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ON   ;HL INTLGu.vL L-UATION Af(x)  .'P*^*^  f(y)dy 

hichard Bellman and Ulchard Latter 

§ 1 •    IiitroQuction. 

We wish to consider briefly the integral equation 

(1) \rM  •    P    K(x - y)f(y)dy, a > 0. 

which occurs in connection with various problems of probability 

theory and mathematical physics. Unless K(x) is a function of 

particularly simple type, such as a polynomial or sum of 

exponentials, the problem of obtaining an exact solution of (1) 

and of determining the characteristic values seems exceedingly 

difficult. In the present note, we discuss the behavior of the 

largest characteristic value, AM, as a —> o, under certain 

assumptions concerning K(x), and present a method for obtaining 

A« when a is not large, 

üur first result is 

Theorem 1.  If 

(2) 

«then as 

(a) 

(b) 

K{x) is non—negative, e^ en and monotone 

decreasinE for 0 < x < cu, 

c - r^Klxldx < », 

«, AM 2c. 
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More precisely, for all a > 0, 

(3) 2   P    *  K(x)dx >   AM > 2   T    K(x)dx -|  P    xK(x)dx. 

We give two proofs of the result that   Ajyj —> 2c, the first 

depending upon Vuriational principles and the second upon an 

important property of the characteristic function associated with 

§2.    First proof. 

We employ the following two lemmas,  the first of which is 

well-known: 

Lemma 1. 

(1) AM - Max Ä 
M     f (/o   r2(x, 

fofo K(x - y)f(x)f(y)dx dy 

dx 

Lemma 2.    If K(x, y) > 0 in 0 < x, y < a, and   Au denotes as above 

the largest characteristic root of K(x, y), then 

A ^  ft 

JQ K(xf y)g(y)dy L K{xt y)g(y)dy 
(2) Sup Min ^ -r-T  < AM < Inf Max ^ -r-i  

g>l   x «iX' n    g>1    x gvx; 

Proof;    As is known, the characteristic function f(x)  associated with 

X|| is positive,  by virtue of the non-negativity of K(x,  y).    Let 

g(x)  be a positive function greater than or equal to one.    From 
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(3) 

we obtain 

(4) 

V^1 " /   K(x» y^iytty* 

x J f(x)g(x)dx - S*i[ K(x, y)«(y)dy)f(y,d3r 

nh it K{x.  y)g(y)dy) 
m So W ^<y)*<y)<*. 

whence (2)  follows immediately. 

That the two sides of the  inequality in (2)  are actually equal 

and equal to   AM is a result of Bohnenblust.    Extensions cf this 

result will be found in a paper,  soon to appear, by Bohnenblust and 

Kurlin  [2J, and applications of this method will be found in a paper 

by Bellman and Harris,   [ij. 

Lemma 1   contains the essence of the Rayleigh-Ritx method, and 

furnishes lower bounds for   A»..    Lemma 2, which is also based upon 

variational principles,  furnishes upper and lower bounds.    Combining 

the two, we obtain 

Jü K(x-y)g(y)dy . 

g    U^x^a 

a />a 
Lf0 K(x-y)f(x)f(y)dxdy 

a 
■    c/(i «,Ä    3..^,^,,^-, JQ K(x-y)g(y)dy 

- Max 'u    u r  > üup    Min    ~ 
J0    f (x)dx 

g>1  0<x<a gTyT 
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The simplest possible choices of f(x) and g(x)f f - g • 1, 

yield (3) of Si.  It is possible that these results may be further 

refined by a cleverer choice of f(x) and g(x). However, the 

calculations rapidly become complicated. 

Setting f ■ 1 , we have 

(6) ^M^ 

a 
f K(u)du ♦ /   K(u)du 
JO        do 

dx 
' *Jc 

a ,x 

'0 
K(u)du dx 

Integration by parts yields 

(7) 
&.. a 

XM > 2 T  K(u)du-|r  uK(u)du. 

Setting g • 1, we have 

U) Max P    K(x - y)dy > AM 
<x<a JO 

Since K is even and monotone decreasing, it is easily seen that the 

maximum occurs at x ■ a/2. Thus, 

")        /0
a *(! - y^y" 2/0

a 2 w* * XM • 

If    r   K(x)dx < <B, it follows readily that  P  xK(x)dx ■ o(a)  • 

as a —> CD, and thus that   AM —> 2 f"   K(u)du as a —> «. 
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The bounds for   Xy, will only be narrow for fairly lar^e af 

the magnitude depending upon K(x).    Taking the  interesting case 

K(x)   ■  e       ,   we obtain 

(10) 2   I e^ dx >   >M > 2  /      e^ dx - i ♦ € 2/0        '"^^M^/o a        a 

which yields the results 

(11)      .043 > AMU)A/n > .713 

•995 > AM(4)/V^ > .749 

•999 > AM(10) /Vn > .899 

Ve see that even for small a, (10) yields a rough idea of the true 

value of Xj.» 

93« Second Proof. 

The secona method of proof yields the following useful result: 

Theorem 2. If K(x) is  non—negative, even and monotone decreasing 

for U < x < OD, the characteristic function fwlx) associated with 
A a 

XMi which we normalize by the requirement j       fw(x)dx ■ 1 , possesses 

the following properties; 

(1)  (a)   fM(x) • fM(a - x), 

a 
(b)   ^M^ — monotone increasing in Ü < x < TT 
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Proof: We require the following two lemmas, the first of which 

is a well-known result in the theory of integral equations. 

Leama 3« Let K(x, y) be a continuous symmetric function defined 

pyer t^e souare 0 < x, y < a, and g(x) be continuous over 0 < x < a 

and not identically zero. Then, ^.f we define 

(1) Tg - f K(x. y)g(y)dy. 
UQ 

^he iiffiÜ 

(2) lim £* - ^(x) 

existe and is a characteristic function of K(xf y) associated with 

AM. 

Leaaa 4«    If f(x) has the following properties; 

(3) (a) f(x) - f(a-x) 

(b) f«(x) >0    for   0 < x < | , 

then 

(4) Tf" /   K(x " y)fWdy 

possesses thre same properties, provided that K(x) is even and monotone 

decreasing in the interval [0, aj. 
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Proof of Lemma 4:    We have 

(5) 
A/2 

g(x)  - Tf - 2^      [K(x - y)  ♦ K(a - x - yQf (y)dy, 

whence 

(6) 
a/2 

g »(x)  - 2  Z1       [KMx - y) - K»(a - x - yOf(y)dy 

Integration by parts yields 

a/2 
(7)      gMx)  - 2f(0)[;K(x) - K{a-x)]  ♦ zj       [K(x-y)-K(a-x-y)]f»(y)dy. 

If 0 < x, y < a/2 , we have x<a-xf fx-yl^a-x-y, and 

consequently K(x) > K(a - x), K(x - y) > K(a - x - y). Therefore 

gMx) > 0, with equality only at x ■ a/2. 

We now combine Lemmas 3 and 4 to prove Theorem 2. Let fg • 1 

and define 

(6) Wx) J     K{x -y)fn(y)dy. 

From Lemma 2, it follows that each fn(x) possesses properties 3a and 

3b since fg does trivially. Lemma 3 shows that 

(9) f(x) - lim fn(x)/AS 
n-^ o> 

is a characteristic function of K(x - y)  associated with    A«.    It 

follows from Lemma 4 that ^(x)  possesses properties la and  lb. 

The monotonicity property of f(x)  will play an important role 

in our second proof of Theorem 1.    Let us normalize our solution, 
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which we know is positive, by the condition 

(10)      P    f(x)dx - 1 . 

» 

Integrating both sides of (1)  of   §1  between 0 and a we obtain 

(11) K{x - y)dx f(y)dy 
* " So [So 

• 2 T        \   P     K(u)du ♦  P K(u)du f(y)dy. 

In  fü, f\t we have 

a-y 
(12) 1 / K(u)du - c    <   /      K(u)du. 

\U0 I      t/a/2 

Let T be taken between 0 and a/2.    Then, we obtain after some 

simplification, 

(13)    |*M"2/   [2c - rCDK(u)du|f(y)dy| <    P    KiuUu+UcJ1  £{y)dr> 

or 

(14) |XM-2c|<   r* K(u)du ♦ ÖcJ"   f(y)dy ♦ J'   K(u)du. 

It remains to choose Y advantageously and estimate j    f(y)dy. 

have for 0 < y < a/2, using the monotonic character of fix), 

(15) 7 " </* * f(x)dx Z-S* 2f(x)clX - f(y)^ " ^  ' 

and thus f(y) < l/(a - 2y).    Hence 

We 
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(It)     f  r(y)dy < Y/(a - 2Y). 

If Y —> a, Y/a —>- 0 as a —> *, we aee that A» —> 2c. Choosing 

K(u)dut we obtain a best possible error 

term. For example, if K(x) ■ e  , we obtain in this manner, as 

®» 

(17)     IXM-2cI.0(^IS3). 

which is inferior to the result stated in Theorem 1. 

§4.    An iipproximation Method for Small a. 

Referring to (5)  of   §2, we see that it is possible to improve 

our estimates for   Am, by choosing in place of f * g ■  1, functions 

which more nearly represent fy(x).     Since we know the  general form 

of f]yr(x) from Theorem 2,  it would seem that two classes of functions 

which might yield good results are given by 

(1) f(x)  -  1  ♦ cx(a - x), c > 0, 

and 

(2) fix)  •  1, ü<x<b<f, 

■  c, b < x < a —b, 

-1, a-b<x<a, c>1. 
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If we are concerned with K(x)   ■ e      ,  in each of these cases 

the numerical work will not be too complicated,  since the integrals 

that occur can be evaluated in terms of tabulated functions. 

For a general K(x), the upper limit can be evaluated in terms 

of   j    K(y)dy,  if we use the second class of functions, the step- 

functions.    These  constitute a 2-parameter family with b and c free 

to be varied. 
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