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ON_THE EVAIUATION OF NOISE SAMPLES
Arnold J, F. Siegert

Unless the primary source of noise is one of those which are
theoretically tractable, the statistical properties of the
noise have to be inferred from samples, We have developed
some criteria to aid in the decision whether a sample can
reasonably be assumed to have come from a Gaussian noise
with predetermined parameters. "
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Introduction: The optimum design of instruments such as aiming devices
requires the knowledge of the statistical properties of the noise which
will accompany the signals to which the devices react, Unless the primary

source of this noise is one of those which are theoretically completely

tractable, such as thermal noise, shot effect, etc.,, the statistical

properties of the nolse must be obtained empirically from samples. Since
the size of the sample is often limited by the cost of obtaining samples,
the problem arises to which extent the statistical properties obtained
from a given sample can be relied upon, This problem has been given
precise formulation in the statistical literature for samples taken from
populations consisting of discrete elements, Since the elements of the
sample in our case are the observed values of y(t) in a time interval
(0,T), they are neither discrete nor statistically independent, The
sample estimates are functionals of y(t ) and the only nontrivial funoctionals
for which - even for a Gaussian random function - the probability distri-~
bution is at present known or can be obtained are the linear integral
formsl)(voightod sample means ) and the quadratic integral formaz)(such as

mean squarse, correlation function and spectrum of the sample )3 o)

1) N. Wiener, Acta Math. 55, 117, 1930,

2) M. Kac and A.J.F. Siegert, J, Appl. Physics, 18, 383, 1947 and
Anp,Math, Stat, 18, 438, 1947

3) For Markoffian random functions the probability distribution of the
largest value in the sample can be obtained (A.J.F. Siegert, Phys,
Rev., 31, 617, 1951) and for an especially simple Markoffian random
function the laplace transform of the distribution of the integral
of the absolute value and certain other non-linear functionals are
known (M, Kac, Trans. Am. Math, Soc. 59, 401, 1946; 65, 1, 1949.)

The expectation value and average square of sample estimates can usually
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be obtained for Gaussian rendom functions, and yleld some information about

the probability distribution through the Biemym‘ - Tchebycheff inequalitylz)

4) cof. Harald Cruolr, Mathematical Msthods of Statistics, Princeton
University Press, 1946, pp. 182-183,

Since most of the above results have been calculated for Gaussian random
funotions only it seemed of interest to develop the basis for a criterion by
which one may judge whether at least the first distribution of the sample
is sufficlently close to a Gaussian distribution so that the sample could
have come from a Gaussian random function. We define the first distribution
19(a,T) of a sample y(t) as that fraction of the interval (0,T) during which
y(t)> a, We have computed the fluctuation &£ = <E0(a,'r) - f(a )]2> AV
and the integrals S and S 2 of the fluctuation over all values of a
without weighting and with a weight function G(a) rsp for Gaussian random
functions with first probability distribution f(a) and with arbitrarily
given correlation function,

The hypothesis that the sample came from a Gaussian distribution with
Wa,1) - B(a)
at a prodeto::inod5) value a 2approciably axceeds the value S, or if the
integral jﬂ @(a,‘!‘) - ﬁ(aa G(a ) da appreciably oxoodaSOt S, T8po

specified parameters can be rejected if the deviation

5) "Predetermined" means that the value of a is chosen without knowledge
f the sample, and not, for instance, at the point for which
sz(a,r) - ﬁ(u)l has its largest value,

More precisely we know from the Bienayme” - Tchebycheff inequality

prob {,)ﬂa,‘!‘) - d(a), = ks} < 148

for any predetermined value of a, and

prob [oj(c(a)) EO(.,T) - ﬁ(lﬂz da = ks(z) < 1k
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There remains, of course, as always, an arbitrariness in chosing a value
for the probability at which one wishes to reject the hypothetical distri-

bution, rather than accept an improbable outoome of the experiment,

1) Definitiops
The fraction of the time T during which y(t) > a is denoted by )(a,T)

and expressed as

T
(1.1) er) = ¢ [ 8o -a)a
vhere B 1s defined by
(1.2) Bx) = J for :fg

Not only the problem of finding the probability distribution of (a,T)
but even the special cases prob{ﬂ(a,'r) = O} and prob {LO(:,T)= 1}
seem to be extremely difficult, except for Markoffian random ﬁmotidna,
since their solution is closely related to the solution of the rirst

passage time pcrobabilﬁ; problem,

' N

e

We define the first and second probability functions of‘the stationary

random function y(t) by

(1.3) prob {y1£y(tl) <y + dyl} = W(yy) dy,

and

WSyt ) <y, ¢ dyg
(104) prob = uz(yl,)'z; tz-tl) dyl dYZ
yzs-‘"(tz)(yz i dyz.
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and obtain

T
<O1)>,, = %[ <Bly(t) - al>,y ot = fa)

vhere

W) ] n(a)s]'wy)ay

a
is the probability that y(t ) exeeds the value a,

For the second momant we get

T 2
<PP1)> = <G‘fo'a(y<t) - u)dt) >0

g
(1.6) L f f atyat, Blrity) -a) B (r(t)a))>

by 00
.Jr'sz dv;dts ff"Z(yl’yz'tZ-tl) dy,dv;
(o] a

T O
% f dt(1 - %)f\/‘ uz(’1!’23t) dyldyz
) a
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2. Bough Arproximaticns
For orientation we consider first the overainplifiodé) case

\l(yl ) J.(yz-yl) for ,tz-tll <t

W(y, ) W(z, ) for

(2.1) Wlrprpitymty ) =

>t

6) This is not a realistic assumption, since it yields for the normalized
correlation function

the values
l!‘or,tlSt"
fle) = 0 for |t|> T

This is not a possible correlaticn function, since its Fourier trans-
form can assume negative values,

A simple geometric consideration yields for this case

2
(2:2) <P, = 0-5F 4 @) 1-0- 5P )8 a)

so that the fluctuation beconmes
(23) < (a,1)>,y - <Pla,1>5 = (1 - (1 - EF )@a) - F(a))

=251 - L)) - £a))
As was to be expeoted the fluctuation vanishes for ?—)O and becomes

equal to f(a) - ﬂz(l) for :g-—>lo
A rough idea of the distribution of Lﬂ(a,'r) can be obtained by dividing

the interval T into m equal parts, chosing m such that the values of y(t)
approximately

at the centerpoints t, of the intervals can be considered as/independent

J
random variables., A set of independent random variables Jg is then




TN

defined such that Jj = 0or 1l iff = 0 or 1, respectively.

The mean lqn)= & é "OJ is an approximation for d)(a,'r)

The probability distribution for (,@)u then

(24 ) prob = ) Q- )
(i} - O 4

vith mean f(a ) and fluctuation ¢ an l(ﬂ - ﬂz)o This is in agreemsnt

with Eq. (2.3) for T/1 <K,

2
3. Caloulation of <#*(s,T)>,. for Geussisn Bandom Funotions

For the Gaussian random function we have

S
2
o —d 20
301 w -
( ) (Y) W ® , ,
Ny,
1 202(1-P%)

(3.2) W, (ypy,0t) = W o
Tr -
7)

To evaluate the integral in Eq. 1.6 we expand W, using the equation

£2(22) - 20

(3.3) i IRG) Jn_ _1 2(1-)
e

7). 50.03"'_'.?'».\":%_{ 4po13

and obtain
-Ei vy P01 %)= Py
(3e4) "'2("1"2'*'“;'”—'71\7;;30 20” 207 (1-0%)
7y
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where Hn(x) are the Hermite polynominals. With
2 2
-5 )
'w E
(3.5) \[ gx o °C %(ox') = o ° H (a/ ) forn > O

n

nf27 @g(a) for n=20

we get

57 20 Ife (a/ )
(3.6) ff Hz(yl.yzst)dyldy2=b'2(a)+-2fr ° Z -nllnx——,on

WP

=
Jé = (a/0 )
o -1\ o
= fe) 2 f}liz‘,‘,.—lyrlar
.3 P
® i (a/d )
o2 oy
L ACORY fi-‘ﬁ—- ar

"‘Z 1l
=g2(a).z}rf/i/_%°0'
~ 1-r

and

P

2 T AL ) i't
(3.7) s°(a,t'= (% (a,1 24 (P,1)7,, = -"J‘;f (2- %mf’ﬁf?.

o

5’2 can be written in terms of single integrals in the form

/o('f’ —__l__ _L%_L

(3.8) $ = f\rﬂ% a? (1¢r) -lft(ldl')dt . TR 1+ N
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Usually, 2 (T ) will be so amall that the first integral can be neglected.

With the oversimplified form of 2 (t )i

_J1 for|tl<T
(3.9) /o) ‘{o for |t|> ¥
wve get 5
Ly 1 ‘cﬁ il'
2 +*r
= 1 _i —dr
(3.10) s*i..n,r (1 T)dt[ e e
0 -r
2 1
X %y .2 My 1T
T - ) 27 Co 1-r 9

The identity

[t o () - 4a) - e
2"[\ﬁ§5- fa) - £ la)

is easily verified,

A convenient expansion for a { < O is obtained by changing to the

variable
(3.11) y = /\/a-r)/(l*r)
+
and writing
2 (3 2 l 2
o /7” o2er)_, [t _ax o 207
fo) 1-r 1+ y2
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we get >

-
q 2 T 2 2 -
(3.13)  S°(e,1)= Jn? o 20‘\/‘ (1« ‘Lz) arcsinf - L2 (1 -\/}_:;E](l- %) dt
o 200 a

4
where terms of order (&) have been neglected under the integral,

To judge the sample distribution in its entirety it may also be useful

to compute from the data the quantity

" 00 2
(3.24) S = f [;ﬂ(a,'l‘) - ﬁ(a?l da

and compare it with its expected valueS: We have

)
» T d
(3.15) S =< S>ﬂ = }ﬂ—fo (2- %)dt‘/; \rt;%,/\/na-z(lvr)
. Yo,
= _L (1_ .%) dt / _QI_. .
TafT . 1-r

T
= ;2\[9% o (1~ %) av (1-4[1P] )

For P (t) = e-mt' (Markoffian Gaussian Random Function ) the integral has
=20 o PT
BT V7

(<]

been evaluated in App. I, neglecting terms smaller than

The result is

(3,16) ,9 z &I (0,61 - 0,54 (aT)'1 )
BTVT

in this approximation,
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Another test which places more emphasis on the deviations of the sample

distribution from the Gaussian at large values of | g-l i, obtained by com—

puting from the data the quantity 8)
2

a8
2 2O

(3.17) l‘g“:L[mE,O(a,'l‘)--ﬂ(a)] :]F da

Denoting by SZ the expected value of this quantity we have

2
—A (& )

T 1+
L[ bre [/ iy [ 20
(o)

l-r?l%V2n; )

3.18) .S

2

T A
) 1- %14 —dr_, (1
T ‘/; ( T) tv/\ A ll-rz l-r

N 315‘/3(1- %) at lgE -/O(t):]

For the Markoffian case we have (negleoting terms of order .'ﬁ'lf) the result

6a9) S = et e eriyo)

2
(see AppendixIII ) with S’(?. = 16L = 1,65 and §(3) = 1,20

8 ) Approximative formulas for the ocontributions to this integral from
the regions in which Z,O(A,T) = 0 or 1 are given in Appendix II,
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4. Discussion

The results of our calculations state in various forms how far the empirical
first distributions of samples taken from a Gaussian noise with specified para-
meters vill deviate from the true first distribution of this Gaussian noise,
They can thus be used to judge whether a sample of unknown source can reasonably
be assumed to have come from a Gaussian noise with predetermined parameters.
Our results can not in all cases be used to judge whether the sample can reason-
ably be assumed to have come from a Gaussian noise with parameters obtained
{rom the sample itpelf. To obtain criteria for the latter decision would require

the calculation of quantities such as

(401) <[2p(a 1) - flan) o )] >

vhere ¢(a,p: 0'.) is the Gaussian distribution with mean p. and standard deviation
O': which are both computed from - and thus functionals of - the sample function
y(t )o Expectation values such as (4.1) are much more difficult to calculate
than our averages, and may not be obtainable in a useful form,

An answer to the second question above can however still be obtained from
our results, if the size T of the sample is sufficlently large, such that its
mean p. and standard deviation 0" become reliable estimates of the true mean p
and standard deviation g, In the computation of Eﬂ(a,'r) - #(a ﬂz, *S'.and 5;
from the sample function, one can then use various combinations of values p
and J deviating from p.. and U" rsp, by their respective expected errors ,
(whioh are mot difficult to estimate ), If the various velues of [&O(a,'r) - #(a ):',
5 and 52 thus computed all lead to the same concluslon, our results apply
to the second question, We believe that the question whether a sample can have
come from a Gausaian noise can reasonably be asked only in this case, when at
least the estimates of the mean and standard deviation obtained from the sample

are sufficiently reliable,
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ARPENDIX 1

To evaluate the integral

/T (1- #)dt (1-1/1-e PY) at
(o]

we note that we negleot terms smaller than ﬁ BT if we extend the

integration to infinity, since

1- A1 PT < Pt

for real, non-negative t and B, We then have

—
i

foo(l- %)(1—’\/ l-e-Bt) dt = {(10 - a)\)‘[ -\t (1-/\’1 o ,;t} dt}

1 A,

{(l’rak ) (% - é[ xP 1= dx)})m
1 rég[(iz)
P rp’%) L=

gt E (M)’lg%] (7! - Lﬂl[‘l@l}

A=o0

(1+ a‘})(

>‘l—'

(s+ 2)[ (s2

From

L -2 5 L

k=0

one obtnina’

*+) Detailed derivation in RAND Corporation Report RM-447, "On the Roots
of Markoffian Random Functions", A.J.F. Siegert,
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r(c)/r(z ¢ 1/2) = V2 g1 exp {- ia (s )P
n=1

with Xq = 201g 2
and X = (n=1)¢ ) (1 _21-n) S (n) for n= 2 where

¢ (n) 1s the Riemann Zata funotion®*

++) See e.g., Jahnke Pmde, Tables of Functione p. 269 ff,

We thus have

| Y.
‘[——Egﬂ = n-1/22-1 (1-1)(110!2ﬁ2—1-+“o)

-] -1 2
oo faeLe ., [l-u-z..,.. ‘o)

= (2 0 )-8 (402 0,3E) + 20)

and

and

1 = gt {(2 ¢ 4% ) - (pr J?! E "21 0‘2')(;) ’Zixﬂ}
2
=pie2(1-1g2)- (pr)t [4(1'182)'%"2(1“2)2]}

zﬁ-l*[,bl - .54, (B'r)’l}




APFENDIX II

Outside of the range of the sample, defined by YJ(a,T) = 1 for all
ad tand zﬂ(a,'r) = 0 for all a 2 u the integral (3.17) can be obtained

analytically as a series in powers of (-og/t)and (0/u). We have

1 ' 2
» /2
& Ef@(aﬂ)-ﬂ(nzr ’——— da*f ﬂz(a A da
3

y ]Za/ZrT
oL[l-gs(-) =

where

%o ‘-L2 0o 2 a
ﬁ(g ‘E}\[;?t.fg 20 dy = ‘/-_lﬁ-f o"‘d;gz% 1-\7%:/‘
& a2 0

o

~ _1 20—2

= \&-TT— s °

valid for a))>0 , and
2
2 0o -
l/20'2 2
1= [ Fl)tr—s = o’(2n)-3/2[ a, 29
u ’\/21r; a

which by integration by parts and use of the asymptotic series for the

error function yhelds 2

1~ @2 (/) -20‘2

TICES

valid for u),) 0 and

L= t 1- ﬁ(t:] f - /202 = g;; (%)Zﬁ(-t)
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ARPENDIX 11

To evaluate the integral
T
/ (1 -t/7)dt 1g(1 - o-Bt’)
o
we note that the integral can be extended to oo inourring an error of

order e-m only,

We then need - for S =3 and S = 2 - the integral

[0

f%t°‘2 at 1g(1 - e P) = L— 1g(1 - e ‘“J

C

- - ;{-—l— : 181 g gt o Pt (1 - o7P[

Sl AN I -Bt -1
=-E;TA x* 1 dx e (l-op)

The la.t integral is equal to [ (s) g(.)o)

+) E. T. Whittaker and G. N, Watson, Modern Analysis, Cambridge,University
Press, 1939, p. 266

so that

fw(l -d)ar g (- )= pTleR) e g 1T E)

AJFS/hm




