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A BAYES MODEL IN SEQUENTIAL DESIGN

Samuel Karlin and C. [l. Johnson

Intr ction

This paper 1s concerned with the Bayes problem of how to
maximize the expected number of successes in N trials when at

each trial we are free to choose between two machines I and II

A s
whose probabilitiesjvof-g?o; success are unknown but have a
et i

known a priori distribution Fgrn é». &

Wwe have adopted the use of the terms machine I and II to
expedite the discussion. Many other interpretations and applica-
tions can be found for the theory developed below. This 1is a
type of problem classified as sequential design. No nontrivial
examples in this field have been analyzed as far as we know to
the present date, and this represents an attempt to study some
models, to develop some qualitative results, and to focus atten—
tion on some of the difficulties involved by suitable examples.
One particular model is analyzed completely in §3. It 1s interest—
inz to note that none of the intuitive simple strategies are
usually optimal and, moreover, that the optimal strategies in
general seem to be of a very complicated nature. However,
approximate optimal strategies are discussed in several contexts.

In §2 we have analyzed the relevance of the strategy S,
which employs at each stage the machine with the maximum a priori
expected value. It is shown that this strategy 1is rarely optimal.
Other features suspected about optimal stratezies are exploded.

§3 deals with the case where one machine has a inown probabllity
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of success while the other has only a known a priori distribution.
This case is handled completely and serves to illuminate the complex
nature of optimal strategies. §A treats of certain zame extensions

associated with the Bayes problem.

§1. The Genersl Formulation

Let S denote any strategy for choosing between the two
machines and let VS(fb o) denote the expected number of successes
following strategy S for ziven (p, o). Then the expected number

of successes based on policy S 1is

(1) §.(F) = [ [ v5(p, 0)aF(p, 0) .

The best procedure is the one maximizing §S(F). Since N 1is
finite, the maximum is well defined.

In computing §S(F) one can extract the followingz formal
procedure. +We determine the conditional a priori distribution
of (F’ 0) on the k—=th trial, given that 3, successes and fl
failures from I, and S, successes and r2 fallures from II, with

5, + rl + 3, + r2 = k - 1, have preceded. In fact,

Prob. of success (p, o | 81,0158, 1,)

Pr(s,,f;,s,,f,|@,9)Pr(p,0)
Pr(sl,fl,sz,te)

We thus cbtain as the a posteriori distribution
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f. s f
l(1—p te °(1—0) 2aF(p,d)

[ 12 (1-p) Lo 2(1-0) 2aF(p,0)
0o 0

(2) dF(,,c')Islflsafa) =

The contribution to §S(P) then becomes the first ¢ or o moment
of the diatribution (2) accordinz as to whether I or II is used
at the k—th stage. This a posteriori distribution (2) is inde-
pendent of the order of presentation of the information as can

be easily verified.

One example of a very natural strategy S is the principle:
maximize expected value at each stage. Precisely, the quantitlies
[ pdF(p,o) and | odF(f,or) are compared and machine I is chosen
over machine II depending on whether the first integral exceeds
the second. The ocutcome of the first trial then determines an
a posteriori distribution F' for which the same criterion on the
first moments of F' indicates the machine to be played for the
second step, etc. This particular strategy we shall call the
"stagewise maximization principle" and designate it by Sg+ In
the following simple example, So is optimal.

Example 1. If @ + o= 1, then F(p, ¢) 1is of the form
F(r, 1 -f). Thus a success or failure on I 1s equivalent to

(gives the same information as)a fallure or success on II,
respectively.
By f, 82 fa

Let X = @ (1 —‘o) o (1 — o) € and write dF for dF(p, ©).
Let Ek(x)‘ be the maximum expected number of successes when playing
optimally for k more trials giveu the history indicated by X.
Then
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JXgaF +([XgdF)E, , (Xp) + ([(1-p)XdF)E, _; (X(1-p))

> [XodF +([XodF)E, ,(X0) + ([X(1-0)dF)E, _, (X(1—0))

Af and only if [ XpdF > [ XodF 88 o= 1 — po; that is, S, 1s
the optimal policy.

§2. Qualitative Results about Optimsl Procedures

Our first task is to obtain the complete procedure for
N = 2 when F(f, o) = F(@)G(o). It is important to emphasize
that if the number of moves 1s n, then only strategies which
are functions of the first n moments s "% My of F and
"’;.' u.;, cee, “;x of G need to be considered. This is a conse-—
quence of the fact that the expected yleld for any glven strategy
is an expression involving at most these moments. Thus all
strategies describing a first move can be viewed as functions
51(“'1' “evy Hps ui, cee, u.:,‘) such that if 31(”‘1’ "ty B
"'1' oo, un) > 0, then I 1s choaen at the first st:age and II in
the contrary case. Let u, = jfidF(p) and “1 = f aido(or)
Suppose for definiteness, e “’l’ we determine necessary and
sufficient conditions that I is employed first when N = 2.
Using the fact that at the last step one maximizes expected

value, we secure in this circumstance the value

“‘1'“2) .

® '
(1) wp + () + (2 =) max Gy, —— "
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We now obtain the best possible value attainable i1f machine II
is used first. The strategy of playing II at the first step
and then chanzing regardless of the outcome is dominated by (1).
Indeed, since u, > ui, (1) is greater than or equal to 2y 2+ u{,
the value obtained accordinz to the above strategy.

Consequently, u{ + u; + (1 - “i)“l 1s the only attainable
value needing to be considered if one begins with II. Choosing
each term of the maximum of (1) yields the two inequalities

Wp 2 M2

(2)

]
By * Bl 21 + Bp «

Combining and rewriting in 8 symmetric form, we have

Lemma 1. If N = 2 and the machines have independent a priori

distributions of probabilities of success with moments My and
]

My then a necessary and sufficient condition that machine II

is played first 1s that

Max(uy = iy, by = by) 2 MeX(kp = by, by =)

The next theorem shows that S° is zenerally not optimal.

Theorem 1. If machines I and II have & priori distributions

F(e) = [%¥(t)at and 6(o) = [Ty (t)at respectively for the
(o] (o]
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probabilities of success where ¢g(t) and ¥ (t) are continuous

and positive for O < t < 1, then there exists an n so that for

n trials the optimal procedure does not agzree with the strategy

S° described by stagzewise maximization.

Proof: (By contradiction) Suppose for definiteness that

fl tg(t)dt = b > a = jlyb(t)dt > 0, then clearly at the first
triag we use I. According to the strategy So’ it is clear by

the Schwartz inequality that we stay with the machine being used
whenever success occurs. It 1s easily shown in view of the

hypothesis on ¢g(t) that if =5 = t,, then

jlt”l(l-t )3g(t)dt
(o}

- t .
;It“(l_e)sgs(t)at °
o

This can also be obtained as a consequence of the law of largze

numbers where the frequency of success tends to t s

We choose r, s = ® sufficiently larzge and | — r+s -a| <e€
so that
L7 (1¢)3g(v)at 1
a + = = > a = [ ty(t)dt, and
JeT(1-t)3g(t)at o
(3)

¢ .1 tF*2(1 —t)°g(t)at
ot “ Tet T (1—¢)%(t)at ®
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The approximation from above is easy to lnsure by approximating
to a + €/2. Furthermore, € 1s chosen sufficlently small so
that the above holds and also [ tZy(t)at > (J cp(t)at)’ + €.
Let n=7r + 8 + 2. Suppose that using I first resulted in r
consecutive successes and then s failures. This agrees with the
procedure prescribed by strategy So and this situation occurs
with positive probability. At the r + s + 1 step, in view of the
first equation of (3), one should continue with I according to
strategy S, (maximization stagewise). We now show that both
inequalities of (2) are violated and thus machine II should be
used to furnish an optimal return. Indeed, the distributions

of successes at the beginning of the r + 8 + 1 step are, in this

situation

F(1-p)3 d

dFl(p) =
[P (1-0°8(pap

and

o
a(o) = é ydoﬁdd'.
On account of (3)
1 1 1l
‘j) PAF(p) > £ cWlo)ae.

But
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JeT2(1-p%(p)ap 652 (1-p) 8(p)ap €7 (1-p)°F(p)ae
IF-p%8(pae e (1-9)°¢(plag [¢ (1-p)%F(p)ae

Ipar'(p) =

<(a+6)®ca®+3€ < I t2¥(t)at .
(o]

Also,

2

jdel(p) + jdel(p) ]c,(o)da< a+ €& +a“ +6€

< [ tpltlat + [ t2y(t)at .

Hence, following So we arrive at a8 nonoptimal yleld and the
theorem is sstablished.

We further remark that Theorem 1 can be established for
almost all pairs of independent distributions. Only in trivial
cases where the a postériori distribution of I for any posslble
outcomes will always have larger expected value than that of II,
will it be true for all n that the principle of "maximization
stepwise" agrees with the optimal procedure. We have chosen to
illustrate this theorem by the class of distributions considered
above in order to avoid some trivial technical difficulties.

In the case where F(’) = G(o) and with F(P) symmetric, i.e.,
1 —»F(l-fﬁ = F((), then Theorem 1 1s valid in many instances
with n= 4, It is clearly immaterial which is played first as
the expected yield is the same and equal to 1/2. Furthermore,

if a success occurs then it is optimal based on the principle
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of 3o to continue with the same choice. We suppose now that a

failure occurs on the second trial; then there remain two trials

e(1-p)ar(e)

Jp(1-p)aF(p)
and II. Both are still symmetric and hence possess an expected

with distributions and drF(p), respectively, for I

value equal to 1/2. Thus, according to the strategy which max_ —
mizes stepwise, it makes no difference which machine is tried at

this third step. This implies according to Lemma 1 that
H, — b
3 4 >
= —————— Or Wk, + |y = K + sy . This is zenerally
h — Ha
impossible, particularly, e.g., when dF(@) = C(a(l -()ad e

Ho

The strategzy S0 can be described as The procedure which
makes that choice at each trial which would have been optimal
had there been only one trial left.

Let 'I‘J be the strategy making the choice at each stage
which would have been optimal if there were J trials left with
the understanding that when fewer than J trials remain then the
optimal procedure is followed thereafter.

Thus Tl = So. and the strategy T2 for independent distribu-
tions is determined by the relations of Lemma 1.

In this way we can obtain a whole hierarchy of strategies
TJ, J=1, 2, ¢«++, N. Intuitively one might expect that these
strategies are successive improvements. Of course, when N = 2,
then T, > T (T2 is indeed optimal), for N = 3(T} > Ty, T2) etc.
We now produce an example for independent populations which shows
that for N = 3, Tl = S° > T2. This negates and destroys the
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above intended direction for improving strategies. To this end,
suppose Bys Bo u.3 and p.{ 2 u-;. u; represent the first three
moments of two distributions F(p) and G(o) respectively, and
u2—u3

Hy—Ho

| ] [ ] ] ] ]
that “1 2 uvlo li2 < uao u'} > U~3: u—l + ulul < ul + Hos “'1 7
] ]

V8
and By > —?-1‘31» . In view of these inequalities, according to
H1=#2

'1‘2 we readily obtain for N = 3 the expected yield u.{ + u; + u; +
]

' ' ! u{—“Q - W
) 1 1 <, .
(hy=42) by + (1) Exl+u2+(—u1) maX(l l-ul)]

In a similar manner we can get the expected yield following
strategy T1 = So' The difference becomes T1 - T2 = bz = u; > 0.
To complete the example, it remains only to construct two distribu—
tions with moments satisfying the above inequalities. Let
a,, a,, 13 and bl, b2, b3 denote any successive moments of two
distributions H and K where a, > bl' a, < b2 and 83 > bj;

e-s..alaé.aa-é.%n}.b1=é-n.b2=%+n,

by = 7 — 7, ¥hich for 7 sufficiently small are the moments of

a distribution since (31,32,33) is an interior point of the

moment space of order 3. Let Cy1s Cp c3 denote the moments of

ot AP B 1

e =C
& distribution L satisfying ¢, > —S—2 . The Schwartz inequality
1=%2
c,—C
implies that c, —}:c-f . Let F(p) = €H(p) + (1-€L(p) and

G(o) = €K(o) + (1-@L(o) with € chosen sufficiently small,
Then

]
Wy = €a, + (l—e)c1 end u, = Gbi + (1-€)ci .
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]
We immediately get that Wy > p.; s Mo < u.; , and u3 > u.3 fro::x

-4
the com?ponding properties of the a, and bi' Also By, > u—1-—72 »
(] ]

1

m 1 -+ +

u1>ﬂ2-—“~}-, u-;>—2:2, m\dn.]'_>u'1 2 follow since
o Hy—+o 1

Ky A u;_ ~cy for € sufficiently small for which these inequali-

ties hold.

The next principle we examine is that of "staying on a
winner." This principle involves: Does the optimal strategy
have the property that whenever success occurs on a given play
of a machine this same machine 1s tried at the next trial? This
is not always optimal for the case of dependent distributions
F(p,0). Consider the following example: F(p,o) concentrates

at two points, (€,0), with probability A and (1-6,1) with probability

l -2, With € = .1 and A = .8, then consider

(4) €2 + (1-9%(10) < (1-9(1)
and

(5) €(1-€r + (1-€€(1-1) > €(1-n) .

The inequalities yield the following: If machine I is used and
success results, then (4) implies that II is to be played next,
while if fallure results, then (5) requires that I is azain to
be used. The interpretation becomes that if success results,

then it 1s highly likely that the sainple consists of machines
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of high probability of success and hence II is preferred. A
similar meaning is attributed to the situation of failure.
On the other hand, if one chooses II first, then perfect infor-
mation results, and on the basis of the outcome the play is
evident for the last step.

Computing the expected value starting with I yields

(1-€)(1-2) [2 + €] + €xr(2-¢€) = .53.

The expected yield beginning with II gives 2(1-A) + A\ € = .48.
Consequently, in general, the "staying on a winner" principle
does not arply. However, it is conjectured that when the machines
come from independent populations, then this principle is valid
for the optimal strategy.

A related concept is the property of "monotonicity," defined
as follows. Let the number of trials be fixed and let the a
priori distributions be F(f» and G(o). Suppose that it is
optimal to play I first. Then if F is replaced by PP = -GSE
with G unchanged, suppose it 1s still true that I is pre£:g£ed
to II at the first step. In this case, we say that the optimal
strategy is monotone. It is trivial to show that using the same
machine 1s equivalent to keeping F unchanged but decreasing G
to af.

We assume in what follows that the machines are from inde—

pendent universes.

Lemma 2. If the optimal strategy for any number of trials is

monotone, then the principle of "staying on a winner" is valid.
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Proof: Suppose that it is definitely better to play I first,
but if success results, shift to II on the next trial. By the
monotonocity assumption a fortiori, if failure results on the
first trial, II still is played next. But playing I, then 1II,
and optimizing from then on, 1s equivalent to playing II, then I,
and then optimizing from then on since the order of the first
two plays does not affect what follows. This contradicts the
assumption that it is definitely better to play I on the first
trial, and the lemma is established.

we note that to prove the proposition of "stayinz on a
winner" for N trials it is sufficient to know the monotonicity
criteria for N — 1 trials. Using lemma 1 and lemma 2 we now
verify the "staying on a winner" principle for 2 and 3 trials.

It 1s trivial for N = 2. For the case N = 3, it 13
sufficient to show monotonicity for N = 2. We need tc consider
two cases where I 1s preferred.

Case 1.

] ] ] ] |}
W 2 H and eith:r By 2 Wy OF W o+ H > b o+ My o
If Hy is replaced by Ef » then clearly any of the inequalities

valid before continue to hold.

Case 2.
' ] ] J
2 by but Ho > Ko and By + U D b o+ Wk e We first
observe that the last inequality implies that since u{ 2 Ky s

' o) ' '
By > WM, oOr EI > By - This combined with EI 2 By > Ho insures

by lemma 1 that machine I i1s chosen at the first trial.
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The general monotonicity property for independent machines
remains an open question.

The last general property investizated is whether the a priori
expected value is monotone increasing as a function of the steps
when employing an optimal policy. Wwhile this is true if the
strategy is So’ it 1s not true in general.

First consider the following.

Lemma 3. The strategy So spplied to any initial distribution F
has the property that the a priori expected contribution at each

stage 1s non—decreasing.

Proof: It is enough to prove the result for the first two
stages. Suppose according to So machine I is used first; then
the expected value 1is deF(P,c). Thus, ]de(e,o) > [ odF((,o').
If independent of the outcome, machine I is employed at stagze 2,

then the outcome is

I p%ar(p,0) [ p (1=plar
dF(p,0) - (1-p)aF(p,0)| Le3=pldF(p,0) [ [ L4p(e,0).
Ay prerpys s T (1—P)dF’((’.U)] Lk 2

Consequently, if the machine with maximum expected value is used,
the total expected value is > [ pdF(p,0).

In contrast to this result, consider the case of N = 3 with

1-,)°4a
J (1-p) ap
optimal return, machine I is preferred first with expected value

dF(‘o) = and dG(e) = do. It turns out that for

for the first move equal to .6. If success results, then I is

played again, while if failure occurs then the criteria of lemma 1
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require II to be chcsen. The a priori expected valve for the second

step gives Ig% < .6 = I%g .

Another way to express the fact is that if we let the random

th stage according to

variable xr(P) represent the yield at the r
policy P, then one would suspect the sequence of random variables
obtained by the optimal policy would form a semi--martingale. The
example presented above negates this proposition. Let xr(P), as

th

before, denote the yield at the r stagze according to the policy P.

We note that always

x1+... #xn
Exp (——_?l-_—) _<_I I max ((,O’)dF(e,U) .

It can be shown using the law of large numbers that 1if So is
modified so that at infinitely many trials prescribed in advance
of density zero both I and II are used and otherwise the usual
criteria of S° are employed, then
xl+. . .+xn
lim Exp (——F—— ) = [/ |/ max (p,0)dF(p,0) .
This is a type of consistency result. Unfortunately, most pro—

cedures are consistent in the above sense and thus this concept

does not help cre chcose among s.rategles.

$3. The Case of One Known and One Unknown Probability of Success

In this section we examine in detail the situation where
F(thj = F(p)3(0o) with a(o) = I+ In other words, the distribu-
tions are independent with the probability of success of machine
II known to be ¢. Let n trials be allowed and F be the initial
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a priori distribution of success for Machine I. Define Kh(F)
by the condition that if o) Kh(F), the optimal procedure 1is
to use the known machine for the first step, and if o< Kn(F).
then machine I is the optimal choice while if o= Kn(F) either
choice 1is optimal, We adopt the convention that if at any trial
it is optimal to use either machine, then in that case we choose I.
We seek to determine the form of xn(F) which represents the deci-
sion function.

The optimal procedure then is given as follows:

Ifeg xn(?). then at the first step one uses the machine

of unknown probability of success. On the other hand, if

o > K,(F), one uses the known machine. After the first step,

depending on what happened, we compute the new a posteriori

distributions I and F'(P) and compare ¢ and Kn—l(F') following

We now establish a series of lemmas describinz the form of
the optimal strategy.

Lemma 4. If the known machine II is employed at any trial

according to an optimal strategy, then it is used thereafter.

Proof: If the optimal procedure uses II r times (r < n)
and then I, the expected value 1is

(6) ro + E(F) + E(F)Y(F®, n-r1) + [1 - E(F)] ¥(FF, n-r-1)

where E(F) 1s the expected value of the distribution F; F° is an

& posteriori distribution given success has occurred on I; Fr
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corresponds to the case where fallure happened on I and Y(F, n)
is the optimal expected yleld when the a priori distribution
is F and n trials remain. The strategy using I first followed
by r tries on II and then optimal continuation gives the same
yield as in (6). Thus by our convention the optimal procedure

calls for use of I first.

Lemma 5. For any distribution F and n > 2,

K,y (F) < K, (F) .

Proof: In fact, suppose the contrary and that o is such
that Kn_l(F) > o> Kn(F). Consequently, the optimal procedure
begins with machine II and then must play I at the second trial.

This contradicts lemma 4.

Lemma 6. For any distribution F and any n
s f
Y(F~, n) > Y(F", n)

where Y(F, n) represents the expected yield following an optimal
policy for n moves when F 1s the given a priori distribution of p.

Proof: The proof is by induction on n. If Kn(Fs) > 0> Kn(l’f)
then Y(F®, n) > no > Y(FY, n) from which we conclude that the
lenma 1s valid. If o> K (F°) end o > K (FT), then ¥(F°, n) =
Y(Ff, n) = no, and azain lemma 6 is true. Thus suppose both

K, (F®), I%(F’f) > o, then
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Y(F®, n) = E(F®) + E(F®)Y(F®S, n-1)

+

@ - E(F*)J¥(FT, n-1) = E(F®) + A
while

Y(?f, n) = e(Ff) + E(FF)¥(Ff3, na1)

- E(Ff)]v(i?“, n-1) = (Ff) + B, -

+

The induction hypothesis shows that

Y(F®3, n-1) > Y(F®T, n1) = ¥(F'3, n1) > ¥(FF, n-1)

and thus any convex combination of the first two terms is larger
than or equal to any convex combination of the last two terms.

This yields A > B, but evidently E(F3?) > E(F) > E(Ff) and hence

¥(F%, n) > Y(Ff, n)
Lemma 7. For any distribution 7, we have

K,(F°) > K (FF) .

Proof: (By contradiction) Suppose o is such that

K,(F®) < o < K (F) .

We secure

IR ————
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no < Y(Ff, n) < Y(F®, n)

by lemma 6. This contradicts the fact that no is the optimal
yleld when the & priori distribution 1s F.

Lemma 8. If success occurs on either machine while followlng
an optimal procedure, then the same machine 1s employed at the

next trial.

Proof: It has been shown by lemma 4 that if the unknown
machine is ever used, then one never departs from it according
to an optimal procedure. To complete the proof, it remains to
show that if success occurs on I, then one chooses this same
machine the next time. It 1s clearly sufficlent to show this
for the first two trials. Suppose the lemma is false, that I
13 used, a success occurs and one switches to II. Thus
o> Kn_l(Fs) > E(F®) > E(F) by lemma 5. By lemma 7, also
Kh_l(Ff) < 0. Consequently,

no < Y(F, n) = E(F) + (n=l)o

and thus E(F) > o which contradicts the above inequality.
Another property valid for this model is contained in

lemma 9.

Lemma 9. The a priori expected value for each stage 1s non—decreasing

when pursuing an optimal strategy.
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Proof: It is sufficlient to show this for the first two
steps. When II is used at the first step, the result is trivial
in view of lemma 4. On the other hand, if I is used, then the
expected value for the first step is E(F). If one continues with
I rezardless of the outcome of the first trial, then the a priori
expected value is again E(F) for the second stage, which substan—
tiates the conclusion of the lemma.

It remains only to consider the case where the second trial
depends on the result of the first trial. On account of lemma 8,
if success occurred first, then I is again chosen. Suppose a
failure occurs and the optimal strategy calls for a switch, then
o> Kn_l(Fr) > E(Fr). Consequently, the expected value at the

second stage 1is

( )
™ [%] + (1) > u, + (1-1»1)—‘%-::—5— =

where iy are the moments about zero of F.

As we have seen in §2, lemma 9 1s not always true.

The above lemmas enable us to describe completely the optimal
strategy. To determine the explicit value of Kn(F), we assume
that o = Kh(F). It 13 clear in view of lemma 8 that the optimal
strategy has the following form for appropriate k1 (defined below).

(A) At the first step choose I and stay with it until a
failure occurs.

(B) There exists an integer k) > O such that 1f at least

k1 successes have occurred before the one failure, then proceed
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of

with I. Otherwise, if less than k, successes occur before the
failure, then change to II from there on.

(C) A corresponding integer K, 1s attached to two failures,
i.e., if two fallures have resulted and less than k1 + k2 suc—
cesses, then switch to II; otherwise continue with I.

(D) Generally, if r failures and 3 successes have occurred

where k, + °°° + K <8<k +k, + 0 kr’ then change to II;

r~1
otherwise continue with I.

The yield due to the strategy prescribed above can be
collected in the following way: All the terms with no fallure

have the form
I =/ (p+¢92 + ---(n)dl’ .
o

All the terms with one failure for machine I combine to yield
according to the choice of k1 the value

-1 -1
Il + Il(O') = [ [(})(*' (5)92 + 0 4+ ("":1 )e ]ekl(l—f’)dp(f’)

Y
+ cr[]{(n-—l) + (n2)p+ - + (nq) P }(1—()6?(())].

Analogously, the contributions corresponding to two failures for

machine I give the quantity
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&, -2 & K

&2 —&,—2| kK, +k
+j[(§)p+(3)p2+"(n—k% . )f’“—k1 2 ]fkl+ %(1-0)%ar(p)

g1

1 2 ky kp-l 2
+of [(n-k1-2)(1)+(n-k1—3)(1)(+"'(n-kl-kz-l)(l e ]e (1-p)%aF(p)

The terms involving exactly r failures for machine I yield

4 2-e, =
(7) T +§,(.)-I Z ( 1—1)* +(k2 -i ) Z {(. 1)+ +(k3+.2 1)} cee
31-0
r8,-6,"%3(a b b_+1 rth= e oA
Z {( r )+ (1‘+1r_: )}Eb:)"( gr )Pr+-..( ib: )P i=1 ].
a=0
k) +h# oer
P (1-p)"aF(p)
=2
1 (a.-1 Kk, +8,-1 et -1 "r*‘ >

T at®~ = 1 17y ¢ -

+c'[‘12-° (.1_1)+ (‘1’1 )}Z Z.o {( “‘1 )+ oo +( :-1 )}

r~1 L r—1 cr+1 r+kr k -1
(n= 3 lyr)(])+ (o 1):1‘.(1_1‘-1,)( :, Jgteeom 3 2_ ke—r)( T T)p T ]

r-1
z ki
. i=] (1_f)1‘
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wherebr-r—al—aa—---—ar, cl_,-x'-l--al cee =8, o0

and we interpret (;) = O for ¢ # — 1 with (T}) = 1. Our objective

is fulfilled in the following theorem.

Theorem 2.

+I +Ie+- . '+Ir+° o0
v
2

-

J
T i TP, 4t
+ao.+1r+not kl’ka’coo

S i N
i)

I
0

(F) = sup
K" k . IT+I

10Kpe 0 Lot +1

¢
where J = Iy + I, + I, + --- and where I 1s obtained from I by

replacing dF(p) by ‘Eéﬂ and the k, are subject to the restrictions

r-l
0<k1<n—l,0<k2<n—2—k_1,.--'0<kr<n_r_1§lk1.....
21 T

with the understandingz, for instance, that if n - #f -3 k =0,

1
i=1
I +I1.4cc.1
then 3. = Q017" 41

v Al
J 1°+Il+-o '}l—l

The proof consists in showing that

no — Il(o) - 12(0) - I}(c)--- -0 [Ié + I; + I; + 0] .

The general formula 1s established by a long induction argument and
we shall illustrate the method of proof by considering only the

first few sums. The gzeneral proof can be established by an exten—

sion of the arzument used. The basic identity used extensively

in the proof 1is
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(8) n - (n1) [ (1-p)dF(p) — (n-2) [p(1-p)dF — +++ — [@"(1-p)aF(p)

= [ (1+p+f+---+ﬂ'—l)dF .

This can be verified directly by a simple induction. As an
immediate consequence of (8), we obtain

-1
(9) n-(m1) [ (1-pdF - (n-2) [Jp(1-p)dF — --+ — (n-i;) I(kl (1-@)ar

- (n—kl) jfrldF +J (1+e+---+frl—l)dF i

Using (9), we secure

(10) no-1; (o) = o'{j(1+r+---+(k1—l)dF + (n—kl) jpkldF}.

Repeated application of (9) gives

k1 e iy k1+k2 =
(11) o(n-k;) Jp "dF — I (o) = ok, (n—k —k,-1) @ (1-par(p)
k 1 k,—1
+ (n—kl—ka) ka1+ 2dF(P) + (Pk1+Pk1+ +...+(k1+ 2 )dF
*

k k. -1
e ta-p [ G) s (Brp+ oo+ (Qp? Jare)§

To describe one more step in the process we find again by using (9)

several times that
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k
(12) c‘{ke(n—kl-ka—l)jpkl+ 2(1-p)dp + (n-kl—ka)f(kl*kzdl?} - 13(0)

(kl -o-k2+k3

- c{(n—kl-ka—k,)) J dF + (ky+ky ) (n—d)—ky—ky-1) jpkl*ki’*k}(l_ﬂdp

k
v [igpgehe@re o+ (P1] (moigmiegmies2r e ¥ 31— p2r

oy ky +Kp .”+Pk1+k2+k)—l

¢ " k1+k2 [( kal-o-l y 4 (k2+2

JF + [(1-p)pP )e

k -1 -1 k
b "‘:k’)p ]d? +J kz[(}) + (f)p---+(§3)ek’ ]ek1+ ?(1-¢)%r

-1

1 k
+ [(3) + (Rt +eo+ (k2.+ e’ |e "2 g)2ar

The pattern is now clear that on combining (10), (11), (12) and

]
continuing in the same manner we find that ¢J = Jor ¢ = -J-r .

J
Hence Kn(F) = sup %- 5
k1 J

Some special cases are worth noting:

2 I
Ky(F) = Letp)ar(o) _ 0
J(1+p)dF(p) Io
I I +1
KB(F) = max (-9- . -—9+—-lr)

+

o o
.max( *23"F,M2?.)."_F(£Z).
](1+e+§)dp J(1+29)dF (@)
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Unfortunately, both terms in K.j(F) can occur; e.g., if F(P) =@,
1 1 1 1

+ 3+
then K;(p) = ;z- - f—-ﬁ - ;% while 1f F(Q) 391/5 , then

Ks(@) = LQFi-gtffffffEEEL-- 2.
[(1+2p)g™ /2@

In general, the expression for Kn(F) in Theorem 2 can not be simplified
in any way and represents the simplest form for the decision function
available which azain testifies to the complex nature of optimal
strategies in such sequential design problems.

For practical purposes a reasonable approximation to &(F)
can be obtalned by choosing kl = n-1. In that case, one compares

o with

++°++9 )dF

el J(1+p+e -+ )aF

This spplies well for n small (n < 10). In the case of F(P) =@,
for example, then lg,(e) = Ln(() when n < 4, but they cease to be
equal forn = 5 and on. It is worth noting that Ln(F) shares niany
of the properties of lg,,(F) .

Lemma 10. Ln(F) is monotonic increasing in n for any F and
s £
L (F®) > L (F) > L (F").

Proof:* The proof of lemma 10 is based on the well—known result
a a.++c¢48
r 1 n
that if E; is increasing with a., br > 0, then W is also
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r r+l
increasing. Since Tk‘:% < Ide-:—li by virtue of Holder's inequallity
e

we obtain that Ln(F) is monotone increasing as a consequence of the
above cited result. The lastter part of the lemma can be proved

readily usinz this same result.

Theorem 3. If F has the property that [ I%_;d?(() = 00, then lg‘(F) - 1.

Moreover, the known machine II is never used 1if

o < lalis "lar(p)
e Tar(p

Proof:

n n
12&(?)2%:1_&%&21_6

J(14pee - 4@ )ar [l ar

for n sufficiently large. The right-hand side of the second part of
Theorem 3 is the expected value at trial n if n - 1 tries on machine I
produced all failures. The last assertion follows since l%(F) > E(F)
for any F and any n.

The interpretation of Theorem 3 is the intuitive fact that 1if
there exists substantial positive probability of success and
1f the numbe. of trials is sufficiently large, the unknown machine

should be played first unless ¢ = 1.

§4. Certain Game Aspects of the General Problem.

The first type of game problem we consider in this section is
as follows: Let EN(F(r,cr),s) denote the expected value obtained when




pP-328
28

P(p, o) 1s the a priori distribution for the probabilities of succesases
P and o of machines I and II respectively, and S defines a strategy.
The number N denotes the fixed number of trials to be used throuzh-
out these game considerations. We therefore drop the subscript N.

The function §(F, S) 1s evaluated as follows: The a priori
distribution 1s given first and the policy S 1s a procedure in terms
of inequalities involving the complete first n moments of the distri-
bution and in F(p, ©). (See the begzinning of 82.)

Theorem 4. If $(F, S) is evaluated as indicated above, then

min max !(F. S) = max min §(F, S) = max(Na, N2) where the class
F S S F

of distributionsis restricted by the condition jP dF(p, o) =a

and [ «dF(p,0) = 5. An optimal minimax distribution is F = I

a,B

(the distribution concentrating fully at (a, 3)) while S 1s an

optimal minimax policy.

Proof: 1If one considers the distribution IG'B, then regard-—-
less of the strategy S employed, an upper bound for the yleld 1is
max (Na, NB). This is evident since after every performance, the
a posteriori distribution is unchanged and equal to IG.B' It repre—
sents the only distribution where the information is complete and
no experimentation contributes any value. On the other hand, 1f
the statistician employs policy So’ then by virtue of the conditions
on the moments of F the yield at the first step 1s max(a, 2).
Lemma 3 implies that §(F, So) > n max (a, £) for any F of the

type examined. The proof of Theorem 4 1s hereby complete.
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Thus, the intuitive strategy So does assume a certain general

significance on sccount of Theorem 4. We remark that there exist

many other optimal minimax policies aside from So.

Another type of game can be introduced where decisions S are

not functions of an a priori distribution but depend only on the

observed number of successes and fallures to that point. The
expected value §(F, S) 1s evaluated in terms of F and the game is
considered where F 1s restricted by [pdF = o and [ ©dF = . The

analysis of this game remains an open question.
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