Q, 200-0 1; in other words, the stat-rat had reached a

very poor strategy 1. 200 trials. Other detalls of this run of
static—nine are given in Table 5, including the 'winning rate"
wt which represents the expect&tion on the first deciszlon after

time t, where:

9

> p§ G
Wb =

9 4

Ip

ja] 1

The dynamic case is perhaps the most interesting one experi-

mentslly, especially where a fusion model 1s pitted against a




.
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TABLE 4

Static-10-gdame

RB AM

No. of plays 1,000 1,000
No. of wins 719 715
Percentage wins 71.9 71.5
No. of last play 133 204

befc e deciding

psrmanently on

strategy ©
* Based on expsctation after decision

to play strategy 9




TABLE 5

Static-9 Game

23—

2;:§?Ecl Game Number
Item Game 9 | 1 | 2 | 3 [ &% | s |6 [ 7 18 J9 [10
E . |
Time at which § 5
winning rate 3
first exceeded: . e | , i
.84 59 1wl 29 58 88 o8 B 72| 58 | — |26
.90 | 81 L497 51| 881 99 {111 | 767 92 | 68 | —| 36
Winning rate
2t time:
' 50 70 | B7 ) 84 73| 44| s8] 62 | 859 | 74 | 36| 92
100 91 | 90} 93| 92| 90| 82! 93 | 61 | 93 | 36| 93
200 ] 93 93| 93| 93| 93| 93| 93| 93| 93 | 36|93
Percentage wins} 5
in: i
100 decisions 71 631 85| 721 57} 57} 75| 65| 75 | 38 | BG !
200 decisions 82 80| 89| 83 75 751 8% | 80| 83 | 8 Qlj
00 | ’ |
pé 1.100  '.106].091}|.092|.106| .101| .093{.104| .095 -095-119,
|
200 ? ‘ '
Py .097 i.ogo .100| .092].105| .105| .100|.092 .091|.093/.098|
teps tor 800 5| 23 23| 25| 15| 20| 27| 18 | 22| 21 | 1829
decislons: R
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human subject. DBefore zoing too far with such a program, 1t will
be necessary to develor a vetter mathematical understanding of the
models in order to design the experiments so as to permit sta-
tistical significance tests to be applied; this point has been
Alscussed oy Bush and Mosteller [4b), and they and others are
gradually developing some of the matnematical tools that are
needed. We have some of these experi

1.

subjects, uging Morra and other games of tbout tﬁit

|..-- ,,,,,

the purpose. 1t would be interesting ;lco to vﬁn Boms. trilll

.xactly the same sort with real rats (e. g., playin; Forra against

the uttt—ut)

9.

We have seen how the stat-rat 1s able to play any game with
known bounds on the pavments, even though we have not been able
to settle the question concerning its degree of skill at games.
e shall now be interested in how best to exploit this knowledge of
the procedure used by the stat-rat in playing games when we are
its opponent. Of course, 1f we know the expectation funetions
and have computed the solution of the game, then we can guarantee
at least a certain minimum result by cnoosing the game—theoretic
golution: our object 15 to do better than this safe solution
guarantees, and we also should like to know how to play when we
do not know the expectation functions or the theoretical solution.
As a special case, consider the ordinary game of matching
pennies. We start with the recsonabie assumption that the initial
vector for the stat-rat 1s: 45

p'(0) = [ .45
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Tc make the game quite definite, in our usual notation, we note
that the game 1s usually represented by the expectation functions:

‘ = - - -
Vi1, 251,1. 1, and V§ , =1 251,1,

We transform this game into an equivalent one, in the senss that
lfnear transformations on the individnual utility functions leave

the solutions invariant, by aetting:

Vi, T(v1111+1) 51,1,’"“

v.ilia - -é—_(?ithﬂ) =1- 51111 )

No chance move 13 really needed, in this special case, since the
values of Vglil are all zero or one. Finally, we specify that
there 1s to be a sequence of N plays, and our problem is to choose
e method of play that will maximize our expected payments against
the stat—rat. Since we can compute the p!jt) for the stat—rat at
each stage, except for the thinking 2teps when pé has effect,

it 1s not difricult to ”“ind a method of play that gives us an
average expectation in excess of that obtained if we play stre-
teglies ! and 2 wit" equal frequencies. Such a good strategy would
be for us always to play the stirategy that is less likely to be
chosen by the stat—rat. 11 shall not pursue this very simple
example further, except to note that it becomes immed.ately more
difficult 1f we do not know p'(0) or if the expectation functions
are represented in the equivalent forw:

ovd where 0 < & < 1.
1,1




tually be applied -n m SSCUSTNY .
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10. A modified fusion model

It is inconvenient to have the situaticn met in the special

fusion model, mmm p ¢ lt’tm t O®
bounded away from E. ﬂ:?t;' -ﬁt ng

culty, and some others, we shall consider the following slight
modification in the special fusimn model:
(a) The operator P° is never applied.

(b) The probability of seiecting pure strategy 1 at time t

is t mo,
Py ngpJ, (o iml, 2, *°°, m.

The expected value of the payment on ome-trial, starfing
with pt, is:
t

Sg(p —Q:L———-—- -El—-, whe re Ak._sx pJ J
1 ’)

We shall now be interested in comparing this expectation on the
first trial with the corresponding expectation S.(pt) on the
second trial. For this, we have:
t - R 1t ¢ 1t
Sg(P ) = 5 o1 pi 2] SX(R P )+ pi(l’ﬂi) 81(' P ) .

Ir e denotes the column vector with unity as its <xth COmMpO—

nent and zeros elsewhere, and where a prime is always used to

denote the transpose of a matrix (or vector), then:




Ze rpta ;rrpt+cb’ +quq‘
-l & o 1 x0
Sg(Ript) - X - el U J
z L [+ ofyy + b3
T ¢ 1.t Zirp, ¢ + b
o1 % R p xmy L X xX1 KO |
rAl 901 ,
rB + ¢
and
uA; + aG
S (Pi t) - 1 , .
uB + a

where re=l-b-¢ and u=l.a. So

o (ot) - L {pt (rAs + cci) ot {:UA; + 46,7 }’
B 4

11LPB+C u“,+lJ

" and, after reduction, this uvecomes

(ra-—uc) (A¥-BAp

t. A
S!(P)"—B-L- +

B(rs+c) (uB+a’

The quantities in the denominator are all positive and so the
algebraic sign of the second term depends on {ts numerator only,

in whech (re-uc) depends only on the consta~t parameters. We note

. g
——— - - WP oy vt e R [ g - ‘ -y %
il ‘ '

¢t t 2
zoo - S pr -3 p.p, (6,~0,)% < 0.
el 1-1 1)( 197 ety T

It follows that

!

N
AY - Ba,

<
-~ o

se(p®) » 84 (p*) 1f (rae) ¢ oO.
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This is an important feature for our game-learning model to
have in order that the expectation increase with each play in
the static ocase.
It is obvious that
St(Dt) <G

= G_.

max m

t

It 18 likely that p can converge asymptotically only to a vector

of the form V¥ = Qe + (1-0)e_, where 0 ¢ © < 1. One important

o’
unsolved problem 18 to find the probability that pt converge to

V™ when the initial vector p° is given; it is reasonable to hope
that the probability is high that p° converges to V™ when plel/mei,
in which case the modified special fusion model represents a game-
learning process that tends asymptotically to find the optimal

pure strategy in playing a static game. If these conjectures

prove to be well founded, as our Monte Carlo Computations with the
special fusion model seem to indicate they may be, there will

8till be some questions in the degenerate cases in which the 01

are not all distinct or seme of the pg are taken to be zero.

11. Summagz

This 13 a very preliminary paper. Iin it we have shown how
a player can "learn” during the course of a sequence of plays of
a game to improve his strategy. The fusion model developed by
Rush and Mosteller to explain observed behavior of Mats in experi-
mental learning situations was used as the basis fer bDelh a theo—
retical and experimental investigation of the efficiency of this
type of learning process in learning to play games; the experi-
ments discussed here were with human subjects, and their game—

learring performance was compared with that of the "stat—rat"
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represented by the fusion model with numerical values of the
parameters estimated to fit experimental data for rats.

The theoretical models accept basic assumptions of vonNet -ann-—
Morgenstern game theory and Bush-Mosteller learning theory,
including:

(a) Cames with 1dentical normal forms are equivalent, and
this equivalence is independent of the probability distribution
functions associated with chance moves.

(b) Cames that differ only by linear transformations of the
individual payoff functions are equivalent.

(c) Learning is a Markov process.

Equivalence here means that the games have the same solutions.

The experimental results consist of Monte Carlo computations
for the stat-rat, contests between stat—rat and a human subdbject,
and coxparisons of performance of stat-rat and a human subject
when playing the same static game. Very limited data indicate
that:

(a) The stat—rat usually learns a good strategy when a con-—
s tant mixed-atrategy is played against him; i Morra and the other
games Dplayed the stat-ret seemed to settle on easentially the best
strategy within 200 trials or so.

(b) A person proficient at —ames would win against tne stat—
rat in Morrs.

(¢) The stat—rat does reasonably well in a static zame, in

comparison with the human zubject, but g statistiocian would cer—

tainly defeat the stat-rat.
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The theoreticzl results are very skimpy, the main result bdeing
that one modified fusion model does have a non-decreasirg expec—
tancy per trial on successive plays of the game; various open
mathematical questions are noted.

More extensive experiments are in progress, and it 1s hoped
that these may provide the data necessary to estimate perameter
values for human subjects and eventually to test the adequasy of
this type of Markov process for description of human learming. It

seems very unlikelv now that such a Markov process will be adequate.
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APPENDIX A

An Asymptotic Case

Bush and Mosteller [4c. have proposed s mathematical model
for learning that fits experimenr‘al data for rats quite well;
they have called this the "fusion model.” I shall discuss only
the special tiree-clrolce case; “ne argument 8 easily exteided
to their general case.

Define five matrices as follows:

i “' \
/l—b c c\ 1=b—e > 9\
| i
, \ :
L ) 1—h—c i, 2 e e 1t c
L ob ) 1— \ ¢ v 1-¢
\
\I \
I, \\
1 a ( / 1-a 2 C \
w?Y o N 1.8 8 \‘. , K - | a a
0 > 1-al > gy 1-a
i ,‘
\
1-d ) 0"
H
M- > 14 »
i
A4 d !

. . s . t+ t . X
Consider ‘he “arxH v chain » - ¢1p , where the proba™iliity taat

the tranzition matrix ¥ - is spplied at ste; * > ' ls qu- q“ﬁpt‘

and wvhere:
'.--’&-&—-—&f--«.
t t t t t "
it " TPy, Qm ® TePey {3 * gDy, O

* ct
lad

.ot : L
= Ta1Pg, 1. " Ps

The ~uarntities &, », ¢, d, -,, and v, are ~ive' real numters in the
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open interval (0,1). The pg are tne three components of the

vector pt, and satisfy the conditions:
t t
ocrigr, gl
iml
If we let u_(MX) denote the probability that the matrix MX 1s
applied after all t > n then we say that the process "asncludes

with the matrix M™% " 1f 11m  u_ (M%) « 1.

n—y)

n(

*
Theorem 1.

]
The prccess pt+‘ - Hupt concludes with the matrix MS.

Proof: The probability that some cne cf the three operatora M!,

M2 or M2 will be applied after play t is:

t

t [ 3
¥ = ¥4p; + Tgpg + P

where ) :
n = min %v,, v,;
N

)
The opv?q@orl M!, 4 ard MS, wher. appllied to pt, yield

q\
| 4

components p§+ as follows:

t+l

t
M1 Ps - (l‘b"c)pﬂ + 0,

t+1 : t
MB:  py = {(1d—ips + o,
= t+! . \ t
¥ i e = (—d‘ Fs * a.
Thus, in all three cases, we ave:
t+? | T . ,
Ty 2 min ‘\L‘J, 11—, d‘) S A0 Q.
J

*
Th1s thecrem an! {ta proof are due to Ted Harris (cral communi-
catien).
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The proocability fn(pg) that operator Mo

ia applied agfter
times ¢, t+1, -°-, t4n-1, 1ins:

n-l r

t t t 1
ref) = ot 7 (-t

1=m1 -
T0 establish this relationship, note that repezted spplication
of M for n times irmediately after time t ylelds the relation:

oS w uTpk 4 (1)

where

u= 1l-d.
Next, note that the zrobanility that M5 oceurs At least n times
immediately after tie ¢ is, as repuired:

N}
t t+1

f {ps} = (E5 Ps -
We willl be interested in the limiting case as n—-— o, and next
consider:

t \
f(vs) = 1im £ (p3)
n--—> 00

It follows tnat

t,
folps) > £ {x), 1¢ pg 2 X,

nl
since egch term In the product fn(x) is less than cr equal to
the corresponding term in the product rn(p§>. I particulsar,
f(pg) 2 r{x) 1r pt #&8 cbtained by application of M', M2, or N5.
it 1s easily seen that the secuence fn(A) 1s convergent, and so

vy (A > 0.
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We now hava shown that the probaebllity g(pt) that there
will be an unbroken gequence of applications of M5 sfter time ¢
ia nct less than

g = nf(A) > 0.
We next obtain the limiting value of the probability that there
will be an unbroken seruence of applications of MS, starting
somewhere wi.thin n steps after t=C.
For convenience, let Bt be the generic name for the matrix
opergtor on pt. Tt t; C tg < tyg € v tV(N) be all the
values of ¢ < N for which B'=N> and B™*! 4 M ; the process does

or does not conclude with M5 according as Ps= 1lim Q(N) is or
Neomed OO
is not finite, and we say that the prccess has @ "breaks." If
we let P(b,vip”) be the probability that the process has &t lesst
'S
b breaks ard also has p hwv, and if we let P(bipo) be the pro-

beability that the process has at leastf b breaks, then:

P(o+ifp,} = £ P(o,v[p”) (1-P(0]%)}.

Now, singe
Lo}

T pP{v,vip

: ) = p(oip°) and E(0lv) > g > 0,

it followe that
P{o+11p%) ¢ (1-g)P{v;p°).

Hence 1im P(b}po) = (), and the theorem follows.
})'-‘—) CD




APPENDIX B

Morra

1. GCame of "Morra"

"Morra" is an example of a game involving only pe-sonal
moves. Each player shows one, two, or three fingers and simul-
taneously calls his guess as to the number of fingers his oppo-
nent will show. If just one player guesses correctiy, ne wins
an amount equal to the sum of the fingers shown by himself and
his opponent; otherwise the game is a Adraw.

This zame conslists of one move for each player. A strategy
for each player is a pair of numbers (s,z), where 8-1,2,3 1s the
number of fingers ne shows and g=1,2,3 is his guess of the number
of fingers his opponent will shiow. It is evident hat each player
nas nine strategies, and thus there are 81 different poasible
plays of the game.k"w1th each of these 81 ways of playing the
game, there is assoclated a payment to the players, as described
by the rules of the game. These paymernts are summarized hy a
payoff matrix. In the following pajoff matrix, the entries
represent paymenta to player 1. Player 11 will receive the nega-—

tive of these payments.




[ P

"Morra"

RECEIPTS+OF PIAYER I

Player 1I's Strategies
(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)

., (1 0o, 2 2 -3 o o -4 0
|
(1,2) | - 0 0 0 3 3 A 0
(¢,3): ] -2 0 0 -3 0 0 0 4
(2,1)i1 3 0 3 0 -4 0 0 -5
Player 1's (2,2) o -3 0 4 0 r 0 <5
Strategies .
(2,3) o -3 o 0 -4 0 5 0
(3,00 # 4 o 0o 0 -5 0 0
(3,2) 0 0 -4 5 5 0 0 0
(3,3) D 0 4 0 0 -5 6 6
2. Solutions.
The four besic salutions of Morra are:
{
i
- (l) ; O, 0, !‘g“’ Oo ‘1‘2—‘9 th 'i-g"-.o 0, O
(b) 0,0, 5,12 v 9 0,0
32 32 32
5,0, 282, 0,15 o, 12
(C) ")’ 09 !17 » Ov ﬁ—'» Op )47 » 0900
(@ || 0,022 0,2, 0,1 0,0 H
R 61 61
The optimal strategy is: )
(o) “ 0,0,2, 0,8, 0,1 o, 0]
) 55 5% 55

~36-

)
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If player I uses the optimal strategy (e), he can expect to 5a1n.-

at least 2/55 whenever player II departs from strategies 3; 5, or 7.
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