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THE PROBLEM OP DETERMINING THE OPTIMUM CRITICAL OPERATING 

PARAMETERS POR A NONISOBARIC MOTOR WITH DIVERGENT NOZZLE 

Robert Stanlozewak! 

Warsaw 

'I ? author solves the problem of nonsteady state operation of a 

liquid rocket motor, using the dynamical differential equations of tur¬ 

bulent flow. He uses the solutions to determine the optimum and criti¬ 

cal parameters, together with the stability limits, on the basis of a 

nonlsobarlc motor model. The determination of these parameters makes It 

possible to correct the design method used for rocket motors. 

1. INTRODUCTION 

Existing design methods for liquid rocket motors are based on 

steady-state hydro-, thermo-, and gasdynamlcal equations, and do not 

allow for nonsteady states. Theoretical and experimental studies have 

shown that the phenomena occurring during the various stages of engine 

operation frequently are far from steady. Considerable parameter varia¬ 

tions, most frequently of pulsating nature, and taking the form of 

pressure and temperature oscillations, occur during startup. Disturb¬ 

ances reaching the fuel-supply system may pass through the various fuel 

lines Into the combustion chamber, upsetting combustion stability. In 

some cases, these disturbances may be sufficiently damped, so that they 

will have only a negligible effect on the stability of the engine oper¬ 

ating parameters. In other cases, however, they may be Intensified as 

•.hey travel, so that they reach the combustion chamber as strong dis¬ 

turbances. This may throw the engine Into an unstable operating mode. 

The nonsteady states mentioned distort the propulsion characteristics 
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and .et .. . .oure. of vibration for on-bo.* In.Ull.tlone .nd the 

aircraft etructure. Under certain condition., they may feoag. the en¬ 

gine. The ala tf this work wae therefore to lnve.tlg.te the non.tatlon- 

ary phencena occurring In a rocket motor. All non.te.dy state, were 

induced to four groups! unsteady fuel-sy.ten operation, engine startup, 

unsteady combustion, and unstable operation. Result, for these Individ¬ 

ual groups of disturbances were used to work out correction, for the 

ate.dy-.tate design method used for liquid rocket motors. 

PRINCIPAL NOTATION 

p - density, 

. T - temperature, 

T, t time, 

C * line loss coefficient, 

P ■ pressure, 

h» m l®ngth of combustion chamber, 

W - flow velocity, 

Vka " volu®« of combustion chamber, 

F • cross-sectional area, 

1 - length. 

^0' ^ ™ ®afl constant, resistance coefficient, radius, 

tg - time mixture Is In combustion chamber, 

© - pulsation, characteristic volume, 

f - area of transverse Injector cross section, 

dPg - pressure drop across Injector nozzle, 

0, q - flow rate (weight, mass), 

U - Injection-loss coefficient, 

y - specific gravity, 

t* - Ignition lag time, 

X . combustion-chamber loss coefficient, and 
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z m variable chamber length. 

SUBSCRIPTS 

1 « parameters ahead of reduction valve, 

2 » parameters after reduction valve, 

3 - parameters after tank, 

4 - parameters after cooling chamber, 

5 - Injection parameters, 

0 » parameters in combustion chamber, 

kr ™ critical parameters, 

m . number of Injectors per component, 

m' . total number of Injectors, 

opt « optimum parameters, 

nz . quantity referring to nonlsobarlc engine, 

Iz . quantity referring to Isobar1c engine, 

u — parameters In steady range, and 

z - fuel-system parameters. 

2. ASSUMPTIONS 

Solution of the problem of nonsteady states was reduced to exami¬ 

nation of the four characteristic states which essentially cover the 

r°*t Bevere «nglne-performance conditions. Despite the differences .- 

pcng the disturbances with respect to their natu«, point of action, or 

effects, all types of disturbances may be reduced to the type, outlined 

here. When disturbances resulting from a change In flight characteris¬ 

tics or Induced oy airfoil design upset parameter stability In the 

turbopump pressure-accumulator system or the combustible or oxidant In¬ 

stallation, we must deal with transient, m the orooe1i.ne-TrT .r 

tern. These disturbance, nmy be so weak that they will be damped even 

before reaching the injector nozzle. On the contrary, however, they may 

become so strong (being Intensified as they travel) that they reach the 
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Fig. 1. 1) Starting system; 2) pressure accumulator.

chaM>ar, upset ooabust ion-process stability, and cause a change In 

pressure. The coeibustlon process may also be disturbed by improper ar

rangement of the Injectors, m both the first and second cases we must 

deal with unsteady combustion. Presence of such transients In the pro

pellant-supply system, as well as unsteady combustion. Is marked by 

changes in paz*ameters within certain definite ranges. If, however, the 

disturbance Is so strong as to produce a continuous Increase In parame* 

ters with tlM (for exan^le;, during startup) as, for example. In the 

chamber pressure, we are concerned with unstable operation. Engine 

startup and the three types of Instability mentioned above will be the 

subject of a detailed examlnatlwi.

The following were assumed In the consideration of the problemt

1. A nonlsobarlc engine (Fig. 1).

2. The average value of engine thrust, specific thrust, and over

all flow rate are taken constant between the startup period and engine 

cut-out; hence

/w - -n»
^ 7fl •

f T4, 
-rn
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(2) 

J OmT<H 
z - m 
-J*-• (3) f r</i 

-tu 

3. The problem of parameter variation during dlaturbancea la re- 

duced to a change in pressure with time 

f [/<»>• ^lo • P(.)» T). J -♦ P(f). ( 4 ) 

4. It 18 assumed that the propellant Is made up of n components, 

each having a separate line. 

5. On the first assumption, we may use small-perturbatlon theory 

for the nonlinear relationship Q - 9(p), and reduce this function to a 

linear relationship. This assumption is In fact Important when we con¬ 

sider transients In the propellant-supply system and unsteady combus- 

tion. 

6. Spatially averaged parameters will be considered, hence: 

f p pda 

~P ¡pda ' T -- 
¡pTdx 

jpdx ’ 

jpWdx 

jpdx * 

(5) 

As we know, most rocket motors are designed for constant thrust; 

hence the first assumption Is fully Justified. The oholoe of pressure 

. variation was dictated by the possibility of eventually confirming the 

theoretical studies by means of experimental results obtained from 

pressure measurements with the aid of suitable data. Generalisation of 

the problem required the adoption of the third condition. In practice. 

It frequently happens that the propellant Is made up of three or even* 

four components. Estimation of errors shows that the assumption of a 

linear relationship for the functions 0 - ç(p) and V - +(p) yields suf- 
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-.1-. ..~UU, „„ . ,la. ^ thi toui 

pattem of the phenomenon takln« place mio>hf ^ # 4. ^ 
8 p ace n,1ßht ln fact be obscured. Cal¬ 

culations show that fop « m.* 
Wt 4 pr«Mur* variation of about 20* with raspect 

to the calculated value,the error reaultlnv r-™, ^ 
. 18 f th* a03umptl;on °f linear variation amounts* to about 1 . Ä 

»« u * ”” ““ “ “™“ «. 

. ^ ”” ““ ■-“» “ *“— 
■7 ^ • u®u r”“> •«.»«■ «» «, 

e results yielded by th. oonputatlonal »ethod for this type of 
propulsion. In no case do we pretend to n»*. * 
D. . , ^ Pr,t#nd t0 pra#*nt an exhaustive and com- 
Plate solution of this proble» esDeei.ii* .. 
co Bodnpi. ^ , e»P«clally since »any scientist, (croc- 
oo, Bodner, Telen, Tleohier, Bel man now, T„ „ 

' ' 0ore' LBe< "<>•• Ounder, Sunwer- 
leld, Reichel, Orey, Harr Je, «d other.) .re working on It. 

th* d— flBdtlV lndl0*t# th>t dl*turt*— Propagate along 

Jb « °f n0W °f th’ Pr0P*1Unt 0OTpOnenta and the gases m the combustión chamber, in amn* vV 
oa, ..owever, disturbances will move In 

«i» »»-it. fcIt„ tM. Äitrrta in tiit 

“ ^ ~U„„. ,. praaiur. 
side the combustion chamber wer« w na»oer were found to have a distinct effect on the 

pressure head of the injector. Since this problem »us, be dealt with 

™ it .m ,. lt « 

7’,,"r "• ”“1“ " •“».»». 
«* .»a ».uti. ^ ^ 

tuns# 

3. TOE PROBLEM OP UNSTEADY COMBUSTION 

Let u. consider th. problem 0f unatwdy ooa.bu.tlon In the chamber 

of a „onl.ob.rlo rocket .„gin. using an „^«.„t propellant. Th. 

Pro .» will be solved for th. propul.ion case with constant average 
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fundamental parameter.. V. .hall corf Ine ourselvea to an engine with 

linear characterlatlc geometry for the chamber and nozzle; hence; 

for the chamber 

f«., - conn, 
(o) 

for the nozzle 

D _ rfr 
*<») " *ä + *T“, 

in (7) 

where dr/dz « const. 

In accordance with Crocco'a fundamental theala, the cauae of un- 

stable combustion 1. the existence of a certain time Interval between 

•he matant the mixture le Introduced Into the combuatlon chamber and 

the moment of ignition. Crocco divide, thla time, otherwla. known a. 

the ignition lag. into two component.; a con.tant portion t" character- 

Li!0 °f the glVen Pr0p*1Unt- » variable portion t*. which depend, 
on the operating condition.. The exl.tenc. of an Ignition lag that can 

vary in either time or .pace re.ult. in Inhomogeneity of the ga. mix- 

ture at the flame front. The re.ultlng nonuniform release of heat lead, 

to temperatures that differ both at various point. In .pace or at dif¬ 

ferent times at the same point, since energy level, tend to .eek equi¬ 

librium. in such case there will be a change in the temperature and 

pressure. It would thus appear that there has been a change In the mix¬ 

ture composition due to an over- or under-.upply of one of the compo¬ 

nents, and hence a change In the overall density at the point, of In- 

homogeneity. Remembering that the density, in general. 1. al.o related 

to velocity, position, and time, we can write 

P m (g) 

Thus we can reduce the problem of atudylng unsteady caabu.tlon to 

that of atudylng mixture composition by finding the change In den.lt,; 



¿m mit lét + ïl9!* + * 
'nêt+totr" ***+&*+ 

+»<,+>±*^*1«(g) 
9y 9i 9p9x . 9T9r 

« ■ ♦-•-- 'i*H 1. • I _C? O. 

1 ^ p V ♦Ou 
miwm jB) 1 kÊÈmwC • ^ ^ i . • 

going fron the density of the liquid conponents to the density of the 

SM. Thu. In un.te.dy ccbu.tlon, p will be • complex function varying 

In .pace and time. Bach local change In mixture composition, even In 

th. atomization zone, win Um.dl.toly be transmitted to the combustion 

ion., resulting In change. In the thermal quantities. If at an arbi¬ 

trary point in the atomization zone, the mixture composition changes 

«1th respect to the optimum composition, the change will ImmedUtely be 

propagated to the combustion zone, resulting In local excess heat re¬ 

lama#. The Increased heat produces a rise In the temperature and pres- 

•ure and, owing to th. existence of the surrounding lower energy level, 

thU point will automatically beco^ the source of a disturbance that ’ 

causes a thermal wave to propagate. The waves formed are characterized 

by temperature and pressure pulsatlonsj the, are continuous In nature 

far small disturbances, but may become shock wave, with larger disturb¬ 

ances. Thus the factor responsible for unsteady combustion la a local 

change In mixture composition, which produce, a local difference In 

density. For two arbitrary point, A and B In th. flame-front space, the 
•xprtttloo 

• ... 
* - 9p9w dpdp 90 9T 1 
**-*»“ (10) 

doe. not equal zero for Unsteady combustion. Analyzing the combustion 

prpMaa, we conclude that a change m mixture composition can be cither 

stationary or nonstatlonary. Th. first case result, from Incorrect in¬ 

jector arrangement, and we shall not consider this problem here. 

Let u. examine the problem of nonstatlonary variation In mixture 
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■ composition. We have established that such a variation will be accompa- 

I nied by a change In the density of the medium. Allowing for the differ- 

I ent densities of the fuel and oxidizer groups, we conclude that a devl- 

I atlon in the gis density at the flame front from the calculated value 

J car only be produced by a change In the flow-rate of one or more of the 

e .ponents. We thus reduce the problem of studying unsteady combustion 

to one of studying mixture composition. In terms of the variations In 

the concentrations of the propellant components. Here we note that a 

local disturbance at the flame front will not only cause an unsteady 

outflow, but also a displacement In the direction opposite to that in 

j Which the gas is flowing. Small disturbances may be damped as they • 

travel, so that they do not reach the Injector, but stronger disturb¬ 

ances may again produce a change In the flow-rate of some of the compo- 

! nents. We shall refer to the first type of unsteady combustion as 

space-time unsteady combustion and the second type as epace-tlme-a.c- 

ondary unsteady combustion. 

We shall now derive the mathematical equations for space-time un¬ 

steady combustion. If disturbances In the chamber are produced by vari¬ 

ations in the component flow rates, the change In mass at the flame 

front will be proportional to the change In the difference between the 

amss flow rates ahead of the Injector and In the combustion chamber. We 

therefore have 

*”<»>. y 
¿X m 2,U'-n-U, (id 

where H(t) is the total mass of the mixture In the combustion chamber, 

where the mixture Is composed of N phases. 

Referring the chamber disturbances to changes In pressure and sub. 

stltutlng the known functions 

«**(.> _ ^ ¿Put) 
dx m gR9T9 dx ’ 
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.. w - 
io 0 

(13) 
f i-, 

«here Vk8 le the mixture volume In the chamber, and le made up of the 

volumee of the N phaeea, «e obtain Eq. (11) in the form 
! t 

V* . %*§ _ ri MM 

# 

The mass riow-r»te at the injector can be represented with the aid 

of the following formulae! 

(15) 

£fißn 
- , » $ 

■here IfjUj le the aua of the areae of the Injector croee eectlone for 

the n components. 
# 

Since for our Inveetlgatlon Condition (1), (2) and (3) hold, eo 

that the maaa fio» ratea vary over a email range, the nonlinear rela- 

tlonehlp between the and dp can be reduced to a linear variation. 

In accordance with the Taylor formula, we have 

(16) 

and, after discarding nonlinear terras. 

oàp r (17) 
tl* darleitlwe HJBAp will then take on a consUnt value and it can be 

represented by the tangent of the slope of the function 

% 

*1. 
ft* - t*i. (18) 

Mp 2YApt 

Us^ng Eq. (14) In conjunction with Functions (I5) and (16), we ob 
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tain 

*ä« ¿Po«) , w vv 

Letting ?q(tj ■ Pq + ^Po(t)' and remenberlng that 

(19) 

F0 W0 p0 ^ yu dp0 

»ä.t, " jÄ.r.rfT “ (20) 

we obtain a system of differential equations to describe the effective 

variations In mixture composition In terms of the variation In flow- 

rate for an n-=omponent propellant In the presence of unsteady combus- 

tion manifested by pressure pulsation 

A ^Poi(t) . . . 
A" ~dx ■+ 

J ^PoKf> (21) 

where 

Â m *** A m Ft>W° M /1 >1 

1 »*.V A‘ *.t; 

In accordance with the principle of superposition, the total pres¬ 

sure deviation In the combustion chamber will be a linear combination 

of all the deviations produced by the component disturbances: 

Ai^Poi+Ai^Poi+ ••• m dPw (22) 

We have thus solved the problem of space-time unsteady combustion. 

Let us now proceed to consider space-time-seccndary unsteady combustion. 

Thla problem differs from the one Just considered only that here the 

variation In flow-rate at the Injector may be caused not only by dis¬ 

turbances in the propellant-supply system but also by disturbances 

stemming from the combustion chamber. The phenomenon of space-time-sec¬ 

ondary unsteady combustion can be reduced to a certain closed system In 

- 11 - 



which the Initial coordinate ddp affecta the final coordinate ¿vQ, and 

vice versa. Cto the basis of the well-known relationships for coordinate 

transformation, we have 
* ' !- .A A#-) 

(23) 

where P^j is the transfer function for space-tlme-secondary unsteady 

combustion. 

Applying the Duhamel Integral to both products of the transfer 

function and to the Cp0(tj and ¿íP(T_t,) transformation, we obtain: 

(24) ; 

(25) 
I 

"l**** h(o) 11 * function of the praasure increment In the combustión 

chamber due to unit disturbance at the Injector for t - 0, and h'((, is 

the'derivative of the function h(tj. 

Letting P0 be the right side of Eq. (25), since It Is a known 

function, and substituting the equations derived from the Duhamel Inte- 

grals Into Formula (23), we obtain 

or, dividing both sides by 1 4* h^0j 

(26) 

(27) 

where P(t) . F0(tj/(1 + h(0)) is a known function depending on the 

pressure perturbation at the Injector Inlet, and J(t) _ h'(t)/(i + 

+ h(0)) le • function depending on the pressure Increment In the cc-i- 

bustion chamber produced by a unit disturbance. 

In the general case, for an n-component propellant, we have 
t 

f K4 • ^Fint)+ 

s 

(28) 
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(28) ^■<0 *" J JuffíÁp 

I The resulting system of equations (28) Is a system of Volterra In¬ 

tegral equations of the second kind. It constitutes the solution to the 
1 * 

problem of space-time-secondary unsteady combustion and is connected 

with the phenomenon of space-time unsteady combustion. If it turns out 

that sufficiently strong opposing disturbances occur, we can use this 

J system of equations to examine the closed system, using the data for 

the open system. The equations mentioned can be solved by the method of 

successive approximations or the inverse Fourier transform. In the 

first case, the resolvent for the system of equations (28) will take 

the form 

¿/»•ho - 

V 

0 (29) 
*************••*•••••••••■•>■•• * 

f 

¿Amo - 

j where tyuo,- ¿¿'-Wt.0 is the resolvent kernel, and X is the eigen¬ 

value. 

It is quite difficult to determine exactly when space-time-cecond- 
( 

ary and space-time unsteady combustion occurs on the basis of the mea¬ 

ger experimental studies. It is only certain that in the presence of 

Btrong disturbances,changes in the pressure inside the combustion cham- 

* ber have a definite effect on the vi lue of the pressure ahead of the 

j injector. No such effect was found for very small•combustion-process 

I disturbances. The location of the boundary was not established. Numer- 

I ous studies and investigations, primarily experimental, are required to 

settle this question. 
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4. ENGINE STARTUP PERIOD i 

An analysis of the available literature shows that damage to the 

propulsion assembly, frequently resulting In complete destruction of 

.the engine, is caused primarily by improper choice of parameters for 

the Initial operating period. Excessive propellant accumulation due to 

the large pressure drop across the Injector during the Initial startup 

phase produces a violent rise In chamber pressure. The actual pressure 

value may then exceed the calculated value by a factor that may ev¡en be 

greater than ten, and as a result the engine may sometimes fall. The 

solutions given In this chapter represent an attempt to give an analyt¬ 

ical description of the phenomena occurring during startup. Let us exa¬ 

mine the startup process for a liquid rocket engine using an n-compo- 

nent propellant. Assuming equal supply pressures 

Ptth) m #»*«) " P.Ht) m ••• • Pm(,) ( 30) 

we reduce this system of equations slmulUneously to a single dynamic 

startup equation. Since temperature and pressure have the greatest af¬ 

fect on the change In load, and the relationship between these varia¬ 

bles can be represented by simple formulas, we reduce the problem of 

the transition period to a study of the change In the pressure p0(t) 

alone. It has already been shown that the combustion chamber Is a dy-- 

namlc oscillating element. The oscillating nature of the chamber can be 

explained as follows: If the Initial part of the load Is greater than 

the calculated value, the pressure In the chamber following combustion 

will have a value higher than that predicted, and the pressure drop 1- 

cross the injector will thus decrease. 

i 

Pig. 2. 
- 14 . 
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The decrease in APg(T) reduce the load and thus Pq(tj 

drop below the calculated pressure value, again increasing This 

process repeats itself, and if the damping forces are greater than the 

intensifying forces, the amplitude of the oscillations will decrease 

with time; if, on the other hand, the opposite is true, sr.ch pressure 

pulsations may cause the engine to fail. Since there exists a certain 

ignition lag t' between the time when the load is introduced into the 

chamber and the time at which it burns, the chamber pressure oscilla¬ 

tions will shift with respect to the pulsation , % by a certain an- 

gle corresponding to the time t'. 

The Instant the load of propellant is Introduced into the chamber, 

it burns,with a consequent pressure Increase. If we assume that the 

mixture is uniform over the entire flame front, the force due to the 

uniformly propagating pressure will be proportional to the change In 

the slope tangent for Since there is a strict functional rela¬ 

tionship between Pq(t) an<^ force will be proportional to 

the second derivative of the chamber pressure with respect to time. If 

we also consider the amount and type of propellant load, we obtain the 

inertial forces 

(31) g d?"* 

I 

Both for damped pulsations as well as for oscillations of increas¬ 

ing amplitude, there exists a larger or smaller damping force propor¬ 

tional to the first derivative of the pressure. In general, this force 

will depend on the friction of the gas against the wall surface, R 
' 8 ' 

the friction of the gas molecules, Rc, and the gas turbulence and coun- 
. 

terflow, R^. We the:efore will have 

-(Ä.+*,+*.) 
dx ' 

(32) 
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Since there exists ope/a ting continuity during the transition per¬ 

iod considered, there must also exist a force to initiate and ensure 

such continuity. This force originates in the very admission of the 

components into the combustion chamber, and its intensity will thus de¬ 

pend on the momentary propellant load. We can state that the thrust is 

proportional to the rate of flow of the components through the injector, 

with a certain negative lag thence 

kF0 (33) 

1 ,. :1¾ 

where k le the thrust coefficient. 

Combustion of s portion of the propellent causes a gas force to 

appear In the chamber; It depends on the pressure p0(t), the velocity 

W(t), the flow-rate Q(t), and the chamber lateral dimension P 

r .¾ 

1¾¾ 9 
—wpia-1 (34) 

Ignoring the external forces acting on the engine, we obtain the 

dynamic differential equation for the transition period in the form 

Vj. , rjr , 
9 9 

+(11,+11,■tit + Po(f)F0— o. ( 35 ) 

If we confine the locus of thermal-parameter variation to the 

cross section with maximum pressure p^, we find that the velocity In 

this cross section Is small, and we may thus assume ’that the gas .urce 

depends on the preesure alone. We slmultaneouely Introduce the simple 

relationships for the flame-front volume; Eq. (35) then takes the form 



where 

fe GRq Tq Äf+Ä, + Ä, 

or, with the substitution r ■■ t0 

¿l^0<0 . dP«') , „ -O 
if- (37) 

The resulting Eq. (37), except for the singularity consisting In 

the earlier action of the thrust, has the properties of a sufficiently 

developed second-order linear differential equation. The coefficient k 

can be found from the formula 

(38) 

1 

Within the range of the linear functions, each change for ?f,J 

= const will produce a corresponding proportional change In the over¬ 

all flow-rate £¢- • Since on the assumption p^ - const the exhaust 

velocity We will not change, the coefficient k will also remain un- 

changed. Even If the difference In pressure across the Injector should 

change owing, to changes In pQ alone, the result will be an automatic 

I change In ÇCs , which though not necessarily proportional to the 

variation (pz - p^), would still leave k unchanged owing to the corres 

ponding change In the exhaust velocity. Since an analysis of variation 

in the Injector cross-sectional area leads to the same conclusion, we 

can say that the coefficient k will not vary even In the presence of a 

disturbed state. The value of k can also be found from the steady oper- 

atlon condition, using the formula 

(39) i 
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Let us now compare the factors In Eq. (36). If we reduce the cham¬ 

ber and nozzle damping-force factors to the pressure losses for an 

equivalent pipe of diameter D and length L, represented with the aid of 

the Darcy-Welsbach relationships, the constants 01 and 02 will take the 
form 

21^ D^p CR^T. 

9P% ? 0 (^0) 

where W is the mean flow velocity and y the mean gas specific gravity. 

Expression (40) may be represented In the form 

Ap 
Ci I* 2C; (41) 

where 

C,.^ /..i/5 

Using actual data for particular engine geometry, we find that for 

C. < 2C|, (il2) 

the Inequality 

1? V“íT’ (43) 

will always hold. 

In view of this Expresalon (40) will take on a definite mathemati¬ 

cal form. Important for all englnea and applying to nearly every dis- 
turbance: 

C, < 2Ci (44) r P© 
It then follows that the solution for the dynamic startup equation 

takes the form of a product of exponential and trigonometric functions. 

Thus this confirms the conclusion that the combustion chamber Is a dy¬ 

namic oscillating element. The solution for Eq. (37) for unit dlsturb- 
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anee is 

ß«t) m coe tin tVl-a^+A,, 

where a « 0^/26^. 

We formulate the following initial conditions: 

for t - G 

Po(0 " ^ » Poo) ■ PÕiO " 
r 

for t - « (steady engine operating range) 

PtU) m iPt ~ Po^fm fit 

Phi) m Pino m 0» 

and we use these expressions to define the constants 

"■“Tib' T¡b(¿J'4;4 

where 

A> - i’7- 

then the Solution (i»5) for Eq. (37) will take the form 

Pora - Jp, ¿/i)«« T1 -( •« t+ 

(¾) 

(½) 

(<*7) 

(W) 

(^9) 

(50) 

(51) 

Tib ' 7íb(¿J'4/,)‘in|,ÍZp']+k7SP'?1- 

(52) 

Solution (52), thus formulated, describes the behavior of the 

pressure in the combustion chamber during a transition period. The 

smaller e2 of the larger the greater the pulsation amplitudes will 

be. When a rocket motor is started, it is necessary for the chamber 

pressure to reach the design value rapidly, while not exceeding it. Ex¬ 

perimental investigations have shown ¿hat during the transition per¬ 

iods, the pressure at the chamber intake will frequentxy pulsate. Since 
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the curvee Involved approximate harmonic functions, we must study the 

behavior of the chamber pressure under such disturbances. We let 

.then the solution of Eq. (36) for e2 < 2el will take the form 

hn m ait '»in^/l —a,~+ 

while for e2 > 263^ 

Jpjtinmix-f+fi)] p, 

F, k|/(” 

*«> * +5,) + 

(54) 

(55) 

a»V+oj1«1 

If t - Bq. (54) and (55) will be identical in form. From this 

it follows that the effect of the ratio e2/201 on pc for a sinusoi¬ 

dal change in (pz - p0)g la of no importance. Whatever the ratio of the 

constants ^ and 0g, for this type of variation in the pressure drop a- 

cross the injector, the combusticn-chamber pressure will be represented 

by the function 

d^jiinit-r'+j))^/, 

(56) 



Let us now determine the engine optimum and critical parameters on 

the basis of the startup curves. It is known that engine failure re¬ 

sults primarily from an abrupt rise In chamber pressure during startup. 

Owing to the accumulation of an'excesslve amount of propellant, the 

chamber will burst at the Initial pressure maximum. Setting the first 

•erlvatlve of Eq. (45) equal to zero, we obtain the times at which the 

preasure reaches the extremum values (Fig. 3) 

wn/T-«1/ - 0, 

nn 

(57) 

(58) 

For the first maximum Pq(^\» we have 

'•"PT”? (59) 
and 

(60) 

Using the prescribed chamber safety factor n0. we obtain the orlt- 

leal value for the pressure drop across the Injector nozzle 

(6l) 

As we know, however. In selecting engine specifications, we are 

interested primarily In the values of the optimum parameters such as 

^cpt’ P0opt' Vks opf “ 18 necessary to determine the propulsion-sys¬ 

tem startup regime for which the pressure In the combustion chamber 

w:-’ rise gradually to the design value. On the other hand, the time 

required for pQ - 1 to reach p0 - pot, must be as brief as possible. 

The problem of determining optimum startup parameters can therefore be 

reduced to finding the minimum energy Increment between the steady- 

pressure energy and the variable-pressure energy over the transition 
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f + 

(»•Plod. W« can solve this probier, by Integration. We obtain the minimum 

energy Increment «hen the Integral for the pressure drop p0 - P0(t) 

reaches Its minimum value. If at startup we have n extremum values for 

the function pQ - f(t). we will have smooth startup for the case 

®2 ^ wiien 
• * 

+fo-7íb(ir>|^)]- ^ - n»i..(62) 

It can be shown that the value of Integral (62) depends on a, and 

hanoe primarily on the engine parameters (p0, Q, F0) and the propellant 

parameters (?„, R0, t0). if this Is the case, then for a given fuel and 

ootldlzer, and for a given engine sise, we can uniquely determine the 

pressure In the combustion chmnber. We find the optimum values a0 t 

(P16. 4) for the minimum of the Integral and ;ience 

' (63) K g 

Ijlllli 

As 

chamber 

«Ith de 

between 

used as 

Pig. 4. 

we know, no precise criterion for the selection of combust* ... 

Pressure ha. so far been stated even for the classical engines 

Uval nozzles. The available textbooks merely recommend values 

15 and 45 kgf/cmá. The argument just presented can therefore be 

a basis for one possible definition to be used In selecting 
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Chamber pressure from the viewpoint of smooth startup. Determination of 

the optimum value Pq would permit more precise determination of oth- 
opt 

er chamber parameters, in particular the volume and length of the com¬ 

bustion c'.amber. The Introduction of this criterion, however, Involves 

certain difficulties in view of the necessity of determining the dura¬ 

tion of the first half cycle of pressure oscillation in the combustion 

chamber. On the other hand, it is known that this time is roughly twice 

the combustion time. Since the latter can be determined for a given 

propellant, we can also determine t1 in approximation. This is not a 

.ry accurate method, however. Another way of determining oi0p^ consists 

in establishing its range of variation. Using Eq. (58) and the formula 

for half-cycle duration 

1 ( t. - V 
vi-ï’\ (64) 

the relationships J\p0-pmdi \ ^ Jiu) wei*e found for four different tran¬ 

sition periods. It follows from the graphs of Fig. 5 that the minimum 

value of this function will be shifted toward a as the number of half¬ 

cycles increases. At the same time, we can see that the derivative of 

the curve A-B, representing the sets of minimums, becomes increasingly 

larger, thus indicating a constantly diminishing range of variation in 

aopt as the number of half-cycles is increased. We therefore have a ba¬ 

sis for restricting the range of a to the limits O.6I-O.675. We know, 

however, that if a pressure deviation occurs there must be at least two 

half cycles, and for this reason the curve for one half cycle cannot be 

considered. Hence the range of variation in aopt will be narrower, with 

limits 0.66-0.68. It follows from the distribution in Fig. 5 that for 

more than four half cycles, the increment in aopt will be small. 

By finding aopt# we can find the optimum pressure in the combus¬ 

tion chamber. This is essential in the design of a rocket propulsion 
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Pig- 5. 

•yate». In an analyala, we are uaually concerned with a particular en¬ 

gine. and w. carry out atudl.s to determine Ita characteristics. Here 

It 1. necessary to obtain the engine startup curve - the so-called 

pressure simulation curve for the chamber - free, which It is possible 

to evaluate the Initial engine performance. The curve must be so shaped 

«• to give the shortest possible time of transition from atmosphere 

pressure to the combustion-chamber design pressure. On the other hand, 

the curve must also be smooth. Such a curve can be obtained by minimi! 

ting the quadratic form of the variables characterizing the transition- 

period performance. If *e let 

(65) 

the dynamic equation (36) will take the form 



f Allowing for the fact that the engine performance will be charac¬ 

terized primarily by the first derivative and the function we 

look for the minimum of the quadratic form 

• • 

(67) 

If there Is a function V(t) such that the Integral J takes on an 

extremum value, the function must be a solution for the Euler varia- 

tional equation 

W d dv 

Orj dxcif' (68) 

We thus obtain the equation 

whose solution 

gj ^(t) - -1(.)-°. (69) 

tyt) m Ble *** + (/O) 

defines the startup process with minimum pressure energy loss. Equation 

(70) is used to determine the pressure difference pQ - p0(t) for which 

the combustion-chamber pressure will rise smoothly but reach the design 

value within a fairly short time. For the following initial conditions: 

for i - 0 

for t « 

*(•) " Jo-1, 

lim »1 - 0 

we have 

(71) 

(72) 

(73) 
The solution will then take the form 

Investigation of engine s-artup wau carried out only for the case 

e2 < 29r :t is easy to show that for cases In which 83 ¿ 20 where) aB 

we know, the dynamic equation (36) has a corresponding solution: 
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for e2 . 261 

(75) 
Poo) " (C| + fC,)r-'+C|, 

for 02 > 201 

P«o " (76) 

and Integral (62) does not have a minim™ but Increases with the aver¬ 

age increase of e2 over The minimum for this Integral lies In the 

range 0 < a < l, and the optimum parameters must be found exclusively 

with this range. 

5. STUDY OF TRANSIENTS IN PROPELLANT-SUPPLY SYSTEM 

The entire aupply aystem was divided Into n lines with one common 

conbuatlon chamber (Pig. 6). Where there Is a pressure accumulator, 

each propellant line Is made up of an accumulator, reduction system, 

tank, cooling chamber, and Injector. Where turbopump pressurisation Is 

uaed, we have the generator system and the pumps In place of the pres¬ 

sure accumulator. This chapter will be concerned In particular with the 

Fig. 6. 

pressurized supply system. The Individual elements will be replaced by 

dynamic elements (Pig. 6) described by means of dynamic differential 

equations. 

Assuming an Isentroplc gas flow through the reduction valves and 

pressure Increments proportional to the first derivative of the spécif¬ 

ié gravity with respect to time, we obtain a system of equations for 

the various reduction systemsî 
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+¿PiU') * -B, 

í 

I 

i 

I 

ü 

dx +^Pu<.) " 

ÍÍ^Ü? 
(77) 

where 6 ' = b/RT, b Is the coefficient for the change In ¿»oeclflc gravi¬ 

ty, B Is a reduction-valve structural parameter, and Z^p2 Is the pres¬ 

sure Increment after the reduction valve. 

Disturbances passing through the accumulator and entering the re¬ 

ducing system can be classified Into three basic groups: 

1) disturbances of unit character, 

2) disturbances of pulsation nature, represented In the basic case 

by means of the following Fourier equations: 

m m 

¿Pirn ■ (Z /4.»innon + Jf B.cow ■ • i ••1 
m m 

¿Pint) " (21 »inn O«-*- 2 B.como«),. 
• • 1 ■ •1 (78) 

mg mm 

¿P.M.) " (2 ^4.»inn«T+ £ B.cotnat).. 
a - 1 I 

3) disturbances of random nature: 

¿Pirn - on, wnon), 

¿Pint) ■ co* on, »¡no*), 
(79) 

¿P.II.) - co* cut, sinon). 

In order to derive formulas to describe the turbulent fluid flow 

between sections (2-2) .nd (3-3) of Fig. 7, we shall employ the princi¬ 

ple of energy variation In tne volume under consideration. This energy 

change represents the sum of the external work and Internal work of the 

system 

¿ ¿ /d d \ 
(80) 
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V ta ‘ 3 

Fig. 7. 

On the other hand, the kinetic energy Increment can be repreeented 

as the sum of the energy inside this value and the energy at Its sur- 

face S 

(81) 

If we divide the entire Investigated component volume between the 

indicated sections Into n parts or even Into several characteristic 

volumes, and go from the Integral to the sum, we obtain 

¿ (82) 

(83) 

The work done by the Internal forces can be represented as the sum 

of the losses due to friction and the fluid pressure forces, reorient - 

ed In terma of kinematic quantities 

(84) 

Letting 

if/ » r^,/F - 0, A-C—- (85) 

•nd substituting the resulting expressions Into Eq. (80), we obtain 

1 I r. n L 2*0« 2^ J \ * Y tdT \ L 2*0| 
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In view of the fact that the mean thrust Is constant, we can re¬ 

duce the problem under Investigation to a linear problem. Applying 

sma.i-perturbâtIon theory and linearizing the function W - *(p) „ith 

the aid of the Taylor fonnula, we finally obtain a dynamic differential 

eruatlon describing the disturbed state m the tank: 

where 

,d¿p »•> 
dx + - -0' ,d<ip '»<>) 

dx (87) 

Ö*- a dpi 

1' 
dpi g gpl y 

(88) 

0- . 
!±d^i 
a àp* 

-C-±-3-^W + 1' 

leD.iip, w‘ + ïJï,*‘+: 
(89) 

*• - 
l¿rpW,-^W, + l 

0 dpj 1 y 

_ IdW. Í' 
'c2ío.^;M'*+¿íír1p,+y 

(90) 

For the n components of the propellant, the system of equations 
(8?) will take the form 

mf,dApix »a 

/Í r 

3 

dx 

dApn 
dr 

./1». , , «/ I?«. 

(91) 

Jx + **“Pu " - O'. - 

r" rl»- ». .0.11., .h.»., B, 
a...... ., ™... or ... „.„o,... .... lnto thi ^ 

.»,.r.„.o ,o ... Homo ...O,,, ... ,.n fpm th, >M 

... »... „.„or»..., ..,00,. .,,,,,,1 0,,0 (Fl^ Sl 
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1 
Fig. 8. 

thle equation will take the form 

(92) 

where S 1. the tranavera. cro.a-aectlor«! area of the cooling chamber, 

S' is the external-wall aurfaçe field, s" la the Internal-wall eurface 
«•Id, n la the direction of the normal to 3' or S", X- 1, the conduc¬ 

tion coefficient, ï ^ - JOáj, and h Is the ooollng-chamber friction 

losa. 

The change In energy produced by the fluid Inertial forcee during 

a dl.turb.nce, when the problem become, one In axial flow, can be rep- 

resented as 

»ji * ,[i, *)■ (93) 

The energy Increment produced for the liquid by the heat nflux 

0« b. repreaented a. the difference In the heat energy entering 

through wall S" and the heat energy leaving through S', and asso- ,d 

with the heat flows 

¿(jlsr""*-JJxi"'*) - ^(dfr-dr,). (94) 

where V Is the cooling-chamber volume, Cp la the apeclflc heat at con. 
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stant pressure, ^gi difference between the temperatures of the 

outer wall and the coolant, AT-,, is the difference in the temperatures 
i 

of the inner wall and the coolant, 1 is the length of the cooling cham¬ 

ber, and c, is the unit heat flow. 
o 

Substituting the resulting expression into Eq. (92), we obtain a 

dynamic differential equation describing the turbulent liquid flow in 

the cooling chamber 

P» K pi . K IfdW* dWA yVC,t 

¥+7"¥+7+{17+i(x'x) + ^(‘,r*-“'irr) (95) 

or, after reducing the function W - *(p) to a linear relationship 

s-íéísa+vj*. (96) 
i% ax 

where 

«*- 

dwlwl i c dwt 
dp» g y *gdpt *g*Pt 

>-W4 

dp* g y *g dp* ig dpé 2GA dp4 

(97) 

idWi 

_g dpt 

dp* g y *g dp* *g dp4 * 

YF*C,dW. 

2GA dp* 

» 

(ATr-ATr) 

(98) 

dwjv4 ï C dWA 
—Z-Z+ _ + -- + 
dp* g y *g dp* 

idwA 

g dp* 

C dw, 

ig dp* 

YF*C,dW< 

IGA dp* 
(ATr-ATr) 

(99) 

As a rule, the rocket motor uses one or sometimes two propellant 

components as coolants. In exceptional cases, three components may be 

used for cooling. Thus, if we generalize the problem under study, the 

system of equations of Type (96) will take the form 

g.^1 . e-—£' +<>».,. (100) 
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~&:—p-+K-/in - 

iV'* 

(100) 

TurbuLnt flow of th. liquid through the injector, aeeuaing equal 

preaaurea in the ca.bu.tlon chamber and the injector exit, 1. the same 

«. .pec.-time un.te.dy ca.bu.tlcn. Thue thl. flow c.n be de.cribed with 

th. .id of . sy.ten of dlff.r.nti.l equation, with the lagging argument 

JA 
9i-£-+**i - -r^*i(T-o, 

0* J** +^f*i " 
(101) 

^here 

irtf. ’ 9--71. diu-dd,.. dia (102) 

•»« ayatem. of equatlai. derived for th, fundamental dynamic «le¬ 

ant. make it po..ibl. to con.lder un.te.dy operation of the.e element, 

nder arbitrary dl.turbancea. The.e con.lderatlone refer to a rocket 

otor with pressurized propellant .upply. m considering disturbed 

täte, with a turbopump .upply, the system of equation, for the redue¬ 

len element, may be discarded, but it 1. then necessary to der ve the 

ifferentlal equation, for th. cataly.t and turbopump systems . which 

o«« not present eny perticuler difficulty. 

Ualng the .ystema of dynamic differential equations conatructed, 

> can atudy the characteriatlce of the Individual elements in Iso’ .- 

:on. It 1. difficult, however, to trace the propagation of diet, .ban¬ 

’s trm, for example, the accumulator to the combustion chamber. It is 

«IplÉé convenient to determine disturbance propagation through the 

ne. by a functional rel.tion.hlp connecting th. parameter, at the re- 
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duction-systern Input and the combustion-chamber internal parameters. 

Such a relationship can be established by eliminating the individual 

variables in the equation systems (77), (91), (lOO) and (101). We thus 

ob ta ln 

where 

a - Q’e-e-G', 
b m emdm6-+em6m9t^6'8m9'+eme^em, 

3 — 0-+0-+0-+0*, 
1 - K-B0-Ö-. 
F - *-b(0-k- + S-O. 
C — h*k"k-B. 

This system of dynamic differential equations describes the dis¬ 

turbed states of engine operation; each equation refers to one line for 

one propellant component. Where there are more than 4 elements in a 

single line, the order of the equation will increase, while if there 

are fewer elements, the order of the equation will be reduced accord¬ 

ingly. From the mathematical standpoint, solution of this equation svs- 

tern is not difficult, but it is time consuming. For this reason, it is 

more convenient to reduce these equations to an operator transfer func¬ 

tion or to the Heaviside operator (d/dx . S). Then for an open system 

we tiave 
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C «WH. 

M(f) ■ MI|r)^U(X)^tKn^l4(f>> 

m 24<f>r 

9*M) m Pmi(ß)P,nr>P,Mt)P*HD> 

(104) 

wh»r* pl(3)^" V(e*8 + 1) is the transfer function for the reduction 

system, - .A*“ is the transfer function for the tank. w ^"S+1 
r , 

e-S+t ‘8 th® tranBfer function for the cooling chamber. 
«■« ■ _ * * 

6?s+! 18 th# transfer function for the injector. 

With certain propellant-supply system designs or under strong die 

turbances. the opposite effect may occur. The system of operator e,ua- 
tlona will then take the fora 

._Pium) fllÄ 
•w « • • u  + -—' -f- — **w I rlM*) 

i+r.tmH.un l*rtmHtun l+f,wff1K1) + i+i14a)Äw’ 

»XD 

- ...-.. 8 

3F-« ---ÍV) i _ . a — 
1i+fo^i/o,»+ r^~Ã^-+úf— 

»here H(S) 1. the operator function for the opposite reaction. 

The operator tran.f.v functlons offer , Bore convenlent way of 

studying a dl.turbed state, both for a slngi. dynamic element an. for 

reny such elements, a. suitable arrangement of transfer functions im- 

medlately give, u, th. form of th. final coordinate for a particular 

fom of disturbance. A. an example, let u. consider disturbances in an 

open supply .y,te. ,0r . monopropellant. Xf the disturbance appear, a- 

head of th. combustion chamber, in unit form, then when 

r..» W,«, - «m*., (106) 

(105) 

? uai ■» «r«-* 
(107) 

»e have a combustion-chamber pressure deviation of the form 
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J*™ (108) 

A more Interesting case results from a unit disturbance supplied 

to the duct containing the "exiting" gas ahead of the reduction valve. 

The chang of pressure following the reduction system will be described 

by the expression 

^1(0 - ¿Jj'i *0(109) 

after the tank by 

¿Pmo " 
¿AJO-.-**) 

H-W'l (no) 

after the cooling chamber by 

¿PM4 m r- 
àPiBd-r^SM' 

1-(-¾ « (HI) 

-st' while In the cooling chamber, neglecting the ignition lag (e 

APi -r**) 

(112) 

D 

■ r 

For T - », the pressure deviation In the combustion chamber ap¬ 

proaches the steady value 

*✓«%-. (113) 

If disturbances appear In all supply lines and then propagate into 

one combustion chamber, the perturbed combustion parameters, reduced to 

pressure variations, will be expressed by the sum of the Individual so- 
t 

lutlons 

... ¿Pr (114) 

The results of studies of transients in the supply system using 

the dynamic differential equations indicate that the various dynamic 

elements, considered individually, act as inertial elements. Thus In 

studying their characteristics there is no need to go to equations of 

second or higher order. The first-order dynamic equations that have 
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bwn derived are full, adequate for a Knowledge of the characteristics 

of the individual aupply-aystem elements, especially since experimental 

results confirai the theoretical arguments. Of much greater Interest is 

.the fon of the final quantity after the disturbance has passed through 

at least two or three dynamic elements. For a unit disturbance, the so¬ 

lution will be exponential after the disturbance has traversed a single 

element, but will approach an oscillating form after a secón- element 

has been traversed. After the disturbance has passed through two ele¬ 

ments, the final quantity will already distinctly have pulsation form, 

and the solution becomes more distinctly osclllatlonal as the number of 

element, traversed by the disturbance Increases. Since a disturbance of 

combustion-chamber operation 1. produced primarily by disturbances In 

the supply system that have passed through at least two elements, we 

are led to the conclusion that the combustion chamber has osclllatlonal 

characteristics. It thus appears that Investigations of nonsteady cham¬ 

ber state, should be carried out on the basis of at least a second-or- 

der differential equation. 

6e DETERMINATION OP STABILITY LIMITS 

The probability that ranges of unstable operation will appear Is 

less for an ,ngi„. wlth constant thrust than for one with variable K. 

They may appear, however, m certain cases. These Include primarily en¬ 

gine startup or a strong disturbance In the supply system. Engine op¬ 

eration under these nonsteady conditions will depend greatly on the 

values of the engine parameters under steady conditions. Too low com¬ 

bustion-chamber pressure or too low a value for the pressure dror .- 

cross the Injector will render the .engine more susceptible to unstable 

operation. For this reason, presumably, many actual engnes use chamber 

pressure, exceeding 25.30 Kgf/cma, with *gu ¿ 4-6 Kgf/cm2. This Is 

most likely due, among other things, to the attempt to avoid eventual 
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appearance of unstable ranges, particularly since where pQ - I6-I8 

kgf/cm during starting, the chamber pressure Increase does not result 

In any great Increase In specific thrust, but does increase the engine 

weight disproportionately. 

In this section, we propose to determine the limits of operating 

stability for a rocket motor, specifically a nonlsobarlc motor. The 

critical values Pq^ and "5?^ can only be determined by means of a dy¬ 
namic equation describing the nonsteady state for the combustion cham¬ 

ber. Since it has been shown that the chamber is a dynamic oscillating 

element, a differential equation of at least second order must be used 

to solve the problem. 

Let us now proceed to choose a method for studying the instability 

ranges. This problem can be solved if we know the roots of the charac¬ 

teristic equation. They can be found by the classical method, using the 

Encke roots for the lower-order equations, or the Graeffe-Lobachevskiy 

method for the higher-order equations. This is a very laborious proce¬ 

dure, especially for the higher-order equations. Stability can be eval¬ 

uated much more rapidly by indirect methods. Considering the specific 

details of rocket-motor operation, we can divide the existing criteria 

into two basic groups. In the first croup we have the criterion based 

on the Michailov-Llenhardt determination of roots in a variable con¬ 

nected plane, the criterion developed by the Couchy theorem, and con¬ 

sisting in an examination of the amplitude-phase characteristic, the 

so-called Nyquist criterion, and the Routh-Hurwitz-Aizerman criterion. 

In the second we have the Neumark method for D breakdown, the Wysznie- 

gradzki criterion for region breakdown, and the Evans criterion for the 

motion of the geometric loci of roots. Using the criteria of the first 

group, we can only establish whether or not the given engine will oper¬ 

ate stably, but we cannot trace the shift in the roots with variation 
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in the parameter.. Por thle ree.on, these criteria are suitable for a- 

nalysla of the operating range, of an exl.tlng rocket propulsion system 

with constant thru.t. In de.lgnlng an engine, „e must determine parame- 

•fr* f0r the eh*“ber (»0' V,.. injector (bp bpeu). cooling 

0hf-l+r fw' 4* Tc* Pc). ducts (d, 1, w), tanks (p, D), and reduction 

valve [pg - p(p1>] for which future performance will be stable. The 

criteria of the second group meet these requirements, since they lend 

themselves to Investigation, using synthesis, since In our case we are 

concerned with the det.rmlnatlon of the critical parameters, one of the 

method, from the first group will be adequate. 

. In the general ease. If we have k fuel elements then, together 

with the oxidizer, every mixture component will have a different Igni¬ 

tion lag. in view of the various intrinsic properties of these compo¬ 

nents. If we take into account the fact that the combustion process 

takes place at one flame front, however, together with the fact that 

the variation In properties 1. small f0P the classical fuels, all igni¬ 

tion lags can be reduced to one average Ignition lag time 

I * “ Í,Jk- (115) 

If we additionally assume that the supply pressure Is the same for 

.11 components, w. automatically simplify the problem of evaluating the 

stability of an engine using an n-component propellant to the study of 

on. dynamic differential equation. Equation (36) Is just such an equa- 

tl«W It correspond, fully to the model discussed above. The existence 

of the lag and hence of a back reaction sets up a feedback loop at the 

chamber and Injector, which complicate, the construction and analysis 

of the transfer fusion, w. can us. the Kyqul.t-Mlkhaiiov method, how¬ 

ever, after which we need only consider the problem of stability on the 

basis of the transfer-function operator for the open system that ap- 
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pears when we Interrupt the loop. This requires that we expand the ex¬ 

ponential function for the delay element Into a Taylor series, retain¬ 

ing only the linear terms; this process Is not sufficient to determine 

all of t: critical parameters. Let us note, however, that to obtain 

all these parameters we need only examine the dynamic equation Immedi¬ 

ately after It Is reduced to the characteristic equation, so that the 

operator transfer function need not be constructed. 

We look for a solution In the form 

Pwo-cr. . a*-'*», (né) 

i0r “e a>,naralc startup equation (36), and obtain the characteristic 

equation 

l + 0. (117) 

where N-ilkfjj,. 

If we now map the left-hand variable connected plane (x, iy) using 

the function e 8t , and rearrange the rest of Eq. (II7) for a new sys¬ 

tem of coordinates, in accordance with the Neumark rule, we will find 

the stable and unstable regions of engine operation. The intersection 

of the functions 

G(<d) - #* 

n*) 
0} , ,0, 1 

m —œ —— 
N N N 

(118) 

(119) 

defines the stability boundary and. In accordance with the Satche-Ny- 

quist criterion permits construction of the relationships 

! 
I tin of' J < (120) 

¡CMUl'l < 
«i l_ 
N N (121) 

Using Expressions (120) and (121) and replacing the constants e 
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and 9g by the ehuaber parametere, we obtain the relationships for the 

lower and upper stability limits for the combustion-chamber pressure 

with respect to the pressure drop across the Injector: 

f „ 2,.GR.T.F,c‘ 

' i »[*V+/î-<Ç/3*] 

(122) 
Analysis of the formula for the upper limit shows that the pres¬ 

sure p0 can take on values falling considerably outside the range of 

pressures presently employed for rocket motors. It Is only for small 

pulsations « and very small dpg that the engine can enter the unstable 

range (?lg. 9). p0r this reason, there la not much point In studying 

the upper stability limit oonelderlng the pressure drops presently used 

for Injectors and the pulsations occurring. 
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In contrast to (PQ^Jg# ^ has no great effect on the lower stabil¬ 

ity limit. In view of the small variations In tQ, RQ and TQ, the type 

of propellant used also has no great effect on (Pq^,). For a function 

of the for Pq - 9(ûPg)# the coefficient of resistance (R) has the 

greatest effect on variation In the lower stability limit. Apparently, 

or low combustion-chamber resistances (Fig. 10), the probability of 

t. • engine entering the unstable operating range Is high. Theoretical 

examples Indicate, however, that for the Ap presently In use and suit- 

ably Chosen resistances, the lower stability limit Is below a pressure 

o. cjout 15 kgf/cm . In this case, the presently employed range of 

pressures In the combustion chamber could be lowered still more below 

20 kgf/cm . This would not actually reduce engine efficiency and thruat 

vory much, but would considerably decrease the over-all weight of a 

rocket-motor stage which Is very Important In some cases. 

Fig. 10. 1) Sec* 2) kgf- 
m/l°. 



of Lower Stability Bourda; 

Por small pulsations and low combustion-chamber damping resistan- 

, the pressure (Pqj^J takes on large values. An Increase In the low- 

.«■ liait may also occur where ûpg decreases sufficiently. In the limit¬ 

ing case, (p0Jtp) takes on an Infinite value, which means that for a 

sufficiently small pressure drop across the Injector, the engine will 

perform unstably regardless of the value of the pressure p0 (Fig. n). 

On the basis of Expression (122), We then have 

0- 
- 

(123) 

It should be noted that many scientists such as Crocco, Cheng, 

Su»erfleld, and Barrere have already shown experimentally or theoreti¬ 

cally that too small a pressure drop 4>g will always lead to the forma¬ 

tion of unstable ranges. It seem, that Eq. (123) represents an attempt 

at analytical definition of absolute Instability. For a given propel¬ 

lant (yu, Yp), given chamber parameters (?0, w, r), and a glven lnJec_ 

tlcn system (4), the engine will operate stably if 

(124) 
The analytical definition of Relationship (123) Is significant m 

Still anothsr respect. Calculated examples apparently show that (¾ ) 

11.. within th. rang, of about 1.5-2.5 kgf/cm2. Hence we can concludf 

that It 1. not really necessary, as with certain engines, to us values 

hpg • 8-10 kgf/cm that are too high for fear of producing unstable 

ranges, especially since this leads to an increase in the over-all 

weight of the motor. 

7. COMPARATIVE ANALISIS 

in discussing th. basic properties of a nonlsobarlc rocket motor 

It is useful to compare It with the classical engine using a de laval 

nozzle. There 1. no difference whatsoever In the propellant-supply 3ys- 



i 

Pig. 11. 1) Stable range; 2) un¬ 
stable range; 3) singular pole 
points. 

tem, and we can therefore make our comparisons on the basis of the 

characteristics of the engine itself. 

7.1. Engine Parameters 

For the identical propellant and identical basic parameters, a 

nonisobarlc engine has smaller a owing to the smaller resistances pre¬ 

sentee. to the flow of gas through the chamber. Where the startup energy 

for both engines is minimized 

• m 

(125) 

for 

we have 

(Í26) 



« 

Where the lengths of the ohamber are Identical for both engines, 

,lnce Xi< “'“i,' "h#r* Condition (125) la satisfied^ the combustion 

ohambar pressura should be greater for the nonlsobarlc engine, or 

(128) 

In view of the greater heat load, however, the length of the cham¬ 

ber will be greater for the nonlsobarlc engine and hence the pressure 

P0 Will not be muoh greater than the pressure In the isobar1c engine. 

Using Formulas (6l) and (74), we can see that for identical nQ and 

a, the values of dp^^ and dpg^Tj are smaller for the nonlsobarlc en¬ 

gine. In order to keep the critical and optimum paremeters the same, it 

Is necessary to use a propellant having a shorter Ignition lag for the 

nonlsobarlc engine. We can thus conclude that the nonlsobarlc engine is 

more aenaltlve than the iaobaric engine. 

Engine efficiency Is very closely connected with the pressure In 

the combustion charter. If we assume equal pressure In both engines, 

together with Identical leantropic-expansion exponents, the thermal ef 

fisióneles under design conditions will be the same, since 

(129) 

Where startup energy Is minimised and equal are used, the 

thermal efficiency of the nonlsobarlc engine will be higher In view of 

the greater chamber pressure. This also applies to the over-all theo¬ 

retical efficiency. Practically speaking, smaller nQ can be obtained In 

view of the more vigorous heat exchange through the wall of the chamber 

and! nossla. 

The nonlsobarlc engine appears to have a definite ad antage with 

respect to weight. The weight of the entire engine Is made up of the 

sum of the weights of the Injector, ohamber, and noxsle: 
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c-c,+&+&- 

The sum Qg + ®ay be represented In the form 

jd\ 
2—j-*ty9+*DkLak6k+MDmL#mÍ4t' 

(130) 

(131) 

' 

where S3r is the mean thickness of the injector, D is the diameter of I the injector, is the specific gravity of the injector-nozzle materi¬ 

al, is the mean combustion-chamber diameter, is the length’of 

J th-e combustion chamber, is the specific gravity of the chamber mate- 

rial, is the combustion-chamber wall thickness, ôchi is the cooling- 

chamber diameter, Ychl is the specific gravity of the cooling chamber, 

and óch is the cooling-chamber wall thickness. 

On the assumption that 

DtzDttt Dm ■ D, 

. y, » y» S - y, 

where k is the permissible stress before failure and p ., is the cool- 4 chi 
ing-chamber pressure. Formula (131) will take the form 

ß,+ß* - U32) 

Remembering that the diameter of the nonisobaric engine D will 
nz 

be less by a factor of about 2.5 and the diameter Dlr of the ieobaric 

engine and thus assuming 

Dm - DJV, 

for - L»,. - L,. I,,, a - W). we obtain 

(C.+CA. DL(t>m+LJ 
<e,+&). " ci(o.+L,)' 

(133) 

Considering both divergent and convergent-divergent nozzles to 

have the same weight, and remembering that 

« 0,3(0,+0^, 
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we obtain 

<g,+c.+aA. s 0,335 (134) (C.+C.+OJ4 

Thus from the stendpolnt of weight, the nonleobarlc engine Is to 

be preferreds It has about one third the weight of the Isobarlc rocket 

.engine. The advantage la especially pronounced for high-thrust engines. 

Por a unit weight a - 0.03, an Isobarlc motor with thrust K - 10,000 

kgf should weighs 200 kg, while a nonleobarlc motor would weight only 

67 kg. 

Proble» of bhsteady Operation and Jnsteadv Comhustir.n 

The problem of unsteady operation Is concerned basically with the 

propellant-supply system alone. Since the supply used for a nonlsobarlc 

. motor does not differ from that of an Isobarlc motor, the characteris¬ 

tics of this problem are Identical for both types of propulsion systems. 

Sine, space-time unsteady combustion depends essentially only on the 

local variation In mixture composition due to variation In supply pres¬ 

sure, while.the latter Is determined by the supply-system characteris¬ 

tics, w. can conclude that this type of unsteady combustion Is just as 

peculiar to the nonlsobarlc motor as to the Isobarlc. It has been shown 

previously that there exist both forward and back reactions In the non- 

Isobarlc engine and hence we can conclude that the Isobarlc engl-, is 

also a dynamic oscillating element with feedback. 

7*3* Prwan for Upper and Lower Stability um». 

In comparing the formulas for the upper stability limit for non- 

isobarlo «xi Isobarlc motors, w. find that the parameters dl.tlng,',h- 

ing these two engines are the field of the combustion-chamber cro' 

section F0 and the stay time of the mixture In the chamber. Olver. the 
proportions . V /2.5, we have 

•a • * 

a 0,1^. (135) 

It can thus be shown that for the sane propellant (t , R , t ) 
and 
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Fig- 12. 1) 
(up. r); 2) 

Unstable range 
stable range; 3) 

the same pulsation co, the upper sta¬ 

bility limit for a nonlsobarlc motor 

will move to a chamber pressure value 

roughly three times that for an en¬ 

gine with a de Laval nozzle. Since 

the mixture stay time In the engine 

under consideration Is smaller, how¬ 

ever, the actual shift In the upper 

limit will not be so great. 

For the lower limit, :he two 

! 

i 

unsu-ole range (lower). 

engines compared vary In the magnitude of the field (F0), the chamber 

loss coefficient (R), and, eventually, the stay time (tQ). Por Identl- 

j cal propellants, pulsations, and resistances, the lower limit moves to¬ 

ward higher combustion-chamber pressures for the nonlsobarlc engine. 

The same conclusion applies to the effect of R. Only a briefer t0 for 

the nonlsobarlc engine can reduce the upward shift of the lower limit. 

This analysis leads to the conclusion that the stable operating 

range of a nonlsobarlc engine moves toward higher combustion-chamber 

pressures (Pig. 12), 
y 

Since the lower limit is displaced more than the upper limit for 

both of the engines compared, the field of the stable operating range 

is greater, however, for the laobarle engine and the nonlsobarlc engine 

: is more sensitive in this respect. 

7.^. Prospects for the Nonlsobarlc Motor 

In the Isobaric motor, the chamber pressure Is greater than p0 ow- 

ing to parameter optlmUatlon and the higher lower limit of stability. 

It .3 true that this leads to an Improvement In efficiency, but at the 

same time It Impairs the weight characteristics of the aupply ay.t#ni. 

On the other hand, a nonlaobarlo motor Is much lighter than an laobarlo 
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■otor. This weight difference becomes particularly apparent In high- 

thrust propulsion systems. Hence we must conclude that nonlsobarlc 

rocket motors deserve attention, particularly for small or very large 

.«mita. It Is true that for low-K engines we gain little with respect to 

eng ne weight, but even a small Increase In the propellant-supply sys¬ 

tem weight contributes to better efficiency. In large-K engines, even 

thatlgtV.the weight of the supply Installation Is only slightly greater 

than for an leobarlc motor, we can gain considerably owing to the de¬ 

creased weight of the motor Itself. Since combustion efficiency Is 

greater for large chambers, we conclude that nonlsobarlc motors are 

promising subjects for development, particularly In very large units. 

8. CONCLUSIONS 

The critical and optimum parameters defined can be used to Intro¬ 

duce certain corrections Into the existing methods of designing liquid 

rocket motors. Following a preliminary determination of the thermal and 

geometric parameters of the motor for a given propellant (y, Tq, t ) 

vising th. earlier methods, (dp^, p0opt, and *g(T) should be deter¬ 

min'd for th* initial operating period. If the critical value found for 

the orassure drop across the Injector Is considerably smaller than that 

assumed, the computation should be repeated. The value of *he combus- 
■'•>«« i it**.« it,.»,. «. h ...in, . ..«m*,..»,,* ....- i*., i», ^ 

tlon-chanber preemire ehould also be eultably corrected eo aa to bring it 

&a close as possible to the optimum value. The upper and lower stabil- 

Umita should be determined next, and a suitable safety factor allowed 

Following the calculations for the startup period, it is advisable tc 

check the critical value for the pressure drop across the injector 

^gkp)(T « 0) *r,<1 t0 this value with the static vt us 

(Pg — Pq)« If there Is no pronounced excess 

It Is necessary to control the propellent flow-rate during the first 
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phase of engine operation. In accordance with the function 

(*-*) - 

It Is quite possible that In some cases determination of the crit' 

leal and optimum parameters will require more repetition of the calcu¬ 

lât ons than is required by the classical method previously used. Dif¬ 

ficulties may also be encountered in determining the pulsation (cd) and 

the loss coefficient for the combustion chamber (R). Still, the intro¬ 

duction of these corrections offers certain advantages, the most impor 

tant of which are: 

1. The results of sample calculations show that both (^')gjcr)u an(* 

n_ ^ are lower In value than for some actual rocket motors. Por cer- 
K0opt 

tain combinations of parameters. It may turn out that the Introduction 

of these corrections can reduce the over-all motor weight with only a 

slight reduction in thrust (Fig. 13). 

Fig. 13. 1) Range In which thermal parameters Increase more rapidly 
than geometrical and weight parameters; 2) range in which weight param¬ 
eters Increase more rapidly than thermal parameters; ^) Increase in 
thrust K - ß(p0); Increase In efficiency r\c - mPq)* 5) increase in 

engine weight ^ « *(Pq)* 

2..Consideration of the nonsteady-state results gives the existing 

method a dynamic aspect. Certain singular characteristics thus appear 

during the design stage of engine development rather than In the later 
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experimental stage. 

3. The proposed corrections penult snslytlcal determination of 

startup parameters; this l, the most explicated period of engine ope 

atlon. Determination of (dp^ _ 0) can alert the designer to rang 

t ngerous to the engine In the design stage, while determination of 

(pz - Pq) “ ♦(t) help him ensure smooth startup. Under certain cp 

dltlons, such analytical procedure, may ultimately reduce the expert- 
mental testing required.* 
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