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I Introduction

1. Historical Background

The first systematic statistical approach to the problem of detection in
the presence of ncise seems t be that of Wiener (Ref. 10), who studied the
problem of designing a linear filter for separating two stationary random
processes optimally, using the lesst-squares error criterion., Wiener's work
was extended by Zadeh (hef. 1l1) to a case where the signal wnich it is desired
to filter is non-stationary. Van Vleck and Middleton (Ref, 8) also treated
the problem of designing a "best" linear filter, but used a criterion different
from Wiener's, Their work wuas geueralized by Dwork (ref. 3). These analyses
made use of the assumption that an infinite sample of observed signal is availa-
ble, and adopt a more or less artificial criterion for the optimum detection
process. There has recently been some work on analysis of finite samples of
observed signal (Ref. 2), but the problem of obtaining a more fundamentally
acceptable detection criterion has received only scant attention in the engi-
neering literature,
2, Definition of the Optirum Detector

Before defining optimum detector it seems advisable to define detector.

Let
S(t) = A sin (wt+8) (I.2,1)
be the signal which it is desired to detect. A and w are known in advance,
and 6 is purely random. (By tnis we mean that © varies randomly from sample
to sample, with a uniform probability density in the interval " 69 ¢ 2n.) Let
N\t) denote the noise voltage., If z(t) denotes the observed sample of length T,

we have

z(t) = S(t) + N(t) (O:teT) (I.2.2)
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»
Edgar Reich and Peter Swerling
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This paper deals with the problem of finding the topt.imun"y,method of
detecting a sine wave of known frequency and amplitude in the presence of
noise. The type of ncise considered is the so-called stationary Gaussian
process, which is obtained when thermal nolse is passed through an arbitrary
linear passive device,

The analysis takes into account the fact that in practice only a finite
sample of observed signal is available,

The optimum detection method is defined as that which maximizes the proba-
bility of recognizing the presence of a sine wave if one has actually appeared;
while the probabllity of falsely announcing the presence of a esine wave, if
none has actually appeared, does not exceed some pre-chosen value,

It is shown that when the noise has a flat spectrum, all the relevant
information is contained in the amplitude and phase of the Fourier transforms
of the received sample at the frequency of the sine wave, Almost the same
result holds in the case where the noise has an exponentially decaying suto-
correlation, excent that in this case the values of the observed sample at the

endpoints of the sample also play a role.
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when S(t) is present; and
z(t) = N(t) (0<tgT) (I.2.3)

when S(t) is absent,
By a detector is meant a black box whose input is z(t), and whose output
is a yes-no indication (Fig. 1), indicating the detector's guess as to whether

or not S(t) was present.

- - Jes
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Fig. 1 Block Diagram >f Basic Detector

If an infinite sample were available (T = ® ) it would be possible, in
principle, to design an arbitrarily good detector by using a sufficiently narrow
band-pass filter centered at w, or by performing some such process as looking
for a periodic component in the autocorrelation of z(t). Since, however, T is
finite, it will, except for degenerate cases (suca as a missing band of noise
frequencies around w) be impossible to design a perfect detector. The errors
committed by the detector can be of the following two exhausive and mutually
exclusive types:

(a) Detector says "yes" even though S(t) is absent;

(b) Detector says ":?" even though S(t) is present.

Let
PF = probability that the detector falsely unnounces the presence of
S(t) when S(t) is not actually present.

PR e probability that the detector recognizes 3(t) when S(t) actually is

present.

—
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We have
PF = probability of error of type (a) (I.2.4)
Pp = 1-probability of error of type (b) (1I.2.5)

We define the optimum detector as the one which maximizes PR subject to

F}.; pre-chosen value PF'. Generally speaking, the higher the upper limit on

PF is set, the :igher it will be possible to make PR'

3., Tre Likelihood Ratio

The information upon which the detector must bass its decision is all
contained in the observed sample z(t), U“St.gT)a

Put
¢ -k% k=1, 2, .00, n) (1.3.1)

We can assume first that the detector knows only " z(tk), and later let

n—o00. It is physically obvious that the information obtained by the detector
as n—)o 1is all the information in z(t). This has been shown rigorously in

Ref. 4.

In the general case, (zl. Zyr cees zn) is a set of random variables with

a certain joint probability density which depends on whether or not S(t) is

present. Let Lo(ul, Ugy eves un) = probability density of (zl, ZTyr eees sn)
when S(t) is absent, and Ll(ul' Upr e un) = probability density of (zl. 2,
coes zn) when S(t) is present; i.e.,

d'u du

Lo(u un) y duy ...du = joint probability that

l' 02, ® 00y
u, <g, <u, +du (il,2,...,n)
1 i 1 i [ B ’

when S(t) is absent. (1.3.2)
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Ll(ul, Uyy weey un) du1 du, ... dun » joint probability that
ui Sziiui’dui (1'102v°-°vn)
when S(t) is present. (1.3.3)

(Lo and L, will be given explicitly in section II, 1.)

The detection problem is eqyuivalent to testing the hypothesis that
(zl. Xoks & zn) has density function L1 apainst the hypothesis that it has

density function Lo. It f! a known theorem in the theorv of testing statis-
tical hypotheses (Ref's. 1, 4, 5, 6, 9) that in order to maximize PR subject

to P.< P

F F’ one proceeds as follows:

(a) Define the "likelihood ratio"

Ll(zl, Zos sees zn)

Lo(zl. Zyr eens zn)

Ay 2y oee, zn) - (I.3.4)

A is 4 function of the random variables Z)y 2y eeey 24 and thus is

itself a random variable,
(b) Let
uo(x) = probability density of A under the
hypothesis that S(t) is absent. (I.3.5)
Ql(k) = probability density of A under the
hrnothesis that S(t) is present. (I1.3.6)

Knowing the functions Lo(ul' Ugy oeey un) and Ll(ul, Ugy eeey un), and
using(i.].g. Qo and <) can be found.

(¢c) Find u = u(PF‘) such that

@ B

/ uo(x) d\ = 1 - / < (A\)dr = Pt (I.3.7)
M 0
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(d) Por a given observed sample (zl, Zor eecs zn), let the detector say

"yes" when

A(zl. ZTor oo zn)> " (1.3.8)

and "no" when

.A(zl, zz,...., zn)S“ (1-309)

Thus, by (I.3.7), the probability of falsely announcing a signal to

be present will be exsctly PF'.

The resultant value of PR will be

P -7Q1(k) dA (I.3.10)

"
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11 Derivation of Optimum Datector

1. Noise with arbitrary Autocorrelation
The noise N(t) is assumed to be a stationary Gaussian random process

with mean O; variance 02; and autocorrelation function

- (1)
Q(t) = E[N(t.) Nu.or)] . E'LN(t.) N(t.-r)] (I1.1.1)
If signal is present, it has the form
S(L) = A sin (Wt+0) (11.1.2)

where A and w are known constants while 6 is equally likely to be anywhere in
the interval 0 <8 2n,
The total vo_luge is
z(t) = N(t) (signal absent) (I1.1.3)

7{(t) = N(t) ¢+ S(t) (signal present) (I1I1.1.4)

iT

Let this voltage be observed at times t s (1=1,2,...,n)

and denote z(ti) by 2. '

We will assume that the matrix[qu] -rﬂt.i-tj)] (1, = 1,2,...,n)

L

is non~singular (i.e., has an inverse) for each n.
If signal is present, the conditional probability density for (zl. 3000, zn)

\
when the phase is © is given by'*’

1
n

N

' n .
L’l \ul,uz....,unle) - exp ( - %‘fm [ui-A amwtioe)] [uj-k sin(ut.j'e)] (I1.1.5)

n 1
(2m)2]4?

WLl

] means: expected .value of X. Sometimes this is denoted by X.

(2) por. 1.
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nare (%] = (%3] “fFeesy)]

¢l = determinant RU]

Bin] i Ki] '[m]-l

Thus the joint density function for (2 o zn) when signal is present

10 20 o
is

n
Ll(ul' Uy eens un) - 5]: / Ll'(ul, Uy wees un!GF de (11.1,6)
0

If signal is absent then the joint density function for (zl. 2y oo zn)

is

[

n
1 =f- 3 zltijui ug (11.1.7)
(20292

Lo(ul,uz,... ,un) -

[}

Hence the likelihood ratio An is

Lty

A (11.1.8)
Lo(zl,zz,..,.zn)
or
2n
1 e . I . L
A" o exp{ - 5 }%(U [zi-A sxn(wtioe)] LzJ-A sm\wtjof-))] -Zl:‘ij 2,2, ¢h
0
or
-bn 2n
e : :
v / exp{cn sin 8 +d cos @ + g cos 26 - h_ sin 29}d9 (1I.1.9)

o
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where
A2 n

bn =i 2_1"‘ fij cos w(ti-tj)

n
c, * A ?gij 2y coswt.‘j

n
dn - A ? zij 2y ainwt.J (I11,1.10)

A% -
8, ° T Ll,gu cosw(tiotj)

a2 &
hn - T ,_’l__, iy smw(ti*tj)

The integral appearing in (II.1.9) is clearly & continuous function of

bn, cn. dn, fn, gn.

(3)

Assume that, as n— o, we have

b —b

n

c—)cC

n

dn-—)d (LI T1)
8—E

h—>h
n

(3) Finite limits b, ¢, d, g, and h do not exist for all possible sutocorrslation
functions., In most interesting causes, however, the lirits will exist, (Since ¢
and d_ are functions of the random variables z,, we carn only suy that c and d exist
with Srobability one.) The existence of these (finite) limits is closely connected
with the possibility of perfect detection; if these limits do exist, perfect detec-
tion is impossible,
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we will then have
An(zl"'“'zn) —)A{z‘\t)} = M(c,d; b,g,h} (11,1.12)
where
S o) 2n
M(c,d; b,g,h) = 25; /f exp {c sin 8 + d cos 6 ¢+ g cos 20 - h sin 28 dA (I1.1,13)
)

Here ¢ and d are functionals of the observed z(t) and are thus random
variables,

If signal is actually present, the vector (c,d) has a density function which
we shall dencte by Fl\u,v); if signal is actually absent (c,d) has a density func-

tion denoted by Fo(u,v).

According to what was said in Part I, the optimum method of detection is as
follows:
(a) Find Fo(u,v). Thus find (vis II,1.,12 and II1.1.13) the probability
density for A when signal is absent,

(b) Let PF“ = pre-chosen upper bound on PFo

Choose u(P

F*) such that Prob [u‘A | signal absené] - PF’.

(¢) For a given observed sanple z(t), compute A and

(1) ifa su(PF*) say* signal is not present.
(11) if A> p(PF’) say signal is present.
The intervals O <A < 4 correspond to regions R“ in the (¢,d)~-plane which

can be determined from 11,1.13., Thus, the above procedure is entirely equivalenmt

to the following one:



\a) Find (numerically or otherwise) the regions hu in the (c,d)-plane

corresponding to 0< A <y,

(b) Find Fo(u,v) - the dgnsity function for (c,d) when signal is absent.

(¢) Choose R“ so that

// Fo\u,v) du dv = PF* {Rchnotes the whole (c¢,d)-plane;
Sl R-R = complement of R l

H )
{d) For a given observed sample z(t), caompute ¢ and d and

(1) 4f (c,d)e R“ say signal is not present,
(1) if (c,d)¢ R“ say signal is present.
The first three of these =teps do not require any ouservations to be made;

they can be carried out once and for all, once the autocorrelation function of

noise is known,

A fifth step which would be of interest is the calculation of the probability

of detection Pp (which depends on FF‘).

(e) Pind Fl(u,v) - the density function for (c,d) if signal is present,

Then

PR (R sN= // Fy(u,v) du dv.

The calculation of Fo\u,v) and Fl(u,v):

n
We have C, " A E:Kijzi cowtJ

n
d, = A % ‘Uzi sin«rt‘j
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(a) Signal not present 6:alculation of Foku,v»
the t, are normal; mean O; variance 02 = €(0)
€ dn are normal with mean 0, Also
c_nz' Z fij fkl il(coamt., cowt.‘
1,3,k 2 v
= § fiJ ke 1 k oswt.J cowtl
i,5.k, 4
= y f £ q cout. cosut
e 1k ik )
2 -1
- JZ‘ y couwt.J coswt, (since[tu] -[YIJ] )
1]
Thus
=
L A ?TU coswt.i c:osmt,J - 2(bnogn) (I1.1.14)
»
similarly
I E. S
d "= A ‘l_, rij sinwt, tlirw.)t.J - 2(bn-gn) (II1.1.15)
2 &
and cd = )l:fu cos wt, uinu)t.J = 2h (11.1.16)
Hence, in the limit, (c,d) has the density function
F (u,v) = 172 e -1 ra u202a uv+a '2] (11,1,17)
otV 2n D 172 12 22 o
where D = determinant fkb;f‘) gr(lb-g\]
. -1
eg)
0, 012] 2(b+g) 2h
and -
oy 022J 2h 2(b-g




(b) Signal is present <calculat.ion of Fl(u,VD

The z, are normal with means A ain(utioe); variance 02 - ¢(0).

i

For a fixed 6 we now have

n
S 2 _
c, ® cn(e) - A Eligu ain\mioe) cos “"’j (I1,1.18)
—_ —— 2 ,)2\
dn - dn(e) - A ,I,gij un\Ut.i'O) am«)t.J (11.1.19)
_ n
80 ¢ ~C, = A Sl:(ij [zi-x ain(wtioﬂ\J cos “""J (I1.1.20)
——— n r P
d ~d_ = a i‘ifu zgoa sinre; 09) sinwt, (11.1.21)

But the variables 2z -A sin(Wt.ioe) have the same statistical properties

i

as have the 2, whe®only noise is present

Hence (c-z)z, (d-a)z, and (c-c)(d-d) have the same values as when

signal is absent, The only difference is in the means:
- 2 n
cn(e) - A ?YLJ ain(ut.idﬁ) cosun.‘3

n

2

- 4 ; §13 coath [ain “"1 cos8+cos wti sin‘)]
i

e 3 b +g )
cn(Q) 2hn cosfl ¢ 2\bn 8 ) sin 6
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Hence,
c(®) = 2h cos®+ 2(b+g) sine (I11.22)
similarly,
d(®) = 2h sin® + 2(b-g) cosb (I1.1.23)

The conditional density function for (c,d) when the phase is 8 is then

| | - 2 - - | =3
Fl'kuovl‘” = :0175 expi(- 5‘ % [u-c(ﬂ)] 02(:12 [u-cw\] [v-dw\J ‘a5, [u-d{ﬂﬂ

(I1.1.24)

where D, a,, have the same values as in II.1,17.

i
Metrods for explicitly calculating functionals of the type ¢ and d for
general autocorrelations are outlined in Appendix 1], Sometimes it is possible

ts calculate b, ¢, d, g, h by explicit calculation of bn' Cot dn' &y hn;

an example of this appears in 1I1.2, Once c(R) and d(8) have been obtained,

the density function F,(u,v) for (c,d) in the presence of signal is given

by n

Fy'(u,v|@) do (I1.1.25)

1
Fl(u,v) = 3
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II. 2, Noise with Exponentially Decaying Autocorrelation
In this section we consider the case
{(¢) = oolel (a, $0) (I11.2.1)

d#e will obtain expressions for b, ¢, d, g, h.

It is possiole to calculate fij explicitly., We have

vy ‘. x“'l‘f

[m]- BlY 1 Y ;”‘2' (11.2.2)
l

Lf"] A S 1 J

where (-cmg; 5-%
As can casily be verified, the inverse matrix is
B R R I
- 17 =Y 0
[fi,} S T
Jsa-H1. . o

2 O D

(I1.2.,3)

0 0 0 ... lef® -4
0o ... =Y 1J

-

where the main diagonal is 1, 10/2. 1'12. Ry 1'72, 1 ; the diagonals imrediately

above and below the main diagonal consist entirely of =-)'s; and all other elements

are 0O,

The functionals bov €v Ay Eoe B (I1.1.10), thre limiting values of which

must be calculated, all contain a famor of the form
n
B = %fm X ¥y d1.2.4)

where x, = x(kJ), Yy © y(k3y); snd where at least one of the functions, say

y(t), is a bounded analytic function of t while t-e other function, say x(t),

is 4 bounded continuous function of t,




Putting (2.3) into (2.4) gives
B = —i— Ixy exy «(1+F) X xy, - S PIFIRN (11.2,5)
n " ) Y1 e 5 0k kel T e

Using the relations

where )"k - %—%—Q , etc.,
t = k4

we Can write
= ncl il 12 n-l 3 n-1
% g1 " ? Ty 3':’1: xy, + L ? X, * Q—- ? X, * n(§7) (I11.2.6)
n-1 n 1 2 3 m

- -‘ -' * .5— - 8—— v * 3\
‘?"kol"k %xkyk ??’Wk > 2:3*,,9,( - %’-kan § (11.2.7)

Putting \2.6), (2.7) into \2.5) and collecting terms gives

r

1 2, o~ 2 <~ . \ .
Bn - 5 (1=2§e ) zxk“’x -xy Zx.'(yk yil-¥ XY, xnyn) (I11.2.8)
pl=2") 1 1
L

.22 :.3
* Y - ; + Y L 4 v L) “" - v *
w(xnyn xlyl) 2 \'(n'yn xlyl) U‘n‘"n ‘lyl‘ PW})

L

This car be rewritten as

al s T < 1
Bn " 2on ‘l‘:xkyk - 2adn?‘kyk 33 Xy xnyn) (II.2.9)

1 - . o3y
2ap \xnyn xlg’l) O(n



50 4f B = lm 8,
n—o°

T
B-—a/

2/

o

) [y(0 - & y"m} a -z xm)[y'm)-ay(oﬂ
L a

(11.2.10)
J

1 7
* 305 AT r'(T) am)J

We are now in a -~csition to
tionals (I1.1.11):

2 2
cA O, W\, 1
o 4L I:Zp(l 02/T p}

)
g%(l . 9%) | z(t) coswt dt
a ‘/o

2 Tf
ah W\ | . _
2"<1 . 02)‘/‘ z(t) sint dt
0

l\2 r-(l W2 1l .];
& Sha LJU(I - —2) sin 2T < 53(1 + cos ?U’T)'
| J
2 2
A a W o, 1
h = M m(l - 2)(1 - cos 2wT) X sin 2T j
L

A A .
X z( )‘20’) Z\T)[n cosw w9 ru]

evaluate the limiting values of the func-

~

Wa

T z\C) -20% £(T) [‘t)sm v q sina/r:l > (II.2.11)




1I. 3. White Noise (with Flat Spectrum)

A definition is in oruer here since, strictly speaking, there is nc sta-
tionary Gaussian random process with a spectrum that is flat for frequencies
from O to ¢+ oo, S5till it is possible to "approach" white noise, in the sense
that it is possible to define a sequence {Nm(t)} (m = 1,2,...) of Gaussian random
processes with the property that their power spectra approach a flat spectrum,

Thus, ccnsider white noise with the power density spectrum

G(f) = K voltz/cpe (g f<o) (11.3.1)

This will be defined s the "limiting" cese, as m— o, of a sequence {Nn(t}

of Gaussian rundom processes with autocorrelatinns %’mtﬂ - 5{‘- e -m|t| o (See

Ref. 5, pp 42 for relation between power spectrum and autocorrelation.) Putting
a=m, J = % in (I11.2.11) and letting m—>oo gives the following limiting values:

b-fl
K

2

T
c = -Z-AK- ! z\t) coswt dt
/

0

2A

. z(t) sinwt dt (I1.3.2)

g = —= sin 20T

h e — (1 - cos 2uT)
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Note that the endpoints of the observed sample nolonger play a part in the
optimum detection process,
A particularly simple result is obtained when T is an integral multiple

of the half period, (%, of S(t). The remainder of this section is devoted to

this case., Note that g and h vanish, Thus the likelihood ratio becomes (II.1.12)

2n
A{z(t:} - %1- e—b/ exp{c sing - d cosﬂ} de (11.3.3)

0

> - e-blo Vc2~d2>

where Io is the modified Bessel function of the first kind, of -rder zero.

From (i1.3.3) we see that the only significant statistic is \cz*dz\. which
1s proportional t> the s uarecd ampiitude of the Fourier transform of the observed
sample at radian frejuencyw . An explicit formula for the bias level u can be

obtained for this case. Since Io is 4 monotoriic function of its argument, the
criticel value .;(PF') for A corresponds to a criticsl value, s q.',-l)\PF‘) for

Vs (czodz). When 5(t) is absent, the oprohupility that V is between v and

vedv is (Ref, 1, pp 236)

v
ZIE e Lb . Vis defined as a function cf PF* b the

relation correspondin, to (1.3.7):

SR
:—b/ e 44y Fp® (11.3.4)
2
or 2
, 2 ,
ﬂ\PF-\ e 4b In (:,) - : e <P1¢ (I1.3.5)
F
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Summing up, the rule for this optimum detector in the case of white noise,

when T an integral multiple of 3 , 1s:

| SR

T
2
Announce presence of S(t) if’//z(t) e.“"IL dt’ )%} 1n<-l-)
|
F
)

(11.3.6)

-1t

T
Announce absence of S(t) if IJ/z(t) e dt
2

2

To calculate P, it is necess:ry to obtain the probability density of cztd

R
when S(t) is present. The conditional probability density for rhase 8 turns

out to be independent of 6; it is equzl to

v
Prob {vsc2~d2<v*d%} - f; Pk L IO\JV) dv (11<3:7)

where b is given by (IRp3.2). Trerefore,

®
P. = o J/ e’ Io(2va) dv (11.3.8)
- #®
lnPF
For small ratios of average received signal energy to noise poweg/cpo,

we have C<b<el ; (II1.3.8) then implies

2

. AT
PR - PF for T((l (110309)

In general, it follows from (.I.3.8) that if a ¥ ",

/

PR>PF (I1.3.10)

Of course, (3.s) and (3.10) hold for any noise autocorrelation function and
any value of T if the detector (s desirned on the basis of the theory of testing

statistical hypotheses,




APFENDIX 1

The foresoiny can be formally generalized as follows: Suppose the sigral

to be detected is given by j(t;al,...,aK\ = 5(t;d) where a)y...,0y are K parameters

having probability districution function G(3'. Let the noise be stationary,

Gaussian with autocorrelation ¢ (¥). Then

- 1 1, & . ‘
"(Uy Usyewo,u_d) = 7 exp i~ =) Z( [u.- Wt 7 ]L -3t ;3‘J Al D)
L'y, n (2n)n,2”'175 217 i =3 J
Therefcre,
1 1, /S, - r
Ll(ul, PURRERLN ) = 75 exp\-g\ E(, ui-j(t.(‘;?iqJ u1-‘\t.4;3\,] 1. &) (Al2°
\21,1) / Iil / l Yo [ v
1. )
- S \ \
Also L o\Upre s un\ 7 ll/2 expi= 5 El:';v ‘4 J: (al
! 1 ]a -
An(zl,“.,zn) -/exp\- 5‘ J'z =2t aJ[hj s(tjp]- Zf Iy 15, A) VAL L)Y

This can be applied to the case where Oyy..0,0y are all fixed :nsteud of beling
randoms(i.e., signal shape snd rhase are known),

Then (denoting the signal simply by S5(t))

A = expi= 5 i 2? [ 1%{: -3(t, J -%fij 2,2,

(A1.5)
K. )\t ZJ

n

— Mo

AL = exp 3 EXU t, o(t:“ expi{-

Thus the stutistic which it 1is necrss.ry to calculate ‘.=ij ,(ti) z‘Jo
FS



P-305
6-11-52
«22=

If the noise is white noise, this quantity, as n—9® , approaches a quantity

proportional to
T

3

/ Z\t) z(t) dt. In other words, ull the information as to
J
0

whether or nct tle signal is present is contained in the cross-correlation

between signal and observec sample,



APFENDIX []

The problem of evaluating the quantities b, ¢, d, g, and h can be formally
reduced to the problem of solving i cert:in inte-ral equation.

Let the correlation function of noise be given by

A
E{;\t)N(s} o {(s,t) =¢(t,s) (AII.1)

The Juadratic forms to be ev-luated sre of w:¢ form
. - - e
dn iigu nyi (AI1,2)

, -1
whore[ﬁj -[(“t'i't‘)J

! il

xJ * x(t,', where x.t) is 4 bounded ecntinu us function

in O«<T
v, " y(tii, where y(t) is 4 function possessing derivuatives
of all orders,

(In some cases we may have y(t) = x\t'.)

Now let
n
> by, . w, WAIT.3)
13 71 J
isl
then

2¢J'4 -yi \AIIOB)
J (V]

Y

n
Hence we must eviluate Bn - > w,xJ where {;;}ls tne solutisn of (AII.3),

(SN

As n— (and ss tne maximum {nterval Li*t’ti’l—?'\ the rroblem formally

reduces to the evaluation of

\w) In the stationary case §.,9,t) = ¢ s-t),



F=305
6=-11-52
-2
T30 (5)
B = /’ x(t) dw(t) (AIT.4)
-0
whiere a(t) is the solution »f
TeN
1]
yit) = / {is,t) dw(s) v CteT) (AIL.5)

/

8

As an example consider the case ¢ (3,t) = pe-ols-tl discussed in section

(1.2, Let us evaluate ¢, for example. In t..is case y(t ' = A cosut; x(t) =

ot (all.5) becomes

L0
A coslt,= / Je 0,3 t'ld'»'(s) (Al1.6)
T:e solution w(t) is‘c)
y 2.t
Wit e 3%[10 QEJ‘/’ cosum ds ¢ R(t)
" a” 4%
where R(t) is a function which is everrwhere constant

M

Tk e . AT " -
except for a jump of 23 1t t=7 and a Jump of 2plfosuﬂ P s.nuﬁ]at t=T,

Hence

Ts0
f Z\t) d‘-‘-'(!.)

-0
A \ A :
“ 3 2..0) - T 2(T) |a coswl—wainwT
. 2 1
. 5% 1+ &3) M oz.t) coswt dt
? %

which agrees with the value previcusly obtained (3Jee II.2.11),

5 ., N
g I

means lim &
T >

¥
L <

(o) To within an arbitrary asdditive constant,

‘------------I-IIIIIIIIlllllllIIIIIIllllllllllllllll....Illlllllllllll...llllllll



Our ability to solve the inteyral e .uation (all.?) {n closed form was
somewhat fortuitous, The .uthors are investiguting the corresponding equation
for autocorrelation functiona of type \T' = P([T]) e-lr|, where P {s a poly-
nomial. The rossibility that gencral autocorrelation functions might be

approximated by Laguerre polynomials, and aprroximations to the values of c,

d, etc., obtilned in this wuay, is being investigated,

ER/PS:ime



LIST OF SYMHOLS

5(t) = A sinWt+R) = sine wave signal
Nit) = noise

z(t) = observed signal

-3
[ ]

duration of observed sample

P. = probability thuat detector falsely announces the
presence of 5(t) when S(t) is not uctually present

P.* = upper limit set on PF

ST probJ!ility that detector recognizes 5(t) wlen 5(t)
actually is present.

kT (k = 1,2,...,n)

4 = likelihood ratio with the values z(ti\, (8 =1L 50)
as the observed variables,

A= lim 1
n—-|x

w ® critical value of A = bias level
V = a monotonic functio-n of
1 e critical value of V = biLs level

f.U) = autocorrelaticn of N(t)

({XJ - {\Ei-t;‘,)

Al
| Q - 1 'S
’iJ pi:]

dn,gn,hn = functionals occurring in calculation of An

b,c,d,”,h = limits of sbove 4s now®
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