éc{z;z 6

Office of Naval Research
Contract Nonr-186((16)

NR - 372 - 012

A BAYESIAN APPROACH TO PROBLEMS IN
STOCHASTIC ESTIMATION AND CONTROL

by

Yu-Chi Ho and Robert C. K. Lee

June 9, 1964

7 //. ;o /c_/
f‘j{[ ﬁ’_.-n//

."'}

'

The research reported in this document was supported by the U. S.
Army Research Office, the U. S. Air Force Office of Scientific
Research, and the U. S. Office of Naval Research under the Joint
Services Electronics Program by Contract Nonr-1866(16), and by
the Aeronautical Division of the Minneapolis-Honeywell Regulator
Company, Boston, Massachusetts. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

*Minneapolis-Honeywell Regulator Co., Boston, Massachusetts

Technical Report No. 448
Cruft Laboratory
Division of Engineering and Applied Physics
Harvard University

Cambridge, Massachusetts



A BAYESIAN APPROACH TO PROBLEMS IN
STOCHASTIC ESTIMATION AND CONTROL*

Yu-Chi Ho**
Harvard University, Cambridge 38, Massachusetts

and

Robert C. K. Lee
Minneapolis-Honeywell Regulator Company
Boston, Massachusetts

SE_MMARY The_Bazeslan Solutlgn_

The Bayesian solution to the above problem now pro-
ceeds via the following steps:

In this paper, a general class of stochastic estimation
and control problems is formulated from the Bayesian De-

cision-Theoretic viewpoint. A discussion as to how these
problems can be solved step-by-step in principle and prac-
tice from this approach is prelenteg. As a specific example,
the closed form Wiener-Kalman solution for linear estima-
tion in gaussian noise is derived. The purpose of the paper
is to show that the Bayesian approach provides: (i) a general
unifying framework within which to pursue further research-
es in stochastic estimation and control problems, (i) the
necessary computations and difficulties that must be over-
come for these problems. An example of nonlinear, non-
gaussian estimation problem is also solved.

SINGLE STAGE ESTIMATION PROBLEM

For purpose of illustrating the concepts involved, the
single stage estimation problem will be discussed first.
Once this is accomplished, the multistage problem can be
treated straightforwardly.

Problem Statement

The following infor mation is assumed given -

(1) A set of measurements 2, 5, ...

v 2y which are
denoted by the vector z.

(i1) The physical relationship between the state of
nature which is to be estimated and the measure-
ments. This is given by

z = g(x, v) (1)

where z is the measurement vector (k x 1)
x is the state (signal) vector (n x 1)
v is the noise vector (q x 1)

(i11) The joint density function p(x, v):

From this one readily obtains the respective mar-
ginal density functions, p(x) and p(v).

It is assumed that information for (iii) is available in
analytical form or can be approximated by analytical dis-
iributions. Item (ii) can be either in closed form or merely
computable. The problem is to obtain an estimate & of x
and which base upon the measurements is best in some
sense to be defined later,
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(1)

(11)

Evaluate p(z) - This can be done analytically, at
least in principle, or experimentally by Monte
Carlo methods since z = g{x, v) and p(x, v) are
given, In the latter case, we assume it is possible
to fit the experimental distribution again by a mem-
ber of a family of distributions.

At this point, two alternatives are possible, one
may be superior to the other dependent on the
nature of the problem.

a) Evaluate p(x, z) - This is possible analytlcal(l)g if
v is of the same dimension as 2 and one can ob-
tain the functional relationship v = g%(x, z) from
(1) above, Then using p(x, v) and (EEE the
theory of derived distributions, one obtains
p(x, z) = p(x, v = g4x, 2)) |J (2

where

J = det [ 26X 7)
dz

b) Evaluate g(z,‘x). This conditional denllt{ func-
tion can always be obtained either analytically
whenever possible or experimentally from the
z = gix, vfgnd pix, v).

Note that (iia) may be difficult to obtain in general
since g may not exist either because of th: non-
linear nature of g or that z, v are of different dim-
ensions. Nevertheless, (ilb) can always be carried
out, This fact will be demonstrated in the nonlinear
example in the sequel.

(111) Evaluate p(x/z) using the following relationships,

(tv)

a) Following (iia)

plx/z) = PZ: 2) (%)

plz)
L) Following (iib), use the Bayes’ rule
p(x/z) = (z/x) (X) (4)
p(z)

Depending on the class of distributions one has
assumed or obtained for p(x, v), ?(z), plz/x) this
key step may be eag or difficult to carry out.
Several classes of distribution which have nice
properties for this purpose can be found inl, The
density function p{x/z) is known as the teriori
density function of x, R is the knowledge "MI the
state of nature after the measurements z. By def-
inition, it contalna all the information necessary
for estimation.

Depending on the criterion function for estimation

one can compute estimate & from p{x/z). Some

typical examples are:

a) Criterion: Maximize the Probability (% = x)
Solution : & = Mode of p(x/z) 3)

This is defined as the Most Probable Estimate



When the apriori density function p(x) is uni-
form, this estimate is identical to the classi-
cal maximum likelihood estimate.

b) Criterion: Minimize “rllx-l 12 p(x/z) dx
Solution : % = E(x/z)* (6)
This is the conditional mean estimate,

¢) Criterion: Minimize Maximum |x - %]
Solution : & = Medium of p(x/z) (1)

This can be defined as the minimax estimate,

Pictorially, the three estimates are shown in
Fig. 1 for a general p{x/z) for a scalar case

p(X/'l)‘ [
|
20
/ |
/ 1
| | |
| T
I'H' F | | | IH 2
e = /
I T 1% | B
IH ll '1I:.| 't o *.;
Xx. - Most Probable Estimate

a
X * Conditional mean estimate

X, - Minimax estimate
Fig. 1 Estimates based on aposteriori density

Clearly, other estimates, as well as confidence intervals
can be derived from p(x/z) directly,

Special Case of the Wiener-Kalman Fllter (single stage)

Now a special case of the above estimation problem will
be considered. Let there be given

(1) A set of measurements z = (zl, zy .

v )
(11) The physical relationship

g=Hx+v (8)

(111) The independent noise and state density functions
plx, v) = p(x) p(v) (9)
E((:))l:e‘punlan with a0)
Cov(x) = P, !

g:(v) be gaussian with
(V) = 0 ) (ll)
Cov(v)=R
Now following the steps for the Bayesian solution one has
(1) Evaluate p(z).

Since z < Hx + v and x, v is gaussian and indepen-
dent, one immediately gets

E(z) is gaussian

(z) = HT |
cof,(,) =HP, WY . R/ (12)

*It is assumed that p(x/z) has finite second moment,

(11a) Evaluate p(x, z),
Since (lL‘ ) = Identify matrix, it follows
3z

p(x, v = z - Hx) (13)
= p(x) p,(z - Hx)**
(1ib) Evaluate p(z/x)*

p(x, z)

plz %) - P‘-’;J—)’l = plv) = p,(z - Hx) (14)
p(x

(111) Evaluate p(x/z).

One gets from Bayes' rule,

pix/z) - PX) (V) (15)
p(z)
By direct substitution of (10), (11), and (12), one obtains
1
lup HT . RIZ

p(x/z) exp - % '()(-!)'r Po'l(x-x)‘r

A 11
-/ 2 1=

@)V 2p (3 (RI3

vz - 1T R (z - Hx)

--wT WP HT LR (2 he) (16)

Now completing squares inthe { ', (16) simplifies to

1
IHP, HT . R 3
p(x/z) =

exp - % (x-% irP'l (x-%)! (17)

1 1
()" 2P |3IRI3
where
plopl.uT RN (18)
or equivalently,
T T -1
P.:PO-POH (HPOH + R) HPO (19)
and
. T -1
Xx=X+PH R '(z-HxY (20)

(iv) Now since p(x/z) i8 gaussian, the most probable,
conditional mean, and minimax estimate all coincide
and is given by k.

This is the derivation of the single stage Wiener-Kalman

filter?: 3, The pair (P, %) is called a sufficient statistic
for the problem in the sense that p(x/z]J = p{x/F, X).

MULTI-STAGE ESTIMATION PROBLEM

The problem formulation and the solution in this case is
basically similar to the single stage problem. The only
additional complication is that now the state is changing from
stage to stage according to some dynami.: relationship and
that the aposteriori density function is to be computed recur-
sively.

Problem Statement

It is assumed that at any stage k + 1, the following data
is given as a result of previous computation or as part of the
problem statement:

*Note: step (1ib) 18 redundant,

“p,/(t - Hx) means substituting(z - H¥ for v in p(v),



(1}  The system equations governing the evaluation of
the state.

Top = e Wy
2,y = Mg Vi)
where Xl is the state vector atk + 1.

(21)

7

Vel is the measurement noise at k + 1.

z is the additional measurement available
kel 2tk 1.

w18 the disturbance vector at k.
(11)  The complete set of measurements z, 1 &
(zl, ceey lkol)' g

(111) The density functions®
. a .
Plx/20, ooy 7)) = px/2)
p(wk, Vel xk) - statistics of a vector random
sequence with components w
and Vel which depends on Xy

Now it is required to estimate X1 based on measure-
ments z,, ..., 2, . *

The Bayesian Solution

The procedure 18 analogous to the single stage case.

(1) Evaluate p(xkd' xk). This can be accomplished

either experimentally or analytically from know-
ledge of p(w,, Vel xk), p(xk Zk) and (21),

(t1) Evaluate p(‘zk’1 X xkd)' This is derived from
p(wk, Viel xk) and (21).
(111) Evaluate

PX 1 21/ ) = plzy g L. %)
plx, /%) - Plx/Z,) dx, (22)

From this the marginal density functions p(xk.1 Zk)
and p(z) ,/2,) can be directly evaluated.

(lv) Evaluate

p(xkOl' zk‘l/ zk)
P(xk‘l, zk'l) = (23)

Pz, 1/2y)

from (22)
. J p(lkol'z(' xk&l) p(xkol/‘xk) p(xk zk) d'xk (24)
g p(zkol ‘;(' xkol) p(x'kﬁl xk) p(xk’zk) dkul dx‘k

Eqn. (24) is a functional integral difference equation govern-
ing the evaluation of the aposteriori density function of the
state of (21).

(v) Estimates for Xy, €an now be obtained from
p(xk.l ‘Zkol) exactly as in the single stage case.

*The product of the two density functions yields
p(wk, Viel' M Zk) by the markov property of (21).

It is also assumed that if p(w, v/x) = p(w, v) then
w, v is a white random sequence,

Special Case of the Wiener-Kalman Filter®

The given data at k + 1 is specified as follows:
The physical model is given by
N R
7 = Hxge e vy

where w and v are independent, white, gaussian random
sequences with

p(xk, Zk) is Gaussian
Bt/ ) £ 4

Cov (xk, Zk) = Pk
PWir Vi1 %0 B = PO Vi, ) = plw) plvy, )
E(vk) = E(vk‘l) =0 ] (27)
Cov (wk) = Q; Cov (vk’l) - R

} (25)

Since in this case, the noise Wi Vil {8 not dependent on
the state, Eqn. (24) simplifies to

P(Z, /% o)
Pkl Mot p(x,. /2, (24)
Pz, /)

Hence the solution only involved the evaluation of the three
density functions on the r h.s, of (24)' given the data (25 -
27). This is carried out below:

Py, 1/ 2y ) =

From (27), it is noted that p("kol 'Zk) is gaussian and in-
dependent of v

k+1
Bl /5 = ¢ %
: T Tt ! (28)
Covim. /n) =4 Pyt o 7@ =M,
Similarly, p(zkd 'Zk) is gaussian and
E(z,,,/2, )= H# X
o & *x ’) o

Cov (zy,1/Z) = WM, H' . R
Finally p(:.k.1 xk‘l) is also gaussian with

E(zk.l" "kol) = H Xeol ) %)
Cov (zy., /%y, 1) = R

* Footnote added in proof.

This development of the multistage Wiener-Kalman filter-
ing method is very similar to a paper by Drs. H. Rauch,
F, Tung, and C. Striebel entitled "On The Maximum Like-
lthood Estimate for Linear Dynamic Systems'’ presented at
the SIAM Conference on System Optimization, 1964,
Monterey, California. The only difference between the two
developments is this: The Rauch-Tung-Striebel paper does
not explicitly compute p(x,/z) but simply computes its maxi-
mum and uses it as the estimate. In the author's approach,
the computation of the maximum plays a secondary role,
The explicit calculation of the posteriori probability is em-
phasized as the Bayesian viewpoint,

The authors are indebted to Prof. A. E, Bryson for bring-
ing this reference to their attention,



Combining (28-30) using (24)', one gets
p(xkol/zkol)

T 1
Iﬂu‘mn + R|Y
e / 1
COMLIFE W
1, T, -
exp {.5'(xkvl o g'k) Mkoll (xkol =4 ’k)
T -1
slngy - Hx )" R (2, - Hx )
SCURE TENLIUTYO LY
(2, - HY 8] | (31)

' one gets,

Now completing squares {1. {

T 1
'HMkol H 0”2

p(xkolizkol) * 021l 1 exp{-llz(xk*l-;kOI)T
@)V IRizIm, 13
p;(ll (xkol . *kol) 1 (32)
where
g VR M HT M WL R
ey - OB o9

TRy (34)

-1 -1
pkol ° Mkbl +H
or equivalently
T T -1
PkOl ® M'bl - M\“l H™ (H h‘kbl H" +R) HMkOl (35)

and
M., =P, ¢, QT (36)

Eqns. (33-36) are exactly the discrete Wiener-Kalman
filter in the multistage case (3] (4],

A SIMEHE NgNhFﬁ% NSNPAQSSIAN

The discussions in the above sections have been
carried out in terms of continuous density functions. How-
ever, it {s obvious that the same process can be applied to
grobloml {nvolving discrete dennlt{ function and discon-

nuous functional relationships. It is worthwhile, at this
point, to carry out one such solution for a simple contrived
example which nevertheless illustrates the application ol the
basic approach.

The problem can be visualized as an abstraction of the
following physical estimation problem. An infrared detector
followed by a threshold device is used in a satellite to detect
hot targets on the ground. However, extraneous signals,
particularly reflection from clouds, obscure the measure-
ments. The problem is to design a multistage estimation
process to estimate the presence of hot targets on the
ground through measurement nf the output of the threshold
detector.

Let 8, (target) be a scalar independent Bernoulli pro-
cess with,

plsy) = (1 -q)e(s)+qs(1-8) (37)°

1x=0
*The notation 4(x) = o x 40 is used here. Also, p(x)

is to be interpreted as mass functions,

ny (cloud noise) be a scalar Markov process with,
p(nl) =(1-a)t(n))+at(1-n) (38)

By, /) = (-8 = ) 8 (my )+ (ae K)o liony ) (39)

and the scalar measurement,
z, = 8, On (40)
where (<) indicates the logical "OR" operation.
Essenttally Eqns, (37-40) indicate the fact that as the
detector sweeps across the field of view, cloud reflection

:;nd. to appear {n groups while targets appear in isolated
ts.

Now we proceed to the Bayesian solution. First, we
have,
ny 0 0 1 1
5 0 1 0 1
z, 0 1 1 1
E;o&ﬂ;il- (1-a)(1-q)| q(1-a) a(1-q) aq
plzy) = (1-a) (1-q) 6 (2)) + (@ + q - aq) t (z, -1) (41)
Also,
p(zl,’nl) =6 (zl -1) n
+(1-q) 3 () + q 0 (z-1)] (1 -ny) (42)
Then by direct calculation,
plny/2,) - L P (43)

D(zl)
= (1-a' (2))) ¢ (ny) + a' (z)) * (n;-1)

where
a?l (zl -1)

(44)

(zl) =
(1-a) (1-q) 8 (z)) + (a+q - aq) ¢ (z;-1)

Similarly,
p(ll '.l) =4 (zl'l) .l i+ r(l'a) b(zl)‘ab(zl'l):(l'.l)(‘s)

s (2,/8,) plsy)
' plz,/8,) p(s
p(gl/zl) = _._1__1__1_.
plzy)
=(1-q(z)) 5 (8))+ q (z) 8 (s - 1) (48)
where
q’ (zl -1)
q'(zl) a (47)
(1-a)1-q) & (z)) + (a+q - aq) & (z;-1)
and a reasonable estimate is
1 f q'(zl) 2 ¢ (Given constant)
Y7l g < (48)

where ‘l = 1 may be interpreted as an alarm.



Now consider a second measurement z, has been made. One

has, ®

p(nz/zl) = p(nz/nl)p(nl ’zl)dnl (49)
Y-

which after straightforward but somewhat laborious manip-
ulations becomes,

ke USPYNIOY f:‘)

S (1-a(z)) b (ny) + alz) & (ny - 1)

= (l1-a -

oa)é(nz-l)

Furthermore,
Play/z)) & plsy) = (1 - q) ¢ (8)) + q 8 (s, - 1) (50)

Eqns. (49) and (50) now take the place of (37) and (38) and by
the same process, one can get in general,

P/ Z) & iy /2, 2y, -)
(1.2 (Z)) © () + 2’ (Z) 6 (my - 1)
2(Z) farlz, 2y g )

a(z, )8 (z )
(1-a(Z, _))-q} & (z))  (a(Z, ) q-a(Z,_,)q)8 (z, -1)

(51)

(52)
a(Zk_l) ¢ a(zk.l 9 eel)
v('
=z a o_azk—.l) (53)
2
P(Sk/ zk) ; p(sk; lk, Zk.lp . ..)
=(1-q' (Z,)) 6 (8,) + q'(Z,) 8 (s -1) (59
q'(Zk)gq' (2o 2 g +:2)
5(z, -1
Qg -1) (58)

| U—-'_‘(Yk_))(l-q) 8(z )+ &(Z, )+ 1-a (3 Ja) 8 (z,-1)
Py, /%) = (1-a(Z )b ny ) aiZ)bm - 1) (58)
P8,/ Z) = plsy,y) (57)

Eqns. (51-57) now represent the general recursion solution
for the multistage estimation process,

As a check, two possible observed sequences for z,
namely (0,1) and (1,1) are considered. Witha = 1/4 and
q = 1/4 it 18 found that p(sz zy, zl) = 0.571 and 0, 337

respectively, This agrees with intuition since the sequence
(1,1) has a higher probability of being cloud reflections,

On the other hand, the numbers also showed that under the
circumstances, it is very difficult to detect targets with
accuracy using the system contrived here,

Often times one is actually interested in p(sk/'Zk”)

with * > 0 ip orcer to obtain the so-called ''smoothed"
estimate for The desired density function ~an be

computed from p(s, /2, ) by further manipulations. How-

ever, the calculation becomes involved and will not be done
here.

RE N A

It is worthwhile to point out the relationship of the above
formulation and solution of the estimation problem to and ‘ts
difference from the general statistical decision problem. For
simplicity, the single stage case is considered again. In the
general statistical decision problem, the input data is sone-
what different. One typical form is:*

p(x) - apriori density of x

{e} - a set of choices of experiments from which
we can derive measurements z with

p(z/x, e)-conditional density of z for given x and e,
‘u} - a set of choices of decisions

J(e,z,u,x)- a criterion function which is a possible
functionof e, z, u and x.

The problem is then stated as the determination of e and
u 80 that E(J) is optimized. The optimal J is given by

Jopt = M:x (Min) j {Maxu(Mln)r UrJ(e, z,u,Xx).
(58)°*

.p(x/z, e) dx]} p(z/e) dz

Thus, the main differences between the estimation problem
and the general decision problem are as f{ollows:

(1) In the estimation problem there is no choice of
experiment. One always makes the same tyre of
measurement z given by g{x,v). To generalize
the estimation problem, one can specify:

z_ = g.(x,v) et =1,2,... = possible sets of
g { i T measurements (59)

and then require that
f
Qto;e)t "\(*)e e=1,2 ...

(11) In the general decision problem, the function
z = g(x, v) is 1mplicit in p(z/x, ¢). Hence step
(i1a) and (iib) for the estimation solution is not
required. This often is a tremendous simplifi-
cation,

(111) In the estimation problem the criterion function J
is always a simple function of x only. There is,
furthermore, no choice of action (one has to make
an estimate by definition), On the other hand, the
gener2] decision problem is mci-e analogous to a
combined estimation and control problem where
one has a further choice of action after determining

(x/z), and like a control problem, the criteria
anction is generally more complex.

(iv) It is, however, to be noted that the key step is the
computation of p(x/z) for both problems.
choice of action is determined only after the com-

tation of p(x/z). Thus, a general declsion prob-

em can be decomposed into two problems, namely,
determination of p(x/z) (estimation problem) and
choice of action (control problem). In control-
theoretic technology, this fact is called the Gener-
alized Decomposition Axiom.

As an example, consider the single stage Wiener-Kal-
man problem. e added requirement that,

Je, z,u, x)=J (u, x) =E || Bx+ u||? (60)
/1l Bx+u ||2p(x/’z)dx

*For other equivalent forms see 1]

**See (1]



be a minimum. Expanding (60), .ne gets

J-Ellxlld, «2uTB&euTu (61)
BTB

Clearly,

cu(®)?ux(z)l ulz) = - Bz) (62)

Yopt
which is one of the fundamental results of linear stochastic
control. Thus, the control action u is only a function of the
criterion J and the aposteriori density function p(x/z). In
fact, in this case only & of p(x/z) is needed. We call & as
the minimal sufficient statistic for the coptrol problem,

In the more general multistage case, the decomposition
propert& clearly still holds. The only difference being that
plxy, o/ k.1) 12 now dependent on u,. However, this de-

pendence is entirely deteg'mgng!glg since in a given situation
one always knows what u,'s are. In fact, in the Wiener-

Kalman control probiem, it is known that U is a linear
function of *k only.

CONCLUSION

In the above sections, the problem of estimation from
the Bayesian viewpoint is discussed. It is the author's
thesis that this approach offers a unifying methodology, at
least conceptually, to the general problems of estimation
and control.

The aposteriori conditional density function p(x/z) is
seen to be the key to the solution of the general problem.
Difficulties associated with the solution of the general prob-
lem now umarl more specifically as difficulties in steps
leading to computation of p(x/z). From the above dis-
cussions, it is relatively obvious that these difficulties are:

(1) Computation of p(z/x) -

In both the single stage or multistage case, this
problem is complicated by the nonlinear function-
al relationships between z and x. Except in the
case when z and x are linearly related or when z
and x are scalars, very little can be done in
general, analytically or experimentally, As was
mentioned earlier, this difficulty does not appear
in the usual decision problem, since there it is
lusumed that p(z/x) is given as part of the prob-
em.

(1) Requirement that p(x/z) be in analytical form.

This is an obvious requirement if we intend to
use the solution in real-time applications, It
will not be feasible to compute p(x/z) after z has
occurred.

(t11) Requirement that p(x), p(z), p(x/z) be conjugate
distributions. *

Inis is simply the requirement that p(x) and

(x/z) be density functions from the same family,
glote that all the examples discussed in this paper
possess this desirable property. This is pre-
cisely the reason that multistage computation can
be done efficiently., This imposed a further re-
striction on the functions g, { and h.

The difficulties (i - i11) listed above are formidable
ones. It is not likely that they can be easily circumvented
except for special classes of problems, such as those dis-
cussed. However, it is worthwhile first to pinpoint these
difficulties, Researches toward their solution can then be
effectively initiated. Finally, it is felt that the Bayesian
approach offers a unified and inutitive viewpoint particu-
larly adaptable to handle modern day control problems
where the state and the Markov assumptions play a funda-
mental role,

*See (1)

(1]

[2]

(sl

(4]
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