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NOTES  ON  THE  C  LLTIUN  OK   LI....a.  Si'oV.j:,:   I'VüLVlNG  i.*.^^UaLITIES 

George  -..   orown 

L b.x. 

Consiaer the  problem  of mininizing a  linear  function 

subject  to the  conditions 

4-AijX .  > ci       i   -  1,   2,   ..., 

(1) 

ni' 

Xj^O I      '^ 

Notice at the   outset ti.at  equalities  may be  admitted  in   this  form   by 

writing each  equality a;., two  inequalities -..ith reversal  of signs. 

Furthermore,   tne   problem may  be  reformulated so tnat  only  inequalities 

of the form x. > 0  arc  present,   by defining appropriate  new variables. 

Thus it  is  evi lent   that the  above form ii-   simply  one  standard  version 

of a general  problem  involving both  inequalities  and  equalities. 

In  principle the  solution   of  the   problem  stated  is trivial. 

Observe tliat the  set  of inequalities   viefines  in m^-space  a  coriVex 

polyhedron   (possibly enpty)  with  at  most m,   ♦  m,,  faces   of dimension 

m^ - 1,   and that  the minimum  problem  is  thnt  of  finding  an extreme 

point  of the  polyhedron  in some   lirection.     In  general   the extremum 

will be  taken  on c.t   a  vertex,   so the   problem  is  that  of  evaluating 

]Lb.x,  at  the   vertices and   choosing that vertex   which  yields the 

smallest  value,     n   vt.^rtex  Is  of  course  a  point  ^t  which  a  subsystem 

(of rank ra^;   of  the   ine ;uilities   is   satisfied  exactly  -s  equalities, 

with the   remaining  inequalities   satisfied.     In   principle,  then,   one 

could  invert  -«11   subsystems  of  rank m^,   throwing  out   tnose  w.-oae 

rolutions  fail  to  satisfy tne   remaining  inequalities,   and  tuen evaluate 

21b.x..     It   i;    clear that  thir   is  rot   J   nractical   method   beyond  the 
j   j  

T1 )   T^.eoret i cal   back.'rounl  of this  paper   Fs  based   on  work   ol   ii...eyl, 
v.Neaiann,   Viile,   Tucker,   G.Daiit/.ig,    m.i   others,   on   convex   polyhe ir-'i 
inJ   on  theory  of  ^ames. 



smallest values of m, and m^. The practical .lifficuliies stem from 

the fact that the convex polyhedron is specified by its faces, whereas 

the vertices are at the root of the problem. 

In passing, it should bo noted trat the problem stated above 

has a very simple dual problem, obtained by transposing the matrix n, 

and making a few other obvious changes.  The dual is the problem of 

maxim'zing 2^c.y.   subject to 

i " 1 , 2 $   • • • i ^i 

j ■ 1 , 2, ,. ., mj. 

The  two dual  problems have the property that  if either  problem has  a 

solution so  has the  other, and the minimum value in one  is the maximum 

value  in the other.     In  certain economic applications the  solutions  of 

both  problems are required. 

Consider  now the problem of maximizing min2—^A. .  subject 

to ^.  ^0»^-^J   " 1;   i  "  *»  2,   .,,,  m,   and the  dual  problem  of 

minimizing maxS_A. .^.  subject to n   > Ü,2.n.  ■ 1,   j  ■  1,   ..,, md. 

This  problem provides optimum mixed  strategies for  the  zero—sum game 

with matrix A,  where A. . represents   the  payment from player  1  to 

rlayer  2,  if  ; layer  1   plays his  1       strategy ^nd  player 2  plays his 

j       strategy.    The   celebrated : inimax theorem of von Neumann  says 

Max Mil 

that  under the  conditions stated 

The  common value   is   referred  to as  the  value  of  the   samt  and the    £.1 

and [nA   of the   solutions  are the  o; tirnura mixtures for   players  1   and  ^, 

respectively.     As  in   the   first  prot lern  stated in this  paper,    'eon.etrical 

consi ierations  of  convex  boJies   contribute  to uriderstarMing  the  problem, 



and   it  turnr.  out that   in   -eneral   the  problem   is   practically  solved  if 

it  is  known which submatrix of A to invert. 

There  is of  course  an   intimate relation  between the theory 

of "amep   problem «nJ the   problem  first stated,   although they are not 

quite   identical   problems,   since the came  problem «Iways has  a  solution, 

while  the   first   problem aoes  not  necessarily.     Briefly sunmrirized,   the 

f^ame  problem  is   lirectly  a   special case  of the   first  problem,   while  the 

first   nrobler:-   can always  be  embedded in a 2:ame   i rob lern,  whose   solutions 

yield  solutions  to the  original   problem  if   it   has  a   solution.     Thus, 

if  problems  of one type   can  be  solved,   so   can   nroblems  of the   other 

type, 

Virious iterative  methods for  solution   of  one or the  other   of 

these   problems   1. .ve  been   -^iven  by  von Neumann,   Jantzig,  and  others. 

While  some   of  these metho is  may   be  practical  over a   certain  range  of 

problems,   all  of then,  have  an  apparent  aepenaence,   in required  number 

of steps,   of  hifher order than the first  power  of the  linear dimensions 

of the   problem.     For very  larre  matrices not   possessing  simplifying 

special   properties,   such a  dependence  can  : e   a   very  serious   obstacle 

in the  way  of  getting numerical   solutions.     We will  describe  briefly, 

for the  rame  solution,   an   iterative ; chene  which is  quite  different   from 

those  previously suggested,   in that  the  amount  of  calculation  required 

at  each   iterative  step  is   iirectly proportional  to the  linear  dimensions 

of the   uroblem,   so that the method  has,   a  priori,   some  chance  of 

beatinp"  the  hiph order dependence. 

The procedure to be iescribei c .r. . ost easily be comprehendeu 

by considering the :sychology of, let us say, a statistician unfamiliar 

with theory  of   rames.     ..>,ch  z   person,   faced with  repeated  choices  of 

-3- 



play of a   certain ga;ne,  might   reasonably be expected  to  play,   at  each 

opportunity,   that  one of his  strategies  which  is  best  against  past 

history,   that   is,   against  tne mixture  constituted  by his  opponent's 

plays to date.     Such a decision  utilizes  information  of the past  in 

the most  obvious manner.    The   iterative scheme  referred to here  is   tased 

on a  picture  of two   such  statisticians  playing repeatedly together.     For 

calculation  purposes a  slight  moaification  is  introduced which  has  the 

effect  that the two  players  choose alternately,   rather than simultaneou:.y 

Restating the method algebraically,   let  A  be the  game matrix, 

let i   and Jn be   the  n      choices  of  strategy for the two  sides,   let   ^, 

and   >7 *?  be  the  relative    frequencies   of strategies  i   and  J   in 

(ilt  i2,   ...,   i   )   and   (j,,   .i^,   ...,   j   )   respectively,   then  J    minimises 

TZ    £4   A. .  and  i     .   maximizes   Z- A. . n"  ,    This   process  defines  a 

sequence  i,,   J,,   i^,   J^,    ,   once  i,   is  chosen   (perhaps  arbitrarily), 

except for  ; ossible  ambiguities   of the  extrema.     any  convenient  rule 

will do for handling ambiguities.     If V    ■ rain^-fcj   *., ,  and 
"~n J ^1     ij 

V^   • max^-A. . "0 n'    it  is easily  seen  that V    v V ^ V       where V  is  the n        i        ij   (j' ' -n -      -    n, 
value of the  :'ame.     The mixtures |^ " j and I*! . j are mixed  strategies, 

and the  corresponding V    and V    are  the most  favorable  outcomes ensured ' & -n n 
to each  player  if he uses the  corresponding mixture, 

iit  tt.is moment  not much  is   rigorously established about  the 

properties  of  ti is  iteration,   except  that  if it  converges  at all  it 

converges  to a   solution of the game  for  each side.    Of course  it  would 

be  sufficient  if  lim  sup V    r   llm  inf V   .     There   is   con: i lerable  supnort, 

however,   based  on  experience  with  the  method,   and also  on  the   study  of 

a   related  system of  differential  equations,  for tne   conjecture  that 

convergence  is   of the  order of  l/n  and   ioes  :;ot depend  essentially  on 
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the  size  of the  Matrix.     If this in r.o,   it   is  extremely important  for 

the solution of lar^e matrices,  by virtue  of the fact  that each iterative 

steps  requires  only  a  numbt.r of operations  proportional  to the  linear 

size  of the tnatrix.     Convergence of oraer  1/n  is  of  course  painful  if 

high  accuracy ir  needed.     In  such  cases  it  may be  posbible,   nowever,   to 

use  a method like this  to ret  close to the   solution,   finishing with one 

step  of another iteration. 

The accompanying   v;orksheet  shows  25   steps  carried   out  for the 

k *• } matrix 

1 2 3 

1 3 1 .1 1.2 

2 1.3 2 0 

3 0 1 3.1 

4 2 1.5 1.1 

Note  that  eqch line   is  obtained by adding  to the  previous  line,   component 

by  component,   the  corresponding row or  column  of the  matrix,   without 

troublinr  to   livide  by n.     The V    and V    were   calculated at  each  step, ^ -n n r' 
by  division of the extrema  by n, to show the  progress of the  calculation. 

In  case  of  ties  the  lowest  index was taken.     Note  particularly tnat 

V    — V     i "  decreasing  just about like  l/n,   in  spite of the   excursions 
n  ""n 

which V and V make. The initial choice of ii "2 was made deliberately n —n ' 

as  an   unfavorable   choice,   with  respect to minimum guaranteed  payoff. 

It  is  appropriate  to   report  'o this   Symposium that   preliminary 

discussions   with Messrs.     Haar  rind  Ginger of the  staff of the  Harvard 

Computation  Laboratory   indicate  that Mark  III   could   carry  out   1000  of 

these   iterative  lines   for a  40»4U matrix   in   comfortably under  an  hour. 

Of  course  the ■roblem  has  not   been  completely programmed,   but  the  estimate 

is  b' lievei  to bp  conservative. 
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