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ON GAM.-LEARNING THEORY

AND SOME DECISION-MAKING EXPERIMENTS

Merrill M. Fiood
The RAND Corporation

»rhl..I paper reports on games In which a player
'' a t( improve his strategy diring the course of a
sequence of plays. The fusion model developed by Bush
and Moste±ler to explain observed uehivior of rats in
experimental learning situations was used as the basis
for both theoreticai and experimental investigation of
the efficiency of this type of stochastic process in
learning to play games. The experiments reported her@
were with human subjects. Their game-learnlng .erfor-
mance was compared with that of the'"st- rat", repre--
sentV by th. fisu.n mode) witt• numerical valjes of the
parameters estimated to fit experimental data for rats.
The theoretical models accept basic assumptions of
von Neumana-Morgenstern game theory and Buh-.Mosteller
learning theory. The theoretical and experimental
results are directly relevant for any si uation in which
a sequence of decislono is made. .

The theory of games [iE* provides a general mathematical

model that may sometimes be used to approximate a real situation.

Usually, in real cases, the situation is much too complicated

to permit its formulation even conceptually as a formal game.

And in the few cases that can be so formulated, it is aimos.;

always impractical to attempt gath-ering the necessary data or to

do the elaborate calculations required for a solution.

The non-constant-sum case, even with two players, remains

unsolved in the sense of von Neumann-Morgenstern. There are

theoretical proposals that dispose roasonably well of the two-

person case, and of many other broad special cases; I have dis-

cussed some of these in another paper [2].

Bracketed numbers refer to the bibliography at the end of the
paper.

I am indebted to Dr. D. R. Fulkerson for * eareful reading of
the manuscript, and for many helpful eoemnts during the course
of the work.
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In this papýr I invest:gate game-like situations in

which the players are limited biologically in their choices of

moves. These limitations are reflected in the method of play of

the formal game and stem forom the notion that animal organisms

seeým 6o learn by some sort of conditioning process that alters

the probability that some one of several mutually exclusive

altern&tives will be selected in each new instance.

This approach was suggested to me by the work of R. F. Bales

ana A. S. Householder )] on the group interaction process, and

is closely connected with the work of R. R. Bush and C. F. Mosteller

'j on mithematical models for learning. I have profited from

"discussions with all four of these men. There is also an inter-

"eating philosophical discussion of stochastic lqarning models in

a recent paper by D. M. MacKay L5j, and a stimulating essay by
latter

E. G. Boring 16] on "robotology"; both of these/papers seem to me

to support the methodological viewpoint that I have adopted.

2. Generalities

The approach used in this paper is applicable to situations

involving more than two organisms, but I shall concentrate some-

what on the two-player case. A player cou.td in fact be a group

of people, or a component of personality within one individual,

but I shall only touch upon such interpretations occasionally.

Since my main object is to treat some one case of real behavior,

I shall usually be content with a discussion in terms of a special

real-life situation, leaving broader interpretations to the reader.

The connection with game theory is the correspondence

between the notion of choice of a strategy for a game in normal



andtj notion of lMdl'vl* F of Somm of 4M0la

It tlela eetivlty. *A vey tondemu~al *@e s#A Ir l the

simplest one, is the problem of choosing whether or not to act

In a situation , r, there appears to be only one choice: acting

or not acting. Tor example, in experiments like those of B. F.

Skinner [7] with rats, the choice at some moment is w:iether or

not to prese a bar. For a human example, the choice might be

whether or not to accept a particular offer for a new pobition.

In these examples, and in most real-life situations, the organism

somehow reduces Its range of alternatives to a relatively small

number from which it feels it must choose; it is this recognized

field of choices; whether they are considered to be conscious

or unconscious alternatives, that corresponds to tne set of stra-

tegieý. listed in the normal -form of the formal game.

In what follows, I shall try to use such terms as game,

strategy, move, mnd player ftrm S theory onl y. 1the_ mean ing

attached formally by von Neumann and Morgenstern for; r other

purposes I shall use alternative words such as situation, plan,

act, and sub: -it.

3. The problem

The games in which we shall be interested are defi:,ed in

terms of expectation functions:

v ---Vj I for (,, ",1j, 2, *. , mk; J-l, 2, n'i- 1 !2 n -

IT1.s process has been most systematized for the art of decision
by military commanders '8.



A play of the game consists of simultaneous Ardenendert choies

of specific values 1 for the ik by the n players; the quantity

Vj 0is the expectation for player J, where the units for V0
i0 i

relate to a measure of the utility attached by player J to the

payments he receives. The functions V3 are real-valued.I
The actual payment to player J, when the choice of pure

strategies is I in a play, is a quantity x giver, by the distri-

butior, functior -!',c) whose mean value is V4; of course (xI

i- bounded, so that

Dix - 0 if * >

Our problerm i to select a good method of play that can be used

by player I when his information about the structure of the game

is knowledge only of

m and a bound E max F1 > 0,
I

and where his information about the distribution functione. Pj(x)

is gained entirely from his experience while playing the game.

It is assumed, in the process of passing from the normal to

the extended form, of a game, that only the mean values V3 of these

distributions affect the situation 1lj; we can assume without

essential loss of genera therefore, that the variance of

Pf(x' Is zero so that x only assumes value VJ- urthermore,

since the problem Is essentially unchanged if the utility measure

x is subjected to a linear transformation rl] we may take 3J-i and

suppose that P3 (x)-O if x<O )r x>1.

The experience gained by player J in N plays of the game

consists of a record of his own choices I j(t), and receipts
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rj(t) for t=1, 2, ', N. The central problem is to find a rule

of play that will tend to maximize total receipts in a sequence

of plays where the player is given some information about the

number of plays before he starts on a sequence; I am intention-

ally vague at this point in the paper about the exact nature of

the rule of play and about the advance information concerning tim

length of sequence.

We shall be interested in what follows, then, only in the

game whose normal form has the expectation furCettons

0 <v < 1.

We shall be espeoially concerned with one extended form of this

game in which there is one chance move for each player and the

actual payments are always unity or zero, wtence the probability

of a unit-payment to player J is V4 if the players choose the

pure strategies i. We have noted that any game can he reduced

to this form by suitable linear transformations on the utility

tasu.'es of the individual players, provided only that there are

knowan flnite bounds on the possible payments; use WaL also made

of • assumption that games in extended form are equivalent if

their normal forms are identical.

4. The game-learning model

The type of rule of play, that is investigated here, is

represented for player J by the relation

p J(t1) - MJkpJ(t) for k - 0, 1, 2, "'', 2m ,

where p(t) . vector of probabilities and the MJ• are rr' 'rices.

0 The Mjk are necessarily stochastic matrices such that the ele-
ments are non-4negative and, in any column, sum tc unity.
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The components pJt), for i-O,, 1, 2, -o !fl, are the probabili-

ties that player 3 selects value I for i~ on play t; DJ(t) has a

special significance to be discussed lator. The elements Mjk

of Mik, .tor 0(, 6~- 1,v 2, m,, are given real numnlCrs. The

probability that Mjk Is applied after play t depends only upon

PJ~),anid certain constants to be discussed, and so the procedure

is a Mar'cov prxcess.

We now describe how the appropriate operat . M ik is chosen

after play t. The matrices Mjk are first separated Into two

classes of m j +1 members each, denoted Fkand Pjk for k-0, 1., 2,

,i an eihrR or P' 3 Is selecte'1; the choice
between these two matrices is made with probabiV4',y r j(t) in favor

of R l.(t)

We have now defined a method of play that can be used by any

player after he has made his initial strategic cnoice p (0', and

after epepcific values have been assigned for the elements of M4k;

In actual practice he will need to know m and FJalso.

5. The fusion gaelann oe

We shall now consider a special parametric forrw for the

matrices Mjk. For convenience, we shall omit the designati.on of

thes player when this leads to no an~biguity.

We set:

Ri~ (+- -c ( I~ c4 + d 0 ,and

f or (I jo,~ 0, 1, 2, m) .n) where a , a;, ad c~ a re Irn t?,%e

%~is the well-kcnown Kroriecher delta, a" Is unity u. mr
according asa< and /9 are or are not equal.
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closed Interval (0, 1). This special form of the more general

Markov game-lear-Jng process was developed by Bush and Mosteller

_4c] so as to fit data obtained in m number of learning experimwnts

witn rats; they have named it the "fusion model."

We shall be interested in the case in which all but one

player, say number 1, chocoe constant stret.,gies pi, but where

player I uses the fusion "Aodel; this means that the probability

that ;,layer J>l will select the value I for I is pi on each play,

and for player 1 it is pi(t). Since these choices are all made

independently it follows immediately Lnat the expectatin •f

player 1, if he chooses the value x for i1 on play t, is;

M2 Inr n n
z ".x12 .... i P p ....... P1

n

We may suppose, witnout loss of generaTity, that:

> > ... > Gi.

it follows that player l could do no better than to enoose

so that hls expectancy on each play Is G , and we snall be

interested in comparing his expectation when he Pr&ies use of" the

fusion model with t:xis maxim= possible expectatlon G , of course,

his success witi'i t-e isuon modei may also depend upon hIs c"3oLce

of the -tart1ng -,eZtor p'(C

The component rc(t Is interpretel in the game .ituation as

the ;roa:-I;it tn.at no choice w1Il :-e Tade by Dpaver J at time t,



and thl: is called "thinking. Phis feature can be Introduced

mathematicaily into the game model by defining:

V- If any component of I is zero,

where the range of Ik has been extended to include zero. This

augmentatlon c: the original grme problem will be used whenever

the fusion game-learring model Is under discussion.

6. Aspecial fusion model

We siRl1 now consider a specialization of the f slor model

ir. wch aI ) , , and cI are positive and Independent of 1; we

derote their- connon values a, -, and C. We sha'2 also suppose

tnat tne quant'ties x . for x-l, 2, -. •, m. are distinct and non-

7 ero , t ,nd tha• t ,

t+" t
The expected value of p 9, gven p , In:

M

t p (G P +

This can -,e rewr!'iten to yield the fc'llowing rel~tto: for tz~

th t+ Ik ct C ne-nt - tne expected value of t+:

( a t tt
t (P't + aY1. t1 %Pk ý0-. t jp b- pt J

E-'+ .: , 0a"- ý 'K k- bK t J'k

f-r k-0, 1 2 " "
r..

t- froiowy easll that a vector V satisfies the equation.

.,1=V I f an:d onlyv If It is the unit vector e0 or has tne following

- and "c -r (h, I w I. 2,b+c-4



-9-

Bush and Mosteller [4b] have called the matrix Q the "expected

operator" and they have made use of the vectors Vh in discussing

tthe asymptotit behavior of p

Rather little is known concerning this asymptotic behavior,

and still leba is known about methods for estimating the para-

meters in the tu•ion model from qxperimental data, so we shall

have to resort to Monte Carlo computational methods In our

exploration of the properties of che fusion model. For this

purpoes, we shall turn to some numerical examples.

7. A rat experiment

The rat Su must choose one of two rooms. Five seconds after

a warning bell the rat is either rewarded (fed) or punished

(shocked) by the experimenter Ex, and Su does not see what the

result would have been had Su chosen the other room on that par-

ticular trial.

FEa rewards or punishes according to a rule prescribed in

advance. The experimental situation may be summarily deacribed

as a two-person game. The payoff matrix for Su is:

iPlaces food, in:

Room 1 Room 2

Sits Room i 1 -y
in: Room 2 11 in

At the moment, I am not interested in the payoff matrix for Ex

but shall simply suppose chat Ex has chosen a strategy (VI, V 2 )

such that Ex places the food in Room I lOcw, per cent of the time.



The expected payoff for Su is then V(p 1 )-p 1 (21-1)(l+Y)*(1-ra-7#1),

where y is non-negative and Pi denotes the proportion of the

time Su sits in Room 1. Now in this situation, even if Su had

superior human intelligence, game theory would give Su little

rerl help in choosing a strategy because there is no meaning to

attach to the notion of payoff matrix for Ex; even if there were

a payoff matrix for Ex, the game would probably be non-4onstant

sum and the value of y would: vary from Su to Su, vary from

time to time, and be difficult to estimate. Nevertheless, a

rat or a human found fthis situation does behave in some fashion,

and our scientific problem is to explain and predict actual

behavior as well as possible.

Before turning to the game-learning theory approach, it may

be instructive to discuss the situation in the usual manner,

from the etandpoint of rationality. For example, if izml/2, it

does not natter what Su does, since the result is independent of

his choices. If v4+'/2, then Su should choose p1 -1 or pi1O

according as r, > 1/2 or r, < 1/2. On the other hand, Ir Su feels

that its past behavior (including its biological characteristics)

may be analyzed intelligently by an Ex that strives to minimize

the paynff to Su by choosing a time-dependent strategy in teims

of past behavior of Su, then Su should somehow protect against

this unwanted result by concealing its pattern of behavior from

Perhaps this is a way out of the so-called "free-will dilemna."

It leaves lots of room for the conscious conviction of choice

with no requirement that main trends be affected therebyl From

a game-theoretic standpoint this corresponds to the case in

which all available pure strategies are Included in a solution.



IX (perhaps by randomization as proposed in the theory of games).

These dynaanio cases are entirely outside the scope of present

formal game theory, of course, and are the principal cases of

interest here.

The basic assumption from learning theory Is that Su varies

its behavior according to the pattern of its past experience.

The special mathematical form assumed here for this effect is

the special fusion model of j 6, with ml2. The matrices RiI

and P are, therefore:

1-0 b b 1.-4 b b

H11 - 1 --b c RH1 - 0 1-b-c 0

0 0 1-4-4 O c 1-b

1-a o o\ i-a o
P a a P1 W 0 1-a 0

0 0-a a a/ 1/

a a 1

SlO 0 1-a 0

0 0 1-a

R is used after Room I is chosen when the food was placed there,

and pt is used after Room i is chosen when the rood was byot placed

there. Of course, Ex, as player 2, may be represented by the

0 0 0

PO(o) - , . and, '-P 0 1 0

0 0 1
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The t correspond exaetly to the oi of ! 5. In this case, Ted

Harris has shown [Appendix A] that the asymptotic value of

pI(t) is 11
eo0 0 if 0 < Yt< 1

0

whatever the value of p'(O); indeed, the probability Is one that

there will eventually be an unbroken sequence of applications

of P0 that terminates the process.

Monte Carlo computations were made for this model with

numerical values for the parameters, chosen in agreement with

estimates by Bush and Mosteller [4c] on the basis of data from

learning experiments with rats, as follows:

a-b-d-O.01, e-O.10.

These computations were made for a rather careless assortment of

values for p'(0) and Tj, and the main results are shown in

Tables 1A-1O. All the computed cases show a strong tendency for

PO to seek an equilibrium near the value 0.19 and it is interest--

ing also that P2 seemed always to go to zero when ii > 0.5; this

constitutes a tendency toward optimal behavior since only choice

of Rooms I and 2 represent actual decisions by the rat under our

interpretation of the fusion model. There is not enough data in

Table I to permit any real analysis of the moments of the distri-

Nbution of p
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TABLE 1

Stat-rat Strategies

lA: r1 -0.5 IC: r,2 '-.5

t PO P0  Pa t P6 Pi pa

0 i00 450 450 0 900 50 50

5 95 555 350 5 895 58 47

10 94 450 456 10 900 53 46

30 91 512 397 30 900 52 48

50 108 146 446 60 692 281 25

90 355 374 271

120 193 472 335

150 111 589 299

18o 139 722 .39

210 97 762 141

240 98 866 36

5 ID: w-.o.51

P PO Pi P2 t PO Pt P2

0 0 500 500 0 800 100 100

5 19 579 402 5 717 196 87

10 46--6"7- 331;.i 10 717 202 80

30 851• •, 1- 30 398 337, 265

60 l6 o"~60 337 497 16-

90 97 869 53 90 148 606 247

15 97 897 112o ii6 815 69
-

150 98 693 9

13 0 115 623 262

210 98 371 31

2 40 86 906 6



TABLEt ICniued)

1E: 7r-0.55 1G: I -1.0
t Po Pt P2 t PpO Pi P-

0 800 too too 0 1i1 100 786

5 721 193 86 5 t¶O 96 795

10 656 262 81 10 104 179 715

S30 41 439 151. 30 107 716 177

60 239 715 45 6o 99 892 8

90 118 875 7 90 107 892 1

120 98 901 1

IF: r1m-0.9

t PO PP P2

0 9oo 1O0 0

5 735 265 0

10 744 256 0

30 593 406 0

60 126 874 0

9o lo6 894 0

120 90 908 0

A. Ill 889 0

18o 92 9o8 0

210 98 902 0

240 101 898 0
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8. Human subjects-

All that has been said about the game-learning model is

applicable in the analysis of experimental data with human sub-

jects. There may be a considerable advantage in using human sub-

jects since the conditions of the experiment can be explained

to them easily, and becauoe their choices are made quite rapidly.

Some very tentative trials were run in order to gain some experi-

ence with the experimental situation, as a first step toward a

design of more conclusive trials.

In the first series the subject Su was asked to call "head"

or "tail" in an attempt to match the random hoice made by Ex

with fixed probability Y1 . The success of Su was compared with

that of the special fusion model (stat-rat) used in J7, where

random numbers were used to yield tm,-O.55. The number of trials

was too small to permit any quantitative conclusion to be drawn,

but it seemed likely that a more extensive series of trials would

be worthwhile. The scheme was discontinued in favor of more

promising ones to be discussed next.

The general 3x3 zero-sum symmetric game, which has no pure

strate,,y as a solution, is represented by a three-parameter

payoff matrix for its normal form:

1 0 u -v1

V- _-U 0 wt

where u, v, and w are positive. The solution of this game is

the unique mixed strategy:
SI (w, v, u).

U+V+W
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Thr.e trials were made in which a subject played a 3X3 zero-sum

symmetric game against the stat--rat, as defined numerically for

the special fusion model in S 7, where:

(a) The absolute values for u, v, and w were taken

directly from a table of random numbers,

(b) The subject was not told the payoff matrix but was

told the exact method used to select it,

ý;•1 subJeet wa told that he vo playing aolat

rat in mathematical form.

The three payoff functions were-

Subject u v w Solution

RF -6 6 8 Col. 2

MD 6 -8 7 Col. 1

MF 6 l0 -4 Col. 3

These three games each have a pure strategy for a solution, as

shown, in the final column of the table just above. The results

of the three trials are summarized in Table 2. The trerd in the

stat-rat's mixed strategy is shown for each game in Table 2, along

with an estimate of the mixed strategy in use by the subject

based on the average of his ten choices centered at the play

listed. Again the data are too few to justify careful analysis,

or quantitative conclusions, and this type of trial was discon-

tinued in favor of a more promising one to be discussed next.
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TABLE 2

3X3 Sy.. tri¢ Games

Ri game & MF game
RF Stat-rat MD Statr-vt MY' Stat-rat

No. of plays 19 19 25 25 20 20

No. of wins 6 13 5 20 10 10

Percentage wins 32 6 20 80 50 50

Through Pla Frequency of.Use of Solution

1 - .33 •.33 - .33

6 .3 .4 .4 .61 .8

10 .4 .56 .• .68 1.0 .66

15 .8 .72 .6 .70 1.0 .70

20 .7r .7 .74 - .0

25 -I .74

For the stat-rat the frequency through play x is coyr-
outed as the ratio of

and for the subjects it is one-tenth the number of
wins in the ten I pla.s ce;ntered at play x.
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There are really two rather different types of problems

involved thus far in our discussions of game-learning situations

in which the payoff functions are unknown:

(a) (Static) Those situations in which It is assumed that

the opponents of the main player choose and use a

fixed mixed strategy for the duration of a sequence

of plays,

(b) (DTna"ic) Those situations in which It is assumed that

the opponents of the main player may vary their strategic

behavior during the sequence in a manner that somhow

takes acciunt of the results they obtain on ei rlier

plays.

The static case, with known payoff functions, is the usual one

considered [1l whereas our interest centers here on the dynamic

case with essentially unknown payoff functions. The static case

always reduces to one in which there is a set of numbers Gx, in

the closed interval (0, 1), that represents the payment expecta-

tion if our main player chooses pure strategy x on a given play-

and the numbers Gx remain constant for the sequence of plays; the

dynamic case takes the same form except that the numbers 0x may

vary In some manner that is Qependent upon the choices made by

our main player in preceding plays. The game-learning model Is

equally applicable in either the static or the dynamic case.

The game of Morra is a convenient one for our purposes both

because it is if handy size (9x9) and because it has been com,-

pletely solved. * The static case was examined experimentally

SMorra Is discussed in Appendix B.
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for Morra by having two subjects and the stat-rat play the game

knowing only that it was 9x9 and symmetric, and that their oppo-

nent would not be using a game-theoretic solution. Subject BC

has no knowledge of game theory and Subject RB is a mathematician

who is expert in game and decision theory. Actually, a fixed pure

strategy, not in the solution mixture, was used in opposing the

subjects and the stat-rat; it is represented by the fcllowing set

of values for ax that were used against BC and the stat-rat,

those for RB being 2/3 as great:

ax -(.500, .500, .833, .250, 250, .500, .500, .500, 1.000).

The results of play are sumrized in Table 1. The data are still

too skimpy to permit any conclusions to be drawn. There is no

particular reason, in the static oase at least, why the experi-

mental values chosen for 3 should come from a game that has a

well-known extended form. Consequently, we nave come to the

following type of experiment as the most promising one to use in

obtaining data on' the behavior of humar subjects to be used in

estimating parameters in the fusion models and thus eventually to

test the hypothesis that this mathematical model represents human

learning behavior. The 3x are chosen from a ra-domw-number taole

and tte subject then Is asked to clay a number of times fix Ir

advance In an effort to maximize his tota" numoer of wins; Rý

and AM. botn experts in the relevant mathematical theories, served

as subjects for trials in which there were 1,00) plays and:

x .04, .- , •, 2 P . 6 , . , .4 , 75P
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TABLE..

Static Morra

RB BC Stat-rat 1 Stat-rat 2

No. of plays 67 372 29 43

No. of wins 24 213 14 21

Percentage wins 40 57 48 49

Lrough Play Frequency of Use of Solution

I -. -' .VI .100

5 .1 .2 .077 .186

10 . .1 .05F .155

20 .5 .1 .030 .260

30 .1 .01 .304

60 - ------

90 -. 1

120 .2

- 0.2

The au-ject a.nounred at thlb point tlat -.e would continue
Olaying pure strategy No. 9 Indefritely, and so nad in effect
solved the game. R. made t1-Ao tentative decision after 32

playr anJ jsod the Otner 3-, slm!y to c inflrm. nrip delsicon.



The results are given in Table _4; it seems unlikely that the stat-

rat would match this performance, but it would probably take a

good many trials to give a statistically significant test of

this conjecture.

One static-nine game has been played by the stat--rat with

ten replications. In this play, o - 0.1 for o(= 0.1, ''', 9, and

- o A

6 .97, .510, 3'3,j..2741 .~442? 34, . 502.30-92.4)

|"irr'i~d t6jight d'ci61l places ?or 1two'hundred steps each. in

-- 200
nine out of the cases, the value of p was essentially such

that p200M0.9,, 0.1; in other words, the stat-rat had reached

the optimum stratie in 200 trials. In the tenth oase the value

of P200, If rounded off at the third decimal place, was essentiall.,

p 2000.9s, po0 -0.1; in other words, the stat-rat had reached a

very poor strategy L. 200 trials. Other details of this run of

static-nine are given in Table 5, including the "winning rate"

wt which represents the expectation on the first decision after

time t, where: 9

El pi G1
wt i-Ip

P1 -

The dynamic case is perhaps the most interesting one experi-

mentUlly, especially where a fusion model is pitted against a
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TABLE 4

Static-i 0-aMe

RB AM

No. of plays 1,000 1,000

No. of wins 719 715

Percentage wins 71.9 71.5

No. of last play 133 204
befc.-e deciding
permanently on
strategy 9

Based on expectation after decision
to play strategy 9

iL
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TABLE 5

Static--9 Game

Average' Game Number
exc i. " I

Item Game 9 1 2 3 4 5 6 7 8 9 10

Time at which
winning rate
first exeeeded:

84 59 1 41 29 58 88 98 '72 58 - 26

.90 81 97 41 88 99 ill 766 92 68 - 36

Winning rate 4--
a t time:

50 1 70 87 84 73 44 58 62 59 74 36 92
100 91 90 93 92 90 82 93 91. 93 36 93

200 93 93 93 9 93 9 93 93 93 36 93

Percentage wilns
in:

100 decisions 71 63 85 72 57 57 75 65 75 38 86

2u0 decisions _82 80 89 83 75 75 83 80 83 .8 9 1

too I

PO 1.10oo Kio6 .o91 .o92 .lo6 .1oi .093 .104 .0c6 .09 -i1oa!

P~oO0 j.097 -.090 .100 .092 .105 .105 .100 .092 .091 .0931.098

No. of thinking 1
steps for 200 23 1 23 29 15 29 27 18 22 21 1j 29
decisions: I
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human subject. Before joing too far with such a program, it will

be necessary to develop a better mathematical understanding of the

models In order to desig.n the experiments so as td permit sta-

tistleal significance tests to be applied; this point has been

ci.scused oy Bush and Mosteller [4b1, and they and others are

gradually developing some of the matnematical tools that are

needed. We have some of these experimfWW I uawit' M

subjects, using Morra and other games o'_about this e • 1 S "

the purpose. it would be interesting ii*-tOUP sotrIa1&ori_

Lxactly the same sort with real rats (e.g., playing Morra against

Stb statrat ).-.'

We have seen how the stat-rat is able to play any game with

known bounds on the payments, even though we have not been able

to settle the question concerning its degree of skill at games.

We shall now be interested in how best to exploit this knowledge of

the procedure used by the stat-rat in playing games when we are

its opponent. Of course, if we know the expectation functions

and have computed the solution of the game, then we can guarantee

at least a certain minimum result by choosing the game-theoretic

solution: our object is to do better than this safe solution

guarantees, and we also should like to know how to play when we

do not know the expectation functions or the theoreti.cal solution.

As a special case, consider the ordinary game of matching

pennies. We start with the re&sonabie assumption that the initial

vector for the stat-rat Is: 5

p (0) .4
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To make the game quite definite, in our usual notation, we note

that the game is usually represented by the expectation functions:

l71 2lzl.-1I and Y! 1 . 1 -2

We transform this game into an equivalent one, in the sense that

linear transformations on tbv individ,%al utility functione leave

the solutions Invariant, by setting:

V. -'(Vl, +1,) - and

I, 1, 2 ili

No chance move is really needed, in thl special case, since the

values of Vi are all zero or one. Finally, we specify that

there is to be a sequence of N plays, and our problem is to choose

a method of play that will maximize our expected payments against

the stat-rat. Since we can compute the p' lft) for the stat-rat at

each stage, except for the thinking steps when pc has effect,

it is not difficult to 'ind a method of play that gives us an

average expectation in excess of that obtained If we play stra-

tegies I and 2 witl'- equal frequencies. Such a good strategy would

be for us always to play the strategy that is less likely to be

chosen by the stat-rat. I shall not pursue this very simple

example further, except to note that it becomes Immed.ately more

difficult if we do not know p'(O) or if the expectation functions

are represented in the equivalent form:

4Vij where 0 < .< 1.Ilia



10. A modified fusion model

It is inconvenient to have the situation met in the special

fusion model, wherv U avu"I ap- .
bounded away from so t"1a tW• i- vii
tually be applied an I*eiftt-

culty, and some others, we shall consider the following slight

modification in the special fusion wodel:

(a) The operator PO is never applied.

(b) The probability of selecting pure strategy i at time t

is t m t
pi ~1  p j, i'o iml, 2, "'-, m.

The expected value of the payr.ent on ome-trial, star%-ing

with pt , is:

lt
~p G

S1 (pt) where Ak. mZ' Qt
Z Pt

We shall now be interebted in comparing this expectation on the

first trial with the corresponding expectation Sf(pt) on the

second trial. For this, wie have:

s, (pt ) R z1 : [,(I p ) + pt ( I "-o ) a 3 1(t )P

If e0, denotes the column vector with unity as its oýth compo-

nent and zeros elsewhere, and where a prime is always used to

denote the transpose of a matrix (or veitor), then:
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i 01t Mrt -x R pG 0ZErp + co + b jQM M

s,(RIpt) : _._ + _'r<- + b
R . ... b( c. I... ..

It - I + i

rB+o

and

s,(pipt) uA- + aG1
3 1p .... -

uB+a

where rl-b,-o and u-1*. So

F rA j + cO 1 tuAl + , &,
tt ______0__

sl(pt) I- P a + Pi uZG
B i ý rB + e u + aGJ

and, after reduction, this becomes

st A (ra-uc)(Af-BAq)

sB ((r3+c ) (u....

The quantities In the denominator are all positive and so the

algebraic sign of the second term depends on Its numerator only,

in which (ra-ue) depends only on the constant parameters. We note

It follows that

SR(pt) t S,(p ) if (ra-uc) < 0.



This is an important feature for our game-learning model to

have in order that the expectation increase with each play in

the static case.

It is obvious that

S1 (pt < )Gmax= Ga-

It is likely that pt can converge asymptotically only to a vector

of the form VD- Qe* + (1-4)ee, where 0 < Q_ < 1. One important
0c0

unsolved problem Is to rind the probability that pt converge to

VO when the initial vector p0 Is given; it is reasonable to hope

that the probability is high that pt converges to Vm when p0-l/m+i,-

in which case the modified special fusion model re;resents a game-

learning process that tends asymptotically to find the optimal

pure strategy in playing a static game. If these conjectures

prove to be well founded, as our Monte Carlo Computations with the

special fusion model seem to indicate they may be, there will

still be some questions in the degenerate cases in which the Oi
0

are not all distinct or seem of the P0 are taken to be zero.

11. Sujmnary

This is a very preliminary paper. in it we have shown how

a player can "learn" during the course of a sequence of plays of

a game to improve his strategy. The fusion model developed by

Rush and Mosteller to explain observed behavior of r6ts in experi-

mental learning situations was used as the basis tef beb a theo-

retical and experimental investigation of the efficiency of this

type of learning process in learning to play gantes; the experi-

ments discussed here were with human subjects, and their game-

learring performance was compared with that of the stat-iat"
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repr~eented by the fusion model with numerical values of the

parameters estimated to fit experimental data for rats.

The theoretical models accept basic assumptions of vonNev-snn-

Morgenatern game theory and Bush-.Zosteller learning theory,

Including:

(a) Games with identleal normal forms are equivalent, and

this equivalence is independent of the probability distribution

functions associated with chance moves.

(b) Games that differ only by linear transformations of the

individual payoff functions are equivalent.

(c) Learning is a Markov process.

Equivalence here means that the games have the same solutions.

The experimental results consist of Monte Carlo computations

for the stat-rat, contests between stat-rat and a human subject,

and comparisons of performance of stat-rat and a human subject

when playing the same static game. Very limited data indicate

that :

(a) The stat-rat usually learns a good strategy when a con-

stant mixed-atrategy is played against him; i,, Morra and the other

games plaped the stat-rat see4ed to settle on essentially the bsst

strategy within 200 trials or so.

(b) A person proficient at ,&mes would win against the stat-

rat In Morra.

(c) The stat-rat does reasonably weil in a static game, in

comparison with the human zubJect, lut a statistician would cer.-

tainly defeat the stat-rat.
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The theoretical results are very skimpy, the main result being

that one modifled fusion model does have a non-decreasing expec-

tancy per trial on successive plays of the ga; varioup open

mathematical questions are noted.

More extensive experiments are in progress, and it is hoped

that these may provide the data necessary to estimate per.meter

values for human subjects and eventually to test the adequacy of

this type of Markov process for description of human learning. It

seems very unlikely now that such a Markov process will be adequate.
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APPENDIX A

An Asy~ptotic Case

Bush and Mosteller F4c] have proposed a mathematical model

for learning that fits experimerl.al data for rats quite well;

they have called this the "fusion model." i shall discuBs only

the special t:Aree-choloe case; the argume t Is easily exter ded

to their general case.

Define five matrices as follows:

(--b c c\ j I--c
-I IC 0 1-b--c J ,"4" , C 1--L C

.1 a a

/ia

0 . 1-a- 1-a

d,1

C ons Id e r th~e `&rk-)v c,.alr4-, X;t, w-er the p1- obaaIity t-at

the trar.nItIon ~tm*r~x YInI ap.Ied atý step > Is q t 0(qt

an-- Ihe.-:

t t t t t
t r 71o r to Ispe ( e a st. • _ P q- (I ,,P3

The -uantlttes a, h, c, d, -1, and Y2 are -yve. real numbers in the
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open interval (0,1). The p1 are tne three components of the
tI

vector r t , and satisfy the conditions:0o< pt itP
- t

If we let Un(Mc<) denote the probability that the matrix MO< is

applied after all t > n then we say that the process "oencludes

with the matrix Mc,%' if lim Un(M") -n----) co

Theorem I.

The process pt+1 . Npt concludes with the matrix M5.

Proof: The probability that some one cf the three operatorm M1.

MR, or M5 will be applied after play t is:

t t t t
T ript + Taps + Ps > h > G.

where

h min 'T I, Irv

The opqtNors W, Ma, and M1, when applied to p , yield

t+ I
components p3 as follows:

t~t

I t3 - (1-b-C PI + b.,
P3 ( I-b--.c p 3 + L:,

+ !

-hus, In all three cases, we nave:

T' is theoren an' It3 proof are due to Ted HarrI4 (crol coumn'.-
cat ion .
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The probability f~n(p) that operator M5 is applied after

times t,, t~l, -- ', t+n-1, 1!%-

- r I t I]%(Ps) - pt. r.7 1•.-(--p)(1-d)1
I-1 L

To establish this relationship, note that repeated appllcation

of M5 for n times inmediately after time t yields the relation:

t+n n•n
3 V2 Pa + (,,_.,)

where

uZZ i-d.

Next, note that the probahility that M' occurs at least n times

immediately after ti.7e t iso as reouired:

n-i t+,

We will be interested in the limiting case as n-----) o, and next

c ons ider:

ttr(pt)- 11 rn (P3t
n- --- ý oo

It follows t+at

t

sinoe each te:ill In thN product f (x') is less tthan or equal to

the correspondIng term in the product fn(p3). I. particular,

t týf(pt) • f(N) if p was obtained by application of Il, , or Mi.

it ts easily seen that the secuence fn(x) ia convergent, and so

Sr(X.) > O.



We now have shown that the probability g(pt) that there

will be an unbroken sequence of applications of M5 &fter time t

is not less than

g =---_ h() > 0.

We text obtain tne limiting value of the probability that there

will be an unbroken sequence of aoplications of M5, starting

somewhere wlthin n steps after t-c.

For convenience, let Bt be the generic name for the matrix
t

operator on p . Let tt < tR < t 3 < ..... tf(N) be all the

values of t < N for which Bt-M5 and Bt+l ý M5; the process does

or does not conclude with M5 according as q)- lUm q)(N) is or
N•---:o oo

Is not finite, and we say that the process hae (P "breaks." If

we let P(bvtp°) be the probebility that the process has at least

b breaks and also has p i-v, and if we let P(bllp) be the .pro-

bability that the process has at least b breaks, then:

P(b+111po- Z P(bvjp°)(1--P(O01-))
V

Now, since

A P(b,vip 0 ) P(b~p°) and F(Ov) > g > 0,
V

it follows that

P(b+1 ! po,1 < ( -'PbpO)

Hence lim P(b'p°) - ro, and tie theoremrr follows.
ac)
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APPENDIX B

Morra

1. Game of "MorrS"

"Morra" is an example of a game involving only pe.sonal

moves. Each player shows one, two, or three fingeri and simul-

taneously calls his guess as to the number of fingers his oppo-

nent will show. If .lust one plaer guesses correctly, tie wins

an amount equal to the sum of the fingers shown by himself and

his opponent; otherwise the game is a draw.

This game conslsts of one move for each player. A strategy

for each player is a pair of numbers (s,g), where s-1,2,3 is the

number of fingers he shows and g'1,2,3 is his guess of the number

of fingers his opponent will shIow. It is evident hat each player

nas nine strategies, and thus there are 81 different possible

plays of the game. With each of these 81 ways of playing the

game, there is associated a payment to the players, as described

by the rules of the game. These payments are summarised by a

payoff matrix, in the following payoff matrix, the entries

ripresent payments to player I. Player 11 will receive the nega-

tive of these payments.



RE-CEIPTS'-DF PI.AYER I

Player II's Strategies

(1,1) (I,,.)(1,3)(2, l)(2,92)(2,w3)(3,, ) (3,2) (3,3)

(0,il o 2 2 -3 0 C -4 0 0

(1v2) - o 0 0 3 3 -4 o 0

(1,3) -2 0 0 -3 0 0 0 4

(2,I)h 3 0 3 o -4 0 0 -5 0

Player I's (2,2)1J 0 -3 0 4 0 r 0 -5 0
Strategies

(2,,3)! 0 -3 0 0 -4 0 5 0 5

00) 4 • 4 0 0 0 -5 0 o -6

(3,2) 0 0 -4 5 5 0 0 0 -6

(3,3)1 o -4 o o -5 6 6 o

2. Solutions.

The four basic solutions of Morra are:

(b) 1 oo ÷. o.. ÷ 2 o,., o, o It

(c) 0, 0, 5 , - , 4, 0,00

S t5 20 v5 92 0

(T) Ol o-ptima0, -r at e-g oP:

The optimal strategy in:

(e) O, of 23 , O, 18 ,0 14 0--,0O 0
55 55- 55



If player I uses the optimal strategy (e), he can expect to gain

at least 2/15 whenever player II d*parts from strategies 3, 5, or 7.

/
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