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SUMMARY

A random walk on the integers is considered with transition
aul- 4k el b
probabilities p¥ for the transition k to k «+ 1 and 1 - a. for the
transition k to k - 1, Distributions and uomemts are found for
the length of time required to travel between any two given states,

come limiting results, applicable to more general results, are

siven. C ) /\



1. Introduction,
We consider Markov chains with demmerable states, designated by
0, 1, 2, ***, and with trunsition probabilities !ndependent of time,

Letting Xgr X090 °*° be the stutes after 0, 1, *°+, steps, we define
(n) - - - - o0 0
(1.1) P(1, 3) = P(x = J|xy=1), neo,l, e,

where F(A|B) stands for the conditional probatility of A, given B, Ve

assume that for each i and J there is an integer n = n(i, j) such that
(1.2) P(n)(i, J)>0 for n=n(i, J).

Let N,, be the first-passage tims from i to J; N1J is the amallest

i)
positive integer n - 'ch that x = 3, 1f X, = i. If there is no n such

= o, If j =i we speak of the recurrence time

that x, = J, then Ny,

for the state 1,

We shall usually make the assumption

(103) E(Nii) < 00,

I {1.2) holds, then (1,3) (which is true for all i if it is true

for any 1) implies the existence of a set of stationary probabili-
ties 'J > 0 satisfying
n

(1.4) neun 2 300, ),

n<o r=0

00

nJ - nrp(l)(r, J) 1
r=C
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See Feller (4], Chapter 15, for the relevunt theory,

Let 8,, be defined as the prob:bility thut the state, initially supposed

1
to be i, tikes on the vilue j at least unce before returnin to i, The
quantities Oij turn out to be very useful,
In Section . we derive some identities to be used in the sequel, In

Section 7 we consider the distribution of the recurrence time Nkk under

the assum; tions (1.2) anid (1.3), for 'rire® states -- i,e,, stites for vhich
n is srall, Since (assuming thit there are infinitely many st tes), no
matter how the stites are numbered, we must have ak—bo 4s k —» 00, we can

s;eak of the distribution of N for large k., It is shown that

kk

(1.5) P(n 8, N, >u) = eko(e'“ e £ (v), u>0,

where &k(u)—>0 as k—>» oo for each fixed u > 0O,

In Section 4 we give explicit expressions for the "J’ Oij’ snd for mean
recurrence ind first passage times, in the c-se where the Markov chain is a
r=ndom walk; that is, Pglz = Dy F(l) @] -~ p,. The method depends on

1,1i.1 1 i,i=1 i
the representz2tion of a2 random walk s a Bro.nian particle moving among
suit1bly selected points, <CSection 5 :lves a more precise form of Lemma 3 for
random walks ant . method for zettin: moments of firstepassage times in rirdom
walks, OSectiorn 6 -ives a rather curious correspordence petween random walks
ind trees,

Tne suthor ~.s in correspondence .'it!. rrofecsors Chun- ni Feller while
this | .per was bein¢ written, and »oth -f them furnished dtern:tive ::100fs
of some of the results of Cection 4, ~ore of the identities in Cection 2 ure
closely related to recent :ni current worx of Chung {<], who, in ;articuler,
has a result involving three stutes of wiic Lemma 1 of Cection . i5 a special

~ase, Accordin: to Chun,, Lemma < 1 pe-rs in 1+ w~ork bty :aul Levy [7] which the
author has not yet seen., Dr. Chung was courteous enough to delay publication

of his paper until the present payer was ready.
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2. Some identities.

Lemma l.l Under the assumitions (1.2) and (1.3), we have
. 1
(<.1) E(Njy * Nyy) wo * 143

To prove (2.1), suppose the initial state is i, and let Nﬁ), Ngj), SRR

be the time intervals between successive recurrences to i. Let the (random)
integer R designate the first cycle from i back to i during which the state
J is visited ut least once, Then Nﬁ) + 0o o N&) is a sample value of

+ N

N Since E(Nn) - l/ﬂi and E(R) = 1/9“, we have, making use of a

1 Ji°
slight modification of a theorem of Wald, [9], Pas® 52,

which proves {<Z.1).

Since the left side of (2.1) is unchanged if 1 and } are interchanged,

the right side must be also, This leads to the identity
(2.3) 'J/'i'eij/oji :

Formula (<.3) is useful in the treatment of random wilks, since the 913

are easy to find and tnus the 'J caal be obtained,
The identity (<2.3) holds even if E(Nii) = ©, orovided the chain is

recurrent -- i.e,, P(Nn <) =1, and provided (1.”) holds. In this case
the quantities RJ/‘li are Doeblin's ratios (see (3]),
n
%P("(k. 9
n /ﬁi 0 lm X 0
J n-+o 0N (r)
> P(e, 1)
r=0

lSee the .ast paragraph of the intruductior,



The proof in this cise follows from results of Churg in (2] and will not

be given here,

As an example of the use of (2.3), we have

5,1
Lenma 2. Let Y (i) be the number of times the state is i during the

first n steps from an arbitrary starting point, Then if (1.2) holds and

if the chiin is recurrent, we have
(2.4) 1im Yn(J)/Yn(i) - “J/ni ’ 143,
n-»oo

with probability L. (Paul Lévy.)

To prove (2.4), which is trivial 1f (1.3) holus, we suppose for
sim: 1licity that X, = i; this does not essentiilly affect the argument,

From the detinitior of ©,, it fo'louws that the probability that the stute

i

takes on the value ! exactly r times between successive visits to i is -iven
r-l . ,

by 1 - 915 if r = 0 and 911(1 - gji) 931 if r > O, The expected number of

visits to J between visits to 1 is thus 913'/951’ From the strong law of

larze numbers it follows that if Ny Doy °°°, AT the times at which x = i,

we have

Similar reasuiiing shows that the same limit is .pproached if n passes through
the sequence of values (n;) for which x, = J. But since the seguences (nk)
and (n&) are the only values of n for which the ratio Yn(J),/Yn(i) can change,

the limit must exist, and use of (<.3) pives (..i).

1

“ee the 1.t ~urucrap:. of the introduction,
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3. Distribution of Nkk for large k.

We assume throuchout this section that (1.2) and (1.3) hold and that
there are infinitely many states; otherwise the Markov chain is arbitrary,

We first consider the distribution of NOk .8 k—>» 00, whers O is an
arbitrary fixed state,

Lenma 3, kl.—i’umf’(uOOOkNOR >u) =0 Y, u>0,

Let u denote an arbitrary fixed positive number ani denote ty [z] the
largest integer < 2. Suppose the initial state is 0 and let Sk be the .
number of steps in the first [u/OOk] recurrences to 0, Let Ak be the event
that k is not visited during the first [“/eOk] recurrences to O, and Bk(‘i),
£> 0, the event

‘Sk/ [w/85] - =

ol <€

and let Ck t;e the event

Nok > \% ‘5)[“/ %) -

Then we have, lettinz E denote the complement of B,

(3.0) P(C,) 2 P(A, B) = P(A) = (A, B) .

(W)

NOw P(Ak) = (1-0 —>»e as k—>»00, and .‘(Ek)—) 0, by the

Ok)
law of large numbers, both these limits holding uniformly or any finite u-

interval bounded away from O, An ~asy consequence of (3,0) is that

lim inf P(x.8 . N. >u) > e " u~N0.
v ok 020k 'Ok e

*, |




A similar argument shows lim sup s,o-u, and Lerma 3 follows,

A conse. uence of Lemma 3 is thut

(3.1) lim inf E(r© N, ) > 1,
k -y 0 Ok Ok

On the other hand, from (..l) we have
\Je<) LmoBoklok) ¢ E(rBoiNo) = 1

From («l), (%.<), and (<.3), we have. recialling fron (<.3) that "8k °

" Oxo?

(Ces) lim E(n 6. N. ) @ 1im E(w.8, N, ) = 1
r > 0 Ok Ok :_.m”kkOOk ’

(2ed) lim E.(Nko)/E(NOk) =0,

k -»@

we now prove

Theorem 1, For eachu > 0,

(7.5 P(nkekONkk > U) - eko(e-u > E.k(u))

where Ek(u) —» 0 as k —» 00,

The symbols in (3,5) are defined in the introduction, The proof will
bring out the intuitive meuning of (2,5). Cf course, any fixed state rather

thuan O could be used,

Proof, Let Tk be the expected value of Nkk’ civen that the path fron k

back to k is never in 0 and let Uk be the expected value of NkO riven that




the path from k to O is never in k after the initial position, Now consider
a sample first-passage from k to O, There will first be r returns to k,
re=0,1, ***, before O is visited, and finally a passaye from k to O during
which k is not revisited, Since r has the frequency function Gko(l - Gko)r

we have

o
(3.6) E(N) = T, zo o, (1 - 8"
re

'Tk(a_ig'l)’"k'

Now, supposing ngain that the initial state is k, let Dk be a random
variable which is 1 if the state recurs to k without being in 0, and O

otherwise, Then for any u > O we have

(3.7 P(%B oMk > W) = (1 - 8)P(m 8 Ny > ulD, = 1)
* O 0F (MO oMo * ®BioNok ™ uID, = 0).

ow E(N,o|%, = 0] = U,, and from (3.6) and (3.4), U, < E(N ) = o(-’?;‘-};) ,
k =—>0. Therefore, under the hypothesis Dk = 0, the randam viriable
nkOko ko converges in distribution to 0, Thus, the secoud term on the
right side of (3,7) is, using Lemma 3, Okoe-u(l + Ek(u)), where Fk(u)—>0
as k—> o0,

5inze for any nonnegative random variable z we have F(z > u) < E(z)/u,

u > 0, it follows that the first term on the right side of (3.7) is bounded

by (using (3.6))

1-6 82 x 62
(3.8) (—-mu ) %8, BN, 10 = 1) = "k_um <§':-c:- )Tk - L:’-Q[E(Nko) -uk] <
&

kO
= NEKoE(No) ¢



Since frowu (3.4) we have "kaOE(NkO) —>0 as k —>» ®, Theorem 1 nuw

follows,

As we shall see in the next section, the linmit inferior of OkO may

be C 23 k—p» ®, In this case Thecrem 1 is r:ther empty of content,
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L. Random walks,

In the remainder of this piper w~e co:sider random walks on the intecers
with trainsition probabi.ities Pr for r—»r ¢ 1 ond g l - Py forr—r -1,
Some of the results can obviousl; he extended to the case where the transition
r —>r has a ;ositive probatility,

During the remainder of this papsr we shull assume thit one of the two

following conditions holds:

Condition A: G« Pp < 1550 ph = eis o

Condition B(w): there is an integer ) > 1 such that

Ovpocly r=l, s coeyuels p =0,

)
W

Sorie of the results holdiny under condition O i1l obviouzly bhe true wietner

or rot p, = C. "'hen condition % .ppiies, it is tacitly assumed that all

states mentioned have iniices < UJ,

We nake the followin; definitions, Let

r=1
(Lol) Ll - 1’ Lr - ‘;[I.l (O.J/pj))' r>1 ’
zn = 0, L Z L, B RERONS
O r J-l v',

D
i = :; LJ <o (applicable when ~uniition A holds),
J-

Theorenm 2a, 3Suppose condition A holds :ni let the initin. state be

k > 0, The urotability that the stotc never reactes O is zi_/Z.

If 2 = @, zk/Z is taken to be 0,
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Theorem 2b, Suppose condition B(w) holds and let the initisl state

be k, 0 < k € o). The probability that the stzte reaches G/ before it

reaches 0 is z,/z .

Proof of Theorem 2a, Let the points O = Zos 2s 2 *** be marked off
on = line and suppose that a one-dimensional Brownian motion (Wiener
process) takes place on the line, As the Brownian particle moves about
let it always bear as a label the subscript of that one of the L which
it has most recently visited., The label then executes a random walk,
Using the well-known fact that 2 Brownian particle initially at a point
0 between points A and B has probability 03/AB of reaching A before B,
we can verify that the random walk executec by the label has the same
transition probabilities Pps Q as the orizinsl random walk,

Suppose first that £ = lim z, =@, Since the graph of the position
of the particle is cont.inuo:s-,’?very path from z, to z, corresponds to a
definite finite secuence of labels == i,e,, a1 definite walk from k to O,
Conversely, every walk from k to O corresponds to a family of Brownian
paths from 2, to Zo» families corresponding to distinct walks being
mutually exclusive, The probability of 2 -iven walk is the same as the
probability of the corresponding Brownian family., J3ince almost all
Brownian paths from z, reach 20 almost all random walks from ! reach O,
Q.E.D.

Irf 2 < 0, walks from k which reach O correspond to Brownian paths
from 2z, which reach O before reaching Z, the probability of these being
l - zk/Z, Q.E.2,

The proof of Theorem 2b is essentlally the same,
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Using Theorem 2, wa c n row evaluste the cuantities 9U for rayiom

walks, (We recall th-t @,, is the probability that the state, initiilly

1)

at 1, reaches | at leist once before retuming to i{.) In fact, if i <« }§

we have
(1e2) e
“.2 9 e ) i il j
Mo ha Sa%e L, da '
Piel  P1e1Pie2 Pia1" Py}

and a similar expression holds for { » !, If i = ! -1, the expressior
on the right of (L.<) i3 tiken as Py -

Using (L..2) ani (<.2), we can evaluate the stationary p-ob:utilities
for random walks with finite mean recurrence times (or the [oetlir ratios
for recurrent walks with infinite mew times), For cxmple, putting i = O,

J >0, we have from (..3), (4.<), =ni the maloue of (4.<) for the c..e

J <14,
(LOB) “J = “OOOJ/OJO
, i 9779,
,! ETR
. 0Po , 1 Py P/
q Gkl qy e,
<lq-'-‘-l-¢ oo ‘L.T._“:i> '—l____‘.—lq
o Ry =Ry Preccha
. oo -
QL J ’
I~

where LJ is defined by (4.1). A similar expreision tolds for § <« O, In

the case of finite me:n recurrence times the conlition :: “J = 1 compl-tes

the determination in (4.3).
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As an examjle of the use of Theorem 2 we hiave the following

Corollary. According .s A or B(W) Lolds wz rnve

o)

1
A=>L(N ) = };; 5753

B(o) —> L(N ) = Jﬁl EJ'ILE

For we can plice a reflecting barrier 1t C, siving Po " 1, Then

o3 . l * N f ~ 7 =3
lO) - “%Kﬂ -l = ;3 -1, (If B{) roldz, o 1.)

vince for every i < J we have

“(N

Neo = Hpgay * Npepqe 0t 0 N

1
~

J'lpj

it is clear tow from Theorem < any desirei mean recurrence or firste-passace
time cin e found,

A8 mentioned in the introductic., rofessors Chuns an' Feller nave iven
alternite a; rowres (correspo:dence).

It is interectin: nos *. corsler rinitonm wales of the trancient type,

e shyll see tlhat Lhere .r~ nonrecurrent riar ton valks where the coniitional

. : . 1l
men regurrence time, ,civen th:t recurrence tanes piace, is finjte,” we pick

! as 2 typlcad firstepissa-e r andom vard Mle,

1¢

T.eorem 7, Suypose coniition A holds, The coniitional expectation of
; P =i

NlO’ cdven thit NlO < 00, is
® (1=-2z/00-2_,/2)
- ;R ) i r+l
(«oL) “(Nlo| Nlo < m) = 1 * \1 o l Z) Z L

rel r+l

Q0
where z. 2nd Lr are lefined ir (..1), ini . = E: zZ_ .

1 .
This can also be seen from results of Chung [JJ.




Before proving Theorem 3, it is interesting to consider a special

example, Suppose for simplicity that Po * 1 and that the quantities Pp

have the form
l ¢ 1
pr "3 . ; + O(;a) , @1, r—>» o,

where ¢ {s independent of r, From Theorems < and 3 we see thit if ¢ < = % by

the nmean recurrence times ire finite; if - 71: <c %, the mean recurrence

[Fo

times are infinite tut the st.tes urc recurrent; if c¢ > 71: , the recurrence
frobibilities are less than 1, In the latter case E(NlOINlo <) is
finite or infinite according as ¢ > % or T];' <c 5% . The intuitive
significance of this last fict is that if ¢ is larpge (i.e., c >%), then
a path from 1 is very unlikely o ret bick Lo O unless it oes su quickly,
To prove Theorem 3 it is convenient to return to the Browni:n -.otion

schene, If L = 00, then Theorem 3 reduces to the corollary to Theorem 2

( he identit § 1 Pr * 9 § 1,5 1
note the identity - —_—- * T ) 50 we may
r=1 qu‘r re=l qur r-lLrol r=1 x'x'

as well take the case 2 < 0o; 2 is of course > 1, Ve note that if a
Brownlun particle is initially at 2y = 1, the conditional probability
density for the maximum displacement y attained by the particle before it
arrives it O, given that y < Z, is 1/[(1 - l/?.)yzj.

Consider a Brownian path starting at 2, = 1, and let M(y) ve the
expected number of label changes before reaching y > Z1s FYven that y is
reached before Zy * 0. (Wwe shall always suppose that y one of the
points zr.) It is intuitively obvious (we omit the forma.  >f, which i#
not difficult) that the cor.iitional expectation of the number of label

changes in oine from y back to 29 ‘iven that y is the maximum iisplacerment,




wdhe

is M(y) + 1, the added 1 being for the change which occurs when z, is
reached, Therefore the total condiitional expectation in a path from zy

to z,, given that y is the maximum displacement, is 1 + 24(y). Thus

z
(Lok) B(Nygllyy < @) =1+ 1_-295 {’ sk
y

Clearly M(y) = O for 2) <y <z To evaluate M(y) for y > 25
suppose that Z) is the rightmost of the points Zys 25 *** lying to the
left of y, and consider a Brownian path from zy Loy which reaches y
vefore Z2qe Let Rj' l<j<ke=1l, be the total number of label changes
which this path would underge if only z.1 and zj#l’ and no other points of
the set 2,, z,, ***, were present, and if the label were initially
taken to be J. The total number of changes is then R, ¢ R, ¢ «ee + R,

(it helps to'draw a diagram); hence
k=l

(4s5) M(y) = 2 E(RyID)
J=1

where D is the event that the path, starting from 2 reaches y before O,

Now Z(R,!D) can be found by elementary combinatorial means since, translated

J

back in terms of random walks, 2 random walk with only four states is

involved, In fact

z, + 2 -22,2,../
(Lo6) E(R,|D) = —d—dtd 12341/Y :
J 3 " %y

Fron (L.4), (4.5), and (4.6) we have



P=207

a1w

N %kel kel = /!
W i< @) -1+ (e e /R (AT
k

N=l (1-2./2 )(1 [84.1)
N ROl DY
* (1' Y Z) :-?w Jg _jol ol

(1” /Z)(l zj’l/z)

-1+ (%5 )le zm_%

The passage to limit under the summation sign is justified because each term

in the sum is positive and increases with N, This gives Theorem 3,
If condition B(W) holds, then we have the following analosue of
Theorem 3, whose proof is entirely similar:

The expected value of N,,, given that O is reached before W), is, for W > 2,

2 (1 - JQ -
(-u?) E(N 0'0 before w) -]+ (___77)“” zr/z i rol/'(d)

rel

It is now simple to find the coniitional expected value of "ko for any k > 0,
given that O is reached before W > k., For we may write = $ sss o N

* 4y Mo = M ka1 »
where the tems in the sum are independent. Hence

k-l
E(N, |0 before w) = EOE(NI‘-J’R'J-]"O vefore &) .

Now !-’;(Nk WS 1IO before W) = 1'-:(!!k e k-j-llk - j =1 before w), because
of the Markovian nature of the process, From (..2), by a translation of

indices, we have

2L

10

Ajor)

1(z, - Nz,
- +* i J 101'
(4.9) E(NJ,J_llJ - 1 before &) =1 (zw-zj_l)(zw-qg Lj*r

- ch.
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<3k

k
Then E(Nkolo before ) = Ficjw’ where Cjw is defined in (4.9).

It is interesting to note that if the P, have the form
i T T |
oSl
where ¢ < = %, then, using (4.2), we have

lim o, ., = 0
k_,mko

and, as pointed cut before, Theorem 2 is in this case rather devoid of
content, On the other hand, if the limit superior of pk/qk is <1 as

k—>m , it is clear that the limit inferior of Oko is positive,
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5. Gener-ting functions tor rindom-walk v:iiables,

It is customary to tre.t random walx ;'roblems by meuns of line.r difference
ejuitions, In tlls section we use 4 simple nonlineur recurrence relailon
whicn seems well adupted .o certain random w:lk problams and which, as far
as the .uthor knows, has not been used before.

vWe zive explicit exunressions for the second m ments of typical first-
rassace variables, We snall {ndicite briefly how these cun be used to ive
a more precise form, for riuniom wilks, of the exponentiil liziting results

of Cection 3; "emma 3 holds for some walks with infinite mean recurrence times.

Theorem L. Assume either condition A or B{W) of Jection 4 holds, let

)
‘"9

3 1
& —— N 5 r 3¢ ey 'l‘ -
hk(“/ be the ,ener.ting function for the rindom variible 5(1 + Nk,k*;

1l N
h(s)-zs(-——i‘—l )

Then hk(s) satisfies the recursion formula

(5.1) hk(s) - ’Tk(hk-l(ﬁ’)’ L N

where
ol

T (u) =p /(1 =-301),

Theorem 4 holds even if b (1; « 1; i,c,, even if ! lias a positive
'k koykel
srobatility of beln: (nfinite.
The relstion (5.1) is analocouc to certidn formulae which prear in the

theory of iruching stochastic procenses, As we shzll see in Section 6, the

resemblance is nore than surerficiul,




To prove (5.1) we first consider the generating function of Nk,kOl’
which we designuate Oy fk(s). In 2 passage from k to k + 1 there will first
be r occurrences of the following event: the state goes directly from k to
k = 1 and then continues changing until its first arrival back at k. After
r such occurrences, the state poes directly to k ¢+ 1, For a fixed r = 0, 1,
2, ***, the gener2ting function for the number of steps required is a(sfk_l(s))r.
Since the probability for a jiven r is pk(qk)r we have

SP,
sty (8) °

®
(5.2) £,(s) = zopk(qk)’.(sfk_l(g))r -5
rs

Since sfk(s) - hk(sz), (5.1) follows from (5.2). There is no difficulty
about infinite values of Nk,kol’ provided we adopt the convention, in the
argument just given, that even vhen Nk,k*l is infinite the state does finally
go from k to k ¢+ 1 after infinitely many steps.

In the special case of a reflecting barrier at 0, ho(s) =3 and (5.1)
gives 2 means of obtaining hk(s) for all k,

It is clear that the moments of %(l + Nk,k*l) satisfy recursion relations

which can be obtained by differentiating (5.,1) and putting s = 1, For example,

setting
|
M =22 N )
we have
(5.3) b (1) = P, < @) = T, (b _,(1)).

In the recurrent cese both sides of (5.,3) are equal to 1, Differentiation

sives the relztions (which we write down only for the recurrent case)



«]l9=

q
(50‘0) E("'k) -] ¢ p—:' E(Hk-l) »
2q q
(5.5) EQ - i) —pf E(L_ E(K ) + éz(vf,l -% )

For the reflecting barrier case (where Pn ® 1) we have "0 - %(l * NOl) -1,

and (5.4) gives

Y YY1 R 1
6 E - BION ® )] ¢ == ¢ —————= g e — e TS
. () : kpko1) Py PPral pkpk-l

which agrees,after a transformation, with Theorem 3. Similarly, we can use

(5.5) to obtain the variance of Nk kel in the reflecting barrier case,
’

obtaining
P qloooqk k plo..pr 2
il Variance (M y,y) = Wby =b) + 8 55 r%(ﬁ) (g =)

if there is a reflecting barrier at O, where

b-l.&.&-&.ooo’w
Pr PP PPy Py

At this point it is convenient to write down an expression derived from

(5.7) by a change of indices: 1if p =0 (reflecting barrier at k), then

(5.8) Variance (N,;) )(.- L 8% l)(kZ :
. riance - = =) Py
: 12 (x-l L 2Lr) J-r J Je=rel LJ

)
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From (5.8) it follows thut in any recurrent random walk where condition A

of Section 4 holds we have

(2

re2

b e SE Bz, At

& 1
(5.9) Varfance (N,,) = -1.( 2. 1:) 2

rel

We now re-examine the arguments leadins to Lemna 3 of Section 3,

For simplicity we assume throughout the rest of this section that

Condition C: Py " 1

holds,

In deriving Lemma 3, the assumption of a finite mean recurrence time

enabled us to say that [u/GOk] cycles from O to O correspond, with high

probability, to almost exactly - : steps when k 18 large, In the case of
0 0Ok

random walks, however, it is clear that the distribution of NOk does not

depend on the value of the pr for r > k. Therefors, lct us suppose that
the original random walk is aitered by placing a reflecting barrier at k > O;
since condition C holds, this will make the recurrence times finite,

The modified randyom walk will have a new set of stationary jrobabilities
ar(k), r =0,1, *o+, k., The question is then whether [u/OOk:l cycles from O
to 0 in the modified random walk correspond almost exactly to u/(no(k)GOk)
steps. We know that the number of steps in a cycle of the modified walk, having
a finite mean valne, satisfies the weak law of large numbers, but is [u/90k]
cycles a %large enough" number to make the sample mean almost ecual to the
true mean? Clearly it is sufficient to have

(5,10 lim (n.(k))° @. Vartance (N, .(k)) = 0
) Ny | (ﬁo ) Ok arianc (10 )




wi e "10(") is the random varisble Nyo in the modified random walk, To
apply (5.10) to any particular cuse, ué can refer to (4.2) and (5.8).

As an example of a case where the mean recurrence times are infinite
but (5.10) still holds, suppose Pp ® % - t, re=1,2, *°*, Prom Theorems 2

and 3 this corresponds to a recurrent random walk with infinite mean recurrence

times, Then

q q ..Oq

L oee ~°r. rqm
PPt tPhy 2 '

where ¢ is independent of r, sand an easy calculation shows that (5.10)

- STy
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S - zad B ey : . =0 ” AL Ol -
N’ ‘

P

can be used to give error terms for Theorem 1 or Lemma 3 in the case of random
walks with finitely many states. In particular, some of the results of [1]
for the time-continuous Ehrenfest model can be obtained for the usual Ehrenfest
model with a discrete time parameter, The argument is simple but tedious,
depending on the use of Chebyshev's inequality.
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6., walks and troos.l

Random walks and branching processes are both objects of considerable
interest in probability theory., We may co.isider a random walk as a
probability measure on sequences of steps -- that is, on "walks,? as defined
below, A branching process is a probability measure on *trees," as defined

below., The purpose of the present section is to show that walks and irees

are abstractly identical objects and to give probabilistic conrequences of

this correspondence., The identity referred to is non-probabilistic and is
guite distinct from the fact that a branching process, as a Markov process,
may be considered in a certain sense tc be a random walk, and also distinct from
the fact that each step of the random walk, having two possible directiors,
represents a twofold branching.

By a "walk" we shall mean any finite sequence of integers Nys Ny» S n.

satisfying the following conditions;

(6.1) ng =n. = 0,
nJ >0, l¢<y<r=-1,
an°nJ,1| 1, J=0,1, ", r-1.,

Notice that our walks begin at O and terminate as soon as O is reached, and
we consider for the time being only those which do come back to O,

By a *tree" we shall mean a finite set of objects having the relationships
of a (male) family tree descended from a single ancestor, A typical element

of the tree can be designated by a symbol of the form

zn BR.°+°m '’
172 P

II. J. Good has pointed out the similarity between certain formulae in branching
processes and random walks, [5]. Mr. Good has also informed me by letter that
D. G. Kendall has recently shown a relationship between branching processes and
the theory of queues, and Good himself has shown a connection between the theory
of queues and the gambler's ruin problem.,
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meaning the np-th aon of the *** of the nz-nd son of the ml-st son of the

original ancestor., For cur purpose the two treea

(602) [ and

]
f

are distinct objects, since we kcep track of the %order of birth' of the
sons of a given father,

To exhibit the correspondence, we lay down the general principle that
a step to the right in the walk, say, from k to k ¢+ 1, corresponds to a birth
of an object in the k-th generation, The *parent® of this step is the last
preceding step from k = 1 to k. The *children® of a given step from k to
k + 1 (let us call this step S) are the steps from k + 1 to k + 2 which occur
after S, but before any step fram k + 1 to k succeeding . The *children®
are numbered in the order of appearance -- the first step is oldest, etc.

A step to the left, say, from k ¢ 1 to k, means that the person corre-
sponding to the last preceding step from k to k ¢+ 1 has died and will have
no further issue.,

Rather than ;iving a tedious formal demonstration of the correspondence,
we shall here only illustrate it, The reader can easily convince himself
by working throurh = few such examples, Consider then the leftmost of the
two trees in (6.2). This corresponds to the walk whose successive positions
are 0, 1, 2, 3, 2,3,2,1, 2,1, 2,1, 0, 1f we adopt the convention that of two
vertices in the same generation pictured in the tree, the upper is the elder,
The correspondence, step by step, is as follows ((0, 1) means a step

from O to 1, otc.): (C, 1)€>a appears; (1, 2)€>b is born; (2, 3)€«>ec



2=

is born; (3, 2)€>c dies; (<, 3)>d is born; (2, 2)€=>d dies;

(2, 1)%>»b lies; (1, 2)&—>pe is born; (2, 1)epe dies; (1, 2)€>f is
born.; (¢ 1)€>»f dles; (1, 0)«>a dies, 5Similarly, the other tree in
(6.2) corresponds to the walk 0, 1, 2,1, 2, 3, 2, 3,2,1, 2,1, O,

Now suppose that probatilities Per 9 = l - P, are prescribed for the
random walk, with O < p <1, k =1, 2, -, Consider next the following
branching process: an individual in the (k - 1)st generation has a
probability p:qk of having exactly r children, r = 0, 1, **<, (The

ancestor is the O generation,) Then we have the result

Theorem 5. The probability thut a random particle starting at 1 reaches

O for the first time after <r - 1 steps equals the probability that the family

tree just defiiied becomes extinct after ;roducing a total of r individuals,

re1, 2, *=¢, The total »robability that the particle returns to O eguals

the probabllity that the family tree is [inite,

The proof, which we omit, follows from the identity between walks and
trees previously demonstrited; it can also be shown by the use of generating
functions,

As an example we consider the classical case P " P The expected

number of children of a4 single individual in the family tree is

@®
q % rpr - '1_%; . Ifp< %, i.e,, -1—%35 1, the total mmber of individuals
r

in the tree is finite with probability 1, and the generating function g(s) of

the total number satisfies the relation

o)« 2,

whence we have (see Otter (8], or Hawkins and Ulam [6])




g(s) = L= VI - Lpas

2 .
It can be verified that #(s) is likewise the generating function for the random
variable %(l . Nm). In the case p > % , #(s) has the same form, but in this
case #(1) = q/p; this is the probability that the family is finite and, as is
well known, is likewise the probability that "10 is finite,

If condition B(w) holds, the generating function of the random variable
%(l . Nlo) can be obtained by changing the numbering syst.em of the lattice

points in Theorem 4, We obtain

s 2 .rp(l ’2"10 . r) i ,,;(,,;(...(.r;_l(-)) ))

where T:(u) - q‘_/(l - pru). This formula is likewise the generating function
for the total number of individuals in generations O through W -1 of ths
family tree., The generating function for %(1 . NIO) in the case where
condition A holds (and for the total number of individuals in the family tree)

is obtained by letting (J go to o in (6.3).
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