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I    Introduction 

1. Historical Background 

The first systematic statistical approach to the problem of detection in 

the presence of noise seerr.s to be that of Wiener (Ref.  10), who studied the 

problem of designing a linear filter for separating two stationary random 

processes optimally,  using the least-squares error criterion.    Wiener's work 

was extended by Zadeh  (Kef.   11) to a case where the signal wnich it is desired 

to filter is non-stationary.    Van Vleck and Middleton (Ref.  6) also treated 

the problem of designing a "best" linear filter,  but used a criterion different 

from Wiener's.    Their work was generalized by Dwork  (ref.   3).    These analyses 

made use of the assumption that an infinite sanple of observed signal is availa- 

ble,  and adopt a more or less artificial criterion for the optimum detection 

process.    There has recently been same work on analysis of finite samples of 

observed signal  (Ref.   2),  but the problem of obtaining a more fundamentally 

acceptable detection criterion has received only scant attention in the engi- 

neering literature. 

2. Definition of the Optirr.um Detector 

Before defining optimum detector it seems  advisable to define detector. 

Let 

5(t)  - A sin  (a>t*ö) (1.2.1) 

be the signal which it is desired to detect.    A and u> are known in advance, 

and Q is purely random.     (By tnis we mean that 9 varies randomly from sample 

to sample, with a uniform probability density in the interval ^ < 9 4 2TT. )    Let 

N^t) denote the noise voltage.    If 2(t) denotes the observed sample of length T, 

we have 

z(t)  - S(t)  ♦ N(t) (Oi tf T) (1.2.2) 
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QN THE DETECTION OF A  3IWK  WAVE IN GAU53IAN NOISE 

Edgar Reich and Peter Swerllng 

The RAND Corporation 
Santa Monica,  California 

This paper deals with the problem of finding the ^optimum" method of 

detecting a sine wave of known frequency and amplitude in the presence of 

noise.    The type of noise considered is the so-called stationary Gaussian 

process, which is obtained when thermal noise is passed through an arbitrary 

linear passive device. 

The analysis takes into account the fact that in practice only a finite 

sample of observed signal is available. 

The optimum detection method is defined as that which maximizes the proba- 

bility of recognizing the presence of a sine wave if one has actually appeared; 

while the probability of falsely announcing the presence of a  sine wave,  if 

none has actually appeared, does not exceed some pre-chosen value. 

It is shown that when the noise has a flat spectrum, all the relevant 

information is contained in the amplitude and phase of the Fourier transform 

of the  received sample at the frequency of the sine wave.    Almost the  same 

result holds in the case where the noise has an exponentially decaying auto- 

correlation,   excert that in this case the values of the observed sample at the 

endpoints of the  sample also play a role. 
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when S(t) is present;  and 

t(t) - tf(t) (0<tiT) (1.2.3) 

when S(t) is absent. 

By a detector is meant a black box whose input is z(t)l  and whose output 

is a yet-no indication (Fig.  1), indicating the detector's guess as to whether 

or not S(t) was present. 

Zit> 
Dt >IC^ W 

res 

 nc 

Fig.  1    Block Diagram of Basic Detector 

If an infinite saaple were available  iT ■ oo) it would be possible,   in 

principle,  to design an arbitrarily good detector by using a sufficiently narrow 

band-pass filter centered at w,  or by performing some such process as looking 

for a periodic component in the autocorrelation of x(t).    Tlnce,  however,  T is 

finite,  it will,  except  for degenerate cases  (suc.i as a missing band of noise 

frequencies around w) be impossible to design a perfect detector.     The errors 

committed by the detector can be of the following two exhaustive and mutually 

exclusive types: 

(a)    Detector says "yes"  even though S(t) is absent; 

Let 

(b) Detector says "no" even though S(t) is present. 

Pp ■ probability that the detector falsely announces the presence of 

S(t) when S(t) is not actually present. 

PR • probability that the detector recognizes J(t) when S(t) actually is 

present. 
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We have 

Pp - probability of error of type (a) (1.2.4) 

PR • 1-probability of error of type  ^b) (1.2.5) 

We define the optimum detector as the one which maximizes PR subject to 

Pp ^ pre-chosen value Pp*.    Generally speaking,  the higher the upper limit on 

Pp is set,   the   ligher it will be possible to make PR. 

3»    The Likelihood Ratio 

The information upon which the detector must base its decision is all 

contained in the observed sample 2(t),   (05t<T)s 

Put 

tk - k £ (k - 1,  2 n) (1.3.1) 

We can assume first that the detector knows only z.   ■ z(t, ),  and later let 

n—»oo.    It is physically obvious that the information obtained by the detector 

as n—}CD   is all  the information in z(t).    This has been shown rigorously in 

Ref.  4. 

In the general case,   (z.,   z?,   ...,  z ) is a set of random variables with 

a certain joint probability density which depends on whether or not S(t) is 

present.     Let L (u,, u2,  ...,  u  ) - probability density of (z,,  z2,   ...,  I ) 

when S(t) is absent, and I^^t  u2,   ,.., u ) ■ probability  density of  (z,,  z^. 

...,  z ) when 3(t) is present;  i.e., 

« 
L (u,,  u2 u ) du.  du2 ...du    • Joint probability that 

u
i<»litti*<lui       (i-i,2 n) 

when S(t) is absent. (1.3.2) 
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L. (u.,  u.,   ....  u ) du.  du. ...  du   • joint probability that i    i     « n       i     « n 

u. <x.<u.*du.     (i-1,2,... ,n) 

when S(t) is present« (1.3.3) 

(L   and L.  will be given explicitly in section II,   1.) 

The detection problem is equivalent to testing the hypothesis that 

(z,,   ...,   z  ) has density function L.   against the hypothesis that it has 

density  function L .    It R a known theorem in the theory of testing statis- 

tical hypotheses  iRef's.   1,  U,   5,  6,  9) that in order to maximite PR subject 

to Ppi Pp* one proceeds as follows: 

(a) Define the "likelihood ratio" 

A(tlf  z2 zn) -          (1.3.A) 

VV  z2 'n^ 

A is a function of the random variables z.,   z2,   .*.,  z    and thus is 

itself a random variable, 

(b) Ut 

w (X.) - probability density of A under the 

hypothesis that S(t) is absent.    (1.3.5) 

WiU) ■ probability density of A under the 

hypothesis that S(t) is present.    (1.3.6) 

Knowing the functions L (u,, u-,  ...,  u ) and L.^., u2 u ), and 

using (l. 3.^, Q and *.   can be found. 

(c) Find u  • ki(PF*) such that 

oo n 

/ w0(x) dX • 1 - / W (X)dX - PF*        (1.3.7) 

M 0 
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(d) For a ?iven observed sample («,, i2, ..., tn), let the detector say 

"yes11 when 

AU^, Z2,  ..., z,^)^^ (1.3.6) 

and "no" when 

^AU^ ij» ,,*» zr?** (I»3.9) 

Thus, by (1.3.7)# the probability of falsely ennouncing a signal to 

be present will be exactly P ♦. 

The resultant value of PR will be 

PR - / ^(X) dX (1.3.10) 
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II   DTivation of Optimum Detector 

1.    Noise with Arbitrary Autocorrelation 

The noise N(t) is assumed to be a stationary Gaussian random process 
2 

with mean 0; variance o ; and autocorrelation function 

r 1 r -,(1) 
^ (r) - EINU) N(ft)J   - EjN(t) N(t-r)| (II.l.l) 

If signal is present,  it has the form 

S(t) • A sin (a»f©) (II.1.2) 

where A and ui are known constants while Ö is equally likely to be anywhere in 

the interval 0 s 6 S 2n. 

The total voltage is 

z(t) - N(t) (signal absent) (II.1.3) 

7.(t)  - N(t) ♦ S(t)      (signal present) (II.1.4) 

iT Let this voltage be observed at times ^4  " "T"      (1"1,2,... ,n) 

and denote x(t.) by z.. * 

We will assume that the matrixf^.l  •^(ti"tj)]       ^»J " 1'2 n^ 

is non-singular (i.e.,  has an inverse) for each n. 

If signal is present, the conditional probability density for (z,,   ...,  zn) 

<2> 
when the phase it 9 is given by*   ' 

Ll\u1,u2 uje) -  ^ ^ exp|- I   ii^jk-A sin^*«)] (u -A sin^t.*©)] >    (11.1.5! 
(2n)2|^|2    [    1 ^ J 

^  fc. Uj means: expected value of X. Sometimes this is denoted by 7. 

l2) R.f. 1. 
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whtre 

Kl ■ determinant k . 

Thus the Joint density function for  (»^   z2,  ....  *n) when signal is present 

If signal is absent then the Joint density function for (»^,  iji  •••» *n) 

is 

Lo(uru2 ^ n     1 
(2n)2|f|2 

exp < - I ^^u, uj I 

Hence the likelihood ratio A    is n 

(II.1.7) 

Lo(z1,t2,..,tzn) 

or 

2n 

(II.1.8) 

n S ./ •xp 
n r -i       n 

- | Efij [«i'A sin^t^«)! [tj-A sin^wtj*©)]   -E^j ^«j >** 

or 

-b        2n 

- 2      /   expi c    sin O ♦ d    cos e ♦ gn cos  2« - h    sin 2©  'dft UI.1.9) 
n2nl/|

n n n n J 
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where 

A2 

n-T   C^cc^t^) 

cn- A ^?ij llC09l^J 

i    * A  £ T. .  z.  ainutt. (II.1.10) n *^ >ij    i J 

A2 

«n-V   ^J"""1!^' 

A2    * h       * „■T ^ij'^VV 

The integral appearing in  (11.1,9) is clearly a continuous function of 

V  cn'  dn'  fn'  V 

Assume that, as n—♦oo, we have^ 

b—>b 
n 

c —>c 
n 

d—>d (II.1.11) 
n 

h—►h 
n 

^      Finite limits b,   c,  d,   g,   and h do not exist for all possible autocorrelation 
functions.     In most interesting cases,  however,   the  lirrits will exist.     (Since c 
and d    are functions of the random variables z, ,  we  cnn only say that c and d exist 
with probability one.)    The existence of these  (finite) limits is closely connected 
with the possibility of perfect detection;   if these  li-rits  do exist,   perfect detec- 
tion is impossible. 
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We will then have 

An(z1....,2n) —^A^t)! • M(c,d; b,g,h> (11,1.12) 

where 

2n 

M(c,d; b,g,h) - ~-  / exp < c sin « ♦ d cos © ♦ g cos 2f> - h sin 20 7 d«  (II.1. 

o « 

Here c and d are  fVmctionals of the obsenred z(t) and are thus random 

variables. 

If signal is actually present, the vector  (c,d) has a density function which 

we shall denote by F,^u,v);  if signal is actually absent  (c,d) hns a density func- 

tion denoted by F (utv), o 

According to what was  said in Part I,   the optimum method of detection is as 

follows: 

(a) Find F  (utv).     Thus find  ^via II.1.12 and  11.1.13) the probability 

density for A when signal is absent. 

(b) Let P * - pre-chosen upper bound on P-.. 

Choose ^(Pp*) such that Prob    ^A | signal absent    ■ P *. 

(c) For a given observed  sarrple z(t\   compute A and 

^i)    if A s ^(PF*) say signal is not present. 

(ii)  if A> M(PJ,*)  say  signal is present. 

The  intervals 0 < A < ^ correspond to  regions  R    in the (c,d)-plane which 

can be determined fro^ II.1.13.     Thus,   the above procedure is entirely equivalent 

to the  following one: 
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va) Kind (numerically or otherwise) the  regions  K    in the  (c,d)-plane 

corresponding to 0< A < ^, 

lb) Find F  (U.Y) - the dgnsitv function  for  (c,d) when signal  Is absent, o ^ 

(c) Choose R    so that 

/    F (u,v) du dv - PF* Kctenotes the whole  (c,d)-plane; 

R-R     0 1 
M R-R    ■  complement of R . 

(d) For a given observed sample z{t),   compute  c and d and 

U)    if (c,d^< R      say signal is not present, 

Ui) if (c,d^ R      say signal i^ present. 

The  first three of these «teps do not require any observations  to be made; 

they can  be carried out  once and for all,   once the  autocorrelation  function of 

noise is known. 

A fifth step which would  be of interest  is  the  calculation of the probability 

of  detection PR  (which depends on Pp*"). 

(e) Find F,(Upv)  -  the density  function for   (c,d)  if signal  is  present. 

Then 

/ F^u.v) W^ " / Mu.v) du dv. 

The  calculation of  F  (utv)  and F,(u,v): 

ii 
We have c    »A   V^K. .z.   coswt. n ^ 'ij i j 

n 
dn   -  A    Z\, ^4    sinurt *ij'i 8intaaj 



(a) Signal not present  ^calculation of F lu,vn 

the ».   are normal; mean 0; variance a    • ^(0) 

c , d    are normal with mean 0.    Also n     n 

C2-A2     XZ   f      f 
ij.k,/ ij  -k/'i'k C08ü'tj co,l'ti 
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■  A 

i^i
tiJfk/lixk C0;,U,tJ C0*Ut£ 

J»• 

Thus 

2       .2 
n A^   Etij  co9Wt1 cosuJt    - 2(bn*gn) (II.l.U) 

similarly 

2       .2 d,,^ -A'1   Ef. 4 8inu)t.   sinüt, - 2(b -« ) (11.1.15) 
n i      J «J n    n 

and o d    - A' n n ^h cos wt.   8inu)t. • 2h 
i j n 

(II.1.16) 

Hence,   in  the  limit,   (c.d)  has the  density function 

1 
Fotu'v)  '^V^    exp, 

D ■ determinant 

1 T   2 0 2 
" 2 :011U 42a12 UY4a22 Y 

where 
2(b*g)    2h 

2h     2(b -g)J 

and 
all a12 

a21 a22 

?(b*g) 

2h 

2h 

2(b-g) 

-1 

(II.1.17) 
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(b) Signal is present  (calculation of ?.{\ityU 

The i.   are normal with means A einigt. ♦<*); variance  o    - -((0). 

For a  fixed 9 we now have 

.2    n 

- c (e) - A    Zt4. sin^art.♦©) cos^t, (II.1.18) 
n        n 1      J •* 

2    n 

Ct, ,  »in^t.♦e) sinwt. (II.1.19) d    - d  (©) • A     Ct««  sin^t  «e) sinwt. n        n ^  -"ij i j 

•o c -c    • A n    n Et«, [«J-A sirUWt.*^]   cos «t't. (II.1.20) 

But 

d-d    -A   Zs« ,  «.-H sin^Löt.««)    sinüt, (II.1.21) 

the variables z.-A sin^t, ♦©)  have the sure   statistical propjerties 

as have the  z.   wherf^only noise is present 

— 2 —2 —        •" Hence (c-c)   ,   (d-d)  ,  and  (c-c)(d-d)  have the  same values  as when 

signal  is absent.     The only difference  is in the means: 

2    n 

(9)   - A     St.  sin^it. ♦«)  cosu)t 
n 1      ^ 

2    n 

51 ^ A  cos^t,    sin ^t.   co8Ö*co8 wt.   sin« 

c   (Ö)   - 2^    cosQ  ♦  2(b *g  )  sin e n n n ^n 
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Hence, 

ct«)  - 2h co8©»2(b*g)  sin© (IU.22) 

similarly, 

d(e) - 2h sin© ♦ 2(b-g) cos© (II.1.23) 

The conditional density l\inction for (c,d) when the phase is © is th«n 

F^u.vl«) ^ exp( -hi 
2nD 

9ll[u-c(©)] ■*2e 12 u-c(<*^ ] [,- -      ,1 
d^l  ♦a (II.1.24) 

where D,   a. .   have the same values  as in II. 1.17. 

Methods  for  explicitly calculating functionals  of the type c and d for 

general autocorrelation^ srs outlined in Appendix II.     Sometimes it is possible 

to  calculate  b,   c,  d,  g,   h by explicit calculation of b  ,   c  ,  d  ,  g.  h  ; n      n     n     ii      n 

an exainple  of this appears  in II.2,     Once c(«) and d^ö)  have been obtained, 

the density  function F^u.v)   for  (c,d) in the presence  of signal is given 

F^u.v) - ^   /  F1
,
(U.V|P) d© (11.1.25) 
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In this section we consider the case 

<(c) - »i e"a'C'      (a, ^>0) 

^e will obtain expressions for b, c, d, g, h. 

It is possiole to calculate "f. . explicitly. We have 

L' 

y 
i 

-cS 

V2 

r 

rn-l 

p-2 

where <■ e 0 ; Sm Z n 
As can easily be verified, the inverse matrix is 

1      -f    0        0    ... 

&]• — /> 

-t i^r2 -i   o ... 
0 

0 

0 

o 

-i l*t    -Y   ...    o     n 

0      0       0 

0      0      0 

0   ... i-t2 -\ 
0    ...  -1        1 

.11.2.1) 

(II.2.2) 

(II.2.3) 

where the main diagonal is 1,   l*i,   l4t  ,   ...,  1*J ,   1  ;   the  di-igonals imirediately 

above and below the main diagonal consist entirely of -^'s;  an^. all other  elements 

are 0, 

The  functional» b  ,  c  ,  d  ,   g  ,   h     (11,1.10),   the limiting values of which n     n      n'   ^n      n 

must be  calculated,   all contain a fadtor of the form 

n 
Bn ■ f ^ xi y: 

,11.2.4) 

where x.   ■ x(k/),  y.   ■ y(kv);   ;.»nd where dt  least one of the function»,   say 

y(t),  is a bounded analytic  function of t while tr.e other function,  say x(t), 

is a bounded continuous function of to 
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Putting  ^2.3) into  (2.4) <?lve8 

B   - n 
^1 -t2) 

2      n-1 iW ^zl 

Vi*Vnnl4^) ? Vk- ^ ? Vk>r(r^*iy 

Uding the relations 
,.2 «3 

dyU) 
t • k^ 

,   etc, 

til.2.5) 

we can writ ,0 

n-1 £ 
i Vk-i 

n-1 - z: 
i Vk 

i 
^♦i^k • ' ^Vk - 

~-l o2    n-1 /)3    n-1 . 
i'2: Vk ^   53 Vk ^    ZT vk * 0(53)    (II.2.6) 

"^Vk^T   ^Vk-t^VK*   ^3> ^2^ 

Putting  (2,6),   (2.7) into  v2.5) and  collecting teras  gives 

n 
PU-O 

S: !^-2<^^ ^VK -^2 ?Vk '^i-T\Vk* Vn1 (II-2-8) 

'^Vn- ^S   * ^'Jn* V^   4 ^^VV Vr   *  r^) 

This  car. be   rewritten as 

n n 
3n" fh ^Vk - T^^Vk * 2$ uiyr Vn)        UI-2-9) 

2(TP   ^Vn lylj ^n 
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So if B - lim B    , 
n—JWD 

1      •» 
dt - J^J x^ry'l^-ayiO)]       (11.2.10) 

*  2^3  X^ 
yUT)   ♦  aya) 

We are now in a position to evaluate the  liTiitinK vblue« of the  func- 

tionals   UI.l.H)' 

0 

T 
,K f 

"A 

- |j(l  ♦ ^) /   t(t) coswt dt ♦ ~ Z^0^42a7 z^y  C0S,4,T -W9ir*wT 

-^ ^/.(tjsinWtdl-^^). ^t(t) 
a    y 

ifc^wt  ♦  a sinfctf      7      (II02,11) 

2 
A ^Cl-üL) „in 2tfT . ±(1 . C09 ?ur) 

1 

h - T- ^(l - ^)a - cos  2^1)   * ^ sin 2-T 
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II.     3.    White Noise  ^with Flat Spectrum) 

A definition is in oruer here since,   strictly speaking, there is no sta- 

tionary Gaussian random process with a spectrum that is flat for  frequencies 

from 0 to ♦ oo„    Still it is  possible to "approach"  white noise,   in  the   sens« 

that it is possible to define a sequence )H  (t)y   (m - 1,2,...) of Gaussian random 

processes with the property that their rower spectra approach a flat spectrum. 

Thus,  consider white noi^e with  the power density spectrum 

G(f) - K volt2/cps (^sftoo) (11.3.1) 

This will be  defined   is  the  "limiting"  case,   as n->oo,   of a sequence M 
of Gaussian random processes with autocorrelations i   It'1 »-re  • ' „  ^Se« r mi» 

Hefu   i),   pp i*2, f or relation between power spcci rum and autocorrelation.)    Putting 

Kin 
a - m,   J • '— in (II. 2. II) and letting m-^oo  gives the following limiting values: 

H 

b    H 

T 

c ■ -r-  ,    z^t) cosu^, dt K J 
0 

d - Y / «(t) 9intät dt (II.3.2) 

« * Ä 9ln 2-T 

h-^U-cos^) 
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Mote th<it the endpoints of the observed sample no longer play a part in the 

optimum detection process, 

A particularly simple result is obtained when T is an integral multiple 

of the half period, jj, of S(t). The remainder of this section is devoted to 

this  case.     Note that g and h vanish.    Thus  the  likelihood ratio becomes   (11.1.12) 

2v 

|z(t>    ' 2^ e~b /    expjc sin« * d cosftV d«        (II.3.3) 

-bI (/T^) e 
o 

where  I     is the modified Bessel  function of the  first kind,  of order zero, o 

2    2 Frota  ^11,3.3) we see that  the only significant statistic  is   vc  -»d   ),  which 

is proportional to the s .uared arapliturie of the Fourier transform of the observed 

sample at radian fre {uency&J .     An explicit  formula for the  bias  level ^ can be 

obtained for this case.     Since  I    is a monotonic  function  of its argument,   the 

critical value ^(PF*)  for A corr-sponds to a  critictil vtlue,  S'y,-vKP_*)  for 

2    2 V •  (c  ♦d   ).    Wlien 5(t)  is absent,   the  probability that V is between v and 

v*dv  is   (.Ref.   1,  pp 236) 

rr •   •  "^i" defined as a function of ?^  bv the 
^b r 

relation corresponding to U 3.7) 

f V 

1 f e "4b dv ■ F,.* Ub i F (II.3.4) 

or 
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Sunming up, the rule for this optimum detector in the case of white noise, 

n when T an integral multiple of 3 ,  is: 

/■ 
-iMt 

Announce presence of S(0 if / t(t) e 4 *" dt 

o 

T 

Announce absence of S(t) if j / z^t)  e  *■    ' dt 

0 

f H& 

KT .    / 1 \ 

(II.3.6) 

2 .2 To calculate PR it is necessary to obtain the probability density of c ♦d 

when S(0 is present.    The conditional probdbility density for phase 9 turns 

out to be independent of 9;  it is equal to 

v 
2    2 

Prob ^V£C  *d 
!      2   .2       , I       1    -b   '4b T      r- 

where b is given by  (1^3.2),    ^erefore, 

) dv (II.3.7) 

PR-- 
/    e^ lo{2Sbv) dv (II.3.8) 

-lnPp* 

For small ratios of average received signal energy to noise power/cps, 

we have C<b<<l  ;   (.11.3.B) then ininlies 

A2T 
PR * FF    f 0r    IT ^ (II.3.9) 

In general,  it follows  from   u 1.3,8) that  if H / A, 

VPF (II.3.10) 

Of course,   0-.y) and  (3.10)  hoU  for any noise aut-ocorrelalion  function and 

any value of T if the deteclor is de-ifrneci on the basis  of the  theory of testing 

statistical hypotheses. 
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AFPEND1X I 

The foregoirv  can be formally generalized as  follyws:    Suppose the  signal 

to be detected io  ^iven by 3(t;a,,... ,(0  - 3(t;?) where a.,...,a» are K parameters 

having probability dietrioution function G(?\    Let the noise be stationary, 

Gaussian with autocorrelation   i (tO.     Then 

V(vu2,e...un|a) • —nTrriTr ex^--^ 
(2n)"^|f| 

1, 
2' 

r 
r 
z ̂̂ [■V^S^jfV'j'*'' r     v^I^1) 

Therefore, 

LJ^U^UJ,-.. , u  ) n Ji/ - 2TT)u/fci\r/*- 
To /exp^ _^.^ St    'u.-3(t,;^rur.^t,^)lllG^)     ,A:^ 

1     ' ^   L   1 ' J t-   J " Jj 

Also L ^u.,o...u 
ov  1*       '  n 

C2TT 
,n/2;Ml/2    -P^i|^.-i  Uj| (AI   ^ 

AnUl-0"Zn)  " 
1> x^-2N f^^i^^i^iih-^^^j-^* 1-^) vAl.^^ 

This  can be applied  to the  case where a, ,...,Q|, are  all   fixed instead  of bein« 

randoiu U.e,,   signal shape   md rhase are known}0 

Then  (denoting the signal  simply by  ö(t)) 

n expv-  2^ 
n 
2t o Z^-^vt^) 

n 

An" exp 2|f \j ^ti) 3(vj 'Ar \\l SU1) ZJ 
(AI„5) 

Thus the  statistic which  it   Is nwcss-ry  to calculate  i'ST, ,   Ht. )  z,, 
ij        i       J 
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If the noise is white noise,  this quantity,  as n-x» ,   approaches a quantity 

proportional to 
T 

r   /   ^vt)  i{t) dt0     In other words,   all the information ae  to 
T J 

o 

whether  or not the  signal is present  is contained  in the  cross-correlation 

between signal ^nr! observed samplec 
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APPENDIX II 

The problem of evaluating the quantities b,   c,   d,  p,,  and h can be  formftlly 

reduced to  th'* problem of solving 'i cert  In integral equation. 

Let, the correlation function of noise be ^iven by 

EW) N(S '   - f(sftl - <U,s) 
[U' 

CAII.1) 

The  quadratic  fonts  to  t»e evlualed ure of  IM   form 

i    '   Zt , x.y. (.All.2) 

r    T    r i ■1 

where  /.      - ^t    t,.) 

x.  • x(t.v,  where x;t^  is d  boundwd  continuous  function 

in 0<t<T 

y.   ■ y(t   ",  where y(t)  is a  function possessing derivutlves 

of all orders» 

{In Borne cases we may have y{t)  ■  x^t^.) 

Now let 

z:- 
i-l 1J yi " W: (All.3) 

then 

Zf . wj - yi ^A:I03' 

Hence we must evaluate B    ■   ^l W.JC.    where \wAis   tnf   soluii )n of   ^All,3^. 

As  n—*oo   Und us tne maxirauni  interval  t.it't.   ,—)'')   the rroblem f orrally 
i 1*1 J 

reduces   to  the  evaluation  of 

^    In the static )narv  case /VS,0    -    ^9-t). 
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/1 (5) 
B -     /     x(l) dW(t) un.O 

</ 
-0 

wnare W^tl  is  the  solution   of 

y[0 -   /    fva.t^ dVv\s)        ,  <t<l) (All,5) 

•LA 

At an exzunple consider the  case ^^,t)   - pe     ' discussed in section 

11.2.     L^-t us  evaluate  c,   fir   exHmple.     In t'.is   case y^O   ■   * cosu/t;   x(t)   " 

^vt).     ^11.5)  becomes 

T»0 .       | 
« cosH.-   /     ^e    I      IdWCs) (All.6) 

-'o 

Trie  solution W^t)   is 

2.    t 
;ntN • j-h* ~1 /   coBu-m ds * R(t) 

where h(t)  is  a function which  is »»v^rywhere   constant 

except  for a jump of T^   it t"0 and a  Jump of -r-lcosufl - - sinu/TUt t-T. 

Hence 

TtO 
/     zvt) dW(t) 

~ 7.vo)   ■• ^ z(T)[a cosur-wflinu^rl 

2      T 
* —U* —)   /   zvt)  coswt dt 

a    Jo 

which agrees with the value  previously obtained   ^3ee II. 2.11), 

V t«; 15) 

means lim / 
—vy -» 

16) 
'  To within an arbitrary additive constant. 
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Our ability  to polve the  inte^r.-l  e;uatlon   ^II.O  in closed  form was 

fl'jirewhat  fortuitous.     The   luthors are  investig.itirw the corresponding  equation 

-in 
for autocorrelation functi jn?   jf tyr* 4 \ts  ■ ^k [Tp e        ,   where P is  a poly- 

nomial.     The possibility  that general autocorrelation functions might  be 

approximated by  Laguerre  polynomials,   and tipt roximationa to the values of c, 

d,   etCo,   obtained  in this way,   is  being  investigated« 

Eh/P3: iflie 
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LIST UP  .SYMaOLS 

Nvt) 

z(t) 

V 

n 

b .c ,(1 ,g ,h 

b, c, d,«, h 

A sin^t,««) - sine wave signal 

noise 

observed signal 

duration of observed sample 

probability that detector  falsely announces  the 
presence of 3(0  when S{t)  is  not  actually  pr**nent, 

upper limit set on P- 

probability that detector  recognizes 3(0  -hen ^{t) 
actually is present. 

—     ik -  1,2,.   . ,n) 

likelihood ratio with  the Values  z^t.l,   (i   ■   l(i,.,,n) 

as   the observed variables. 

lin    A n n-4x 

critical value of A • bias level 

a monotonic function of A 

critical value of V ■ bias level 

autocorrelation of li{t) 

funoti^nals occurring in calculation of A T n 

limits of ibove as n-*cr> 
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