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ABSTRACT

The stress intensity factors for single edge cracks in rectangular
tensile sheet are studied by using a camplex variable form of analysis.
The results for deep cracks show a& considerable increase in the intensity
factors as campared to the case of symmetric edge cracks. Accurate
numerical values of the stress intensity factors for the appropriate range
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INTRODUCT 1 ON

There has been considerable interest recently in obtaining accurate
numerical values for the stress intensity factors in the vicinity of
crack tips in tensile sheet. Previous to several recent solutions,
investigators in the field of fracture mechanics relied considerably on
Irvin's! approximati.n derived fram Westergaard's? soluticn for a series
of equally spaced colinear crscks in an infinite sheet.

Recently, one of the auilhors has succeeded 374 4 obtaining accurate
results for the case of sympetric edge cracks in rectangular tensile sheet
by using a complex variable approach with a complex mapping function to
describe the gecmetry. The flexibility of the approach was illustrated
by the relative simplicity in which the length/width ratio parameter for
f#inite rectangular sheet was included in the analysis. The succees of the
analysis relied heavily on an effective plan invented for the truncatlon
of the series representetion of the exact mapping function.

In this report, the technique is applied to the problem of a single
edge crack in rectanguler tensile sheet. The analysis is complicated
somewhat by & certain loss of mathematical symmetry as -~ompared with the
previous work. For deep cracks the numerical results are ccnsiderably
different from the previous cases thereby indicating the sensitivity of
the stress intensity factor to bending.

INITIAL FORMULATION
The rectangular sheet under tension weakened by a single edge crack
(Figure 1) will be considered as lying in the complex Z-plane, 2 = x + 1y,
with the center of the sheet described by Z = Zo where Zo is real.
The complex variable methods of Muskhe 1ishvi1li® depend oun the repre-
sentation of the well-known Airy stress function U(x,y) in terms of two
analytic tunctions of the complex variable 2 namely, ®(Z) and Y(Z), vhere

U(x,y) = Re(z%(z)+[¥(z)az]. ()




To facilitate the consideration of boundary conditions, an auxiliary
complex plane, the {-plane, is introduced and a functional c#lationship

z = w(() (2)

is “~und such that the unit circle, { = o = eie, and its interic. in the
{-p.ane map into the boundary and interior, respectively, of the region
in Figure 1. The mapping function w({) is analytic interior to the unit
circle but contains singilarities necessary to the description of corner
points on the unit circle itself.

The stress functions 9(2) and ¥(Z) can be considered as function:.
of (. New notsiion can be minimized by designating ¢(z) = 9[e(¢)] as (C),
etc., which leads to such definitions as ¢’(z) = 9'(()/w’(€), etc. (Primes
are used to denote differentiation.) Thus, the stresses and displacements

in rectsngular coordinates can be written as
o, + 0 =} Re[9(C)/0’(C)] , (3)

9 =9 v =2 (W] [7(c)/w’(C)] + ¥ (0)}/w' (k) (4)

2p (utiv) = W(C) - ofC) @ (CY/w{CT - ¥(C) (s)

vhere i, T are constants depending on the material and bars denote complex
conjugates.

It 18 the primary concern of this paper to determine the stress
intensity factor at the crack tip. The stress intensity factor K is
defined by

Opax = % /é— (cos t/2) (. (ein t/2)(sin 3t/2)] (6)

where (r,t) are polar coordinates defined with the origin at the crack tip
It can be gshown® that in terms of the present formulation,




K =29'(1)/ /(1) . (1)

Thus, the msjor effort will involve determining the stress function @(€)
and finding the numerical values of ®'(1).

THE MAPPING FUNCTION
By application of the Schwartz -Christoffel transformation, it was
found that the required mapping function corresponds to an appropriate

branch of

z - o) - [F (£-1) ag )]
/@ -2Ccos BH1)( (2 -2¢cos a+1)(L°*1)

In Equat! . 8, 0 <p <ac< f/2, where a and f can be varied to obtain
desired satios yo/xO and L/xo. The choice of branch was made by defining
w1) = Z, - x, *L, thus

ia i
oe'®) =z - x; - 1y, w(e5)=zo-xo

“(eiﬂ/2) 7t x

5 iyo, etc.

By considering the mapping function on the unit circle, the length
parameters can be expressed in terms of standard elliptic integrals of the
first kind, F(®,K) [Reference 7], as follows:

X, = %— {cos B (1+cos a)]-l/e F(n/z, X ), (9)
Yo {cos B(l+cus 0)1-1/2 F(1/2, ke ), (10)
L = [cos p (1+cos 0)1-1/2 F(o,, k) » (11)
vwhere
5




? = atn™L [(1+coe a)(1-cos B8)/(1-cos a)(1+cos B)]l/e:
K, = [cos a (1+cos B)/cos B (1l+cos a)]l/e,

((cos B-cos a)/cos B(1+cos a)]l/a.

K,

It 1s convenient to define 9, by the relation

Q’. = Bin-lkx

Then it follows ‘mmediately that

kg = cos G

The length/width ratic of the plate now can be written as

yo/xo = 2 P(sin n/2) . (12)
F(cos ¥, n/2

It 18 clear from (12) that a fixed yo/xo rat‘o determines % and thus a
fixed relation between a and B. This camputation can be carried out by
simply interpolating fram existing tables.” Variation of 8, say, then
permits a study of various 1./;:o ratios.

The mapping function has six branch points falling on the unit circle
(Pigure 2). 1In addition to these corner -describir g singularities, the
crack tip is described by the root of w'(g) = O which occurs at o = 1.

The mapping function can be expressed in series form ae

z=w(C)=n;Anc“ (13)




where the mapping coefficients are real. Although the %'s can be related
to integrals involving the elliptic functions, it is simpler computationally

to calculate them from easily derived recursive formilae .

It was found that retenticn of the exact mapping function and power
series reopresentation of the stress functions leads to the necessity of
solving an infinite system of linear equations. The truncation procedure
deve10ped3 was used in order to achieve an effective rate of convergence.

In general, the procedure involves the use of selected truncations of
the series (13) preserving the properties of the first and second deriv-
atives, o' ({) and ©"({), at the crack tip, namely at ¢=1.

In particular, we define

m+2
o (€) = n§1 ., ¢ (1%)
where
¢ c A 0=l 2, ceeeen. M (15)
1 T R, $me2 T s
and
(m+2)s = Q - Sm + aT
(16)
(mel)R = Q + 5 - (m+1) T,
where m
T = T ne , S = L n(n-1)ce
m n:l n m =l n
. 1
Q= w (1) = (1/2) (

v2{1<os g)(1—<os a) )-

With this definition of un(C), satisfaction of w,r'(l) = 0 and w'T(l) =Q

ig assured. The choice of r is made from an examination of the partial sums




derived from the exact mapping function and selecting those values of m

for which w'\1) ~ 0 and w'(1) ~ q simuiianecusly. Thus, the necessary
corrections of the geametry in the vicinity of the crack tip can be made
with 1little disturbance of the over-all configuration.

DETERMINATION OF THE STRESS FUNCTIONS

The loading conditions in Figure 1 can be expressed conveniently in
terms of the force resultant. Considering an arc of the material wi“h
element dS, we denote the horizontal and vertical forces as XdS and Yds,
respectively. If the arc is taken as the boundary of Figure 1, then S can
be considered as a function of o. The boundary condition can be written as

®(0) + w(0) ¢’(0)/w'(a) + ¥(o) = [B(x+1¥)as = g(o). (17)

The solution then requires the determination of the functions
#(C) ana ¥(C) which are analytic for | {|<1 and satisfy the loading
conditions (Equation 17).

The problem will be considered in terms of polynomial approximations
of the exact geometry as indicated by the truncation procedure of the
previous paragraph.

It was shown in Reference 3 that the stress funct'ons @({), Y({) have
the following general structures:

9(€) = (T/4) o(C) + @, (€) (18)
Y(C) = (1/2) w(g) + ¥, (€) (19)
where
®© m+2
P () =T [n5 &+ T anc“]
AGE YISIR NS
and

(1) % (1)

ST )
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With the above forms of ®((), ¥({), the bwndary condition (17) may be

written as follows:

%, (o) + w{o) ®'(0) / w' () + ¥,(0) = g(0) - 7/2[w(0)+u(0)] = G(o),
(20)
If G(o) is expanded in the Fourier serles,

¢(o) = K)_: ¢y o5, (21)

then,

C,- gT [{w(eiB)+w(eIB) Mﬁ I-ﬁ( £ A, cos ne)(cos Ke-1 sin KB)dB]

CK:C'K fOX'K=,2-....m.
Insertion of the appropriate series expansions into Equation 20 and equating
coefficients of equal powers of o (from the positive powers), one finds the

system for determination of an to be

m+3-p
)

+C e a ‘n+p 1

n=1 n(.n n+p-l n nt+p-l =0

(22)

P=1,2, . . .. . . m2.

The calculation of the stress intensity factor K requires the determination
of ®’(1) as indicated in Equation 7

From Equation 18 it can be seen tiai

®’(1) =T[ Lonc R nan]

n=1
(23)
=T [z& + z;]

I, can be determined directly from the Faurler coefficients of the
applied load. I, can be calculated from the solution of the system of
Equations 22.



The analysis was carried aut numerically for the two cages yo/xo = 1.0
and yo/xo = 3.06. In general, three values of m were selected to study the
convergence of L, and Zy. The range of m considered fell in the intervals
0<m < 50, 5 < m, < 100, 100 < my < 150. A study of the convergence of
L, and I, 1led to the assertion that the calculated values of ¢'(1)/T are
rumerically correct to within 2 percent.

The key data are presented in Table I below:

TABLE I
EVALUATION OF K/T

a 8 X, Yo/%, Uao (1) K/T xmA
0.3706| 0.1600] 1.150 0.997 0.144 1.19 0.69 1.19
0.4L4s| 0.3000[ 1.178 0.997 0.254 1.33 1.15 1.k45
0.7573] 0.7000{ 1.381 0.997 0.487 1.70 2.88 2.22
1.0279| 1.0000| 1.754 0.997 0.621 2.49 5.75 3.17
1.2151] 1.2000] 2.271 0.997 0.711 3.74 10.11 b.15

1.5095{ 0.5000| 0.841 3.056 0.170 .331 0.64 1.18
1.5255| 1.0000| 1.080 3.056 0.378 .60k 1.65 1.71
1 .95k 2.8} 2.22
1

A5k | 6.88 | 3.44

1.5368] 1.2000| 1.326 3.05 | 0.490
1.5525( 1.4000| 1.951 3.05 | 0.647 |

n O o ©

The final column }(/KA 1s presented for the sake of comparison with
Irvin's approximation for symmetric edge cracks. In the present notation,

Lx 1/2
KA/T = "—tan Tx . (24)
o

The ratio K/KA as a function of L/2xO 1s shown in Figure 3. 1Its
departure from unity is dominantly due to the bending effect of the applied
load.

10




DISCUsSSION

For very short crack lengths one would expect the solution to behave
as if the plate were semi-infinite in extent. This is consistent with the
numerical result l(/l(.A < 1.13 a8 L - 0 in Figure 3.

Comparison of the results for yo/xo = 1.00 and yo/x0 = 3.06 indicates
agreement for very short and fairly long crack depths. The variation in
the interval 0.2 < L/2x0 < 0.5 ie due to the difference in length/vidth
ratios. It 1s reasonable to expect that the results would not change for

larger y‘)/xO ratios.
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