CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI
DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCT!ION QUALITY

| !'
ACCESSION # /7

M WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART
UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST
AVAILABLE COPY.

D 2. APORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL
WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.

D 3. THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION
COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION
ONLY.

4. THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL
BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO
REPRINT.

5. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL
BE AVAILABLE IN MICROFICHE ONLY.

LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL
NOT BE AVAILABLE.

1. DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.

oo a o

6. DOCUMENT AVAILABLE ON LOAN FROM CFSTI( TT DOCUMENTS ONLY).

y
PROCESSOR: // / —

TosL-107-10'64

 p—



o3 ¥Ao

603820

- COPY _L of /_ COPIES

I

GAMES WITH CONTINUOUS, CONVX PAY-OFF
H. F. Bohnenblust, S. Karlin, L. S. Shapley
P-66

Revised

. Approved for OTS release

e ?(/.M/{c/
f By s2 /’f

The D-ﬂ n D Corporation

1700 MAIN ST. « SANTA MONICA « CALIFORNIA

e




P—66

Revised
A aug. 12, 1949

GaMeS WITH CONTINUOUS, CONVEX PanY—OFF
H. F. Bohnenblust, S. Karlin, L. S. Shapley

I. Background.

In the "normal form" of a two—person, zero—sum game, as the
theory has been set forth by von Neumann [3], there are just two
moves., They are the choices of strategy, made simultaneously by
each player. One player is then required to pay to the otuer an

amount (positive or negative) determined by the pay—off function,

which is a function only of the strategy—choices. The theory is
best known at present for games in which the number of strategies
available to each player is finite. This article will explore a
rather special class of games in which the strategies of one player
form a compact and convex region B of finite—dimensional Euclidean
space, while those of the other form an arbitrary set A.

In general, equality may or may not hold in

(1) sup inf M(x, y) <inf sup M(x, ¥).

X€A yeB yéB xe€A
Intuitively, there mgy be a gap between what the x—player's best
"safe" strategy guarantees to him and what his opponent's best
"safe" strategy prevents him from obtaining. When equality does
not hold, the typical procedure of game theory is to replace the

choosing of a strategy by the choosing of a probability distribution

over the whole set of strategies. Thus, the player entrusts the
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task of playing the game to a machine which makes random decisions,
and contents himself with controlling its probable behavior to
maximize his probable gain. Such a probability distribution is

called a mixed strategy, and its order is the number of points in

the spectrum of the distribution. (That is, the order is infinite
unless a finite set of strategies exists which is chosen with
probability one; in that case the order is the number of strategies

which are chosen with positive probability.) i pure strategy is a

mixed strategy of order one.

The game on the unit square will illustrate the use of mixed
strategies without the inconvenient notation that general sets A
and B would entail. Let A4 = B be the closed one-dimensional unit

interval [0, 1]. Then, corresponding to (1) is the inequality

1 1
(2) sup inf U/q M(x, y)dF(x) < inf sup b/q M(x, y)dG(y),
FES yeB U =0 Ged xeh U -0

where £ is the set of all (cumulative) probabiiity distributions
on [0, 1]. (FEH if and only if (i) x < x; implies F(x) < F(x,),
(1i) x < O implies F(x) = 0, (4iii) x > 1 implies F(x) = 1,

(iv) F is continuous to the right.) Under quite general conditions,
equality holds in the expression exemplified by (2), while not
necessarily holding in (1), When it does hold, the number thereby

defined is termed the value of the game. A distribution which

achieves that value is termed an optimal mixed strategy (o.m.st.)

for the player in question. Any pair of o.m.st, is termed a
solution of the game. . game may in some cases have a value without

having a solution.
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II. Summary and discussion of results.,

A function ? is said to be convex if and only if, for any A,

and A, satisfying

(3) 0< A = 1= Ar < 1,

the inequality

(&) A Pix,) + /\2 Pixz) 2 ?()\lxl")\zxz)

holds whenever all three terms are defined. It is strictly convex

if, in addition, x; ¥ x, and A,Az ¥ O always imply the strict
inequality in (4). The present paper deals with games in which
the pay—off M(x, y) is, for every x in A, a continuous convex
function of y. Continuity in y and compactness of L are enough
tc assure the existence of a value, as has been shown by Wald [6].
Convexity in y further assures the existence of‘an optimal pure
strategy for the y-player, that is, an o.m.st. of order one. The
central result of the present paper is that the x—player must have
an o.m.st. of order at most n + 1, where n is the dimension of B.
Moreover, if the y—player has a p—dimensional set of o.m.st. of
order one, then the x—player has an o.m.st. of order at most
n—p+1,

Without convexity the solutions, even of games on the unit
square, may be much more complicated. If M is a polynomial,
Dresher has shown that o.m.st. of finite order exist for both

players [2]. But Blackwell and Girshick have found a unit square
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game with continuous pay—off in which the only o.m.st. for each
player makes use of every strategy [2].

It might be worth—while to illustrate the way in which the
results for convex games can be applied to other games., A linear
function is of course convex, and the expected pay—off of a game
is always linear in the mixed strategies. It follows that, in any
game, if B is a finite set with m elements, then the x—player has
an o.m.st. of order m or less. A more general statement is that
if B can be subdivided into m closed, convex, non-overlapping
components Bi’ of dimension Ny such that the pay—off is convex
over each component, then the y—player has an o.m.st. of order
at most m and the x—player one of order at most m + > n,. The
verification of either statement is accomplished by constructing
an equivalent, convex game with an enlarged set B' of strategies
for the y—player.

Symmetrically corresponding assertions obviously hold, here
and throughout the paper, with concavity in x replacing convexity
in y. /

Thus consideration of convexity (concavity) is a handy tool
for uncovering the existence of simple solutions in potentially
complicated games. The question of computing such solutions when

they exist will be discussed in §V of the present paper.

III. Theorem on convex functions.

Let B be a compact, convex region in an (n — 1)—dimensional

space whose elements are denoted by y. « function f is linear
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(non—homogenous) if f(z )‘iyi) -> /\if(yi) when > )‘i = 1., The
function f(y) = 1, denoted by 1 , is linear. The linear functions
form an n—dimensional linear space E. F will denote an glement of
the conjugate space E*.

LEMMA 1.1. If F(1) = 1 there exists y such that F(f) = f(y)
for all f in E.

Proof: It suffices to show that the n equations F(f;) = f,(y)
have a solution in y for n linearly independent elements fi of E,
But one may take f, = .¥ and get an identity for t e first equation,
The remaining n — 1 equations, still independent, have a solution.

LEMMA 1.2. The set of all f which are non—megative over B
forms a closed convex cone PCE, with vertex at the origin, containing
1 in its interior. Moreover, the region over which P(y) > 0 is
precisely B. _

(The notation "P(y)" will mean "f(y) for all f in P"; "f(B)"
will mean "f(y) for all y in B.")

Proof: The first part is obvious. For the latter, B and any
y not in B can be separated; i.e., some f in E will have f(y) < ¢ < f(B).
Then f — c is in P and is negative for y.

LEMMA 1.3. Let Q be a compact convex set of E which does not
intersect P. There exists y in B and 8 such that Qly) < —é‘< 0.

Proof: P and ( are separated by some F in E*; that is, for
some 5"> 0, F(Q) + S < F(P). Since P is a cone with vertex at the
origin and F(P) is bounded from below, F(P) must be non—negative,

Since 1 is in the interior of P, making F(1) > 0, F may be chosen
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so that F(1) = 1. By Lemma 1.1 a y exists satisfying
wy) + 5 50 < Ply), :

while, by Lemma 1.2, y must be in the sct B.

LEMMA 1.4, If py, °**, p, are points in an (n — 1)—dimensional
space, then any point in their convex is in a convex spanned by at
most n of them.

Proof: Take a simplex S_ in (m — 1)—dimensional space and a
linear transformation mapping it on the given convex C, the vertices
of Sm going into the points {p{}. The inverse transformation maps
each point p of C onto a plane-i(p), of dimension at leasﬁ m-— n,
which intersects Sm. When a plane meets a simplex but not its
boundary, the intersection is a point. Hence there is a simplicial
face of Sm which intersects L(p) in a point. Its dimension must be
less than n, and its vertices obviously correspond to a subset of
{?i} which spans p.

LEMMA 1.5. If suglql(B) is positive for a family of {ﬁx , then
for suitable Ay 2 O, il Ai =1, and &, 1 = 1, ««+, n, the function
£f=> Aifai is in P; that is, f(B) > 0.

Proof: The Heine—Borel covering theorem permits one to work
with a finite sub—family of {?@}, since g}(y) > 0 defines an open
set, (This is the only use made of strict positiveness., The
hypothesis might alternatively read "If suQxQL(B) > 0 for a finite
family ...". In this form Lemma 1.5 is equivalent to Ville's lemma

Bﬂ.) The conve '  spanned by the finite sub—family must intersect
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P, by Lemma 1.3, Since Q is bounded and P is not, some boundary
point of Q lies in P. This point is on a polyhedral face of dimension
at most n - 1. Lemma 1,4 now gives us the desired representation.
THEOREM 1. Let {%& be a family of continuous convex functions
defined over a compact, convex, (n — 1)—dimensional region B. Then

sup, ?&(y) attains its minimum value c at some point of B; and, given

any &> 0,

n
gxigi(s) 2¢=01

for any suitable choice of ay and Ai >0, > ki =1,

Proof: Let

.

a>inf sup ¢ .= c.
yeB o @&

The set og y in B with z;(y)'s a is non—void, closed and convex, and
decreases as a decreases. The intersection of all these sets is
non—void, and any point in it satisfies the first part of the Theorem.
For the second part, let {?ﬁ be the family of linear functions with
[i; - 5] (B) > O for some &.. This family contains all planes of
support to all %ﬁ therefore sup f = suelﬁ&. Apply Lemma 1.5 to the

B8 B
family

c]g . {QZ_'(C = 5);} , (6 > 0).

Each Bi so obtained corresponds to an gy with rﬁi > ﬁli. These 4,

and the Ai of the Lemma provide the representation of the Theorem.
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COROLLARY 1.1, If the (convex) éet Y of points for which
su%LgL(y) = ¢ has dimension p, then the number of functions z;i
required is ut most n — p.

Proof: Take an (n — 1 — p)—dimensional cross section B'CDB
perpendicular to Y and intersecting Y in an interior point yg.

Let d; be the distance from yg to the nearest boundary point of
Y, and let d, be the diameter of B. Apply the Theorem to B' and

4 8' - 5d,/d2. The \1 and 01 so obtained, i = 1, ***, n - p, must
work for the original B and S

The following will be obtained in a somewhat different form
in § VII and is put here for the sake of completeness,

COROLLARY 1.2, If Y is in the boundary of B, then the number

of functions required is at most n — p - 1.

IV, Aipplication to games.

Consider a boundad pay—off function M(x, y) where the choice
x [y] of the maximizing [minimizing] player is taken from the set
A [B]. M is continuous and convex in y for each x, and B is a
compact, convex region in (n — 1)—dimensional Euclidean space,
Let Y & B denote the set of points which minimize sup_ M(x, y)
and let p denote the dimension of Y. (Y is non—void, closed and
convex.) Let Iz denote the pure strategy by which the point z is
chosen with probability one. A mixed strategy will be called

f—effective if the value of the game is not more than £ better

than the expected return guaranteed by the mixed strategy to its

user. Thus, an o.m.st. is O—effective,

|
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THEOREM 2, The value of the game described is

c = min sup M(x, y).
YEB x€A

For any £ > 0, there is an £—effective mixed strategy for the x—

player of the form

(5) F“g’\ilxi (? M= Ay 20);

i=1

while all pure strategies IyO on some yo in Y are optimal for the
y—player.

Proof: The Theorem is a direct consequence of Theorem 1 and
Corollary 1.1,

COROLLARY 2.1. If in addition A is compact and M is continuous
in x for each y, then some mixed strategy of the form (5) is optimal.

Proof: The added conditions make {ﬁ«x, yi} a closed family,
hence it is permissible to take £ = O in the Theorem.

COROLLARY 2.2. If, moreover, M is strictly convex in y for
each x, then the y—player's o.m.st. is unique,

Proof: Using some fixed o.m.st. > AiIxi’ define Y , as the

U
set of y with

Z)\iM(xi’ y) <c +1/p 7) =1, 2, **-,

Let P denote the set function associated with any optimal y—strategy.

L T e S
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Then it is easily seen that P(B - Yv) = 0 for any /. But strict
convexity implieé that f\YZ)is a single point yg; hence the o.m.st.

I is unique.
Yo

V. Computation of the solution.

Suppose, to avoid the complication of E£—effective mixed
strategies, that the conditions of Corollary Z.1 are met, so that
the game has an o.m.st. of the form (5). The determination of the

value of the game

c = min max M(x, y)
yeéB xeA

and of the sets

Y = those y for which max M(x, y) = c,
XE€A

X = those x for which, for all y in Y, M(x, y) = c,

must be considered a routine computation in the present discussion,
since any difficulty here will have arisen from the nature of the
unspecified set a.

To complete the solution it is sufficient (a) to discover a

finite subset X' = {xi} of X with

min max M(x, y) = ¢
yEB x¢X!

and then (b) to find weights Ai for the x; not more than n—p of

which are actually positive, and which make >_ AiIx an o.m.st.
i




P—66
Rev. 8/1</49

The process is best described geometrically.

Let yo designate & fixed interior point of Y, and let B' be
some (n — p — 1)—dimensional cross section of B, meeting Y in
precisely yo. Each x of X describes a convex hyper—surface over
B' which has one or more supporting hyper—planes at (yg, ¢J). Let
S be 4 small sphere in B' with yg as center, and with each x
associate the set Sx of points in S corresponding to the directions
of steepest ascent of all the planes of support to M(x, y) at
(yo, ¢). Sy will denote the union of the s, for x€x.

The progress of the reduction may be traced through the following
four statements which, ror any fixed finite X'C X, are either all
true or all false:

min max M(x, y) = ¢,
yéB xeX!

min max M(x, y) = ¢,
yEB' x€X!
(0)
lim min max M(x, y) = ¢, where £ is the radius of S,
P—>0 y€S x¢tX!

min max y°y' > 0.
yES Y'esxv

The inner product yey' is taken relative to S &as the unit sphere.

Thus y°*y'is the cosine of the angle g; YYoY'.

*If any plane is horizontal, the game is solved instantly, since
the plane must correspond to a pure optimal x—strategy.
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Two assumptions must be interjected here:

(7) Y is not in the boundary of B,
(8) min max ye.y' = d > O,
y€S y'ESX

Without the first, S would contain non—strategies. Without the

other it becomes more difficult to show that the computation is

finite. as will be seen in §VII, failure of either (7) or (8)

actually reduces the order of the optimal x—strategy, thus simplify—

ing the computation. Geometrically, (§) states that yo is interior

to the convex in B' spanned by SX' o
To continue: select y; at pleasure from SX and proceed by

the recursive instructions (k =2, 3, **°):

(I If

k)

m - min max y-.y, <O,

1
yes i<k 1

then let y, denote the (unique) y in S at
which the minimum occurs; if m 2> O, terminate
the process.,.

(IIk) Let yé denote a point of Sy for which®

'. .'
Vi Yk r;ggsx Y'Y

* Note that SX is a closed set,

l
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The iteration terminates after a finite number of steps. For
if not, there would be k; < k; < +¢¢ < k, < ¢+* for which the

L

subsequences Yy and yL both converge. But'then

!

' - ' .
8 £ lim ykﬂ,ykj >d>0

lim m, > lim vy
k
L %=1 Losoe

Lo ki~ lso

e

implies a finite termination after all.

The {?,, LN ym} so obtained leads back to a set X' = {x,, RPN
for which the statements (6) are all true. Moreover a particular
¢ apporting plane Pi(y) is denominated for each x;. The supporting

planes are distinct, but the x, may not be.

i
The weights which solve the original game M(x, y) will also

solve the semi—discrete, linear game

Pi(y) - xi.y tec (1 = 1, °*°, mj yES),

and conversely. The y—player here does not have a pure o.m.s8t. since
the point yp is denied him, but any convex combination of y€S giving
yo will be optimal, by the linearity. The linearity moreover makes

it sufficient to consider the equivalent, wholly discrete game
!lpij’l = ’lpi(yj)l[ (1 = 1y **+ym; J=1, ++, n—p)

where the yJ are any n—p points on the sphere S whose convex contains

a neighborhood of the center, y;. The y—player here has a unique

o.m.st. with all weights positive. It follows (see [4]) that m > n—p
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and that some n—p x n—p submatrix P' will have the property

***y, np,

%;;§§Pii all 7/ = 1:—;;
1y

Pjip being the cofactor in P' of pimj' P' may be discovered by a

finite inspection. Then

| O Relx) - i/\zjlx (x)

2 ‘ /=1 -

is the desired o.m.st.

VI. The solution in ene dimension. A 5

A complete description of the solution in the case n = 2 will
serve to point up the discussion of the preceding section. For
definitenessy -let M(x, y) be defined on the unit square A x B =
[0, 1] x [U, 1], and let it be continuous in each variable with
the cross section at each x a convex curve over B.’.l

Suppose first that max M(x, y) has a unique minimum ¢ at a
point yo interlor to the interval B. Then the set X of convex
curves passing through (yg, c¢) will be the union of two sets %L

and Xr, not rnecessarily disjoint, defined by:

-

-

\

* e V Martin collaborated with the authors in the original

gtudy of this case.
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K(x,y) - K(x,7,)
I = those xcX with M!(x, yo) v lim = <0,
2 L =y y- 3,
X_ = thoss x <X with M'( l1im ZUSha LI
- P XE€ X, Y - 2% Vv
r M.(x, 7)) y = 78 y-7,

To obtain am optimal x-strategy, select any x,exl, x.exr and aseign non-
negative veighte 7\; and )‘g =1 - 2, satisfying

Axli(xu:o) + ’\-Mi(ze.yo) S0s Maizy,y) + AaMixe,y,) -
These weights will be precisely determined only*vhan M(x,,y) and N(xga,Y)

are actually differentiadle at Y, Othervise there will de twvo extreme pairs
of weights. Convex linear combinatioms of these extreme strategies, for all

possibls pairs x,, z.exz, xr’ will provide all o.m.st. of finite oxder for the
x-playes.
Rul- Oraruwxexz, orx;,- Oforan.yxexr, then that x represents

& pure optimal strategy. (Cf. the second reduction discussed in ¢ VII.)

mmroﬁnhtimuuudforyo-OOryo-l if the omvention
u,:(x,o) = - %0, lq,(x,l = 400 1s adopted. In these cases X C I, =X and
x/’g_ xr = X respestively; honce o.m.st. of oxder ome, among others, will be
found (ef. Corollary 1.2 above and the first redustiam of § VII).

The same formmlation is also valid trivially if nxg((x,y) has its
ninimm over an imterval Y. If 8 is any interior point of Y, thea
H}_(x,yo) - )q,(x,yo) = 0 for all x€X. In this case all the extreme o.m.st.
areo pure. (This is the case n = 2, p = 1,)

EXAMPLE. Let M(x,y) = £(y-x) in the unit square with £"(u) > 0 for
we (-1, 1] . Sugpose £(-1) > £(0) < £(1), then the

I 3

The weights (0,1) vill be determined wmiquely even without differenti-
ability at Yo provided that lq,(xg, yo) -0> 'Q.(!xﬂo); also the veighte
(1,0) in the symestric case.
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equation f(u) = f(u — 1) has a unique solution u = a, 0 < a < 1,
In the light of the preceding discussion the following results may

be stated:
(a) The value of the game is f(a);
(b) The unique optimal y—strategy is L

(c) The unique optimal x—strategy is Qlg + (1 — O)I,, where O
is.given by the equation f'(a) + (1 —)f'(a — 1) = 0.

If f(=1) < £(0), or if £(0) > £(1), then the unique optimal strategies
are I, for both players, or I, for both players, respectively, and
the value is f(0)., If f(-=1) = £(0) or £(O) = f(1), or if one assumes

only that f"(u) > O, the optimal strategies are in general not unique.

VII. Sharpening of the results,

The discussion of this section will dispose of assumptions (7)
and (8) of éV and the proof of Corollary 1.2 of éIII, and concurrently
describe improved results for certain special situations.,

First it may be remarked that, by using known properties of
discrete guames (see [4], and [1] Theorem 1), two sharper conclusions

may be drawn from the matrix obtained in §V:

(i) every o.m.st. (of the discrete game) is a convex linear

combination of extreme o.m.sSt. of order n—p or less;

(i1) every strategy i participates in at least one such extreme

o.m.st. of the x—player.

Referred to the original game, (i) implies that all o.m.st. of finite

order may be put in terms of extreme o.m.st. of order n—p or less,
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The construction of §vg of course, does not lead to a complete set
of finite o.m.st. (to say nothing of the infinite ones that can
easily be shown to exist whenever X is infinite). But, in consequence
of (ii) and the arbitrariness of y; in é'V, it will succeed in
producing an extreme o.m.st. involving any one given x of X with
positive weight.
Suppose now that Y is in the boundary of B, and hence that
Yo 1s in the boundary of B'. In order to contain the sphere S,
B' must e enlarged. But if it is to become legal for the y—player
to choose y from outside of B, it must also be made unprofitable,
if the solution is not to be disrupted. Therefore, introduce a

dummy strategy xo into the set A with pay—off

M(xg, v) < c interior to B,
M(xg, ¥) = ¢ on boundary of B,

Mixy, v) > ¢ exterior to B.

This function may be made continuous and convex in y since B is a
convex region. It may also be made arbitrarily "steep" as it crosses
the boundary, making it unimportant wiliether or not it is actually
possible to extend the other functions M(x, y) convexly into the
exterior of B. Now by thLe remark of the last pararraph an o.m.st,

of order n—p or less may be found utilizing xo with weight Ao > O.

But the mixed strategy obtained by redistributing Ao among the other

components, in proportion to their own weight's, must be optimal in the
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original game.* Therefore, at least one of the extreme o.m.st. is of

order n—p—1 or less. Removed from the games context this conclusion
becomes Corollary 1.2 of §III.

It might be remarked that a reduction of more than one — while
possible — can not be deduced in general from the hypothesis that Y
is situated in @ lower—dimension&l "corner" of the boundary of B.

To pather in the last loose end, suppose that assumption (8)
of §V’does not hold. This would mean that along some directed line
in B' emanating from y, none of the set of supporting planes actually
increases. Equivalently, this would mean that the "bottom", Y, of
the hyper—surface z = sup, M(x, y) is less extensive than the "bottom",
YL’ of the envelope from above of the linear functions supporting
M(x, y) at Y. The prescription for dealing with this situation,
should it occur, is simple: using YL in place of Y, define the

cross section BL and sphere S Then, replacing (8) with

L.

min max yey' = d >0,
]
y€SL Y GSLX

proceed with the computation. The results involving p = dim Y
will be replaced by stronger recults involving P = dim YL < p. Thus,
unlike the boundary reduction detailed above, this case reduces all
the extreme o.m.st. to order n—p; or less,

Finally, it is clear that the two reductions just described act

independently, their effects being additive if both occur together,

* The formal proof is straightforward.

I =
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