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NOT&S ON THE C LUTION OF Ll..o.an STOV.L 20 VOLVING Lo UWLITIES

George «. bprown

Consiaer the problem of minimizing a linear function

Z_bjxi subject to the conditions
g (1)

ZA"X'zci i -1' 2, oo 0y m]
20 J =1, 2, see, Mg o

Notice at the outset tl.at equal.ties may Le admitted in tuis form by
writing each equality as two inequalities with reversal of signs.
Furthermore, tuc problem may be reformulated so tnrat only inequalities
of the fom x‘j > 0 are vresent, by defining appropriate new variablec.

Thus it is evi:lent that the above form i¢ simply ovne standard vercion

of a reneral problem involving both inequalities and equalitles.

In rinciple the soluticn of the problem stated is trivial.,

Ubserve that the set of inequalities .Jefines in m,—space a convex
polyhedron (possitly empty) with at most m; + m, faces of dimension
mp, — 1, and that the minimun problem is thit of finding an extreme
point of the polyhedron in some tirection. In general tlie extremunm
will be tiaxen on «t & vertex, so the problem is that of evaluating
ijxj at the vertices and ci.oosing that vertex which yields the
cnallest value. o vertex .s of course « point .t which a subsystem
(of rank m,, of the ine.,uslities ic catisfied exactly o equalities,
with the renaini:.g inequalities catisfied, In nrinciple, then, one
could invert 411 cubsycstems of rank n_, tirowing out tiose w.ouse
colutions fail to cotisfy tie remaining inequulities, wnid tien evaluute

- -

Z:b;x:. I¢ i cleur that thir is rot a4 nractical method Le'ond the
} 1

(17 Tr.eoretical bruck ‘roun: of tiis puver is based on work of li..eyl,
v.ﬁeunan?, Viile, Tucker, G.Dantzig, in! otlerrs, on cornvev polyieirn
nd on theory of vames,



smallest values of m; and n . The practical difficulties stem from
the fact that the convex nolyhedron is specified by its faces, whereas
the vertices are at the root of the problen.

In passing, it sthould be noted that the problem stated above
has a very simple utual prollem, obtained Ly transposing the matrix_n,
and making a few other obvious changes. The duul is the problem of

maxim’ zing Z:ciyi subject to

?yiAiijj 1-1' 2, ...,.m,

Yizo J =1, 2, «oey m,

The two dual problems have the property that if either problem has a
solution so has the other, and the minimum value in one is the maximum

value in the other. In certain ecoromic applications the solutions of

both problems are required.

Consider now the problem of maximizing minEE;EdAij subject
to §i > OvE:éi =1;1=1,2, ..., m and the dualjproblem of
minimizing mixZAiJ)ZJ subject to 7 2 O,Zrb =1, 5 =1, ..., my.
This problem provides optimum mixed strategies for the zero—sum game
with matrix a, where Aij representc the payment from player 1 to
vlayer 2, 1f »layer 1 plays his ith stratery and vlayer 2 plays lLis
jth strategy. The celebrated ' inimax theorem of von Neuwnann says

that under tie conditions stated

Max Minz A = Min MaxZA. s
E’ j ﬁ'i i.j rZ i iJ ,73

The comizon value is referred to a«s the value of tne -amne and the {&ig
and {QJ} of the solutions are the o timum nixtures for players 1 and 2,
respectively. As in the first protlem stated in this puper, -eometrical

consi derations of convex bolles co)ntribute to understanding the protlen,

"



and it turns out that in -enceral the problem is practicully solved if
it is known which submatrix of A to invert.

Trere is of cource un intimate relation vetween the theory
of ~ames problem und the pro:lem first stated, although they are not
quite identical problems, since the rame problem zlways has a solution,
wiiile the first problem does not necessarily. Briefly swimarized, the
pame vroblem is directly a4 special case of the first problem, while the
first pnroblen can always be embedded in a zame ;roblem, whose solutions
vield solutiors to the oririnal problem if it nes a solution. Thus,
if problems of one tvpe ci:n be solved, so cian oproblems of the other
tyne,

Virious iterative methods for solution of one or the other of
these problems l.-.ve been ziven by von Neumann, Jantzig, and others.
while some of tliese methois may be practical over « certain range of
nroblems, all of ther Luve an apparent Jeperndence, in required number
of steps, of higher order than the first power of the linear dimensions
of the problem., For very larre matrices not possessing simplifying
srecial properties, csuch a Jdependence can e a4 very serious obstacle
in the way of getting nunerical solutionc., we will describe briefly,
for tie rame solution, an iterative :cheme which is quite different from
tl.ose previously curgested, in t!at the amount of calculation required
at each iterative step is lirectly proportional to the linear dimensions
of the vroblem, so that the method has, a priori, some chance of
beatine the hiph order dependence.

Ti.e rrocedure to ve iescribed c:.r. rost easily be comprehendeu
by co:.tilering the rcrycholopy of, let us say, a statistician unfamiliar
vith theory of yames. . .ch - verson, face1l with reoeated choices of
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play of a certain gane, might reasonably be expected to play, at each
opportunity, that onc of Lis strategies which is best against past

t.istory, that is, against trne mixture constituted by nis opponent's

plays to date. Such a dJecision utilizes information of the past in

the most obvious manner. The iterative scheme referred to here is tased

on a picture of two such statisticians playing repeatedly together. For
calculation purposes a slifht moadaification is introducea which has trlre
effect that the two nlayers cnoose alternately, rather than simultaneou: .y.

Kestating the method algebraically, let A be the game matriyx,

§4}]

th choices of strategy for the two sides, let &vi

let in and Jn be the n
and >fg‘be the relative frequencies of strategies 1 and J in

9

(44, 12, <., 1 ) and (§y, Joy «.., J ) respectively, then j minirizes

2:' ép)Aij and inﬂ maximizes o Aijrfg). This process defines a

i
siquence 1y Juy 12, Joy eesee, gnce i, is chosen (perhaps arbitrarily),
except for ;nssible ambiguities of the extrema. n»ny convenient rule
will do for handling awbiguities., If y_n = nin Zg‘?) M and
Vn - miXZAij Y?(t;, it i5 easily seen t“nat \_In s Vs Vn, where V is the
value of the -ame. The mixturesi&f?’?;uulbfg% are mixed strategies,
and the corresponding !n and Vn are the most favorable outcomncs encured
to each player if he uses the corresponding mixture.

at tiis moment not much is rigorously established about the

properties of tiis iteration, except that if it converges at all it
converges to a solution of the rame for each side. Of course it would
be sufficient if lim sup ¥V - lim inf Vn‘ There is couci ierable supuort,
however, based on experience with the methoda, and also on the study of
1 related crstem of differerntial equations, for tre conjecture that

convergence is of the order of 1/n and ioes ot Jepend essentially on
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the size of tie natrix. If tiuis i5 so, It is extremely important for
the colution of large nmatrices, by virtue of the fact that each iterative
stevs requires ou.ly a nunber of operations proportional to the linear
size of the uatrix. Converrsence of oraer 1/n is of cource painful if
nigh accuracy ic needed. In such cases it may be possible, nowever, to
use n mettod iike this to fet close to the solution, finishing with one
step of another iteration.,

The accompanying worksheet shows 25 steps carried out f{or the

L ~3 matrix

1 J 1 2 3
1 3 1.1 1.2
pa 1.3 2 0 ]
3 0 1 3.1
IN 2 1.5 13N

Note that eacu line is obtained by adding to the previous line, component
by componert, the corresvonding row or colunn of the matrix, without
troublings to tiviie by n. The !ﬂ and Vn were calculated at each step,

by division of the extrema by n, to sliow the progress of the calculation,
In case of tiec the lowest index wus taxken., Note particularly tnat

Vn = !n i- decreasing just zbout like 1/n, in spite of the excursions
which V“ and ln mike., The initial choice of i; = 2 was maude deliberatel:
as an unfavorable ctolce, with respect to minimum guaranteed nayoff,

It i. aporoorinte to rerort to this Symposium that preliminary
fiscuseil ne with Messrs., Haar snd Jinger of tte staff of the Harvard
Corputation Leboratory iindicate tnat Mark III could carry out 1000 of
thece iterative lines for a 40+40 motrix in comfortably under ~n hour,

Cf course tle 'roblem has rnot been completely proerammed, but the estimate

it b lieve !l Lo be curzervative,
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