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SUMMARY 

In this paper, a general class of stochastic estimation 
and control problems Is formulated from the Bayestan De- 
cision-Theoretic viewpoint.   A discussion as to how these 
problems can be solved step-by-step In principle and prac- 
tice from this aporoach Is presented.   As a specific example, 
the closed form Wiener-Kaiman solution for linear estima- 
tion In gausslan noise Is derived.   The purpose of the paper 
Is to show that the Bayeslan approach provides: (I) a general 
unifying framework within which to pursue further research- 
es In stochastic estimation and control problems, (II) the 
necessary computations and difficulties that must be over- 
come for these problems.   An example of nonlinear, non- 
gausslan estimation problem is also solved. 

SINGLE STAGE ESTIMATION PROBLEM 

For purpose of Illustrating the concepts involved, the 
single stage estimation problem will be discussed first. 
Once this Is accomplished, the multistage problem can be 
treated straightforwardly. 

Problem Statement 

The following information is assumed given - 

, z. which are (1)    A set of measurements z.,  /,. 
denoted by the vector i. 

(11)  The physical relationship between the state of 
nature which is to be estimated and the measure- 
ments.   This is given by 

z - g(x( v) (1) 

where z is the measurement vector (k x 1) 
x is the state (signal) vector (n x 1) 
v is the noise vector (q x 1) 

(ill) The joint density function pU.v). 
From this one readily obtains the respective mar- 
ginal density functions, p(x) and p(v). 

It is assumed that information for (ill) is available In 
analytical form or can be approximated by analytical dis- 
tributions.   Item (II) can be either MI closed form or merely 
computable.   The problem is to obtain an estimate I of x 
and which base upon the measurements Is best In some 
sense to be defined later. 

Tht Bayeslan Solution 

The Bayeslan solution to the above problem now pro- 
ceeds via the following steps: 

(1)    Evaluate p(z) - This can be done analytically, at 
least in principle, or experimentally by Monte 
Carlo methods since z • g(x, v) and p(x, v) are 
given.   In the latter case, we assume It is possible 
to fit the experimental distribution again by a mem- 
ber of a family of distributions. 

(it)  At this point, two alternatives are possible, one 
may be superior to the other dependent on the 
nature of the problem. 

a) Evaluate p(x, z) • This is possible analytically if 
v is of the same dimension as z and one can ob- 
tain the functional relationship v ■ g*(x, z) from 
(I) above.    Tht-n uHintc p(x,  v) .ind ■■■b the 
theory of derived distributions, one obtains 
p(x, zjxpU, v.g*(x, z)) iJl (2) 

where 

■ t 

b) Evaluate p(z x).   This conditional density func- 
tion can always be obtained either analytically 
whenever possible or experimentally from the 
« ■ g(x, v) and p(x, v). 

Note that (lla) may be difficult to obtain in general 
since g* may not exist either because of th   non- 
linear nature of g or that z, v are of different dim- 
ensions.   Nevertheless, (lib) can always be carried 
out.   This fact will be demonstrated in the nonlinear 
example In the sequel. 

(til) Evaluate p(x/z) using the following relationships. 

a)  Following (lla) 

p(x/z) - Bfe-Si 
p(l) 

l>)   Following (lib), use the Bayes' rule 

p(x/z). e&ä P*" 
pU) 

(3) 

(4) 
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Depending on the class of distributions one has 
assumed or obtained for p(x, v), pU),   pU xi this 
key step may be easy or difficult to carry out. 
Several classes of distribution which have nice 
properties for this purpose can be found ml.   The 
density function p'.x r) Is known as the aposterlori 
density function of x.   It is the knowledge about the 
state of nature after the measurements z.   By dsf- 
inltion, it contains all the information necessary 
for estimation. 

(iv) Depending on the criterion function for estimation 
one can compute estimate ft from p(x/z).   Some 
typical examples are: 

a)  Criterion:   Maxtmlze the Probability (ft • x) 

Solution  :   ft ■ Mode of pU z) (5) 

This is defined as the Most Probable Estimate 

snsioa xrv, rAPot z 



When the aprlorl density (unction p(x) la uni- 
form, this estimate la Identical to the claaaU 
cal maximum llketlhood eatlmate. 

b) Criterion:   Minimise   Mlx-ft ll2 p(x/z) dx 

Solution   :   k • E(x/s)* (6) 

This la the conditional mean eatlmate. 

c) Criterion:   Minimize Maximum Ix • kl 

Solution   :   I - Medium of p(x, r) (7) 

Thla can be defined aa the mlnlmax eatlmate. 

Plctorlally, the three eatlmatea are ahown In 
Fig. 1 for a general p(x/ z) for a acalar caae 

P(*  /lj 

x„ 

Moat Probable Eatlmate 

Conditional mean eatlmate 

Mlnlmax eatlmate 

Fig.  1   Eatlmatea baaed on apoaterlorl denalty 

Clearly, other eatlmatea, aa well aa confidence Intervals 
can be derived from p(x z) directly. 

Special Case of the Wiener-Kaiman Filter (alngle stage) 

Now a apeclal caae of the above eatlmatlon problem will 
be considered.   Let there be given 

(1)    A set of measurement» z > (z.,  z.,  ...,  t^) 

(It)  The phyalcal relatlonahip 

z > Hx « v (8) 

(til) The Independent nolae and state denalty functions 

p(x, v) - p(x) p<v) (9) 

Six) be gausalan with 
U) • « 5(x) 

Cov{x) 
(10) 

S(v) be gausalan with 
;(v)»0 i (11) 

Cov(v) • R     / 

Now following the ateps for the Bayeslan solution one haa 

(1)    Evaluate p(z). 

Since z * Hx • v and x, v la gauaalan and Indepen- 
dent, one Immediately geta 

p(z) la gauaalan 
E(z) • HT T 
Cov(z) • HP0 H1 

•It la assumed that pU z) haa finite aecond moment. 

(12) 

(lla) Evaluate p(x, z). 

Since (-^-K- ) > Identify matrix, It follows 
) z 

p(x, z)    p(x, V • z Hx) (13) 

- p(x) pv(z - Hx)»» 

Ulb) Evaluate p(z/x)» 

p(zX) * E^i_«) . p(v) - P (z - Hx) 
p(x) 

(III) Evaluate p(x. z). 

One gets from Bayes' rule, 

pu/i). E<«LE<II 
p(z) 

(14) 

(15) 

By direct substitution of (10), (11), and (12), one obtains 

p(x/z) l"PoH 

1 
Rl2 

l 
(2")n/2lP0UlRl2 

(z - Hx)T R*1 (z - Hx) 

i   exp-J^x-X^P^^x-T)1 

- (z - HT)T (H P„ HT . R)"1 (z - H' )j ■ (16) 

Now completing squarea In the \     ' , (16) simplifies to 

p(x/i 

T l 

IHP„ H1^» RiJ , j    , 
s). 2 1   exp-i(x-k  fp"1 (x-»)* (17) 

/^.>'V2|n   iilDli Z 

where 

,-1 

(2") 

-1 

V2|R|5 

T      -1 
H1   R  ' H 

or equlvalently. 

P . P0 - P0 HT (H P0 HT R)"1 H Pr 

and 

* . ir. p HT R'x{t - «0 

(18) 

(19) 

(20) 

(Iv) Now since p(x/z) Is gausalan, the most probable, 
conditional mean, and mlnlmax estimate all coincide 
and Is given by v 

Thla la the derivation of the single stage Wiener-Kaiman 
filter2- 3. The pair (P, k) Is called a auffielen! statistic 
for the problem in the sense that p(x, z) - p(x, F, S) 

MULTI-STAGE ESTIMATION PROBLEM 

The problem formulation and the solution In this case is 
baalcally similar to the alngle stage problem.   The only 
additional complication Is that now the state is changing from 
atage to stage according to some dynami.- relationship and 
that the apoaterlorl denalty function is to be computea recur- 
sively. 

Problem Statement 

It is assumed that at any stage k •  1. the following data 
is given as a result of prevloua computation or as part of the 
problem statement: 

»Note:   step (lib) Is redundant. 

»»p, (z - Hx) means subatltutlng(z - H4 for v in p(v). 
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(1) The system equations governing the evaluation of 
the state. 

I (21) Vi ■ f(v V 
Vi   «Vi- Vi» 
where IL   . is the state vector at k > 1. 

v.   , Is the measurement noise at k • 1. 

z.      Is the additional measurement available 
K*1 at k ♦ 1. 

w.     Is the disturbance vector at k. 

(11)     The complete set of measurements Z k-l 
Vi)- 

(HI)    The density functions» 

P(VZ1 ^-PVV 
p*wk' vk»l "k' " 8tattBtlC8 o{ * vector random 

sequence with components w. 
and v,   . which depends on JL . 

Now It Is required to estimate x.      based on measure- 
ments Zj zktl. 

The Bayeslan Solution 

The procedure Is analogous to the single stage case. 

(I) Evaluate p(x..   x.).    This can be accomplished 
either experimentally or analytically from know- 
ledge of p(wk, vk+1,xk), p(xk Zk) and (21). 

(II) Evaluate p(zk<1 Xj^, xk+1).   This Is derived from 
p(wll, vktl, xk) and (21). 

(III) Evaluate 

P(V I'V ftyZj *\ (22) 

From this the marginal density functions p(v .   Zk) 
and p(tw.»< Zk) can be directly evaluated. 

(Iv)    Evaluate 

^1/Zk4i>- 
P(^i/Zk) 

(23) 

from (22) 

/p(w4' vi» «^w ptw ** 
■i 'P^i'^k- Vi'^VrVPW^i ^k 

(24) 

Eqn. (24) Is a functional Integral difference equation govern- 
ing the evaluation of the apostertorl density function of the 
state of (21). 

(v)     Estimates for xk . can now be obtained from 
p(x.   .   Z,   . i exactly as In the single stage   case. 

•The product of the two density functions yields 
p(wk, v.., x,, Zk) by the markov property of (21). 
It is also assumed that If p(w, v x) - p(w, v) then 
w, v Is a white random sequence. 

Special Case of the Wiener-Kaiman Filter* 

The given data at k * 1 Is specified as follows: 

The physical model Is given by 

Vr* V wk 
'ks H »k * vk 

• (25) 

where w and v are Independent, white, gausslan random 
sequences with 

p(xk/ Zk) Is Gaussian 

Cov w 
p(wk( vktl xk(  ZJ . p(wk> vktl) . p(wk) p<vk+1) 

E(Tk) - E(Vl). 0 } (27) 

Cov (wk) - Q;Cov (vktl) = R 

Since In this case, the noise wk, v.   . is not dependent on 
the stale,  Eqn. (24) simplifies to 

p(Vi W'——^-7- ^Vi'V (24)' 
p(Vi/«k) 

Hence the solution only Involved the evaluation of the three 
density functions on the r.h.s. of (24)' given the data (25 • 
27).   this Is carried out below: 

From (27), It Is noted that p(xv ./ Z. ) Is gausslan and In- 
dependent of vkt j a* 1    x 

E(xk>1/«k).» ^ 

Cov^/^-.P^ror^M^' 

Similarly, p(\.x  ^y) '• gau»«tan and 

Cov(ik^1/Zk) = H ^j   HT» R 

Finally pdi. 1   "v.i* ts 3^ao gausslan with 

^Vi'Vi'^Vi 
Cov(Vi Vi)-R } 

(28) 

(29) 

(30) 

•Footnote added In proof. 
This development of the multistage Wiener-Kalman filter- 
ing method Is verv similar to a paper by Drs. H. Rauch, 
F. Tuns, and C. Strlebel entitled 'On The Maximum Like- 
lihood Estimate for Linear Dynamic Systems" presented at 
the SLAM Conference on System Optimization,  1964, 
Monterey, California.   The only enfference between the two 
developments Is this:   The Rauch-Tung-Strlebel paper does 
not explicitly compute p(x, z) but simply computes Its maxi- 
mum and uses it as the estimate.   In the author's approach, 
the computation of the maximum plays a secondary role. 
The explicit calculation of the posteriori probability Is em- 

phaslzeoas the Bayeslan viewpoint. 

The authors are indebted to Prof. A.  E. Bryson for bring- 
ing this reference to their attention. 
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Combining (28-30) using (24)', one grts 

IHI^^ HT* RH 

(2-)n/2|Rl2lMk+1l| 

•j»{-ä[(vi-»vTMk:li<vi-»v 
+ (VI-HVI)TR'1<VI-HVI) 

-Uk*l - H» VT(HMlc»l HT* R)'1 

(xk*i-H*V]) <31) 

Now completing squares li. ^      ■ one gets, 

IHM.   , H'^Rl^ r •       T 

(2")n/alRlälMk+1l5 

,-1 pi:i (vi-Vi) ■ (32) 

where 

l\*i -H * V (33) 

pkli • "vA * HT R"1 H (34) 
or equlvalently 

pk*i' ^i - ^J HT (H ^i HT ♦ R»'1 HMk.i <35' 
and 

Eqns. (33-36) are exactly the discrete Wiener-Kaiman 
filter In the multistage case '3] [4L 

(36) 

A SIMPLE NONLINEAR NONGAUS8IAN 
TSTTMATON PROBLEM       

The discussions In the above sections have been 
carried out in terms of continuous density functions. How- 
ever. It Is obvious that the same process can be applied to 

Broblems Involving discrete density function and dlscon- 
nuous functional relationships.   It is worthwhile, at this 

point, to carry out one such solution for a simple contrived 
example which nevertheless Illustrates the application of the 
basic approach. 

The problem can be visualized as an abstraction of the 
following physical estimation problem.   An Infrared detector 
followed by a threshold device Is used In a satellite to detect 
hot targets on the ground.    However, extraneous signals, 
particularly reflection from clouds, obscure the measure- 
ments.   The problem Is to design a multistage estimation 
process to estimate the presence of hot targets on the 
ground through measurement oi the output of the threshold 
detector. 

Let B.  (target) be a scalar Independent Bernoulli pro- 

cess with. 

p(sk) > (1 - q) i (sk) ♦ q 5 (1 - sk) 

1 x < 0 
•The noUtion   5(x) • {Q x + Q    '• "•*«* t*re.   Also, p(x) 
is to be Interpreted as mass functions. 

(37)« 

ii (cloud noise) be a scalar Markov process with, 

p^J-d-aJMnj)* a J (1 -nj) (38) 

PCB^/^)-U-»-y)«(Vi, + (a+7)Ml-Vi)   (39) 

and the scalar measurement, 

*k ' *k®\ (40) 

where 0 indicates the logical "OR" operation. 

Essentially Eqns. (37-40) Indicate the fact that as the 
detector sweeps across the field of view, cloud reflection 
tends to appear In groups while targets appear In Isolated 
dots. 

Now we proceed to the Bayeslan solution.   First, we 
have, 

nl 0 0 1 1 

•l 0 1 0 1 

ll 0 1 1 1 

Probabil- 
ity Of Ij 

(l-a)(l-q) q(l-a) a(l-q) aq 

pUj) - (1-a) (1-q) 8 (rj) ♦ (a ♦ q - aq) » (fj -1) 

Also, 

pUj/nj) • & Uj - 1) nj 

♦ [(l-q)! (Zj)* q» Uj-1)] (1   - nj) 

Then by direct calculation, 

pUj/nj) p<n1) 

(41) 

p(nj/Zj) *- 
Pdi) 

(42) 

(43) 

.(l-a1 (zj)) s (n^* a' (z^ 6 (nj-l) 

where 

a'U,) 
a i (Zj - 1) 

(44) 
1     (l-a) (l-q) 6 (Zj) ♦ (a+q - aq) 6 (zj-1) 

Similarly, 

^ZJ/SJ). 6 (ij-Dij ♦ r(l.a) Mz1)+a5(zl-l)](l-s1)(45) 

and 

pUj/Zj) . 
p(Zj/s1) p(s1) 

P(«i) 

where 

q^z.) 

Ml -q' (Zj)) ! (s,)» q' (Zj) 6 (Sj - 1) 

q5 (Zj - 1) 

1      (l-aMl-q) S (Zj) ♦ (a*q - aq) 6 (Zj-1) 

and a reasonable estimate Is 

,1    If q'Uj) * i (Given consUnt 

'l T to    lfq'(z1)<c 

(46y 

(47) 

(48) 

where I. ■ 1  may be interpreted as an alarm. 
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Now consider a second measurement t. ha* been matte. One 
has, tu 

ptaj/Zj) ■   f      ptaj/nj) p(nj/Zj) ttaj (49) 

which after straightforward but somewhat laborious manip- 
ulations becomes, 

a'U.) a'U.) 
= (1-a i—) t (nj ♦ ( L. + a) 6 (n- - 1) 

2 2 2 2 

-(1-a («,))* (njN iUj)*^. 1) 

Furthermore, 

pUj/tj) i p(s2) • (1 - q) 6 (Sj) ♦ q 5 (s2 - 1) (50) 

Eqns. (49) and (50) now take the place of (97) and (38) and by 
the same process, one can get In general. 

(51) 
PW-PVV VI- •••) 

. (J-aMZ^Mi^)* a' (^ » (i^ - ») 

(l-a^Wl-q) « (ij* (s(Zk_1Kq.a(Zk_1)q)6(^-1) 

(52) 

•'(Vi' ■ a 

Ml-q' {\))f> (sk)* qM^)» (Sk-1) 

q^^qMv^.  ...) 

q M^ - I) 

(53) 

(54) 

(55) 
(l-4(7v^)(l.q)6(zk)+(a(Zk_1)+ |.a(^ ^M^-D 

p(Vl  Zk) = (Ua(Zk,,Mnk+l
,+ a(Zk)S(nk*l - ^       (58) 

^Vi/V" ^Vi' (57) 

Eqns. (51-57) now represent the general recursion solution 
for the multistage estimation process. 

As a check, two possible observed sequences for z, 
namely (0,1) and (1,1) are considered.   With a = 1/4 and 
q ■ 1/4 It Is found that \A»2 iv /j)    0. 571 and 0. 337 
respectively.   This agrees with Intuition since the sequence 
(1,1) has a higher probability of being cloud reflections. 
On the other hand, the numbers also showed that under the 
circumstances, it is very difficult to detect targets with 
accuracy using the system contrived here. 

Often times one is actually interested in p(s. / Z.     ) 
with ' > 0 U» order to obtain the so-called "smoothed" 
estimate for s. .   The desired density function -an be 
computed from p(S|(I Z^) by further manipulations.    How- 
ever, the calculation becomes Involved and will not be done 
here. 

^SHIP TO GENERAL BAYESIAN 
tijC«ü»»li9üMi4*;'*}ik' 

It is worthwhile to point out the relationship of the above 
formulation and solution of the estimation problem to and ts 
difference from the general statistical decision problem. For 
simplicity, the single stage case is considered again. In the 
general statistical decision problem, the input data Is son.e- 
what different.   One typical form is:* 

p(x) aprlorl density of x 

{e|       - a set of choices of experiments from which 
we can derive measurements z with 

p(z/x,e)-condltlonal density of z for given x and e. 

u ■       - a set of choices of decisions 

J(e, z, u,x)- a criterion function which is a possible 
function of e, z, u and x. 

The problem is then stated as the determination of e and 
u so that E(J) is optimized.   The optimal J Is given by 

opt = Max (Min)  \ { (Min)' rj(e,z,u,x) 
(5a)* 

,p(x/z, e)dx:; p(z/e) dz 

Thus, the malr. differences between the estimation problem 
and the general decision problem are as follows: 

(I) In the estimation problem there is no choice of 
experiment.   One always makes the same type of 
measurement z given by g(x, v).   To generalize 
the estimation problem, one can specify: 

z   ■ g-(x, v);|e| ■ 1,2,... ■ possible sets of 
measurements (59) 

and then require that 

» = Opti(»)    e« 1, 2, ... 
e 

(II) In the general decision problem, the function 
z • «U. v) is implicit in pU x. e).   Henre step 
(lia) and (lib) for the estimation solution ts not 
required.   This often is a tremendous simplifi- 
cation. 

(ill) In the estimation problem the criterion (unction J 
is always a simple function of x only.   There la, 
furthermore, no choice of action (one has to make 
an estimate by definition).   On the other hand, the 
genersl decision problem is moie analogous to a 
combined estimation and control problem where 
one has a further choice of action after determining 
p(x/z), and like a control problem, the criteria 
l.nctlon is generally more complex. 

(iv) It is, however, to be noted that the key step ts the 
computation of p(x z) for both problems.   The 
choice of action is determined only after the com- 
putation of p(x z).   Thus, a general decision prob- 
lem can be decomposed into two problems, namely, 
determination of p(x/z) (estimation problem) and 
choice of action (control problem).   In control- 
theoretic technology, this (act is called the Gener- 
alized Decomposition Axiom. 

As an example, consider the single stage Wiener-Kai- 
man problem,   the added requirement that, 

il J(e, z, u, x) = J (u, x) « E II Bx * u (60) 

Jll Bx* u l|2p(x/z)dx 

*For other equivalent forms see ' 1 j 

••SeeCi] 
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b« i minimum. 

J > E || x 

Expanding (60) 
i a       • ..T 

ne gets 

B'B 
2u' B i ♦ uT u 

Clearly, 

Uopt • u (I) ft u (x(c)) S u(t) . . B ft(z) 

(61) 

(62) 

[11 H. Raltta. andR. 
Decision Theory" 
1861, Ch. in. 
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approach offers a unified and Inutltive viewpoint particu- 
larly adaptable to handle modern day control problems 
where the «täte and the Markov assumptions play a funda- 
mental role. 

•See f1] 

[21   A. E. Bryson and M.  Frazier, "Smoothing in Linear 
and Nonlinear Systems"   Proc. of Optimal System 
Synthesis Symposium, Sept. 1062, Wright Field, Ohio 
ASD.TDR.M-119. 

[3] Y. C. Ho, "On Stochastic Approximation and Optimal 
Filtering Method", Journal of Mathematical Analysis 
and Applications,  February 1963. 

[4]  R. E. Kaiman. "New Methods and Results in Linear 
Prediction and Filtering Theory", RIAS Report 61-1. 
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