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1.    Introduction, 

'•<• consider Markov chains with demaaerable states, designated bj 

0, 1, 2,  •••, and with transition probabilities independent of time. 

Letting XQ, X,# •••, be the states after 0, 1,  •••,  steps, we iefine 

(1.1) P(n)(i, J) - P(xn-J|x0.i), n - 0, 1. •••, 

where r(A|B) stands for the conditional probability of A, given B.    We 

assume that  for each i and J there is an integer n - n(i, J) such that 

(1.2) P(n)(i, J) > 0      for     n - n(i, j) . 

Let N. . be the first-passage tlas ftron i to jj N. . is the smallest 

positive integer n ' -ch that x    ■ J, if x0 ■ i.    If there is no n such 

that *_ " J» then N. . - oo.    If j ■ i we speak of the recurrence time 

for the state i. 

We shall usually make the assumption 

(1.3) E(N11) < oo. 

If (1.2)  holds, then (1.3)    (which Is true for all i  if it is true 

for ar\y i) implies the existence of a set of stationary probabili- 

ties K. > 0 jatisfying 

(1.4) n   - lim   i   J! ?(r)(i, J) . 
J     n-^oo n  r-0 

1    r-0 
oo 
!> -1. 
JO   J 
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SM Feller [4], Chapter 13,  for the relevant theory. 

Let 0. . be defined us the prob.»bllity th^t the otite,  initially supposed 

to be i, tikes on the vilue J at least once before retuminj to i.    The 

quantities 9.. turn out to be very ueefal. 

In Section J we derive some identities to be used in the sequel.    In 

Section 3 we consider the di tribution of the recurrence time N. .   under 

the sssuTiitions (1.2) and  (1.3), for •rire^ states — i.e., at ites for which 

n.   is sr.all.    Tlnce (assuming thnt there are infinitely many »tites), no 

matter hov.- the yt ties are numbered, we must have «. —^0 as k—► 00, we can 

speak of the distribution of Nj.   for large k.    It Is  shown that 

t1^        ^VkO^k > u) ■ «koC«'" ♦ fk(u0 • u > 0' 

where ^k(u)—►O as k—►oo  for each  fixed u > 0. 

In Section 4 we ^ive explicit expressions  for the n., Ö. ,,  'md for ne^n 

recurrence and first passage times, in the c.se where the Markov chain is a 

r--ndom walk;    that is,  P^ ; .  ■ p.,    M  1 1 " ^ "" Pi*    ^^e net^oc' depends on 

the represent ition of ^ random walk   is a Dro-nian particle r.ovinj among 

suit ibly selected points,    Section 5 slves  a more precise form of Lsinma 3 for 

random walks  and ü method for jetting moments of first-passage times in  randan 

walks.    Sectior   6 ^ives  a  rather curious corres^rdence between randtan walks 

^nd  trees. 

The  luthor «as  in correspondence -..ith professors Chun_-   ^n.i Feller while 

this  ,'.aper was beini; ■.•.-ritten, and both of then  furnished  vLtemat.ive proofs 

of some of the  rejults of Section 4.     rorr.e of i,he identities in Section 2  :ire 

closely relited to recent,   -ni current work of Chung [2], who,  in partlculeri 

has a result  involving three states of whlc    Lerar.a 1 of Section 2  is  a special 

rase.    Accordinj to ChunL,  Leruna 2 appears  in   «  .%ork by ; aul Levy  [7 J which the 

author has not yet seen.    Dr.  Chung was courteous enough to delay publication 

of his paper until the present paper was  ready. 
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2,    Somt identitits. 

Leaaui 1.    Under the aoaumitions (1,2) and (1.3)i **£ have 

(..1) Uhi . H^) - ^J- , 1 /J. 

To prove (2.1), suppose th* initial stale  is i, and let NJ.   , N*.',  ••*, 

be the  tiae intervals between successive recui*rences to i.    Let the (random) 

integer R designate the first cycle from i back to 1 during which the  state 

J is visited at least once.    Then H).' ♦  •••  ♦ N|,' is a sample value of 

N. . ♦ N...    Since E(N..) - l/n.  and E(R) - I/o*.,» we have, making use of a 

slight modification of a theorm of Wald, [?],  ,-'«£;•  52, 

(2,2) E(N1J ♦ N^)  - E(N|J)  ♦  ...  ♦ nW)  - E(Nil)E(R)  - ^-i— , 

which proves (2.1). 

Since the left side'of (2,1) is unchanged if i and J are interchanged, 

the right side must be also.    This leads to the identity 

Formula (^,3) is useful in the treatment of random walks,  since the 0. . 

are easy to find anH Inus the n. cai be obtained. 

The identity (^.3) holds even if E(N1.)  - oo , provided the chain is 

recurrent — i.e., ^(N,, < oo) ■ 1, and provided  (1.2) holds.    In this case 

the quantities *J/*4  are Doeblin's ratios (see [3])» 

Z Pu'(k. J) 
n. / n.  « 11m 

J n-Mo   JL   (r), 
I! Pir,(A D 
r-0 

i    See the -ast paragraph of the introduction. 
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The proof in this  c iae follows  from result» of Chur^ In [2]   and will rot 

be given here. 

As an example of the use of (2.3)i we have 

Lanina 2,    Let Y (i) bo the number of tiaea the gtate la 1 during the 

first n steps from an arbitrary start in/! point.    Then if (1.2) holds and 

if the chain is recurrent, we have 

! 

(2.4) lin   Y (J)/Yn(i)  - n  /n., i / J , 

with probability 1.      (Paul Levy.) 

To prove (2,4), which is trivial if (1,3) hol^s, we suppose for 

sim.licity that XQ ■ i; this 'Joes not esaenti'illy affect the argument. 

From the definition of Ö.. it fo1lows that the probability that  the state 

takes on the vilue J exactly r timus between successive visits to i is    iven 

by 1 - 0, . if r • 0 and ÖM(1 - 9^.)      ©,.  if r > 0,    The expected number of 

visits to J between visits to i is  thus 0../©..,    Fron the strong law of 

large numbers it follows that if n,, n^,   •••, ^r»» the times at which x    - i, 

we have 

(.,5) lim   Yn (J)/Y    (i) - e../©..  . 

Similar reasoning shows that the same lirait is   ipproached if n passes through 

the sequence of values (n. )  for -which x    • J,    Rut since the sequences (n, ) 

and (n') are the only values of n for which the ratio Y (J)/T (i) can change, 
J\ 2111 

the limit must exist,  and use of («c,3) rive9 (•-•'♦)• 

fee the \ . t  purafrrap;. of the introduction. 
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3.    Dlatribution of N..   for large k, 

We assume throughout this section th.it  (1.2) and  (1.3) hold and that 

there are infinitely many statesj    otherwise the Markov chain is arbitrary. 

We first consider the distribution of hQk  .s k—►oo, wher? 0 is an 

arbitrary fixed state. 

Lemma 3. Um P(^okN0k > u) - •"", u > 0. 

Let u denote an arbitrary fixed positive number and denote by [z] the 

largest    integer < a.    Suppose the initial state is- 0 and let S.   be the 

number of steps in the first JU/ÖQJJ recurrences to 0.    Let A.   be the event 

that k Is not. visited during the first fu/©^! recurrences to 0, and B. (h), 

t > 0, the event 

VOVl-rl < ^ «0 

and let C.   be the event 

N0k> v^HKvl 
Then we have, letting 5 denote the conplcnent of B, 

(3.0)       P(Ck) > P(Ak, B^)  - F(Ak) - ?J(Ak, 5k) . 

fu/0OkJ 
Now r(Ak) - (1 - eok)L      ÜK —^e U as k-> oo,  and F(Ik)—>0, by the 

law of large numbers, both these limits holding uniformly or. ary finite u- 

interval bounded away from 0.    An «asy cons^uence of (^,0)  is that 
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-u A sirailar argument shows lin sup ^ e    , and Leana 3  follow», 

A consequence of Lenma 3 is that 

(3.1) ""Ji' ^VOKW ^1 

On the other hand,  from (»..1) we have 

U.-O :(noeokNok^ 4 E(Vck^kO^ ' 1 ' 

Fro.-n (}.l),  {}.*),  and («i.3), we have,  recalling fron (4..3) that «„Ö,. 

nkekC' 

I (3..) l^n E(n00okNok)  - 11» E^e^c*) " ! ' 
K -^00 :-*QO 

(;'.4) llm£(Nk0)/E{N0k) -0. 
-♦QD k-*CD 

We now prove 

Theorem 1,    For each u > 0, 

-u 

where tAu) —> 0 as k—►00. 

The syiabolo in (3,5) »re ieflned in the introduction.    The proof will 

brini; out  the intuitive me.ining of (^,5).    Of course, an^' fixed state rather 

than 0 could  be used. 

Proofs    Let T.   be the expected value of N.. , riven that the path from k 

tack to k is  never in 0 and let U.   be the expected value of N. 0 ^iven that 
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the path from k to 0 la never in k after the initial position.    Now consider 

a sample first-passage fron k to 0.    There i/ill first be r ruturns to k, 

r - 0, 1,   *•*, before 0 is visited, and finally a passage from k  to 0 during 

which k is not revisited.   Since r has the frequency function 6.0(1 - 6. 0) 

we have 

(3.6) E^) - Tv   fo rt^d - ek0)
r ♦ U, 

Now, supposing regain that the initial state is k, let 0.   be a random 

variable which is 1 if the state recurs to k without being in 0, and 0 

otherwise.    Then for any u > 0 we have 

^•7) p(VWkk > *) - (i - V'fVWkk > uiDk ■ ^ 

* ökop(llkekoNko + Vko^k'" u|Dk ■ 0^ 

Now ECN^I^ - 0)  - Uk, and from (3,6) and (3,4), Uk < K^Q) - o(—|—) , 

k—►oo.    Therefore, under the hypothesis D.   ■ 0, the random variable 

tt 0.0N.0 converges in distribution to 0,    Thus, the secoad term on the 

right side of (3,7) is, using Lemma 3, Ö^e'^l ♦ £k(u)), where ^(u)—►() 

as k —► oo. 

Since for ar\y nonnegative rnndo-n variable z we have F(z > u) < E(z)/u, 

u > 0, it follows that the first term on the right side of (3,7) is bounded 

by (using (3,6)) 

e, 
-T «AtW 
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Üince froru (3.4) we have itö, 0L(Nkc)-> 0 as k —> oo , Theorem 1 nw 

follows, 

As we shill see in the next section, the limit inferior of d. ^ nay 

be C as k—►oo.    In this  oase Theorem 1 is nther empty of content. 
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U,    Handom walks. 

In the remainder of this jriper we co: aider rnnflora walks on the int*vers 

with transition prohnbijltics p    for r—> r ♦ 1 ?nd q    • 1 - p    for r —► r - 1, 

3ome of the results rin obviouslj' be extended to the c:ise where the transition 

r -^ r haa a positive probability. 

During the reaviinder of this pap^r we shall asaune thut  one jf the tvo 

following conditions holds: 

Condition A: 0 «. p   < 1,    r - 1, ^,   •'•. 

Condition B{cj):      there Is  an integer  Ui > 1 such that 

0 v p   < 1.    r • 1.  4.   •«•. OJ- 1;    p    "0, 

Sotie of the resulta holdin,'' under condition D  .»111 ubvioualy be true whetner 

or not pw   • C,    ''hen condition H   applies,  it  in tacitly   tssuraed that all 

states mentioned have indices <  CJ, 

We aake the  following definitions.    Let 

r-1 
iU.l) 1,-1, L   -   TT    (q^/pJr r> 1 ; 

1 r      J-l      J      J 

r 
z0 " 0» Z

P "    Z   1-,, r   > 0 ; 
U r       J-l     - 

00 

2 -    >"   L. < oo      (applicable when ^on lition A holds). 

Theorem 2a.    Suppose condition A holds and lei the initial state b£ 

k > 0,    The probability  that the state never reaches 0 is z,./Z, 

If Z - oo, z./Z is taken to be 0, 
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Suppcse condition B( ) ~and !!1 lh! initinl ~ 

2s_k, 0 < k ~ w. The p roba i ity !:..h!!.!:.!h! ~ re ches w' before~ 

reaches 0 ll zt/zw . 

Proo f of Theorem a. Let the points 0 • z0 , z1, z~, ·•• be marked oft 

on · line and su pose th~ a one- i.JIIen. ional Brownian oot ion (i 'i ener 

pr ocess) takes place on t h 1 ne . s the Bro ni n p rticle coves about 

let it ;uws_ys bea r s label the subscript of that one of the z which r 

it h s most r cently vi s ite • T e 1 bel then execute s r an om w lk. 

Usin the ..: ll- known f ct th ' t a Bro .ni n rticle lni 1 ly t point 

0 between o ' nts D has rob bi i ty Cis/AS of reachin A efore B, 

we c n veri fy th t the r oo W"llk execute y e 1 bel has the s ame 

t r . ns ition roba i~itiee pr' ~ t he ori in 1l r andom w lk. 

u pose first that~ • im z • oo. , Jnc h ~r ph oft e sition 
r~r 

of t he rt" cle is continuous , every ath from zk to z
0 

corres po s to a 

definite finite s e .uence o f labels i . e., definit e k froc k to 0 . 

Conversely , eve ry w· k from to 0 corr s nd to f ly of Brownian 

aths from zk to z0 , f amilies cor c~p n in~ t o istinct w ke being 

mutu ly exclu i e . The prob ili y of i ven w~k i s the same as the 

r ob i itw of t he correspon i Bro mian fami l • .1incc almost all 

Bro :nian t hs fran zk reach z0 , almost all r "lndom walks !rom . reach o, 

"' • • .J . 

!.1 Z oo, w lks from k which re ch 0 correspond to Brownian paths 

from~ ·hich re. c 0 be fore reaching z, the probability of these being 

~ 1"\ . . -. 
The p roof of Theor 2b is essentl~ly the same. 
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Uslng Theoren 2, v»o c  n now ev.ilu.it 6 the quantitiea Ö. .  for r iiiom 

walks,    (We rec-ill th t 0.     Is the  probability th it the state,  initially 

at i,  reaches  J  it  ieist once before rctumln(; to i.)    In fact, if i <. J 

we have 

U.2) e. A — * —    — t     i . J# 
*1J 

m 
pi 

1 
Pi*l >Pi. api 

!2 4 ... 

♦2 
4 

^l" -1 

and a  similar expression hoi is   for   1   ■* J.    If i ■ J - 1,   the  exnrecsior 

on the ri£ht  cf (^,2) is tiken as p.. 

Using  (/♦.2)   anl  (2.3), we can evaluate the stationary p-ob;ih:iitic:> 

for random walks with finite mem  recurrence times  (or the  ioetlir. ratios 

for recurrent walks  with infinite me u, lime?).    For cxvnjile, putting i  - C, 

J > 0, we have  from  (-.3),  (4.2),   \ni the   irvtlojue of (4.2)   for the c.i.e 

J <i. 

(4.3) «j  ' Voj/ejO 

Vo 
i ♦ — ♦ 

v rl 

\                        "l       q*-l\ 

Vo 
qJLJ 

J - o, 

where L. Is defined by (4.1).    A sixiii.ir expre.'iaion holds  for J < 0.    In 

the case of finite ne JI recurrence tinvs  the conJition >   n,  ■ 1 completes 
J 

the 'ietenninat.ion in  (4.3). 
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Aa  an ex.-mii« of the use of Theorem 2 v;e have the  follow!ry 

Corollary.    Accorilrij'. ^ A or D(cj)   holds we  r/ive 

For  >ve can filice  a reflecting barrier   it C,  giving pn ■ 1,    Tnen 

"itic'-   for ever.-  i < J we  have 

ij        i,Wl i*l,i^ J-1J 

it  is  clear how from Theorem *i any desired nein recurrence or first-passage 

time cm be  found. 

As ru ntior.e.i  in  the introductior,,     rofessors  Chung an' FelJer .'iave  ,";iven 

alte:n-.te   a;   PJ icr.es   (corresporidence), 

It  is   interesting  nc» '..   cor.r.J'tr r JI ion wrtlr.s  of t.he transient type, 

.".e   sh 111  s»--«?  L.'i-it   there     r-   nonrecur-rent  ran ion walks  where the con iitional 

me in recurrence tjj^, /liven  th 't   recurrence takes  :.•! ac*».  i_s finite.    We pick 

lLr   as  a  typic-il first-pTisa *e r Jidom Viri ible, 

T .eorem ?.    5u/pose  coniition A holds.    The   :on:ltiondI e>:pectatiori of 

Min»  ■ ^vcn th it  N.    < oo ,  is 

2 «    (i - Jr/.:)(i - Vl/Z) 

(,./.) E{N10|NIO < oo) -1. [rzTji) X,  I 

oo 
where  z_   ^.nd L    are   defined   in  (.'.,1),   ind Z •    ^ z   .      r ——    r — —-^— — —— ,   r 

r«l 

r*l 

Thio  can  also  be seen  from rwults of Chun^ [^J, 
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Defore proving Th«op«n 3» it is interesting to consider a special 

example.    Suppoee for simplicity that Pr • 1 and that the quantities p 

have the form 

pr4*f ^P*)  ' ^       r-> «>' 

where c  Is independent of r.    From Theorens 2 and 3 we see th it if c < - x , 

the mean recurrence tinea ire  finite;  if - — <  c «^ Tf   the mean recurrence 4 -     — 4 ' 

tines .ire ir.finite but the states arc recurrent;   if c > T >   ^e recurrence 

f robibilities are less than 1,    In the "latter case ^(^fJN10 < oo)  is 

3        1 3 
finite or infinite accordir^ as c >f0'*7^ c < f »     The intuitive 

significance of this last  fict is that if c is lar^e  (i.e., c > t),  then 

a path  frjn 1 is very unlikely to ^et back to G unless  it   JO*»? SO tjuickly. 

To [irovfi Theorem 3 it is convenient to return to the Bro^ni ;n  .iot ion 

scheue.    If Z " oo, then Theorem 3 reduces to the corollary to Theorem 2 
oo. oop*q oo. ^i 

(note the identity   ^   —r- -   ^ —-r—- ■   ^ . ♦ ^"   j— ;  so we nay 
r-1   TT r      r-1   qr r r-l  r*l    r"l    r 

as well take the case Z < 'JO ; Z is of course > 1,    We note that  if a 

Brownian particle is initially at  2,   - 1,  the  conditional probability 

density for the naxiaun displacanent y attained by the particle before it 

arrives   it Ü, ^iven that y < Z,  is 1/[(1 - i/Z)y J. 

Consider a Brownian path starting at z,  * 1,  and let M(y)  tie the 

expected number of label changes  before reaching y > z,,  g5 ven that y is 

reached before 2« ■ 0,    (We shall always suppose that y 

points z   .)     It is intuitively obvious  (we omit the  form u 

Dne of the 

jof, which in 

not difficult)  that the corJitional  expectation of the number of label 

changes in joinp from y back to z~,   :iven thit y is the maximum Jisplacen^nt, 
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is M(y) • 1, the added 1 beine for the chan e which occurs when z0 is 

reached. Therefore the tot 1 coo itional expt!ct tion in a path fran ;, 

to z0, 7iven that y is the maximum displace.ent, is 1 + 2M(y). Thus 

(4.4) 
z 

oo) • 1 + 2 { M(y)d,y 
1 - 1/Z 2 • 

7 

Clearlf f( ) • 0 for z1 y < z~. To ev l uate M(y) for y > z2, 

suppose that zk is the ri htmost of th~ points z1, z2, ••• lying to the 

le ft of y, an onsi er Brownian path !rom z1 toy which reaches y 

efore z0• Let RJ' 1 _ j _ - 1, be the total nucber of 1 bel cha es 

w ich t i •ath ~uld under o · f only zj and zj•l' and no ot her points or 

t e et zl' z2 , • • •, were resent, !:!!l !! l:J!! label !!!£! 1n1t1~ 

taken to ...-! j. The total num er of ch.m~es i then 11, + R:2 + • • • + ~-1 
(it .. elpa to · draw a di agraa); hence 

•he re 0 is th even th ~ t t he p th, st rtin from z1, re ches y efore 0. 

e foun by el wen ~ry c m in torinl mean nee, translated 

ba.c n e s of r~ on w· lks , "' r 'ln orn wa lk wi onl four st tes is 

involved . In f ct 

. 6) 

Fro ::1 ( . 4) , ( . 5 , n • ) e .ave 
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(4.7) z ~ ~ N k•l k-1 z • z - 2z z /r 
E(N IN < GD) • 1 • I 2 ) 1111 > j' > j J+l j J+l d 

10 10 \1-1/Z N .. aok:l zk J-=1 . •j•l- zj 72 

The assa~e to limit under the summation s ign is justified bee use e ch term 

in t he sua i s ~aitive and increases with N. This ives Theorem ). 

If con~ ition B(UJ) holds, then we have the fo1lowin naloeue of 

Theora. J, whose proof is entirely similar: 

The exp~cted v..J!!! 2,! N10, dven ~ 0 !! reAched before W, !!, I!£. 6J > 2, 

( 
2 ~ w-2 (1 - z/zOJ) (l - z 1/sJ 

( • ) E(N101o before fAJ) • 1 • 1 _ l/z > L r• 
r~ r•l 

It is now aim le to fin the con itional expected value of NkO for any k > 0, 

iven h t 0 ia reached before W > k. For we may ·rite N • k • ••• + N10 kO --k,k-1 

~here the tenu in the s.a are independent. Hence 

ow E{~k-j,k-j-liO before GU) • E(~-j,k-j-llk- j- l before uu ), because 

of t he Markovian nature of the process. From { : •• ) , by a translation ot 

indices, we have 

{4.9) 



k 
Then E(l\oiO before w) • ~ Cj t.J , where Cjw i · e fine d in (4.9). 

It is interesting to note that if the pr have the fon. 

1 where c < - 4 , then, using ( • ) , "'e have 

nd, as 1 i nted out before, Theor .. 2 is in thie c ee rather devoid ot 

content. On the other hand , if the imit su erior of P/Qk is < 1 ae 

k -+ao, it is clear th t the limit inferior of ikO 11 positive. 

-16-
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5,    Gener'iting functio:;^   tor r in^om-walk v i.-lablqa« 

It is customary to treat  rmdon walk ; robl'ms by ncira of lir.«ir difference 

equ.itlor.a.    In this section we use   i sinple nonllneir recurrence relation 

whlcn seems well adapted  -o cert-iln random wa3J< {.robl^ms and which, as far 

as the    uthor knows, ha^ not been used before. 

V.'e ^ive explicit expressions for the second moments of typical first- 

pnasa/e variables,    V/c  ühill  indie ite  briefly how these cm be used  to jive 

a more precise form, for riniora wilks, of the exponential linitirv:  results 

of Tection 3i  T'emma 3 holds for some walks with infinite mean recurrence times. 

Theorem 4«    Assume either condition A or B(tJ) of "ection 4 holds,    let 

hu(ÄJ J-* the ..ener ttin^:  function for the  rt.ndoni vari .ble *(1  ♦ N,   , ^^^ 

oo    4 /I ♦ N.   ,   .        \ 

Then h. (s)  satisfies  the recursion formula 

(5.1) h^s)  - »Tk(hk-1(s;), ^ - 1, i,  •••, 

'.'here 

Tk(u)  - pk/ (1 - qku) , 

Theoren 4  hold:,  even  if h. (1; ^   1;   i,€,t  even if N.   .,   iias  a positive 

probability of bein;:  Infinite, 

The relation (3.1) is iinalojouc to certain formulae wMch appear in the 

theory of ir inching stochastic processes». As we shill see in Section 6, the 

resemblance is more th;in  sunerfici.tl. 
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To prove (5.1) we first consider the generating function of Nk,k+l' 

which we des ignate '7 fk(s). In 3. passage from k to k + 1 there will first 

be r occurrences of the following event: the st ~te goes directly from k to 

k- 1 n ' tten continues ch~ neing unt il i t s first a rrival b. ck · t k. After 

r such occurrences, the st ; t e coes di rectly to k + 1. For ~ fu:ed r • o, 1, 

2, •••, the 3ener3ting functi on for the number of s teps required is s(sfk_1(s))r. 

i nce he pr oba ility or a 7iven r is pk(qk)r we have 

( 5. 2) 

Since efk(s) • ~(s2), (5.1 f llows froo (5. ). There is no diff1cult7 

about infinite vdlues of Nk,k+l' rovide w adopt the convention, in the 

~ reument just given, that even \':hen Nk,k+l i s infinite the s t t. e ~ fi nally 

go froc ~ Lo k + 1 rter i nfinitely ~ steps. 

In the sp ci 1 case of a reflectine bnrrier at 0, h0(s) • s and (5.1) 

!;lves 

It 

n ns of obt :1ining ~(s ) for all k. 

1 s cle r that the moments ot ~ 1 • ~ k+l) s t ist,r recursion r el tions 
' : h Cdn be obt a i ned by iff rentiating (5 .1) an putti s • 1. For ex311lple, 

set t i n 

we have 

(5. ) 

I he recurrent c _·e l oth s i es of (5.3) are e u 1 t o 1. Differentiation 

c:. i ves the r el ::. ions (whi ch \ e ·.-: rite own o l y for the recurrent c se) 
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^k 
(5.4) £(1^)  - 1 ♦ / ECVi) » 

(5.5) E(H* - V • ^ «Vl)E«"k5 ♦ ^ EO^.i - «„.!) • 

For the reflecting barrier case (where p^ - 1) xe have M. - T(1 ♦ N.,) - 1, 

and ($.4) giree 

which agrees, after a trans format ion,  with Theor« 3.    Sinllarly, we can use 

(5»5) to obtain the variance of N.   .   ,  in the reflecting barrier eise, 

obtaining 

(5.7) Varl«.« (N^) - U^-i) ' «^J   ±1^777^) ii'\) 

if there is a reflecting barrier at 0, where 

b .L^.V^ W-";. 
p pr     "r-l prpr-l,"pl 

At this point it is convenient to write down an expression derived from 

(5.7) by a change of irdicest    if Pi- ■ 0 (reflecting barrier at k), then 

(5.8) v^c. (Hlo) - <(ltt-)(i£) ♦ a|^|: ^(^ i i)'. 

where L, • 1, L    - ^~ t   r > 1. 
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Frcn (3.8)  it follows  that in ar\y recurrent  random walk where condition A 

of Section U holde we have 

(5.9) Variance (N10)  - 
V-l Vvr-2 Lr/        r-lL    VJ-r LJ/vJ-r*l ^'J 

We now re-examine the arguments le;ilin/ to Leona 3 of Section 3* 

^or aimplicity we as syne  throughout the rest of this  section that 

» 

Condition C:    P0 " ^ 

holds. 

In deriving Lenm 3* the assumption of a finite mean recurrence time 

enabled us to  say that [^/ÖQJJ  cycles from 0 to 0 correspond, with high 

probability,  to almost exactly —g— steps when k is large.    In the case of 
Vok 

random walks, however, it is clear that the distribution of HQ,   does not 

depend on the value of the p    for r > k.    Therefore, lot us suppose that 

the original random walk is  altered by placing a reflecting barrier at k > 0; 

since condition C holds,  this will make the recurrence times finite. 

The modified random walk will have a new set of stationary probabilities 

n (k),  r • 0,  1,  •••, k.    The question is then whether [U/ÖQU I cycles fro« 0 

to 0 in the modified random walk correspond almost  exactly to u/^Ck)^. ) 

steps.    We know that the number of steps in a cycle of the modified walk, having 

a finite mean vzlne, satisfies the weak law of large numbers, but is [U/ÖQJ. J 

cycles a  "large enough" number to make the sample mean almost equal to the 

true mean?    Clearly it is sufficient to have 

(5.10) lim    (Mk))2 d     Variance (»10(k)) - 0 
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wl. .<« M10(k) it tht rando« variiblt N,,. in the modified random walk.   To 

apply (5*10) to argr particular c^te, we can refer to (4*2) and (5*6). 

At an example of a case where the mean recurrence times are infinite 

but (5.10) etill holde, suppose P. a £ - ^t r * 1,2,  •••,    From Theorems 2 

and 3 this corresponds to a recurrent random walk with infinite mean recurrence 

times«   Then 

where o« is independent of r,  nnd an easy calculation shows that  (5.10) 

«ItMvgh M9 shall m% eiiUr im(o dataUs bar«, tht rwulia of thia a«aii«|i 

can be used to give error terms for Theorem 1 or Lemma 3 in the case of random 

walks with finitely many states.    In particular, some of the results of [l] 

for the time-continuous Ehrenfest model can be obtained for the usual Ehrenfest 

model with a discrete time parameter.    The argument is simple but tedious, 

depending on the use of Chebyshev's inequality. 
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1 
6,    Walke and trtts. 
  

Random walks and branching processes are both objects of considerable 

interest  in probability theory.    We may co.isider a random walk as a 

probability measure on sequences of steps — that is, on "walks,» as defined 

below,    A branching process is a probability measure on •trees," as defined 

below.    The purpose of the present section is to ähow that walks and treee 

are abstractly identical objects and to give probabilistic confequences of 

this correspondence.    The identity referred to is non-probabilistic and la 

quite distinct  from the fact that a branching process, as a Markov process, 

may be considered in a certain sense to be a random walk, and also distinct from 

th«  fact that  each step of the random walk,  having two possible directions, 

represents a twofold branching. 

By a "walk1* we shall mean argr finite sequence of integers ru, n,,  ***, n 

satisfying the following conditions: 

(6.1) no " nr ' 0' 

n. > 0, 1 < J < r - 1, 

lnJ " Vl'  ' 1' J " 0» i.  '••. r - 1. 

Notice that our walks begin at 0 and terminate as soon as 0 is reached, and 

we consider for the time being only those which do cone back to 0, 

By a  "tree" we shall mean a finite set of objects having the relationships 

of a (male)  family tree descended  from a single ancestor.    A typical element 

of the tree can be designated by a symbol of the form 

r 

i 

I. J. Good has pointed out the similarity between certain formulae in branching 
processes and random walks,  [5].    Mr. Good has also informed me by letter that 
D. G. Kendall has recently shown a relationship between branching processes and 
the theory of queues, and Good himself has shown a connection between the theory 
of queues and the gambler's ruin problem. 
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■eanlng th« a -th jon of the *'* ol' th« m^-nd son of the nu-st son of th« 

original ancestor.   For our purpose th« two tree« 

(6.2) and 

are distinct objects, since we keep track of the ■order of birth* of the 

sons of a given father. 

To exhibit the correspondence, we lay down the general principle that 

a step to the right in the walk, say,  froa k to k ♦ 1,  corresponds to a birth 

of an object in the k-th generation.    The •parent" of this step is the last 

preceding step froa k - 1 to k.    The  "children* of a given step froa k to 

k ♦ 1 (let us call this step S) are the steps froa k ♦ 1 to k ♦ 2 which occur 

after S, but before any step froa k ♦ 1 to k succeeding S.    The "children" 

are nuabered in the order of appearance — the first step is oldest, etc. 

A step to the left, say,  froa k ♦ 1 to k, means that the person corre- 

sponding to the last preceding step froa k to k ♦ 1 has died and will have 

no further issue. 

Rather than jiving a tedious foraal denom.tration of the correspondence, 

we shall here only illustrate it.    The reader can easily convince himself 

by working through z few such examples.    Consider then the  leftnost of the 

two trees in (6.2).    This corresponds to the walk whose successive positions 

are 0, 1, 2, 3» 2, 3* 2, 1, 2, 1, 2, 1, 0« if we adopt the convention that of two 

vertices in the same generation pictured in the tree, the upper is the elder. 

The correspondence, step by step, is as follows ((0, 1) raeans a step 

froa 0 to 1, etc.):    (0, l)<-^a appears;    (1, 2)^->b is bom;    (2, 3)«-^c 
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Is  born',    (3, 2)<->c dies;     (2, 3)"*->(l Is born;     (3, 2)4->d dlesj 

(2#  l)^->b  lies;     (1, 2}<-^e ia »)om;     (2, l)^-^e dies;     (1, 2)^-->f it 

bom;     U, l)4^f dies;     (1, 0)^-^* diet.    Similarly, the other tret in 

(6.2)  corresponds to the walk 0, 1,  4t 1, 2,  3,  ^,  3, 1, I, 2, 1, 0, 

Now suppose that probabiiilles P^» \  " ^ " Pu Äre prescribed for tht 

random walk, with 0<p.<l, k-l, 2,  •••,    Consider next the following 

bnnchinß process:     an   individual in the (k - l)9t generation has a 

probability p.q.   of having exactly r children,  r - 0, 1,   ••'.    (Tht 

ancestor io the 0 generation.)    Then we have the result 

Theorem t>.    The probability that a random particle starting at 1  reachtt 

0  for the first time after 2r - 1 steps equals the probability that the faadly 

tree Jutt defined becomes  extinct after producing a total of r individualt, 

r • 1,  2,  •••.    The total probability that the particle returns to 0 equalt 

the probability that the family tree it  finite. 

The proof,  which we omit,  follows from the identity between walkt and 

trees  previously demonstrated; it can also be ohown by the utt of generating 

functions. 

As an example we consider the classical  case p.   ■ p.    The expected 

number of children of a single individual in  the  family tree it 

oo . 
q 5" rpr - T-*—  .    If p < *, i.e.,  ;  ^     < 1,  th« total maiber of individualt 

£% 1-P r-2' 'l-p-' 

in the tree is   finite with probability 1, and the  generating function ^(t) of 

the total number satisfies  the relation 

whence we have (see Otter [8], or Hawkins  and Ulam [6]) 



,(.). L^s£ZÄ5i . 

It can bt verified that ^(t) la likewise the generating function for the randoo 

variable 4(1 ♦ NLQ).    In the case p > r ,  ^(a) has the aaas for«, but in this 

case ^(1)  - q/p; this is the probability that the family is  finite and,  as is 

well known, is likewise the probability that N,0 ia finit«. 

If condition B(tL») holda, the generating function of the random variable 

^(1 ♦ N..)  can be obtained by changing the mnbering sysi.ao of ths lattice 

points in Theorem 4.    We obtain 

(6.3) l/H^ ■ r)  * •Tl('I2C-K,-l<')) -)) 

where T (u) • CL/U - Pr
u)«   This formula is likewise the generating function 

for the total number of individuals in generations 0 through 60 - 1 of ths 

family tree.    The generating function for v(l ♦ N.0) in the caae where 

condition A holds (and for the total number of individuals  in the family tree) 

is obtained by letting GJ go to oo  in (6.3). 
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