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THE FIRST PASSAGE PROBLEM FOR A CONTINUOUS MARKOFF PROCESS

D.A. Darlingl and A.J.F. Siegertl

Columbia University, University of Michigan,
Northwestern University.

Summary We give in this paper the solution to the first passage problem

(7. %
for a strongly continuous temporally homogeneous Markoff process x(t.)A. It

PPy 4
T= W(x) is a random variable giving the time of first passage of X (t)
from the region a > X(t) > b when a > X(0) = x > b, we—devsalop simple
methods of getting the distribution of T (at least in terms of a Laplace

AN
transform),. From the distribution of T the distribution of the maximum of

X(t) and 3\9 range of X(t) are deduced, These results yield, in an asymptotic
form, solutions to certain statistical problems in sequential analysis, non-
parametric theory of tgoodness of. fit,' optional stopping, etc. which Aaw:—{' '
treatedas an illustration of the theory. ( ) & |

1. Introduction. There are certain generalizations of the classical

gambler's ruin problem which appear in various guises in numerous applica-
tions — besides statistical problems there are physical applications in the
theory of noise,in genetics, etc., The exact solution of the associated random
walk (or Markoff chain) problem is often analytically difficult, if not im-
possible to obtain, and one is usually content with asymptotic oolutiona.

The nature of the asymptotic solution is generally such that it is the
solution to a Markoff chain problem in which the length of the steps, and

the interval between them, approach zero and which may in the limit be re-

garded as some sort of contimious stochastic process.

l, The major part of this work was done while the authors were
consultants with The RAND Corporation.
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This circumstance suggests we might solve directly the associated
problem with regard to the stochastic process and so obtain the asymptotic
solution to the Markoff chain problem without the intervention of a limit-
ing process, Aside from the difficulty of justifying the interchange of
these limiting operations, it turns out that this procedure is often quite
feasible and leads to simple solutions., Using this idea Doob E7J obtained
in a direct way the Kolmogoroff-Smirnov limit theorems and the principle was
further exploited by Anderson and Darling [}J o The general principle is,
of course, quite old, and in connection with random walk problems goes back
at leasi to Rayleigh.

A general feature of this method is that the analytical difficulties,
if any, are revealed as more or less classical boundary value problems, eigen-
value problems, etc, — this intrinsic nature of the problem being often masked
by the discrete approach., On the other hand, it suffers from the serious defect
of giving no information as to the difference between the actual solution and
the asymptotic one — information which is essential in the numerical applica-
tions,

In the present paper we treat the first passage (or ruin, or absorp-~
tion Probability) problem for a general class of Markoff processes (cf. section 2)
and obtain the solution in the form of a Laplace transform (saction 3)., This
Laplace transform is generally given as a simple function of the solutions to '
an ordinury differential equation (section 4). The methods used are similar
to those used in the discrete theory by V/ald [ii] (fundamental identity) and
Feller [ﬁ] (renewal and generating function techniques) but the analysis is

considerably simplified, at least in a formal way, and not restricted to




additive processes, It tums éut that there is an intimite relationship
between the one and two sided absorption probabilities, and the probability
of eventual absorption in one of the boundaries,

We illustrate the theory in section 5 by solving a problem of Wald
[17] in the sequential test of the mean of a normal population against a single
alternative, the derivation of a non-parametric test used by Anderson and
Darling [l] and the solution to the optional stopping problem (Robbins |:15:| )e
These problems are treated by solving the asrociated absorption problem with
the Wiener-Einstein process and the Uhlenbeck process.

In section 6 we study the first passage moments which can be obtained
by an expansion of the Laplace transforms or again through differential equa-
tions which can be explicitly solved in quadratures. There are some cuite
interesting relations between the moments.

In section 7 we develop the distribution of the range which has been
use. by Feller [10] in a statistical study.

2. Definitions, notations, assumptions, etc., Given a stochastic process

X(t) with

X(0) = x , a>x>b

we define the first passage time 'rab(x) as the random variable

T =T, (%) = sup it|a>X(‘G) >b, 05Tt}




We make the following asuumptions about the stochastic process X(t):

\

A)  X(t) has a transition probability

P(x|y, t) = Pr'{X(t*s) <y IX(B) - x} ’ s ~0

satisfying the Chapman-Kolmogoroff equation

Q
P(x Iy, tl¢t2) - ﬁ{;DE%z | ¥, tz)dzP(xl z, tl)

i.e. X(t) is temporally homogeneous and stochastically definite

(e.g. Markoffian)

B) X(t) is continuous with probability one (or is gtropnsly continuous).

If A(t) satisfies A) sufficient conditions on P are known that it
satisfy B) - cf. Doeblin Eﬂ , Fortet [}iJ, Ito [}é] « These conditions
generally imply further that P satisfies the diffusion equation of section 4.
Note that A) and B) imply the existence of the random variable T, and we denote

by F, . (x| t) the distribution function of T
Fo(x|t) = Pr {Tab(x) <t}

In the work to follow we stall presume © and I heve Jerivatives p, f;

these being the densities




p(x |y, t) -f; P(x| y, t)

-
v

f(xlt) = 3"; Folx lt)
the modification of the results if these conditions are not met being more
or less immediate. The existence of a density for T has been established
by Fortet [_-lﬂ under some circumstances. In this fundamental paper of
Fortet on absorption probabilities there is just one absorbing barrier, but
the modification of his results for two barriers is easy. _

If a =+ 00 orbs=a«o 80 that we have a one sided absorption time

we write Tc(x) as the corresponding random variable. That is
T (x) if x>0

e oo(x) if x<e¢

with a corresponding distribution function Pc(x |t) and density fc(xl ¥

It may happen of course that absorption is not g certain event and
that T is not-a proper random variable - i.,e. Pr {Tc(x) < oo} - Fc(x jo) <1
(or similarly for T‘b(x) ) and in this case we may still meaningfully treat the
conditional density of T, under the condition T < oo,

We need, in 'addit.ion, the conditional distribution of Tab(x) under the
condition that the absorption takes place int.o. the barrier a, which we denote

by F: (x] ¢t)

b




Fop (x 1) @ Pr {1, () <ty T, (x) = T ()}

and F;b(xl t) will denote a similar expression for the lower barrier ).

Hence

Fop(x1t) = F (x1t) « Fo (x]t)

and the corresponding densities are f;b (x|t) and f;b (x| t).
We denote by a circumflex over the corresponding function its

Laplace transform on t; for example
¢ o
A
'ﬁ(xn’. A =S e t p(x|y, t) dt
0

Ne & At ¢
fab(xl A) = { e £ (x | t) dt

etec.

The continuity of the process X(t) ensures the existence of these transforas.

3. The distribution of T. In this section we obtain the distribution of T
in terms of the transition density p of the process. Theorem 3,1 for the one-

sided barrier is due to iiegert (:163 essentially,

Theorem 3.1. If X(t) satisfies conditions A) and B), then

D(x |y, \) is a product

Y




u(x)u, (y) ’ y>x

‘B(xi' ¥ A) =

v(x)vl(y) i y<x
and
(3.1) 2 (x1n) =

X>¢

We note that absorption may be uncertain and ;c(x |0) =
Pr {Tc(x) < 00} may be less than 1. A necessary and sufficient condition
that absorption be certain is that ?c(xl 0) =1,

To prove the theorem we use a renewal principle which, according to
Fortet, goes back to D, André. We have by A) and B) for y > ¢ > =

t
plxiy, t) = /' £ (x|T)p(c |y, t-DT
o

by a direct enumeration of the peths going from x to y. On taking Laplace

transforme we obtain
A I Y
Blx)y, A) = £.(xIMp(eiy, ) , y>e>x

and thus S(x |y, A\) is a function of x times a function of y, say u(x)ul(y)
and hence for y > ¢ > x we get ?c(xl A) = u(x)/u(o). Similarly, for
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y < ¢ < x we obtain }c(x |A) = v(x) / v(c) and hence for any ¢, x we obtain

the conclusions to the theorem. Finally it follows by cancelling any factor

which depends only on A that u(x) and v(x) are uniquely determined.

(3.2)

(3.3)

(3.4)

‘

Theorenm 3,2. Let X(t) satisfy A) anda L) and let the functions

u(x) and v(x) ba as in theorem 3.1, Then

Ae -
fab(x“‘)'uavb - ulb)via

A= - ajulx
ftzb(xl)‘) u(a)v(b) ~ u(b)via

fab(XI)')' u(a)v(b) - u(b)v(a

To prove the theorem we consider the two expressions
£(x|t) =g (x| t) +{ fab(xlt)fa(b | t-)d

¢
f(x1t) = £ (x| ¢t) *{ £, (x|T)1 (a |t-DaT

which are established by a direct enumeration.

Considering £' and £~ as unknown this pair of simultaneous

integral equations is solved immediately by talkdng Lcplace transforms

(3.5)

(3.6)

i

T xln) = B (x2) + £ (x INE (b [A)

f(xIA) = 25 (x[A) + T2 (x [N (a | A)




which are 2 linear equations in 2 unknowns. On using the expressions in

theorem 3.1 for ?a and ?b we get (3.2) and (3.3) for ?;b and f;b and the
A * =

last expression (3.4) is obtained by noting foo " fap * fap °

A random variable closely related to T is the maximum of X(t),

and we define

(307) H(x, t) L sup lX(m | » X(O) a X

Denoting the distribution of M by G(x| €, t) we have clearly

(3.8) G(x|E, t) - br {n(x, t) <Ef=Pr { (x) >t

TS"S

-1 xIt) , E>lx|

= F})_.S

so that the distribution of M is given directly through that of T, On

taking Laplace transforms of (3.8) we obtain the following corollary

Corolley 3.3 Blxlg, n) = (-f _dxI0)
?5’_5(3: | A) as in theorem 3.2.

For a symmetrical process there is a specially simple formula

for

for the Laplace transform of Ta (x)s A process X(t) is symmetrical
2

-a
if p(x|)y, t) = p (=x |-y, t) for all x, y, t. In this case u(x) = v(-x)

and theorem 3,2 ylelds the following corollary
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Corollary 3,4. For a symmetrical process
A + -
(309) fa,_a(Xl}\) .U o)+ ul=i s lxl( a

4e A differential equation. The function p(x| y, A\) will in most cases of

interest satisfy the so-called diffusion equat,io'n

. 2
, 9P B, 1,y &P
(L.1) 3t = Alx) 5+ 5 B7(x) 2

with initial and boundary conditions p(@|y, t) = p(- ®|y, t) = 0,
p(x |y, 0) = §(x-y) (the Dirac function). Sufficient conditions on p,
involving the infinitesimal transition moments, are known in order that p
satisfy (4.1) and ensure the process is continuous with probability one
(¢f. Doeblin ES] ). When A and B° are given g priori, conditions on them
are known which ensures that (4.l1) has a unique solution which is the transi-
tion density of a process continuous with probability 1, (cf. Fortet [:ll] )e
But general necessary and sufficient conditions are not known, and it does
not appear to be known whether a process continuous with probability one
satisfies a diffusion equation. However, for specific processes these points
are generally easy to resolve,

The following theorem shows that for processes satisfylng (4.1) y

and v can be determined from a differential equation.
Theorem 4,1. If p(x |y, t) satisfies (4.1) and X(t) is continuous
with probability one, the functions u(x) and v(x) can be chosen as any two

Unearly independent solutions of the differentisl equation



“1l-

2
(4e2) '3 B(x) i"g + A(x) gﬁ - }w =0

To prove the theorem we note that if p satisfies (4.1) its

Laplace transform satisfies

(4e3) Ap = A

ee,
robe
NS

and indeed - f) is the Green's solution to this equation over the infinite
interval (-® < x< ). As a consequence, if u(m) = v(~ ) = 0 and u(x),
v(x) satisfy (4.3) we obtain to a constant factor

v(x)u(y) yz2x

?7(1 [y, A) =
v(y)u(x) y<x

so that we obtain the previous expression (3.1) for fc(x | A) and consequently
we obtain (3.2), (3.3) and (3.4). But since (3.2), (3.2) and (3.4) are invarient
under any non-singular linear transformation of y and y we obtain theorem 4.1,
As for (3.9) we can choose for u(x) any solution to (4.2) provided
u(x) and u(-x) are linearly independent.
The customary way to obtain the first passage probability fab(x | t)
is to solve (4.1) with the Soundary conditions p(a| y, t) = p(b|y, t) = O,
p(x |y, 0)= $(x-y) and thean we should have Fab(x [t) = 1- {a p(x|y, t) dy
(ef. Fortet [11] for a proof and Levy [11.] for a general discussion). By
using the Laplace transform method this will give (3.4) for fab(x | A) - but

A A
it does not appear to give f* and £~ .
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Since ?;b(xl 0) is the probability that absorption in the barrier a

occurs before absorption in b, we should expect that, putting A = O in (4.2),

the solution to

with ¢ (a) = 1, # (b) = O should give this protability. Khintchine [13] has
proved this result directly from the limiting case of a Markoff chain wit hout
the use of a stochastic process. Uarnard [}J has considered this result in

connection with a sequential analysi. problem,

5. A few examples.
a) The hiener-iinstein process. Here X(t) 1is the free Brownian

motion; X(t) is Gaussian with wean 0 and covariance h.(x(s)x(t.)) = min (s,t)

and its transition density p satisfies the differential equation
2 )
g _1.p (i.e, A =0, B" =1 ), Two linearly independent soli' ions

at 2 2
Ix
A/ . A/ <A
SERE and v(x) = e A X g u(=x) and hence we

to % v®* - X' =0 areu(x) = e

obtain from (3.9)

? oy oA hx |x}<a

a-
2 cosh A/<A a

(5.1)

The inversion of this Laplace transform is easy, and we obtain




B - — —_—

| = 1,22 , 2
fa, x| t) a—z E (-1)"(.1‘%) cos {(J»%) %},'(J*E) n“t/2a

and by integration on t
F o (x|t) = Pr {Ta’_a(x) < t}

J 122, , 2
_4 i_y_- (3od) B ] 4-(J13) 70"t/ 2a
Z"OJ’Z COB{Jz) a}°

This completely solves the case of Browman notion for general barriers, =ince

(5.2) Faop () 8) mFyp o (x -8R 0)
27 2

This result is well known (Bachelier [2] , Levy [la] ) and is

generally obtained by the method of images with the heat equation

13
dt 20x2

b) The Unhlenbeck process. Here X(t) is stationary, Markoffian,

and Gaussian, with mean O and covariance E(X(8)X(t)) = e“""t'I

transition density satisfies (4.1) with 82 w1, A= - x, Solutions to




S

-&2/2 ‘ , -x2/2 , .
are u(x) = e D-k(‘/: x) and v(x) = o U_)‘(-;\/Z x) where 02(4) is

the weber function - cf. Whittaker and watson ’:lg] . Hence (3.9) gives

: 2 2. D (A2 x)*D . (=a/Z x)
(5-3) ? _&(x | X) = exp {- % * % } =A -\
D__;‘('\/z 3)‘04(-‘\ﬁ3‘ a)

a,

but it appears very difficult to invert this transform. For the particular
case x = 0 this result (5.3, was obtained from a limiting case of an Ehrenfest

urn scheme describing molecular equilibrium by Bellman and Harris Eh] .

¢) A problem of Wald in sequential analysis. Let X.l, Xz, ees be
independent random variables, nomally distributed with an unknown mean 6

and a known variance l\'2. That is, the density of Xi is
_ (a=0)?
#(x,0) = — e 2!‘2
2n K
According to the sequential likelihood ratio test of Wald, in order to test
the hypothesis H{Ehat Q- 02 against the hypothesis Hl: 0= Ol we consider

random variables

g(X,,0,) © Q.+9
44 = log I3 015 - l2 < (Xy - '72 )
19, K
and let &, = ¢

3 l#éz* soe *ZJ « Then for a > 0 > b we study the random

variable N defined as the smallest integer for which either 5, > a or S, < b

N N
and determine for this N the probabilities of these outcomes,

Now




0,~¢ 0,+0 .
(5.4) B(Z,) = =% (0 - 4% ) -
: K
0,9, 2
(5.5) Var(z,) = (8) = o

so that this suggests we study a Gaussian process S(t) with independent incre-
ments and with E(S(t)) = ut and Var (S(t)) = 02t (a linear transformation of
the Wiener process). Then the joint distribution of S

soe, S

1 52, j is the

same as the joint distribution of 5(1), S(2), +++ S(j), and in place of find-
ing the distribution of N we appro:dmt;: to it by finding the distribution of
the abaorpt.ion| time 'ra’b(o) in connection with the process S(t). It should be
remarked that the nature of this approximation is quite differemt from Wald's
approximation of "neglecting the excess™ since the process S(t) may leave and
re-enter one of the barriers between two consecutive integer time instants,

The differential equation satisfied by the transition density p of

the process S(t) is

2 2
n - p 92 3 L u
ot x 2 3 x2

that 1s A » y, B° = 0° , and (4.2) becomes

2 2
(5.6) %i‘%*p%-h-o




«16~
It 1s simple to solve “his equation with constant coefficients and since
.2
the two roots of%s * pg - A =0 are
g s q/ 2’3 2)‘
1 2
o
§2 . 2
o
)% X
two linearly independent solutions to (5.6) are u(x) = e and v(x) = e

' A A
and hence by theorem 3.2 we immediately obtain £ ’ ?', and £ and the problem
is formally solved. The expressions are to be consiiered for x = 0, and (3.2)

gives for x = 0, with this u(x), v(x),

£ Ed

0‘5'2"51" _-ef 18+ 520

T -

and at A = O this gives the [ robability of being absorbed into the barrier a

A
before b, and we abbreviate L' (Q) = £ (0|0) for this probability. For
ab )

A = 0 we have gl-%,g-anthat .
g .
"1}
02
(5.7) L°(0) » ——=34
i 2p
-2b - 2&
o o
e -e

According to the test of wald we should choose the barriers a and b

so that L‘(Ol) =1 -p, L*(Oz) = g where a , § are given positive numbers with




a+f<l, For@ =9 wohavoZp-ozandforO-O wehavoZ;.:----o2

1 2
from (5.4) and (5.5), Hence from (5.7) we get as two equations for a and D

=b b
d-pe—2—d q = 2—=i
< R ’ o - o®

which are easily solved to give
1

a-logli-é b--log-L ]

2 l-a

These are the formulas of Wald.

. 20 - (9,40
From (5.2) and (5.3) we see that % - ——0'—_—%—-2) which denote by
0 D} 2

h(6). Then setting A = l‘iﬁ ,B = T'i_a we obtain from (5.7)
=h(Q) _

B"h 07 - A-h(ﬂ

L*(e) =

the probability of absorption in the barrier a, which is the power of the
test (1,e. the probability of rejecting H,: @ =0, when © is the true mean)
and 1 - L*(@) = L7(@) is the expression given by sald for the operating
characteristic of test,

For the distribution of T (approximate number of observations necessary
to terminate the test) we use the expression (3.4) with x = O to give




T T e

AT (0) A 10 EpP 5®

. et et ) - (e -e%)
Sl s o O e T
e -0

E(e

which can be inverted to give a rather complicated expression,

F(0]t) = Pr {Tab(o) < t}

s i =
n
o] - &0 i (=l o ein 22 _ O ain'259
(a-b)2 =] 2 222 a=b a=b ¢
L-Qu'-!_
202 2(a-b)2

2 2.2.2
E 2 2
20° 2(a-b)

But the moments are easy to obtain by expanding about A = O, since we .
have the moment generating function of T (note that T is a proper random
variable - i,e. absorption 1s a certain event since ?;b (0lo) =1 ), An
alternative way is to use the result of the next section which gives the
moments as the solutions to differential equations. If we let m(x) =

E(Tab(x)) then from (6.6) it follows that m satisfies the differential

equation
2
" (x) + wm'(x) =-1

with m(a) = m(b) = 0 ,

Assuming first the u ¥ O we obtain by solving; this equation
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m(0) = E(T) = ﬁ(u’(o) + BL7(9))

while for u = 0

K2

(1) = - 2-10g (159) 10g (152) —
172
Here L7(®) = 1 - L*(9) 1s the probability of absorption in the barrier b,
and a, b, 4, 02 have their former significance.

It is rather remarkable that despite the differing nature of the
approximations of Wald and the approximations by presuming a continuous
process as here, they should give the same fomulas,

d) A popparametric test in 'goodness of fit.' In a test related
to the Kolmogoroff-Smirnov tests the following important absorption probability
problem arose: if X(t) is the Uhlenbeck process (cf. example b) above)

calculate the probability
bgie) = pr{lxml< §, ostse}

where X(0) has its stationary distribution, Thus we have the problem of

finding the distribution of the random variable M(x, t) defined by (3.7)

whose distribution function is O(x|%, t) as in (3.8).

5-%

|x| 2 X we have G = 1 we define F = O for |x |2 E . The stationary distribution

For |x| < ¥ we have G(x| k5, t) =1 - F (x| t) and since for




-xz/ 2

of X(t) is N(0, 1), i.e. has a density #(x) = — and hence
‘J—

! 2%

00 Qo

b(sl':.) -fm #(x)G(x|§, t)dx -fooﬂ(x)l’g’_g(xl t)dx

On taking Laplace transforms we get

A S A g A
BEIn) = & -{‘g'l(x)%’_éx IM)ax = & ¢ -{g{(x)rg’_éxl Aax}

and substituting from (5.3) we have

2
A YN F tF,/?. E_2 —
SRENERE o adaD L BRI /e

This result was given, without proof, in El]

e) The optional stopping problem. In [15] Hobbins outlined the
optional stopping problem. Let, as in example c¢) above, the problem be that

of testing the mean of a normal uriverse with known variance, say 02, but

instead of testing the hypotheses H, and H, of example c¢) we have the hypothesis

1 2

Hyt © = O to tust againat H,: © ¥ O (Robbins considers H.: © > 0), As

1 2 2f
sketched by Robbins the basic problem is to calculate the protability, when

@ =0,

for given a, n) and n,. For the case of S_ instead of 'Snl Robbine gave

an inequality, and here we give an approximate and an asymptotic result,

_—




The randcm variables {Sn /oﬁ } » D =Dy, Nyt 1, eeo, n,
have mean O, variance 1, are normally distributed and form a Markoff

chain with covariance

E{SJ S mtals }-O-I%logj-élognl
0a/J  oa/n A/3n

Hence the joint distribution of them is the same as the joint distribution
of X(% log nl), X(% log (nl*l)) , *°% X(% log n2) where X(t) is the
Uhlenbeck process; cf. examples b) and d) above. Hence we have, using

approximations like those in example c¢), that

g(n, ny, @) = Pr{lX(t) [<a, 2logn <t<diog nz}

= b(al % log %)
where b(¥ | t) is the function of example d) and of which we have the Laplace
transform,
It 1s also possible to give an exact asymptotic result which is
applicable even if the variables have not got a normal distribution but
nerely have mean O, variance 02, and obey the central limit theorem (e.g.

if they are identically distributed). Let n = o, n, > o, ;l - t,
P

0 < t <1 and consider a sequence {tn} » DT, + 1, ceo, n, defined
for fixed n, by L n/nZ; this sequence depends upon Ny {tnj.( , and for
n
2



n, => 00 becomes everywhere dense in the interval t < T 1, That is,

given any T(t < T< 1) we can choose an element zi from {?n} such that
k

lin tk:[:
k —» @
Then since
|°n2t l
gln,, n, a) = Pr ———JL*TQVL , N, <n«<n
l “ 0 n n l = o 2
<

it will follow from a theorem of Donsker [b] that the limiting distribution ¢
can be expressed as the distribution of the corresponding Wiener functional,

Hence for n

2
1> ®, N0, > ®, = t, 0<t<1l,

2

g(nl, n,s a) = P:-{lVJ(t’)l(a,\/Z’ , tstil}

where W(t) is the Wiener-Einstein process (cf. example a) above).
Now if X(t) is the Uhlenteck process (cf., example b) ) we

can write vw(t) = q/E X(% log t) (Doob [é] ) and thus

lim g = Pr {IK(% lo;T)|<a, t<TH1 }

‘ . . 1 1 1 1
1 B ! n2
any since ¥ = lim =  we obtain g\f\b(a' 2 Joy =£) , the approximate
nl 2 nl

expression deduc=d sbove, It seems somewhat striking th:t these two

expressions should agree, being deduced from essentially distinct principles,




6. Un the moments of T, In the preceding work the distributions were generally
expressed as Laplace transforms which aré often difficult to invert but which
give immediate information about the moments of T,

In the present section we suppose that rr {T < a:} =1, i,e, that T
is a proper random variable, as otherwise the moments will not exist, If the
corresponding Laplace transform is 1 for A = 0 the variable is proper, Let us

put
{0 () = E(T" (x))
ab , ab
M (x) = B(T(x))

which we suppose to exjst for n < nye We have by a series expansion

no (n)(x)
(6.1) £ (x1n) =3 -—3—-(4\) vor®) , Ao 0
n=0 ¢
n, (n)( ) - =
r(xlx) -Z (-A) +o(x° , A= 0

for which the moments are determined.,

From equations (3.5) and (3.,6) it is possible to express

>

A - A
— Ve
ab fab + f.b in terms of the transforms fc and from this fact we can

express the moments tgg) in terms of the one-sided first passage moments

tén). We get in fact from (3.5) and (3.6)




=2~

A A A A
fa(xlx)(gb(alx)-l)orb(xlx)(ra(blA)-l)

(6.2) t (xln)
. X -
b fa(blx)fb(alx)-l

and it follows that tgg)(x) will be given bty an algebraic combination of
tgk)(x) and tij)(x) for k < n, J < n, vrovided these moments exist., But
it should be remarxed that tég)(x) will exist in general for finite a, b,
even tlough tﬁk)(x) may not, as the simple \iener-kinstein process, for
which t£k>(x) = o0 for k > 1, shows,

(1)

In particular for :i = 1, where we put t = t, we get for the

mean first passace time by a simple expansion of (6.2)

t((x)tb(a)4tb(x)ta(b)-t (b)tb(a)
(6.3)  tylx) == ROCNON

This formula leads to interesting consequences: Let a and
b be such that ta(b) - tb(a). Then since tb(a) - tx(a) + tb(x)
(6.3) becomes

t_(x)-t_(a)
(0ok) ' tplx) = 2 2 5

The rizht-hand side of (6.4) 1s indepenient of b, and since tab(x) > 0 we

have the result that when a > x > b and La(b) - tb(a) then ta(x) > tx(n).

Thus it is possible that the mean length of time to go from a2 less probable
state to a more probable state for the fir.t time is longer thaa to reverse
the journey - a result which at first sisht seeuws paradoxical, It is simple

to construct processes for which this result obtains,




It is possitle also to'express the probability of absorption in

the barrier a before b by means of the one-sided first passage moments.,

vince };b(xlo) is this probability we obtain from (3.5) and (3.6)

£ (oIF (xIN)-F (xI\)

A
EA RO
rb(alx)fa(bn)-l

hence letting A —» O we obtain the conclusion that if the first gasgage moments

exist the probability of absorption in a before b is given by

t (b)+t, (x)=t (x)
Pla a a
t (o)t (a)

oince the expressions ?, f’, and ?- satisfy the differential
equation (4.2) if the corresponding transition density p satisfies (4.1)
it is possible to find the moments t(n) directly through a differential
equation, and this often affords a more computationally feasible method
than a direct evaluation of ? . we have in fact the following theorem,

Theorem 6,1. Let X(t) satisfy the hypotheses of theorem 4.1,

Then if T = Tab(x) is a proper random variable whose moments

of order n < n, exist t(n) a tig)(x) satisfies the system

. 2,(n) (n)
1,247t . s 4t . (n=1) )
(6.5) 213 ——dxz A——dx - nt n s
t(o) =]

tig)(a) - tig)(b) =0 , n>0
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To prove the theorem we merely substitute the expansion (6.1) in
the differential equation (/.2) and equate the coefficient of A" to zero.

The system (6.5) is particularly easy to solve since the substitution

(n)
,(n) dt
. Y. dx

can be written immediately in quadratures., Jtarting with n = 1 each t

renders each equation linear of the first order, and the solution
(n) can
be obtained in turn in quadratures from the previous t(k)(k < n)., In particular

for n = 1 we have

2
(6.6) %Bzd—E*Ag-;--l, t -tgt)(x)
dx

t(a) = t(b) =0,

a result we have used already in sec, 5 example ¢),

7. The range of A(t). In this section we develop a formula for the distri-

bution of the random variable

K(x, t) = sup X(2Z) - inf X(?)
0<lct 0 Tg ¥
which is called the range of X(t), or the oscillation of i(t), and we denote
its distribution by i(x |r, t) = Pr {F(x, t, < x-}. Note that this probability
exists 1f X(t) satisfies conditions A) and B) of section 2,
A treatment of the random viariable R for the nlener-Einstein case
has been made by Feller [iQ] in a statistical application, and the present

section solves a problem he posed on finding the distribution of R for other

processes,
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Again we presume the existence of a density for R, say
g(x|r, t) = é% Q(x |r, t) only to expedite the analysis. It is not

difficult to show that the existence of a density for T implies that for R,

Theorem 7,1. Let X(t) satisfy conditions A) and B) and let

#(x | r, t) be the density of R(x, t). Then for fab(x I\) as in (3.4)

we have
; **3
A A
(7.1) g(x|r, \) = -';L: -Lz f f . x(xlk)dv
ar x_jz; AT

A r
We note that §(x r, A\), being merely / ;(x | u, A)du is
0

given immediately since 9 is expressed as a derivative,

The starting point of the proof is the formula

X P
. 2 (1- ]
flxr, t) =/ [-35g Q-Fux|e))] @
X-r a=b+r
which is established readily by an enum.ration of cases, The existence of
the derivative (under the integral sign) follows from the existence of the
density of X(t) at a and b, for when &> 0

Folxlt) - F (x1t)

a+H,b
- Pr{a<X(t)<a*5., AT) >b, 0<T< t}

On taking the Laplace transform of the precediny expression (which

can be done under the integration and differentiation operations) we obtain
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X P
g -1 .
g(x |r, \) > v Y f (xlh):]
X=-r a-b*r

and the conclusions to the theorem follow by noting the identity

z | 2
= (x 7\)
asb+r Ord b*r b

2

J
daib ab(x| M)

(x |'n)

As an application we consider the \.iener-rinstein process for which

we have shown ( (5,1) and (5.2) )

and here (7.1) gzives on performing the integration,
A <
(x| r, K)--A,/-% -% tanh /\/Z r
A7 dr ©

indeperdent of x since tnc process is spatially homo..eneous,

This latter transform is e-sy to invert, and we huve

< nzt,(yi)
#(x|r, t "i\—- { Z—l‘—exr)(- < )}

“ 9r N re
(J 3

]2r2

2:: ( l)J -1 2 T




these two expressions beiny related by Theta function identities, and the

second being gziven by Feller [10] .

For the moments we get from (7.2) immediately

E(R") = cntn/ 2
where
,n/2 © 42
n___g_ S p—qztanhvlp
N&+1) o dp

80 that, e.g., E(R) =4/8t/x , E(RZ) = 4t log 2, etc.
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