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ON THE INTEGutaL mUATION Af(x) -(/L e (x-y) f(y)dy

kichard Bellman and ltichard Latter

§1. Introduction.

we wish to consider briefly the integral equation

a
(1) Af(x) = L/; K(x = y)f(y)dy, a>o0,

which occurs in connection with various problems of probability
theory and mathematical physics. Unless K(x) is a function of
particularly simple type, such as & polynomial or sum of
exponentials, the problem of obtaining an exact solution of (1)
and of determining the characteristic values seems exceedingly
difficult. In the present note, we discuss the behavior of the
largest characteristic value, '\M' as a —> o, under certain
assumptions concerning K(x), and present a method for obtaining
Alehen a is not large.

Cur first result is

Theorem 1. I

(2) (a) K(x) is non-negative, even and monotone

decreasing for U < x <,

(b) ¢ -(jzrxix)dx <o,

then as a — w, XM —> 2c.
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More precisely, for all a > O,
a/2 a a
(3) 2 K(x)dx > A, > 2f K(x)dx -gf xK(x)dx.
L/; =~ 'k 0 & Jo

We give two proofs of the result that )\M —> 2¢, the first
depending upon veriational principles and the second upon an

important property of the characteristic function associated with

Ay

82. First proof.
We employ the following two lemmas, the first of which is

well-known:

Lemma 1. .
a e
K(x = y)f(x)f(y)dx d
(1) XM'Max fOfQ (: y)f(x)f(y)dx dy
f Jo £f(x)ax

Lemma 2. If K(x, y) 20in0d <x, y < a, and Ay denotes as above

the largest characteristic root of K(x, y), then

8 '.8
[ Kix, y) gly)dy [y Kix, ylgly)dy
0 ’ 0
2
) e gix) S Ay Sestx g(x]

Proof: As is known, the characteristic function f(x) associated with
)‘H is positive, by vi~tue of the non—negativity of K(x, y). Let

g(x) be a positive function greater than or equal to one. From




a
(3) Mg(x) = [ Kix, y)f(ylay,

we obtain

4 a a a
| (4) A S s - f (fo K(x, y)g(y)dy)ﬂy)dy

L5

_ fa (_foak(x, y)g(Y)dy)
0

Z(y7 f(y)glyldy,

whence (2) follows immediately.

That the two sides of the inequality in (2) are actually equal
and equal to Ay i3 a result of Bohnenblust. Extensions cf this
result will be found in a paper, soon to appear, by Bohnenblust and
Karlin [2], and applications of this method will be found in a paper
by Bellman and Harris, [1].

Lemma 1 contuins the essence of the Rayleigh—Ritz method, and
furnishes lower bounds for )\M. Lemmu 2, which is also based upon
variational principles, furnishes upper and lower bounds. Combining
the two, we obtain

a

N
Jy Klx—ylely)dy
(5) Igf JHax SET > Ay
a pa a
/; £ Kix=y)f(x)f(y)dxdy ,fo Kix-y)gly)dy
= [lax a > Sup Min €2
f J £° (x)dx g21 O=x<a ety

0




P-173

The simplest possible choices of f(x) and g(x), f =g =1,
yield (3} of §1. It is possible that these results may be further
refined by a cleverer choice of f(x) and g{x). However, the
calculations rapidly become complicated.

Setting f = 1, we have

)Jg[ﬁ)a K(x-y)dy]dx
M= a

(6) A

> %J;a [J;xx(u)du ¢L/‘;a_xl((u)du:]dx - %/;a[/;xl((u)dqux.

Integration by parts yields

a a
(7 > 2 K(u)du - 2 K(u)du.
) XM- u)du J; uK(u)du

Setting g = 1, we have

a
) ugﬁgﬁ (x = yldy 2 Ay

Since K is even and monotone decreasing, it is easily seen that the

maximum occurs at x = a/2. Thus,

a a/2
(9) Jo KB - ey =2 [T Kiney 2 dy

a
If f:l((x)dx < o, it follows readily t.hat.J(‘) xK(x)dx = ofa) -

as 8 —> o, and thus that AM ——> ZJ‘: K(u)du as a —> .
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The bounds for )\M will only be narrow for fairly large a,
the magnitude depending upon K(x). Taking the interesting case

2
K(x) = e X , we obtain

.a2

a/2 2 a 2
—X - _l e
(10) 2‘/; @ de)M22(/;e dx = ¢ ¢ &=—,

which yields the results

(11) «843

(A%

Au(2) /a/m 2 2713
995 > Ay') /oM > LTU9

2999 2 Ay(10) /4/7 > .899

¥e see that even for small a, (10) yields a rough idea of the true

value of ’\M'

§3. Second Proof.
The second method of proof yields the following useful result:

Theorem 2. If K(x) is non—negative, even und monotone decreasing

for U < x < w, the characteristic function fy(x) associated with

Ay» Which we normalize by the recuirement J'Oa fy{x)dx = 1, possesses

the following properties:

(1) (a) fM(x) = fM(a - x),

(b) fM(x) is monotone increasing in O < x _<_% .
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Proof: We require the following two lemmas, the first of which

is a well—known result in the theory of integral equations.

Lemma 3. Let K(x, y) be a continuous symmetric function defined
oyer the square 0 < x, y < &, and g(x) be continucus over 0 < x < a
and not identically zero. Then, if we define

a
1 Tg = Kix, dy,
(1) g J:) (x, ylely)dy .
the limit
(2) 1lim 3‘%‘ - gd(x)
n—~>o ]u

exists and is a characteristic function of K(x, y) associated with
Ay

Lemma 4. If f(x) has the following properties:

(3) (a) f(x) = fla - x)

(b)  £x)20 for 0Osxs¥,
then
a
(4) f - J’O K(x - y)£(y)dy
possesses the same properties, provided that K(x) is even and monotone

decreasing in the interval [0, a].
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Proof of Lemma 4L: We have
a/2
(5) glx) = 1 = z(/; [kix - y) + K(a — x - y)]£(y)dy,
whence
(6) g'(x) = 2]8/?[K'(x -y) - K'(a = x - y)]Jf(y)dy.
0

Integration by parts yields

a/2
(7)  g'(x) = 2£(0) [K(x) — K(a=x)] + zfo [K(x-y) —K(a=x—y)]£(y)dy.

If0<x,y<af/2, we have x <a-x, |x-y]<a-x-y, and
consequently K(x) > K(a — x), K(x — y) > K(a = x = y). Therefore
g'(x) > 0, with equality only at x = a/2.

#e now combine Lemmas 3 and 4 to prove Theorem 2. Let fo = 1

und define

a
(8) £ 4 (x) = fo K(x - y)f (y)dy.

From Lemma <, it follows that each fn(x) possesses properties 3a and

3b since fg does trivially. Lemma 3 shows that

(9) f(x) = ngmm £.(x)/ Aﬁ

is a characteristic function of K(x — y) associated with AM' It
follows from Lemma 4 that g(x) possesses properties 1a and 1b,
The monotonicity property of f(x) will play an important role

in our second proof of Theorem 1. Let us normalize our solution,




which we know is positive, by the condition

(10) (/:)' £(x)dx = 1 .

Integrating both sides of (1) of §1 between O and & we obtain

a a
(11) ,\“ - fo l;/; K(x - y)def(y)dy
a/2 y a—y
- ZJ;) [J; K(u)du *J; K(u)du]f(y)dy.

In [0, {l, we have

‘/,a-'y K(u)du - ¢
0

Let Y be taken between O and a/2. Then, we obtain after some

®
< K(u)du.

12
(12) o2

simplification,

(13) IXM- ZJ;a{Zc —Lmk(u)du]f(y)dyl < Jr:/ozl((u)du *LcJ;!f(Y)dy.

or
@® ] Y , @O
(14) “N o 2c| < f‘/zl\(u)du + BcJO f(y)dy +J; K(u)du.

\J

Y
It remains to choose Y advantageously und est.imatefo f(y)dy. We

have for O < y < a/2, using the monotonic charucter of f(x),

2
(15) 3, fixex _>_,f;/ fx)dx > £(y)(§ - y) ,

and thus f(y) < 1/(a — 2y). Hence
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Y
(10) J”U £ly)dy < Y/(a — 2Y),

IfY—>a, Y/a —> 0 as a —> a, we see that )M —> 2c¢. Choosing
Y so that 8cY/(a — 2Y) -‘jg?K(u)du, we obtain a best possible error

ﬂa

term. For example, if K(x) = e © , we obtain in this manner, as

a —>w,

(17) | hy — 2] =0 (HE2),

which is inferior to the result stated in Theorem 1.

gl.. An approximation Method for Small a.

Referring to (5) of §2, we see that it is possible to improvs
our estimates for AM by choosing in place of f = g = 1, functions
which more nearly represent fm(x). Since we know the general form
of fy(x) from Theorem 2, it would seem that two classes of functions

wvhich might yield good results are given by

(1) f(x) = 1 + ex(a - x), c>0,
end
(2) f{x) = 1, USxsb<3g,

= ¢, b<x<a-b,
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2
If we are concerned with K(x) = ¢ * , in each of these cases

the numerical work will not be too complicated, since the integrals
that occur can be evaluatea in terms of tabulated functions.

For a general K(x), the upper limit can be evaluated in terms
of f: K(y)dy, if we use the second class of functions, the step—
functions. These constitute a 2-parameter family with b and ¢ free

to be varied.
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