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ABSTRACT 

The stress intensity factors for single edge cracks in rectangular 

tensile sheet are studied by using a complex variable form of analysis. 

The results for deep cracks show a considerable Increase in the intensity 

factors as compared to the case of symmetric edge cracks.    Accurate 

numerical values of the stress intensity factors for the appropriate range 

of parameters are included. 
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INTRODUCTION 

There has been considerable  intc-est recently  in obtaining accurate 

numerical values for the Btress inteneity factors in the  vicinity of 

crack tips in tensile  sheet.    Previous to several recent  solutions, 

investigators In the field of fracture mechanics relied considerably on 

Irwln's1  approximation derived frcm Westergaard'e3  solution for a series 

of equally spaced collnear cre'.ks  in an infinite sheet. 

Recently,  one of the auUiors has succeeded 3'4   ir  obtaining accurate 

results for the case of Symmetrie edge cracks in rectangilar tensile sheet 

by using a complex variable approach with a complex mapping function to 

describe the geanetry.    The flexibility of the approach was llluBtrated 

by the relative simplicity in which the  length/width ratio parameter for 

finite rectan»ilar sheet was included In the analysis.    The  success of the 

analysis relied heavily on an effective plan Invented for the truncation 

of the  series representation of the exact mapping function . 

In this report,  the technique  is applied to the problem of a single 

edge crack in rectangulex tensile  sheet.    The analysis is complicated 

somewhat by a certain  loss of mathematical symmetry as   -ompared with the 

previous work.    For deep cracks the numerical results are  considerably 

different from the previous cases thereby indicating the  jensitlvity of 

the stress intensity factor to bending. 

INITIAL FORMULATION 

The rectangular sheet under tension weakened by a single edge crack 

(Flgire  l) will be considered as  lying in the complex Z-plane, Z = x * ly, 

with the center of the  sheet described by Z = Zo where Zo is real. 

The complex variable methods of Muskhellshvlli8 depend on the repre- 

sentation of the well-known Airy stress function U(x,y) in terms of two 

analytic lunctlons of the complex variable    Z    namely,  tp(z) and t(z), where 

U(x,y) ^ Re[Z<p(z)+fZY(z)dZ]. (-) 



To facilitate the consideration of boundary conditions,  an auxiliary 

complex plane,  the  C-plane, is introduced and a functional relationship 

Z - u)(C) (2) 

i 0 is '-und such that the unit circle,   C = o = e    ,  and its  interlc- in the 

C-p^me map into the boundary and Interior,   respectively,  of the region 

in Fl»ire 1.  The mapping function    u)(C) is analytic interior to the unit 

circle but contains singularities necessary to the description of corner 

points on the unit circle Itself. 

The stress functions <p(z) and t(z) can be considered as function' 

of C.    New notation can be minimized by desipiating cp(z)  s ?[«)(£)] as (p(C)i 

etc., which leads to such definitions as 9'(z) = tp'CO/ui^C), etc.     (Primes 

are used to denote differentiation.)    Thus,   the stresses and displacements 

In rectangular coordinates can be written as 

ay +  0x = 1« Re(V(C)/w'(C)]  , (3) 

0y ■ 0x + ^xy = 2 ^ ^'(OVCC)]' * ^(OV^CO {h) 

2u (u+iv) = MC) - u<o VW/^W~- YTCT (5.) 

where \i,  T] are constants depending on the material and bars denote complex 

conjugates• 

It is the primary concern of this paper to determine the stress 

intensity factor at the crack tip. The stress Intensity factor K is 

defined by 

"max  = 0v *   ~   (COB t/2)  '- ^ln t/2)(fiin  3t/2)] (6) ""^        '        /5r 

where (r,t) are poleu- coordinates defined with the origin at the crack tip 

It can be shown8  that in terms  of the  present fonnulation, 



K = 2 (P'd)//TO   • W 

Thus,  the major effort will involve determining the stress function cp(C) 

and finding the numerical values of <P (l). 

THE MAPPING FUNCTION 

By appUcation of the Schwartz-Christoffel transformation, it was 

found that the required mapping function corresponds to an appropriate 

branch of 

z-*(c) = rc      fc-1* dc (8) 
0
   /(c'-sccos ßnjcc'-sccos änKF*i) 

In Equate   i. 8,  0 < ß < a < U/2,   where a and ß can be varied to obtain 

desired latios yo/
x

0 
and 

ii)(l)  = Z     - x     + L,   thus 

desired iatios y /x    and L/X  .    The choice of branch was made by defining 

«eia) ^ Zo - xo  - iyo, *(elß) = Z0  ' x0 

^e1"/2)  = Z0 ^ x0  - iyo, etc. 

By considering the mapping function on the unit circle,  the length 

parameters can be expressed in terms of standard elliptic integrals of the 

first kind, F(«P,K) [Seferenee 7],  as follows: 

xo = i- [cos p  (l+cos a)Tl/2 F(u/2,  kl ), (9) 

yo      [cos ß(l+cüS a)rl/2 F(n/2,  kt), (10) 

L = [cos ß  (l+cos a)]'1'2 F^, kj , (ll) 

where 



q), - aln"1 [(l+cos a)(l-coB p)/(l-cos aXl+cos ß)l1/2, 

k! ' [COB a (l+cos P)/COB ß (l+coB a)]1//2, 

k,  = [(COB P-COB a)/coB ß(l-h:oB a)]1'2. 

It 1B convenient to define 9, by the relation 

9,  « Bln"^   . 

Then It followB «jnnedlately that 

kf  • COB %   . 

The length/width ratio of the plate now can be written BB 

F(eo8 <pj; 11/2) K     ' 
' o' 

It IB clear fro» (12) that a fixed yo/xo raUo detemdnes <P, and thuB a 

fixed relation between a and ß.    -mis ccnputatlon can be carried out by 

Blaply interpolating fron exlatlng tablea.7    Variation of ß,  Bay, then 
pendtB a study of v&rlouB L/x    ratloa. 

The mapping function has BIX branch polnta falling on the unit circle 

(Figare 2).    In addition to these corner-deBcriblrg sineilarltieB, the 

crack tip IB described by the root of «/(o) = o which occurs at c = 1. 

The mapping function can be expressed in series form as 

^^'JUC1 (13) 



where  the mapping coefficientB are real.    Althcugb the A^B can be related 

to integrals involving the elliptic functions,  it is simpler coBuutationally 

to calculate them frcn easily derived recursive f onmlae. 

It was found that retenticn of the exact mapping function and power 

series representation of the  stress functions  leads to the necessity of 

solving an infinite system of linear equations.    The truncation procedure 

developed3 was used in order to achieve an effective rate of convergence. 

In general, the procedure involves the use of selected truncations of 

the  series  (13) preserving the properties of the first and second deriv- 

atives,  ID'(C) and (D'(C),  at the crack tip,  namely at  C =  1- 

In particular,  we define 

VO^Vn^ (1U) 1
 n=l 

where 

«n  = V  n = 1'  2'    B; (15) 

Vi = R'    V2 = s 

and 

(m+2)S = Q  - S     + 3.T 
(16) 

(m+l)R =   -Q + Sm   - (m+1) T^ 

where 

T    =    T.   n t    ,       Sm =    E   n(n-l) c 
m      n=i        n m      n=l n 

Q - a.'(l)  =  (1/2) (     = 1   ■ ■ .)• H v /2(l-co8 ß)(l-cos a) 

With this definition of ^(C),  satisfaction of ^'(l) - 0 and uj'T(l)"Q 

is assured.    The choice of a is made from an examination of the partial sums 



derived from the exact mapping function and selecting those values of m 

for which ui'vl) «= 0 and u)*(l) ^ q ßimulLaneous^r.    Thus,  the necessary 

corrections of the gecoetry in the vicinity of the crack tip can be made 

with little disturbance of the ove'- -all configuration. 

DETERMINATION OF THE STRESS FUNCTIONS 

The  loading conditions in Figure  1 can be expressed conveniently in 

terms of the force resultant.    Considering an arc of the material wi-th 

element dS,  we denote the horizontal and vertical forces as XdS and YdS, 

respectively.    If the arc is taken as the boundary of Figure 1, then S can 

be considered as a function of  a.    The boundary condition can be written as 

cp(o)  + a,(a) cp'(a)/u/(o)  + Y(a) = f (x+lY)dS  = g(a). (17) 

The solution then requires the determination of the functions 

9(C) and t(C) which are analytic for | Ci<1 and satisfy the loading 

conditions (Equation 17). 

The problem will be considered in terms of polynomial approximations 

of the exact geometry as Indicated by the truncation procedure of the 

previous paragraph. 

It was shown in Reference 3 that the stress functions cp(C), fCC) have 

the following general structures: 

9(0 = (TA) 0,(0 +9,(0 (18) 

no = (T/2) u,(o + ^(0 (19) 

where 
P « n      ni+2 T 

Vi(C) = T     r   c Cn +   z  a Cn 

[n^l    n n=l    «     J 

^(c) =TfA/(c-i) + En &:n] 
U n=0    n    J 

and 
-^(l) ^'(1) 

~^(i)  



With the above  forms of cp(C),   t(Ci the boundary condition   (ij) may be 

written as follows: 

cpjo)  + u)(o) ^'(o) / 0/(0)  + Y^o) = g(a)  - T/2[u)(a)+u)(o)] = G(o), 

(20) 

If G(CJ) is expanded in the Fcurier  series, 

G(o)  =    Z       n    aK, (21) 
K=-oo      K 

then, 

CK= h [Ke^h^l  e-^ - J.^ ["g A, cos nej(coB KG-l  sin Ke)d^ 

CK = C_K      for K  = 1, 2, »  . 

Insertion of the appropriate  series expansions Into Equation 20 and equating 

coefficiente of equal powers  of a (from the positive powers), one finds  the 

system for determination of a    to be 

n = l       v n n+p-1        n    n+p-1        n    n+p-1' ' i+p-1        n    n+p-1        n    n+p- 

(22) 
p =  1,  2, , m+2. 

The calculation of the stress intensity factor K requires  the determination 

of 9'(l)  as indicated in Equation 7 

From Equation  l8  it can be seen  tuaL 

cp'(l)   = T ? m+2 1 
„?,  n C    +    E    n a 
n-1        n       n=i nj 

(23) 
=T [Zj   +5^1   • 

Ej   can be  determined directly  from the Fourier  coefficients of the 

applied   load.     5^  can be  calculated  from the  solution of the system of 

Equations   22. 



The analysis was carried out numerically for the two cases y /x    =1.0 
&nd yo/xo = 3-06.    Ir, general, three values of m were selected to study the 

convergence of ^ and i; .    The range of m considered fell in the Intervals 

0 < mi  < 50,   50 < m, < 100,   100 < m,  < 150.    A study of the convergence  of 

Ej  and T^  led to the assertion that the calculated values of <p'(l)/T are 

numerically correct to within  2 percent. 

The key data axe presented in Table I below: 

TABLE I 

EVALUATI0K OF KZ! 

a ß xo Vxo L/2xo <P'(1)T K/T K/KA 

0.3706 0.1600 1.150 0.997 0.1^ 1-19 0.69 1-19 
0.W*1»5 0.3000 1.178 0.997 0.25U 1-33 1.15 1.1*5 
0.7573 0.7000 I.38I 0.997 O.U87 1.70 2.88 2.22 
1.0279 1.0000 1-7^ 0.997 0.621 2.1*9 5-75 3.17 
l^lSl 1.2000 2.271 0.997 0.711 3-7^ 10.11 1*.16 

1.5095 0.5000 0.8U1 3-056 0.170 0-331 0.61* 1.18 
1-5255 1.0000 1.080 3.056 0.378 0.601* I.65 1-71 
1.5368 1.2000 1.326 3.056 0.1*90 0.95^ 2.81* 2.22 
1-5525 1.U000 1.951 3.056 0.61*7 2.I5I* 6.88 3.1*1* 

The final column K/KA is presented for the sake of comparison with 

Irwin's  approximation for symmetric edge cracks.    In the present notation. 

KA/T \> 
TTL tan i  
l*x 

1/2 

(21*) 

The ratio K/KA as a function of L/2xo IS  shown in Figure 3.    Its 

departure from unity is danlnantly  due  to the bending effect of the applied 

load. 
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DISCUSSION 

For very short crack lengths one would expect the eolution to behave 

as  if the plate were semi-Infinite In extent.    This  is consistent with the 

numerical result K/K.. - 1.13 as  L - 0 in Figure  3. 
A 

Comparison of the results  for y /x    «=1.00 and yj*0 =  3-06 indicates 

agreement for very short and fairly long crack depths.    The  variation in 

the  interval 0.2 < L/2x    < 0.^  it due to the  difference in length/width 

ratios.    It 1B reasonable to expect that the  results would not change for 

larger y ,/x    ratios. 
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