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§l. Introduction.

This note presents several applications of the theory developed elsewhere
by the authors and H, F. Bohnenblust [ 1]. The results established here depend
upon a fundamental theorem on convex functions, previously used in relation to
the Theory of Games. Certain extensions of Helly's theorem ( §2), approximation
and fitting results ( §3), and covering theorems for the n dimensional unit
sphere (§4) are obtained. All these are intrinsically connected with one another.
The authors believe they possess independent interest.

§2. Convex sets. .

Por later use, we state the theorem referred to above ([1], Theorem 1):

THEOREM 1., If A is a convex compact set lying in n dimensional space, and
it - {fa} is a family of convex funotions defined over A, with

inf wsp f(x) >0,
X€EA a

then there exists a convex cambination of at most n + 1 of the functions which
is pogitive over A. That is, there exist f’ie X and §120,1-1, cee., nel,

with n‘;ﬁi-lu

inf g £, 9,(x) >o.

First, this can be used to give a simple proof of the well known theorem of
Helly on the intersection of convex sets:

12004 1. Let /L be a family of convex closed bounded sets | 1in n dimensional
Buclidean space E. If every n OImﬂofminhrmt, then ﬂn Pc is non-
enpty.

/



2=
P=Th
Proof: It is sufficient to show that any finite mmber of sets of &
intersect, for then compactness will yleld the general result if we restrict
ourselves, as we may, to a bounded portion of the spase. let {F‘l, vee, r_i
be any finite sub-faily of /, and let A be a convex, compast region containing
them. Let fi(x)bothl distance from a point x to r"_, then fthuoonvu
function. If the |y do not all intersect, then every point of A is outside
some Pi’ and hence

inf sup 71(2)>0.
xZt& 1

We apply now Theorem 1, and obtain the existence of a convex combinmation of
n + 1 functions ﬂ\dth Zgi ﬂ(x)>0br every x in A. This easily ylelds
a contradiction of hypothesis.
LBOMA 2, If A is a family of closed bounded convex sets P.in%, and
if every n sets intersect, then there exists a line through the origin which inter-
sects every mamber of ﬁ.
Proof: It is sufficlent to prove the lems for a finite mumber of sets | .
A simple compactness argument then ylelds the coneclusion for the general case,
as follows: Let s, denote the set of points on the projective sphere corre-
sponding to the direction of the lines through the origin which intersect F..
If we prove that everv finite sub-family of the s, intersect, then, the pro-
Jective space being compact, the same conclusion will apply to the entire family,
Consider the unit spherr, and for any direction which corresponds to a point
x or its antipodal point -x, construct the orthogonal linear space L (a hyper-
plane through the origin whose normal has direction mmbers proportional to x).
We project the Pi perpendicularly on Lee The resulting convex sets satisfy
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the hypothesis of Lema 1 in Lx' Thus they intersect in a convex set Cx.
Now if Cx contains the origin, 8, the line through 6 and x will intersect each

of the [ and the lamma 1s establ‘shed. We assert that, in fact, 6 coincides

1?
with the center of gravity Gx of one of the Cx. For, if not, projecting Ox on
the unit sphere would define a continuous function mapping the unit sphere into
itsalf, with the properties, for all x,

(a)  (f(x),x) = O,

(b)  f(x) = £(=x).
But (a) ==d (b) are inoonsistent. The former implies that f is a map of odd
degree, aince an obvious deformation takes it into the indentity map., The
latter impliss that the degree of f is even, since, if A and A' are symnetrically
defined chains on a hemigphers and its oomplement (so that A + A' 1s the oriented
unit sphere), then

£(A + A') = 2£(A) or O

according as n is even or odd, (Actually (a) i» possible only for n even.)
This inoonsistency confirms the lmma,

The last remarks are assentially a proof of the theorem that there is no
non-vanishing tangential vector field on a sphere, of any dimension, such that
the vestors at antipodal points are parallel (with the same senss).

THEOREM 2. Let X be a family of closed bounded gonvex sets in En. Let
L be an n - r dimensional manifcld. If the intersection of every r members of . £
is non-empty, then there exists an n - r ¢ 1 dimensional manifold in E_ ocontain-
ing L and intersecting every member of X .

This theorem was obtained by Horn in 1948 ([2]).

Proof:s Choose an origin in L and project E_ on the (r dimensional) orthogonal

conplement of L. Then apply Lemna 2.
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It is to be remarked that neither Lama 1 nor Theorem 2 remains wvalid
for closed convex ssts that are not bounded.

§3. A fitting theorem.

Suppose tuat m points in the plane: (xi”i)’ 1 =1, °**, m, are given,

We ghiall determine conditions on fitting the points by functions of the fomm
1) ye = 2a fa.
J=1

We say that § approxinates (xi,yi) wthin & 1f |<f(xi) - ¥y l < é.

LFMMA 3. If every n + 1 points of { (xi,yi)} can be appraximated within &
by a function of the form (1) then there exists a funotion of that form which
approximates within & all the points.

Prooft The sets a = (a.l, ey By - 1) form an n dimens onal subset L of
E ,- Bach point (xi,yi) generates a linear function g, defined over L as

followss

n

g (a) = JZI #i(xday ¢ (1) 3.

The hypothesis states that every n + 1 such linear functions possess a common
" root!" a in the sense that | gi(a) | < § for these functions.

It is clear, since there are only a finite number of points, that we may
assune that all these functions and their linear cambinations possess roots a

with i ajé <M for some uniform bouni M. Let A be the n dimenglonal convex

bounded set of all points a with <M, and let 0 be the totality of all

l :
il
g, and - g arlising from the riven points (xi,yi). Being linear, they are
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trivially convex. If they do not all possess a common ruct in the gense
described above, then for every point a ¢ A we may find a function fae o’

wd th fa(a) > & . By Theorem 1 there exists a convex cambinaiion of n + 1
functions which is greater than & for all a., This contradicts the hypothesis
and establishes the result.

It is to be remarked that the lema can also he proved by a reductlion to
Helly's Theorem.

T.c same result can be concluded for an infinitve mumber of points (xi‘yi)’
provided we assume that the convex set, A, of those a which approximate some
pair of points, say (x.l,yl) and (xQ,yz), is bounded. (This condition wiil be
satisfied in most applications.) For, by Lamma 2, we can fit any finite number
of points Wthin £ . Moreover, every finite set containing the two points (xl,yl)
and (x2,y2) can be aprraximated by an a lying in the bounded region A. By
compactness, the irfinite set can also be so approximated. Thus, under the
assunption of the exdstence of two points having the property stated above, we
have shown:

THEOREM 3. If every n ¢ 1 of an inflnite collection {(xa,yu)% of points
in the plane can be approxirated within & by a functdon cf the form (1), then
there exists a function of the same form which approximates simultaneously
within & &ll the points (xu,ya).

In the follwing examples all the hypotheses are easily seen to be fulfilled:

Example 1. (Take ’h(x) - xJ_l.) If every n + 1 points (xa,ya) of a pre-
scribed collection can be fitted within 5 by a polynomial of degree n - 1, then
the entire set {(xa,ya)g can be fitted ty a polynanial of the same degres.

'rlxamgle 2. (Take ka*l = cos k x, ’ka = 8'n k x, where k = O, 1, ***, r,)
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If every 2r + 2 points of a given collection {(xa,yq)Jl can be approached W thin
£ by a trigonametric polynarial of degree r, then the same ~an be accamplished
for all (xa,ya).

Pinally, we remark that the requirement that the points lie in two
dimensional space is not essential., Any finite dimension can be considered for
x, with y servins as the dependent variable (i.e., the approximation being
measured in the y direction). However, the analogous theorem, which uses the
geanetric distance fram point to curve (or hypersurface) as the measure of
approd:wation, does 1ot hold. For example, consider a regular polygon of 2r
sides inscribed in a circle of unit radius. There is a line whose distance to all
but one of the vertices is at most & = (1 + cos n/r)/2. Howsver, no line passes
that close to all the vertices.

It is to be emphasised that the result impcses no restriction whatever on
the component functions (?J(x).

§L. A covering theorem.

In this section, we present a result on coverings of the surface of a n-sphere
by closed hemispheres., Despite its intimate connection with the foregoing, it is
more convenlent to give an indmnondent proof. We reproduoes the follow'ng lemma
fram |1}

LEMMA L. Let A be a convex set in En spanned by points Py s 1 =1, °**, m,
Every po.nt in A can be rerresented as a convex cambination of akt most n ¢ 1
points Pye

Proof: We consider only the casem > n + 1., Take a simplex 3, in Em-l

and let. T be a linear t uisforma‘don mapping it on the given convex A in an

obvious manner. The inverse transformution takes a given point of A into a
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plane of dimension at least m - n - 1, This plane intersects S, and therefore

must intersect sane face of dimens‘on n or less. The vertices of this face

-
’

correspond to the desired subset of Eph .
THEORMM L. Let the surface of a sphere in En be ocovered by a campact
family of closed hemispheres, then there exist n + 1 manbars of the family which
cover the surf:ce.
Remark:i A family of hemispheres is campact {f the unit veetors normal to
the hyperplanes bounding the hemispheres (directsd into the hamispheres) constitute
a compact family,
Proof: Let tq denote the unit normal to the hemisphere Ha in the usense
described in the remark. A point x on the surface of the sphere is covered by
Ha if and only if (lq,x) > 0. We oonsider a countable set {l I dense in ;lut .

1
be the convex set spanned within the unit sphere by £y ***y £y. Ve wish

| bl
tc show that, for m sufficlently large, [.\m i{s arbitrarily alose to the origlia; 6.

Let

If im contrary, then for same ¢ the distance (0, Pi) exceeds © for all {4,
By the choice of { l,k this implies that ¢(9,[ ) > € , where " is the convex
spanned by all the ‘a' Take a plane through the origin which does not pass
within € of [, and let x, denote its unit normal, dirested away from '« Then
(£ ,x ) < -t for all 4 and hence x_ is not coveicd by H t . This contra-
o’ = a o Coa
diction implies that for any k there exists a m(k) with (8, .ﬁm(k)) < 1/k. Let
x(k) be a point of iﬁm(k) of distance less than 1/k from the origin. By Lemma 4,

we have a convex representation;

Since n + 1 1s fixed amd ng) and égk) are drawn from compact sets, we may pass

to the limit and obtain a representation:
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%
) g = gi‘i‘

i=l

It is clear that 2_ é“i = 1 and that all &i are non-nsgative. The hemispheres
H, correspording o the 4, of this representation, { =1, 2, ¢v¢, n + 1, must
cover the full sphere,

We remark that the theorem is not true if the compactness requirement is re-
moved., For example, oconsider the family of hemlspheres on a sphere in K, described
by the angles n, 1, 1/2, 1/3, ¢=*, 1/m, °°° .

It is interesting to observe that the finite covering given by 'Thoorcn [
may be made to contain one hamisphere specified at pleasure., The following is an
equivalent statement of this stronger result:

COROLLARY. Let a glven hemisphere H on the surface of a sphere in En be
covered by a compact family of closed hemispheres. Then there exist n numbers
of the fauily whieh cover H.

Proof: The given fanily, together with the closed camplement Ho of H,
oover the sphere. Theorem /4 provides an n ¢ l-meaber sub-family of the augmented
fanily which also covers the sphere. If this sub-fanily does not ineclude ﬂo,
consider the convex C spanned within the unit sphere by the unit normals ‘i to
the sub-fanily. C contains the origin 68, Let lo denote the unit normal to Ho’
and y_ the {ntersection of the radius [O, - 10] wvith the beundary of C. Then
¥, 1s a convex combination of n (or fewer) of the 24y, and 8 is a ocoavex cambination
of £ and y . (If y_ and 8 happen to coincide, then £ will appear vacuously.)
It follows that an n + l-member sub-family ocontaining Ho and covering the spheie
can always be found. The closed complement of Ho — which is the hemisphere
originally given — 18 necessarily covered by the other n members of any suoch

sub-family,




The direct relation between this section and the earlier u‘dono beocomes
immediately clear when we write Theorem 4 in its contrapositive form: ' If every
n + l-member sub-family fails to cover, then the full family does not cover."
Theorem 1 could not be applied directly because the spherical distance to a
spherical convex set is not a convex function.
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