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THE FIRST PASSAGE PROBLEM FOR A CONTINUOUS MARKOFF PHOCESn 

D.A. Darling     and    A.J.F. Slegert 

Columbia University, University of Michigan, 
Northweetern University. 

Suamary   We give in this paper the solution to the firut passage problem 

for a strongly continuous temporally homogeneous Markoff process X(t), ^If 

T ■ T^^(x) is a random variable giving the time of first passage of X (t) 

from the region a > X(t) > b when a > X(0) - x > b, we develop simple 

methods of getting the distribution of T (at least in terms of a Laplace 

transform!.    Prom the distribution of T the distribution of the maximum of 

X(t) and the range of X(t) are deduced.    These results yield, in an asymptotic 

form, solutions to certain statistical problems in sequential analysis, non- 

parametric theory of •goodness of fit,* optional stopping, etc. which^^we- 

treatWas an illustration of the theory.  (   ) 

1.    Introduction.    There are certain generalizations of the classical 

gambler*s ruin problem which appear in various guises in numerous Applica- 

tions — besides statistical problems there are physical applications in the 

theory of noise,in genetics, etc.    The exact solution of the associated random 

walk (or Markoff chain) problem is often analytically difficult, if not im- 

possible to obtain, and one is usually content with asymptotic solutions. 

The nature of the asymptotic solution is generally such that it is the 

solution to a Markoff chain problem in which the length of the steps, and 

the interval between them, approach zero and which may in the limit be re- 

garded as some sort of continuous stochastic process. 

1.    The major part of this work was done while the authors were 

consultants with The RAND Corporation. 

/ 



-2- 

This circumstmce suggests we might solve directly the associated 

problem with regard to the stochastic process and so obtain the asymptotic 

solution to the Markoff chain problem without the Intervention of a limit- 

ing process.    Aside from the difficulty of Justifying the interchange of 

these limiting operations, it turns out that this procedure is often quite 

feasible and leads to simple solutions*    Using thia idea Doob {_7J obtained 

in a direct way the Kolmogoroff-Soimov limit theorems and the principle was 

further exploited by Anderson and Darling Qj •    The general principle is, 

of course, quite old, and in connection with random walk problems goes back 

at least to Rayleigh, 

A general feature of this method is that the analytical difficulties, 

if any, are revealed as more or less classical boundary value problems, eigen- 

value problems, etc. — this intrinsic nature of the problem being often masked 

by the discrete approach.    On the other hand, it suffers from the serious defect 

of giving no information as to the difference between the actual solution and 

the asymptotic one — information which is essential in the numerical applica- 

tions. 

In the present paper we treat the first passage (or ruin, or absorp- 

tion probability) problem for a general class of Markoff processes  (cf. section 2) 

and obtain the solution in the form of a Laplace transform (section 3)*    This 

Laplace transform is generally given as a simple function of the solutions to 

an ordinary differential equation (section 4).    The methods used are similar 

to those used in the discrete theory by V.'ald Q-'/J (fundamental identity) and 

Feller [j?] (renewal and generating function techniques) but the analysis is 

considerably simplified, at least in a formal way, and not restricted to 
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additive proct88«a« It turns out that there is an intiaate relationship 

between the one and two sided absorption probabilities, and the probability 

of eventual absorption in one of the boundaries. 

We illustrate the theory in section $ by solving a problem of Wald 

[l7j in the sequential test of the mean of a normal population against a single 

alternative, the derivation of a non-parametric test used by Anderson and 

Darling jjlj *nd the solution to the optional stopping problem (Robbins [15] )• 

These problems are treated by solving the associated absorption problem with 

the Wiener-Einstein process and the Uhlenbeck process. 

In section 6 we study the first passage moments which can be obtained 

by an expansion of the Laplace transforms or again through differential equa- 

tions which can be explicitly solved in quadratures.    There are some quite 

interesting relations between the moments. 

In section 7 we develop the distribution of the range which has been 

use«.' by Feller JJUT] in a statistical study. 

2.    Definitions, notations, assumptions, etc.    Given a stochastic process 

X(t) with 

X(0) - x       , a > x > b 

we define the first passage time T b(x) as the random variable 

T ■ Tab(x) - sup (t|a > X(r) >b, 0<r<tj 
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We make the following assumptions about the stochastic process X(t): 

A)      X(t) has a tranaition probability 

P(x| y, t) - Fr|x(t*8) <. y | X(ö; - xj   , s > 0 

satisfying the Chapoan-Kolmogoroff equation 

oo 
r 
. 00 

P(x |y, t1n;2) - f   PU | y, t2)d2P(x I z, t1) 

t, > 0,        t, > 0 

i.e. X(t)  is temporally homogeneous and stochastically definite 

(e.g. Markoffian) 

B)      X(t)  is continuous with probability one (or is strongly continuous). 

If A(t)  satisfies   A) sufficient conditions on P are known that it 

satisfy B) - cf. Doeblin [5]  ,    Fortet [if], Ito [12]   .    These conditions 

generally imply further that P satisfies the diffusion equation of section 4. 

Note thit A)  ani B)  imply the existence of the random variable T, and we denote 

by F      (x I t) the distribution function of T 

W*!^  -Pr{TabW<tj 

In the work to follow we bhall presume P and F h«ve   ierivfitives p,  f; 

these being the densities 
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p(x|y, t) -^P(x|y, t) 

fab(^    -^^b^'^ 

the modification of the results if these conditions are not met being more 

or less imnediate.    The existence of a density for T has been established 

by Fortet (jLl) under some circumstances.    In this Aindamentol paper of 

Fortet on absorption probabilities there is Just one absorbing barrier, but 

the modification of his results for two barriers is easy. 

If a • ♦ oo or b - - oo so that we have a one sided absorption time 

we write T (x) as the corresponding random variable.   That is c 

Tc(x) - 

T«,e(x)      ■"      x>0 

T,    mW     If      x < c C,—00 

with a corresponding distribution Amction F (x It) and density f (x| t). 
C       ' c 

It may happen of course that absorption is not a certain event and 

that T is not-a proper random variable - i.e. Pr   {T
CU) < oo\ - F (x |oo) < 1 

(or similarly for T
ab(x)  ) and in this case we may still meaningfully treat the 

conditional density of T, under the condition T < oo. 

We need, in addition, the conditional distribution of ? v(x) under the 

condition that the absorption takes place into the barrier £, which we denote 

byF;b (xlt) 
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FIb (x ' ^ • Pr [T.b(^ < * •   T.b(x) * Ta(x)} 

and F~ (x | t) will denote a sioHar expression for the lower barrier £. ab 
Hence 

Fab(x I ^ * FIb (x ! ^ * ^b <x ' ^ 

and the corresponding densities are f .   (x 11) and f"   (x | t). 

W« denote by a circumflex over the corresponding function its 

Laplace transform on t; for example 

oo -Xt P(x | y, X) - /  e-^ p(x | y, t) dt 
o 

00 

f*b(x U) -  / e-U f^Cx | t) dt 
o 

etc. 

The continuity of the process X(t) ensures the existence of these transforms. 

3.    The distribution $£ T.    In this section we obtain the distribution of T 

in terms of the transition density £ of the process.    Theorem 3*1 for the one- 

sided barrier is due to 31egert [l6] essentially. 

Theorem 3*1.    If X(t) satisfies conditions A) and B), then 

p(x | y, \) is a product 



-7- 

y > x 

v(x)v1(y) , y < x 

and 

(3.1) 

x< c 

X > c 

W« not« that absorption may be unctrtain and f (x | 0) - 
C 

Pr   IT (x) < oo i   may be lass than 1.    A necessary and sufficient condition 

that absorption be certain le that f (x | 0) * 1« c 

To prove the theorem we use a renewal principle which, according to 

Fortet, goes back to D. Andre. W« have by A) end B) for y > c > x 

t 
P(x|y, t)- / fc(x|COp(c|y, t-^dr 

o 

by a direct enumeration of the piths going from x to y.    On taking Laplace 

transforms we obtain 

J(x | y, X) - fc(x| \)p(c j y, M   ,     y > c> x 

and thus p(x | j, X) is a flmction of x times a function of y, say u(x)u. (y) 

and hence for y > c > x we get f-(x| \) - u^x'/u(c).   Similarly, for 
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y < c < x we obtain f (x I \) ■ / v(c) and hence for any o, x we obtain 

the conclusions to the theorem.    Finally it follows by cancelling any factor 

which depends only on \ that u(x) and v(x) are uniquely determined. 

Theorem 3.2.    Let X(t) satisfy A) and L) and let the functions 

u(x) and v(x) bo as in theorem 3,1,   Then 

(3.2) 
A 
f > i ^ ■ lllltl: itfM 

(3-3>     Kb (''^•sMisM 
(3.^)      ^(xlM-vUK^^j-.j^M^) 

To prove the theorem we consider the two expressions 

fa(x '^ " fIb (xl ^ +^  fIb(x,t:)fa(b ,t-t3dr 

fb(x I t) - f-   (x| t) ♦/ f'UltOf (a it-'ödr ab' 

which are established by a direct enumeration. 

Considering f   and f" as unknown this pair of simultaneous 

integral equations is solved immediately by taking Lrplace transforms 

(3.5)        fa(x I K) - f*b(x I X)  ♦ f^b(x I \)fa(b I \) 

A* (3.6)        fb(x| \) - rb(x | \) ♦ f;b(x | \)fb(a | \) 
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which are 2 linear equations in 2 unknowns. On using the expressions in 

theorem 3.1 for f and f. we get (3.2) and (3,3) for f* and f" and the 
A 4 — 

last expression (3.4) is obtained try noting f .  ■ f .   ♦ f .   • 

A random variable closely related to T is the maximum of X(t), 

and we define 

(3.7) M(x, t) -     sup       |X(rO |   ,       X(0) - x 
o <r< t 

Denoting the distribution of N by G(x| 1§, t) we have clearly 

(3.8)        C(x|j, t) -Pr[M(x, t) <5}- Pr [T (x) > tj 

1 - P-    ^(x| t)      , S> 

so that the distribution of M is given directly through that of T.   On 

taking Laplace transforms of (3.8) we obtain the following corollary 

Corollcrv 3,1 S(x|)r, \) - J (1-f       ixl \)) 

for r^.   Jx I X) as in theorem 3.2. 

For a synsstrical process there is a specially simple formula 

for the Laplace transform of T       (x),    A process X(t) is symmetrical af-a 
if p(x | y, t) - p (-oc |-y, t) for all x, y, t.    In this case u(x) - v(-x) 

and theorem 3.2 yields the following corollary 
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Corollary i.L.    For a symmetrical procesa 

4.    A differential equation.    The function p(x| y, X) will in most cases of 

interest satisfy the so-called diffusion equation 

(^        f?-AwlMB2w§ 

with initial and boundaiy conditions p(aD|y, t) ■ p(-oojy, t) ■ 0, 

p(x | y, 0) - S(x-y) (the Dirac function).    Sufficient contiitions on p, 

involving the infinitesimal transition moments, are known in order that p 

satisfy (4.1)  and ensure the process is continuous with probability one 

(cf. Doeblin QJ ).   When A and B    are given & Priori, conditions on them 

are known which ensures that (4,1)  has a unique solution which is the transi- 

tion density of a process continuous with probability 1.    (cf. Fortet [llj  ). 

But general necessary and aufficient conditions are not known, and it does 

not appear to be known whether a process continuous with probability one 

satisfies a diffusion equation.    However, for specific processes these points 

are generally easy to resolve. 

The following theorem shows that for processes satisfying (4,1) jj 

and v can be determined from a differential equation. 

Theorem 4.I.    If p(x | y, t)  satisfies (4.1)  and X(t) is continuous 

with probability one, the functions u(x) and v(x) can be chosen as any two 

linearJy independent solutions of the differential equation 

1 
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(4.2) i B2(x) ^ ♦ A(x) ^ - ^w - 0 
4 dx . 

To prove the theorem we note that if p satis flee (4.1) its 

Laplace transform satisfies 

(4.3) XP " A 3|M B2 4 

and indeed - p is the Green's solution to this equation over the infinite 

interval (-00 < x < oo).    As a consequence, if nioo) - v(-oo) ■ 0 and u(x), 

v(x) satisfy (4*3) we obtain to a constant factor 

v(x)u(y) y ^ x 
P(x I/» ^) ■    . 

v(y)u(x) y < x 

so that we obtain the previous expression (3.1)  for f (x ( \) and consequently 

we obtain (3.2), (3.3)  and (3.4).    But since (3.2),  (3.3)  and (3.4)  are invariant 

under any non-singular linear transformation of vj and £ we obtain theorem 4.1. 

As for (3.9) we can choose for u(xj  any solution to (4.2) provided 

u(x) and u(-x) are linearly independent. 

The customary way to obtain the first passage probability fab(x I t) 

is to solve (4.1) with the ^undary conditions p(a| y, t) - p(b | y, t)  - 0, 
a 

p(x |y,  0)* 8(x-y) and then we should have F . (x | t)  - 1-^  p(x | y,  t)  dy 
aD b 

(cf. Fortet  (ll)  for a proof and Levy [jL4] for a general discussion).    By 
A 

using the Laplace transform method this will give (3.^)  for f .(x I X) - but 

it does not appear to give f    and f    . 
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oince f . (x I 0)   is the probability that absorption in the barrier a 

occura before absorption in b,  we should expect that, putting X - 0 in (4.2), 

the solution to 

dx 

with ^ (a)  - 1, ^ (b)  - 0 should give this probability,    Khintchine [l3] has 

proved this  result directly from the limiting case of a Markoff chain without 

the use of a stochastic process.    Uarnard Mj has considered this result  in 

connection with a sequential analysis problem, 

5.    A few exatoples. 

a)    The ^iener-^insteln process.    Here X(t)   is the free brownian 

motion; X(t) is Gaussian with mean 0 and covariance h.^X(8)X(t)} - rain (s,t) 

and  its transition density p satisfies the differential equation 

4? ■ T "^    (i.e.    A » 0, B*" » 1 ),    Two linearly independent soli* ions 
■^x 

to-r.»    - \ '., - 0 are u(x)  - e"^^   '   and v(x)  • e^ - u(-x) and hence we 

obtain from (j.9) 

(5.1) ?fl    AK/\)  * cort ^g x       , ixl 
jh  ^/I\ 

The inversion of this Laplace transform is  easy, and we obtain 
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^,.8(x| t) i £ (-1)J(J^) co. ((J^) f},M^2^ 

and by integration on t 

V.(x|t)"Pr{Va(x)<t] 

This completely solves the caae of Browman notion for general barriers, since 

2 » ' 2 

This result ia well known (Bachelier [2j ,    Levy [l4J   ) and is 

generally obtained by the method of images with the heat equation 

d£     1 a2p 
at " ^ ax2 

b) T]^ Uhlenbeek process. Here X(t) is stationary, Markofflan, 

and Gaussian, with mean 0 and covariance E(X(8)X(t)) • e"' " 'and the 

2 
transition density satisfies (/♦.I) with B - 1, A - - x. Solutions to 

1 d w  ^ dw  .   A 
2 ^2-xdJ-^-0 
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M 

are u(x) - e"^/2 D.j^'v/a x) and v(x)  - a"* '2 ^X(-V^ ») «here M^'L) is 

the Weber function - cf. Whittaker and Watson Qs] .    Hence (3»9) givee 

(5.3) f     Ä(x |\) - exp j-^   ♦r} — 
a'-a L   ^       2 ) DA^/2 a)*D    (-V2 a) 

but it appears very difficult to invert this transform.    For the particular 

case x ■ 0 this result (5.3) was obtained from a limiting case of an Ehrenfest 

urn scheme dejcribin^ coleculftr equilibrium by Bellman and Harris Q^ * 

c) A problem of W'edd in sequential analysis. Let JU , X,,, ... be 

independent random variables, normally distributed with an unknown mean 9 

and a known variance K  .    That is, the density of X.  is 

j*(x,ej - —i 

, U-9)2 

e      ^ 

According to the sequential likelihood ratio test of Wald, in order to test 

the hypothesis H0' that 0 - 02 against the hypothesis H.: Ö ■ 01 we consider 

random variable» 

h ' ^ 7^ - -±r ^i - - 7^ ) 

and  let C    - Z^ ♦ Z2 ♦   ...  ♦ Z    .    Then for a > 0 > b we study the raraiom 

variable N defined as  the smallest integer for which either ^N  > a or S    <. b 

and determine for this N the probabilities of these outcomes. 

Now 
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(5.4) E(2i) - -t-f (© - -^ ) - n 
A 

Q ~Q   2 
(5.5) Var(Zi) - (-i^)    - o2 

80 that this suggests we study a Gausaian process S(t) with Independent Incre- 

ments and with £(S(t)) - tit and Var (S(t))  - o t (a linear transformation of 

the Wiener process).    Then the Joint distribution of S^, S_f  •••, S. is the 

same as the Joint distribution of 3(1), 3(2),  ••• S(j)l and in place of find- 

ing the distribution of N we approximate to it by finding the distribution of 

the absorption time T    . (0) in connection with the process S(t).    It should be 
&• D 

remarked that the nature of this approximation is quite different from Wald's 

approximation of "neglecting the excesa11 since the process S(t) may leave and 

re-enter one of the barriers between two consecutive integer time instants. 

The differential equation satisfied by the transition density p of 

the process S(t) is 
i 

dt      ^ dx      2       2 dx 

that is A ■ n,    B    ■ o    , and (/».2) becomes 

"•* 4$'*&->« 
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i 

It is simple to solve '-his equation with constant coefficients and since 

2 
the two roots of^r-J    ♦ »iJ - X, - 0 are 

^1 2 o 

52    • 2 o 

^lx ^2* 
two linearly independent solutions to (5.6) are u(x) • e and v(x) ■ e 

A4       A. A 
and hence by theorem 3*2 we immediately obtain f , f , and f and the problem 

is formally solved. The expressions are to be considered for x - 0, and (3.2) 

gives for x - 0, with this u(x), v(x), 

e - e 

and at X a 0 this gives the probability of being absorbed into the barrier a 

before b, and we abbreviate L* (ö) - f4
b(0 | 0) for this probability.    For 

\ - 0 we have   3l m    2 ' %2 ' ® s0 ^^ 
.ab 

2 D 2 a 

o o 
e - e 

According to the test of Wald we should choose the barriers a and b 

so that L (0.)  - 1 - ß,   L (©„)  - a where a , p are given positive numbers with 
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2 2 a ♦ p < 1  ,    For 0 - 0, we have 2^1 ■ o    and for 0 • Op we have 2|i - - o 

from (5.0 and (5.5).    Hence from (5«7) we get as two equations  for ^ and ^ 

•      - e e   - e 

which are easily solved to give 

a - log ^   ,    b - log jjj- 

These are the formulas of Wald. 
m - (Qj+oj 

From (5.2) and (5,3) we see that ^ -  Q   Q—^ whidi denote by 
o^ wl " ¥2 

h(ö).    Then setting A - ^ , B - r*-   we obtain from (5.7) 

the probability of absorption In the barrier a, which is the power of the 

test (I.e. the probability of rejecting H^: 0 • d2 when 0 is the true mean) 

and 1 - L (ö) • L"(0) is the expression given by 'Aaid for the operating 

characteristic of test. 

For the distribution of T (approximate number of observations necessary 

to terminate the test) we use the expression (3*4) with x - 0 to give 
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-^T JO) - eJ      ) - (e    _- e     ) E(.- •" )-?ab(oU)-'vt:r: 'il*^: 
e - e 

which can be inverted to give a rather coaplicated «xpreasion. 

Fab(0|t)-Pr[Tab(0)<t] 

- 1 
(a-b)      n-1 £_ ^ o n n      v- 

2o2     2(a-b)2 

2 ein Ö2a - / sin*®  \. a-b a-b 

2 2_2 

•-H^*wä) 
But the moments are easy to obtain by expanding About \ - 0,  since we 

have the moment generating function of T (note that T is a proper random 

variable - i.e. absorption is a certain event since f .   (o|0) ■ 1 )•    An 

alternative way is to use the result of the next section which gives the 

moments as the solutions to differential equations.    If we let m(x) - 

E(T . (x)) then from (6.6) it follows that m satisfies the differential ao 

equation 

2 
£- m" (x)  ♦ ^ m'(x)  - - 1 

with m(a;  - m(b)  - 0 . 

Assuming first the fi / 0 we obtain by solvinj this equation 
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m(0) - £(T) - ^aL^C©) ♦ a"(0)) 

while tor n m 0 

E(T) - - «fc-tog (if) log (if) K2 

(e^)2 

Her« L"(0}  - 1 - L (©) is the probability of absorption in the barrier b, 
2 

and af b, ^, o   have their former significance. 

It is rather remarkable that despite the differing nature of the 

approximations of Wald and the approximations by presuming a continuous 

process as here, they should give the same formulas, 

d)    A nonoarametric test in 'goodness of jit.'    In a test related 

to the Kolmogoroff-omimov tests the follovring important absorption probability 

problem arose:    if X(t) is the Uhlenbeck process (cf. example b) above) 

calculate the probability 

b(5lt) - Pr(U(r)| < §,       o<t-<t ) 

where X(0) has its stationary distribution. Thus we have the problem of 

finding the distribution of the random variable M(x, t) defined by (3*7) 

whose distribution function is 0(x | £, t) as in (3.8). 

For |x| < Jj we have 0(x| f, t) - 1 - ?v    w U | t) and since for 

| x | ^ 5 we have 0 - 1 we define F - 0 for | x | ^ ^ .    The stationary distribution 
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of X(t) lo N(0, 1), i,«. has a danelty ^(x) - -^ •     '* and hance 
V2ii 

bCjIO -Z0 ^(x)0(x|j, t)dx -Z0 ^(x)F      Jxl t)dx 

On taking Laplace trans forms we get 

bCjU) - \ ./5^(x)F Jx|\)dx - \ ^1-/  ^(x)f     Jx| X)d«| 

and substituting from (5*3) we have 

r—                  t2/2 5     2 
b(tlX) -Ml- N/f   ——^ -—  /.-x (Ü ,(V2x)^D ,(-VSc))dx| 

This result was given, without proof, in JJLJ 

e)   TJ12 ot?tional stopping problem.    In [l5j Kobbins outlined the 

optional stopping problem.   Let, as in example    e) above, the problem be that 
2 

of testing the mean of a normal universe with known variance, say o , but 

instead of testing the hypotheses H,  and H^ of example   c) we have the hypothesis 

H.i    0 * 0 to test against FL:    0 / 0 (Robblns considers H2:    0 > 0).    As 

sketched by Robblns the basic problem is to calculate the probability, when 

Ö - 0, 

gCn^, n^,, a) - Pr jlsnl < ao ^Jri     , n^ < n < n^V 

for given a, n, and n^.    For the case of S    instead of | S | Hobbine gave 

an inequality, and here we give an approximate and an asymptotic result« 

i 
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The randcn variabl«»   iü   ^Of\/n I , n ■ n,, n,  ♦ 1,  •••# n2 

have moan 0, variance 1, are normally distributed and form a Harkoff 

chain with covariance 

C OA/T      a\/n A/in 

Hence the Joint distribution of them is the same as the Joint distribution 

of X(l log r^),    X(* log (ryl))  ,  •••,    X(i loC n2)    where X(t) is the 

Uhlenbeck process; cf. examples b) and d) above.    Hence we have, using 

approximations like those in example c), that 

gCn^ i^, a) - Pr ^| X(t) | < a,     ^ log ^ < t < | log n2 j 

-b(a||log^) 

where b(^ | t) is the function of example d) and of which we have the Laplace 

transform« 

It ie also possible to give an exact asymptotic result which is 

applicable even if the variables have not got a normal distribution but 

merely have mean 0, variance o , and obey the central limit theorem (e.g. 

"l if they are identically distributed).   Let ru  -» oo, n2 -* oo, -* -> t, 

0 < t < 1 and consider a sequence {^n} * n " \» ^ * ^»  '**» n2 d9^ntd 

for fixed ^ by tn ■ n/^; this sequence depends upon n2, (t  4;   t and for 
n2 
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n^ -»'    oo   become» everywhere dense in the interval  t < f < 1.    That  is, 

r.iven any   Z{t < T< 1) we can choose an element V  from |t   |    such that 

lira       t ^t. 
k -> OD     K 

Then since 

g( "i* n^, a) - Hr j    -£- < aV*" ,      ^ < n < n^ ? 
v    o vnZ ^ 

it will  follow from a theorem of Donsker (jSj that the limiting distribution g 

can be expressed as the distribution of the corresponding Wiener functional, 

"l Hence for    n,   -^OD.n^->oo,    -»->tf    O^t-^l, 
1 '2 n2 

g(n1, n^,  o) ->    Prf |W(Z0| < a^/r   ,    t < ^v 1 V 

where W(t)  is the Wiener-Einstein process    (of. example    a)    above). 

Now if X(t) is the Uhlenbeck process  (cf.  example    b)   ) we 

can write >.(t)  - V^ ^\ log t)    (Doob (YJ ) and thus 

lim g - Hr   (|x(i loo f) | < a  ,      t < ^ 1 j 

- ^r  (U(tO |< a,    0^ r<^ loc ^ j- bCal^log^-) 

1     n I 1    n2 am since - - lim -*■  we obtain g-^ b(u| 7 lo^j -*) , the approximate 

expression deduced ibove. It seems somewhat striking that tliese two 

expressions should a^ree, boing deduced fron essentially distinct principles. 



6,    U£L the moments oj[ T,    In the preceding work the dlotributlons were generally 

expressed aa Laplace transfoms which ari often difficult to invert but which 

give ioBnediate information about the momenta of T, 

In the preaent section we suppose that r'r |T < oo V ■ 1, i.e. that T 

is a proper random variable, aa otherwise the moments will not exist.    If the 

corresponding Laplace transform is 1 for \ - 0 the variable is proper.    Let us 

put 

«•iS)(x) - E(T>» 

^n)(x) - E(T^x)) 

which we suppose to exist for n < n .    W« have by a series expansion 

r2-   ^afe (x; n n 
(6.1)       rJxW^     n. (-\)    ♦ o(\ w)     ,    \ -►   0 

fe(x|X)    '  ,_ 
c n-0       n! 

no     t(n)(x) n 
(-\)      *  0i\0)      ,      K  ~>     0 

for which the moments are determined. 

From equations (3.5) and (3.6) it is possible to express 
A* « A 

.   - f .   ♦ f .   in terms of the transforms f    and from this fact we can tit        ao        ab c 
t(n) express the moments t^.     in terms of the one-sided first passage moments 

.    We get in fact from (3.5) and (3.6) t(n) 
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(6.^)    f w(x| \)  - 
A   _    fa(xU)(fb(alX)-l)^fb(xlX)(fa(bl\)-l) 

;tb ' fa(b|X}fb(a|X)-l 

and it follows that t,, (x) will be £iveu  by an algebraic combination of b 

t     ^x)  and t^ (x)  for k < n, J < n, provided these moments exist.    But 

it ohould be remarked that t " (x) will exist in general for finite a, b, 

even though t      (xj nay not,  ay the simple l.iener-Kinstein process,  for 

which t     '(x)  ■ oo   for k ;> 1.  shows, 
c — 

In particular for n ■ 1, where we put t        » t, we get for the 

mean first pa^sa^e tine by a  simple expansion of (6,^) 

t (x)t.(a)n.(x)t (b)-t (bH.U) 
(6-3)        ^b^ t,(b)nK(a)  

a D 

This formula leads to interesting consequences:    Let a and 

b be  such that t (b)  - t, (a).    Then since t,(a)  - t (a) ♦ t. (x) — ab D x D 

(6,3)  becomes 

t (x)-t (a) 

(ö,4) tab^X^ '  2  

The   right-hand side of  (6,4)   is in1epo:i lent  of b,  and  since t . (x) 2 0 we 

have the result that when    a > x > b    and    t (b)  • t, (a)    then t (x) > t  (a), —s-            -      a    ' b      a       *-    x 

Thus it  is possible that  the mean len/^th of time to go  from a less probable 

state to a more probable   state  for the fir..t time  is longer thaa to reverse 

the  journey - a result which at  first sight seeus  paradoxical.    It is  simple 

to construct processes for which this result obtains. 
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It is possible also toexprens the probability of absorption in 

the barrier    a    before    b    by means of the one-sided first passage moments, 

Jince  f b(x|0)  is thin probability we obtain  fron (3.5) and (3.6) 

K, <*' ^ 
f (b|\)fh(x|\)-fa(x|\) a 

fb(a|\)fa(b|\)-l 

hence letting \ -» 0 we obtain the conclusion that ijf the first passage moments 

^xibt  the probability oJT absorption ^11    a    before    b   ±3 ^iven by 

ta(b)nb(x)-ta(x) 
ta(b)nb(a) 

-ünce the expressions  f,  f , and f     satisfy the differential 

oquition (4.2)  if the corresponding transition density p satisfies (4.1) 

it is  poaaible to find the moments t        directly through a differential 

equation, and this often affords a more computationally feasible method 

A 
than a direct evaluation of f ,    «e have in fact the following theorem. 

Theorem 6.1.    Let A(t) satisfy the hypotheses of theorem 4.1. 

Then if T ■ T . (x)  is a proper random variable whose moments 

of order n < n    exist t        ■ t ,   (x)  satisfies the system —   o ab ^ 

(6.5) i^O 2An) 
B ♦ A 

dt (n) 

dx' dx - - nt (n-l) 
n < n -   o 

'ib^   - t^(b)   - 0      . n > 0 
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To prove the theorem we merely substitute the expansion (6,1) in 

n the differential equation {l,,2) and equate the coefficient of \    to zero. 

The system (6,5)   is particularly easy to  solve since the  substitution 

Z    *  *   '   :      renders each equation linear of the first order, and the solution dx 
(n) can be v/ritten immediately in quadratures»    Jtartlng with n - 1 each t        can 

(k) be obtained in turn in quadratures fron the previous t      (k < n),    In particular 

for n - 1 we have 

(6.6) «■ - ^(x) 

t(a)  - t(b) - 0  , 

a result we have used already in sec,  5    example    c), 

7.    The ran/:e of    A(t),     In this section we develop a formula for the distri- 

bution of the random variable 

H(x, t) -    sup      At)  -    inf       X(tO 

0<t<_t Oi^<t 

which is called tie ran>;e of X(t}, or the oscillation of X(t), and we denote 

its distribution by J(x | r, t) - Pr [lt(x, t; < r| ,    Note that this probability 

exists  if X(t) satisfies  conditions    A)  and    B)  of section 2, 

A treatment of the ivrndom variable R for the rtiener-Einstein case 

has  been made by teller L^LI ^n a statistical application, and the present 

section solves a problem he posed on finding the distribution of R for other 

processes. 
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Again we preaiuae the existence of a density for R,  say 

jf(x | r, t) ■ "r- $(x | r, t) only to expedite the analysis.    It is not 

difficult to show that the existence of a density for T implies that for R. 

Theorem 7.1. Let X(t) satisfy conditions A) and B) and let 

^(x | r, t) be the density of R(x, t). Then for fab(x | \) as in (3.4) 

we  have 

(7.1) )(x|r, X) .-^   -% / 
är 

x^ 2 
f (x | \)dv 

x-J?      v42'v 

We note that f(x j r, \), being merely ^   ^(x | u, \)du is 
o 

given immediately since p is expressed as a derivative. 

The starting point of the proof id the formula 

^(x|r, t) -/  £' 
x-r dadb (1-Fab(x|t))] db 

a-b+r 

which is established readily by an enumeration of cases. The existence of 

the derivative (under the integral sign) follows from the existence of the 

density of i(t) at a and Jj, for when  S> 0 

^b^-Wx,t) 

- Pr ^a < X(t) < a * S ,      A(r;  >b,      0 < T < 11 

On taking the Laplace transform of the preceding expression (which 

can be done under the integration and differentiation operations) we obtain 
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{((xlr.X).i/ [^ ? 
x-r 

db 

and the conclusions to the theorem follow by noting the identity 

,2 A 

^a)b ab 
32 - 

-Mr  Jbör b r    .  dr^ b r'b 

As an application we consider the '..ienei>-hinstein process for which 

we hive shown (   (5.1) and (5.^)  ) 

A cosh/v/^X (x- ^—-) 
fab(x I \) ^- 

cosh/s/^X (-r*) 

and here (7.1)  gives on perfominc the integration. 

^(x | r, \)--^/-^   -^ tanh W- 
\3    or' 

independent of x since tnc process  is spatially homo.-eneous. 

This later transform is e -sy to invert, and we h-'.ve 

2 

2   d' oo 
^(x | r,  t;   - -^ ^-   < r JZ —^-r exp(- 

n    är     L     ^(J^ 

n2t(j4) 

8 CD 

.2 2 rr 

V^t    J-l 
(-l)^1^     2t 

I 
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these two expressions bein^ rclnted by Theta function identities, and the 

second being given by Feller j_lo]   • 

For the moments we get from (7.2)  immediately 

t(Rn) - c tn/* y    '       n 

where 

. .^ 
n/2 oo .2 

n Rf'i) 
xf    p   —*^   tanh p Jp 
o dp 

so that, e.g., E(H)  -^81/« ,    E<R2)  - 4t log 2, etc. 
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