accession \＃

1．WE RESRET THAT LEGIBILITY OF THIS DOCUHEHT IS IH FART UHSATISFACTORY．REPRODUCTIDK HAS BEEN HADE FROA BEST s． $\operatorname{sillable~copy.~}$

2．A portion of the original document cghtains fine detail HHICH HAY MAKE READIKG OF PHOTOCOPY DIFEICULT．

3．THE ORIGAHAL DOCUHEHT CONTAIHS COLOR，BUT DISTRIEUTION COPIES ARE AVAILABLE IN BLACK－AKD－HHITE REPRODUCTIOH ORLY．

4．THE IMITIAL DISTRIBUTIOH COPIES COHTGIM COLOR WHICH SALL BE SHOWH IH BLACK－AHD－WHITE WHEH IT IS HECESSARY TO REPRINT．

5．LIMITED SYPPLY ON HAND：WHEH EXHAUSTED，DOCUHENT WILL BE AYAILABLE IN HICROFICHE OHLY．

6．LIMITED SUPPLY OH HAHD：YHEN EXHAUSTED DOCUHEHT FILL HOT BE AVAILABLE．

1．DOCUMEHT IS AVAILARLE IN HGGOFIGHE ORLY．

8．DOCUMEHT AVAILA8LE OH LOAH FROH EFSTI（TT DOCUMEMTS OHLY）．
\square 9.

PROEESSOR：
Tシー－107－10 64

L. S. Sheploy

P-295

181 farcia 1952

Approred for OTS release
$1^{4} j$
te-1.00
E
$m-0.50$
DDC
Tranem ine
DDCHRA C

A Finder ros n-FESOM Gars

I. S. Ehaploy

1. Introduction.

At the formetion of the theory of eaxea is the excuatian that the plajoxt in
 a resilt of a pisy. In attaxpting to appiy tho thony to any lieli, aus yould norselly axpoct to be pexilttect to inolode, in the cless σ_{2} "proppocts", the profpect of hating to play a gane. The pousibility of arainating gazat is tescefore of

 not dspesi on otbsy geape - Iill buecoptiblo to aceljsis ars solution.

In the pistite treory of ron Eetram axd Horgorctomi diriteulty in evelontion

 Wo-Froceos irca a set of three exixas, heving simple intuitive interprotatione, which siffice to detemino the raine miquel3,

 practions. Wo theriay inherit cortein inportant underlying ascumptions: (a) thet utility is objoctive and transferable; ib) that ganare conporative affairy (c) that gaces, grantios 'a', am (b), are adequately nopresented by thsix characteristic furctions. Howorex, vo are not ccmattad to the asmuptions regarizne rationel behavior emodied in the von Uleman-Morgongtorn notion of "rolution".

[^0]He shall thing of a "gase" at a at of rolor uitin specified playors in the plejtug positions. The rulen aione doecribe reat re thait call en "ebstract geas".

 that the rains of a "exss" dopenis caly an ite abstract properties. (ficiax 1 bolors).
2. Dofinitions.
 tive set-fuction 7 fron the aubscta of J to tine real maibers, then:

$$
\begin{equation*}
T(\phi=0, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\pi S) \geq T(S, T)+\pi(S-T) \quad(a l l a, T \subseteq U) . \tag{2}
\end{equation*}
$$

A carrior of r is any set TCO vith

$$
\begin{equation*}
T(S)=T(\pi \cap S) \quad(a 1 P \quad S \subseteq 0) \tag{3}
\end{equation*}
$$

Anj supenst of a cerrier of y is egain a carrier of v. The uan of carriers obriatos the wraic classipication of gerom accorting to the maseor of players. The
 ute nozhing to any conilition. הo shail restrict our attention to ganse whioh possesh finite cerriers.

[^1]then their oun is thoir "ecorposition":-
Let $\Pi(N)$ dencit the set of prentatione of U - that if, the one to one

 ia can not bo artentiad to abstrait games.

By the relpx $\phi[v]$ of tiso geas T ve chall ssen a functica which essociato
 the folloring arlas. The wilue vill thrs proride an aiditive set-fumstion! an ingsential gens) \bar{F} :

$$
\begin{equation*}
\bar{F}(S)=\sum_{S} \phi_{1}[r] \quad(\text { aid } S \subseteq U), \tag{5}
\end{equation*}
$$

to take the place of the euperadititive furstion ∇.
AKIOM 1. Por each $:$ in $\pi(0)$,

$$
\left.\phi_{\pi 1}[\pi V]=\phi_{1}[\nabla] \quad(8] 1 \in U\right) .
$$

AXIOM 2. For esoh carrier W of v,

$$
\sum_{i} f_{1}[\nabla] \times \nabla(H) .
$$

AXIOM 3. FOT any two games ans w,

$$
\phi[v+v]=\phi[v]+\phi[v] .
$$

1 See [1], s626. . 2 and 41.3.

Ccoments. The first erico ("symactry) statos that tho valus is exsentieliy a property of the abstract geno. The aecorin axicol ("efficiency) states that tho vino

 the reft will all cooparate and coabino egainet hire The thind azictin ("Lay of
 be added pizyar by player. This it a prine roquinits for ony eveluation achsoro dsmigeod to be applisd orentusliy to sytase of intorioprendent geses.

It is remmicable thet n Iurther cocditions are requiser to dotextin the value miquoiy.2
3. Detoraination of the relno function.

$$
\phi_{1}[\nabla]=0
$$

Proon . Juke $1 \notin E$. Both π ead $I T U(1)$ aro carriert of T; and

$$
F_{R}(S)= \begin{cases}1 & \text { if } S \supseteq R, \tag{6}\\ 0 & \text { if } S \not D R\end{cases}
$$

Tha finotion or 18 a gom, for eny nomegative c, and R is a cearilar.
In what follow, ve shall wo r, n, \ldots for the manom of olementa in R, $\mathrm{E}, \mathrm{H}, \ldots \mathrm{Crmpectivoly}$.

[^2]LResA 2．Por $c \geq 0,0<r<\infty$ ，so bave

$$
\phi_{1}\left[\sigma_{R}\right]=\left\{\begin{array}{cc}
0 / r & \text { if } i \in B, \\
0 & \text { if } 1 \notin \Sigma,
\end{array}\right.
$$

Proof．Take 1 and J in B ，and ohooke $\pi \in \pi(U)$ wo that $x R=R$ and $x 1=j$ ．Then wo havo $\pi_{B}=\gamma_{B}$ ，and heace，by Axicu 1 ，

$$
\delta_{g}\left[{ }^{c r_{B}}{ }^{\prime}=f_{1}\left[c r_{Q}\right] .\right.
$$

By Azion 2，

$$
c=c \nabla_{R}(R)=\sum_{j \in R} d j\left[o \nabla_{R}\right]=\Sigma \phi_{i}\left[c \nabla_{R}\right],
$$

for eny $1 \in \mathbb{R}$ ．This，with Lexsa 1 ，cosplotes the proof．
 geasi \bar{T}_{B} ：

II boing any finite cencrior of V ．The confficionta are indopondent of \bar{B} ，and are given by

$$
\begin{equation*}
\left.a_{R}(v)=\sum_{T \in R}-1\right)^{r-t} r(T) \quad(0<r<\infty) . \tag{8}
\end{equation*}
$$

Proof．Ho must varify that

[^3]\[

$$
\begin{equation*}
\nabla(S)=\sum_{\substack{R C H \\ R \overrightarrow{R W}}} o_{R}(\nabla) \times(S) \tag{9}
\end{equation*}
$$

\]

bolds for all $S C U$, end for eny finito carrior $I f$ ô V. If $S \subset \bar{I}$, then (9) roduoos, by (6) and (8), to

$$
\begin{aligned}
V(S) & =\sum_{B C S} \sum_{T C D}(-1)^{x-t} v(T) \\
& =\sum_{T C S}\left[\sum_{r=t}(-1)^{x-t}\binom{s-t}{r-t}\right] \nabla(T) .
\end{aligned}
$$

The oxpreseion in brectets valehe axespt for $s=t$, so we are loft with tizo 1dentity $\left.\sigma^{\prime} S\right)=\nabla(S)$. In genoral wo have, if (3),

$$
r(S)=r(\mathbb{N} \cap S)=\sum_{R \subseteq \mathbb{N}} g_{R}(r) \gamma_{R}(H \cap S)=\sum_{R C_{0}} c_{R}(v) r_{R}(S) .
$$

This completes the proot.
Bemark. It is eacily ghowil that $G_{R}(v)=0$ if i ie not contained in every caralor of ∇.

An ismediato coroliary to Axicm 3 is that $\phi[v-w]=\phi[v]-\phi[v]$ is v, w, and $V-y$ ars all ganes. We can therefore apply Lexma 2 to the representation of Lewse 3 and obtain the formula:

$$
\begin{equation*}
\left.r_{1}[\nabla]=\sum_{\substack{R C N \\ R \exists 1}} a_{R}(v) / r \quad \text { all } 1 \in \mathbb{N}\right) \tag{10}
\end{equation*}
$$

Infoviting (8) and eimplifying tho reant gives us
(11)

Introdusing the quantitios

$$
\begin{equation*}
\gamma_{n}(s)=(s-1):(n-s): / n, \tag{12}
\end{equation*}
$$

ve sov amaozt:
 gensos with fifitio cerriers; it is given by the formula

$$
\begin{equation*}
\phi_{1}[\nabla]=\sum_{S \in N} \gamma_{n}(a)[\gamma(S)-\nabla(S-(1))] \quad(a i 1 \quad i \in U), \tag{13}
\end{equation*}
$$

whern II is any inito oarrier of V.
Proof. (13) follow from (11), (12), and Lamma 1. We note that (13), like (10), doos not depend on the particular flaito carricr u; the ϕ of the theorea if therefore vall definod. By ita dorivetion it in cloarly ihe only valuo function whioh could matisely the axious. That it does in fact eatiafy the axioms is easily vorifiod with the aid or Leaman 3.
4. Blementary propertion of the value.

COROXARY: i: Ho hore

$$
\begin{equation*}
f_{1}[\nabla] \geq \nabla((1)) \quad(a 11 \quad 1 \in \sigma), \tag{14}
\end{equation*}
$$

witin ounglity if and only if 1 is a dymy - 1.0., if and only if

$$
\begin{equation*}
\nabla\left(S^{\prime}\right)=\nabla(S-(1))+v((1)) \quad(\text { all } \quad S \rightarrow 1) . \tag{15}
\end{equation*}
$$

Proof. For any $i \in U$ we maj take $I T \rightarrow 1$ and obtain g by (2),

$$
\phi_{1}[\nabla] \geq \sum_{\substack{S \mathbb{S N} \\ S \exists 1}} \gamma_{2}(\varepsilon) \nabla((1)),
$$

With equality if and only if (15), since pone of the $\gamma_{n}(s)$ vanishow. The proof is acmpleted in noting that

$$
\begin{equation*}
\sum_{\substack{\frac{S C N}{S \exists 1}}} \gamma_{n}(s)=\sum_{s=1}^{n}\binom{n-1}{n-1} \gamma_{n}(s)=\sum_{n=1}^{n} \frac{1}{n}=1 . \tag{10}
\end{equation*}
$$

only in this corollary have our reanits made ne of the myeradditive nature of the functions V.
 having pairefise disjunct oarrier $N^{(1)}, n^{(2)}, \ldots, f^{(n)}$ expat gush that

$$
v=\sum_{k=1}^{D} w^{(k)},
$$

- then, for each $K=1,2, \ldots, p$,

$$
\phi_{1}[v]=\phi_{1}\left[k^{(k)}\right] \quad\left(\text { all } \quad 1 \in \Pi^{(k)}\right) .
$$

proof. By Aulos 3.
COROLLARY 3. If T and w are ptratopioally gaidralont - in., if

$$
\begin{equation*}
y=\text { or }+\bar{a}, \tag{17}
\end{equation*}
$$

whore 0 is a positive constant and \bar{a} an additive sot-fmotion on U with
finitn carrier - thon

$$
\phi_{1}[\mathbf{v}]=\operatorname{of}_{1}[\mathbf{v}]+\bar{a}((1)) \quad(\alpha 11 \quad 1 \leq 0)
$$

Eroof. By Axias 3, Corollary I appliod to the irossential ana \bar{a}, and the fact thet (13j) is linger end breogsneors in ∇.

Coschisiri 4. If i is congtant-man - 1.e., if

$$
\begin{equation*}
\nabla(S)+\nabla(U-S)=\nabla(U) \quad(\mathrm{e} 11 S \subseteq U), \tag{2B}
\end{equation*}
$$

- then ite ralue fin given by the formula:

$$
\begin{equation*}
\phi_{1}[\nabla]=2 \sum_{S_{-1} H} n^{(s) v(S)}-\nabla(n) \quad(\text { ali } 1 \quad H), \tag{19}
\end{equation*}
$$

ybore I if eny finite carrior of ∇.
Proof. We kero, for 1 I,

But $\gamma_{n}(n-8+1)=\gamma_{n}(3)$; hence (18) Pollowe with the aid of (16).

[^4]
2. Fremplos.

 scitisfyias

$$
\begin{aligned}
& \sum_{m i} \alpha_{i}=T(I), \\
& \alpha_{1} \geq \nabla((1))
\end{aligned}
$$

If T is insesential A is a singloppoint; otherrise A is a regrols ajxpiex of dinension $n-1$. The raluo of T eay be regarded es a point $¢$ in A, by forica 2 ard Corollary 1. Denote the centroid of A is $\theta:$

$$
\theta_{i}=\nabla((1))+\frac{1}{n}\left[\nabla(\mathbb{E})-\sum_{i \in \Pi} \nabla((j))\right] .
$$

 tiel graes, we have

$$
\begin{equation*}
d=8 \tag{20}
\end{equation*}
$$

-

 equivalant to them. Thase resolits are deamiod by symetry, and do not dopend on Azicen 3.
 consr a ragular hosagon, fouching the boumdary at the nidpoint of each 1-dixensional
 player a duracy.

 1 2etixfプ3

$$
{ }_{1} w_{1}+u_{j}=\nabla(i, j, j)
$$

$$
(=11 i, i \leq 5, \geq j\}
$$

$$
\sum_{1} e_{1}=T(\overline{5})
$$

Por n=3, mere
(21)

$$
f-8=\frac{\dot{-}-\theta}{2}
$$

 In the herigne of tho proceding exerple (sec the figure).
 Lete

$$
\begin{equation*}
\xi-\theta=\frac{\mu-\theta}{3} \tag{22}
\end{equation*}
$$

Tho quota w ianges ovar a cortain sube ${ }^{2}$, containing \therefore. The ralue f mermile renges orer a pereliel, inscribod cube, touching tho lownerg of \therefore at the gidpuint of esch 2-dixensional faco. In higine quote genss the pointg f and \sim are nct so direetly related.
ghemplo 5. Tho yeightod manity ganes ${ }^{3}$ are oharacterized by the existenco of

2 Illuetratod in [4], Ifgare 1.
$3 \operatorname{Sec}[1], 950.1$.

$$
\begin{aligned}
& r(S)=n-2 \text { if } \sum_{S}>\sum_{1}>\sum_{1} \text {, }
\end{aligned}
$$

$$
\begin{equation*}
\phi_{1}<\phi_{j} \text { i天pliee } x_{i}<y_{j} \quad(211 \quad 1, j \in \mathbb{N}) \tag{23}
\end{equation*}
$$

 the piajors in the oxier.

The oxnct reluse cen bo conpriod vithort difficulty for perticular ceser. We have

$$
\phi=\frac{n-3}{n-1} \quad(-1,-1, \ldots,-1, n-1)
$$

for tho $[1,1, \ldots, 1, n-2] 1$,

$$
\phi=\frac{2}{5}(1,1,1,-1,-1,-1)
$$

for the grae $[2,2,2,1,1,1]^{2}$, etc.
6. Dorivation of the value irco a bargaining notol.

The deanctive approach of the earlior seotions has pailed to mofgest a bergeining procedure which rould produca the ralue di the gease as the (acpected) cutoces. He conolede this faper with a desoription of sueh a prosedure. The form of our model,

1 Discussed at 1 mpth $\ln [1], \hat{3} 55$.
2 Dicoramed in [1], 353.2 .2 .

 the sosial orgenisation of the plaress.
 granc coslition, formed in fhe follorifg raj: 1. sterting vitin a single nspor,

 to oftain tbe enomat $\bar{i}(5)$ - exactly enongin to zast ali the pronises.

 eageciation of i is thocerore funt inis falue, (13), es vis to be mborn.

Roforszoes

 1947.
 Strilet, Ho. 24, ed. H. W. Knim end A. W. Trecer, Princetom, 1950.
[3] É. Borel and collaboratorw, quaité du Caloal des probabilités et de s5s

[^0]: 1 Reference ' 1 , at the end of this paper. Kxamples of infinito gace Hitinout velues may be fowd in [2], pages 58-7, and in [3], pege 210. Ses aiso Karlin [2], pagoe 152-3.

[^1]: \therefore in oxception in foum in the satter of aynuetrization (zeo for exemplo [2],

[^2]: i Three further properties of the value wioh migint euggent therselven as suitable axlons will be proved as Lema 1 and Corollarion 1 and 3 below.

[^3]: I Tho use of this lase was auggestod by H，Rogors．

[^4]: 1 This is Mokingey's "S-equivionce" (seo [2], page 120), widor then the "etrategio oqui ralance" of pon Newearn and Morgonetern ([1], §2-.1).

