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G.iM£S v.ITH COKTINUOUS, CONVEX PnY-OFF 

H. F. Bohnenblust, S. Karlin, L. S. Shapley 

It Background. 

In the "normal formr, of a two—person, zero—sum game, as the 

theory has been set forth by von Neumann p], there are just two 

moves. They are the choices of strategy, made simultaneously by 

each player. One, player is then required to pay to the other an 

amount (positive or negative) determined by the pay—off function. 

which is a function only of the strategy—choices. The theory is 

best known at present for games in which the number of strategies 

available to each player is finite. This article will explore a 

rather special class of games in which the strategies of one player 

form a compact and convex region B of finite—dimensional Euclidean 

space, while those of the other form an arbitrary set A. 

In general, equality may or may not hold in 

(1)       sup inf M(x, y) < inf sup M(x, y). 
x6A yeB        " y€B x^A 

Intuitively, there may be a gap between what the x—player's best 

"safe" strategy guarantees to him and what^ his opponent's best 

"safe" strategy prevents him from obtaining. When equality does 

not hold, the typical procedure of game theory is to replace the 

choosing of a strategy by the choosing of a probability distribution 

over the whole set of strategies. Thus, the player entrusts the 

/ 
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task of playing the game to a machine which makes random decisions, 

and contents himself with controlling its probable behavior to 

maximize his probable gain. Such a probability distribution is 

called a mixed strategy, and its order is the number of points in 

the spectrum of the distribution.  (That is, the order is infinite 

unless a finite set of strategies exists which is chosen with 

probability one; in that case the order is the number of strategies 

which are chosen with positive probability.)  n pure strategy is a 

mixed strategy of order one. 

The game on the unit square will illustrate the use of mixed 

strategies without the inconvenient notation that general sets A 

and B would entedl.  Let A ■ B be the closed one-dimensional unit 

interval p, 1]. Then, corresponding to (l) is the inequality 

(2) sup inf 
Fe^ y6B 

/  M(x, y)dF(x) < inf sup  /  M(x, y)dG(y), 
u -o ce^r xeA c; -o 

where <&  is the set of all (cumulative) probability distributions 

on [0, 1].  (F£^ if anci oniy if (i) x < x, implies F(x) <F(x,), 

(ii) x < 0 implies F(x) - 0,  (iii) x > 1 implies F(x) - 1 , 

(iv) F is continuous to the right.)  Under quite general conditions, 

equality holds in the expression exemplified by (2), while not 

necessarily holding in (1). When it does hold, the number thereby 

defined is termed the value of the game. A distribution which 

achieves that value is termed an optimal mixed strategy (o.m.st.) 

for the player in question.  Any pair of o.m.st. is termed a 

solution of the game,  n game may in some cases have a value without 

having a solution. 
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II.  Summary and discussion of results. 

A function f  Is said to be convex If and only If, for any A) 

and A2 satisfying 

(3) 0 < A, " 1 - A2 < 1, 

the Inequality 

(4) A, fUi) * \zfi*z)  > f (AiX^A^) 

holds whenever all three terms are defined. It Is strictly convex 

If, In addition, Xj ^ x2 and A1A2 / 0 always imply the strict 

Inequality in (4). The present paper deals with games in which 

the pay-off M(x, y) is, for every x in A, a continuous convex 

function of y. Continuity in y and compactness of D are enough 

to assure the existence of a value, as has been shown by Wald [fr]. 

Convexity in y further assures the existence of an optimal pure 

strategy for the y—player, that is, an o.m.st. of order one. The 

central result of the present paper is that the x—player must have 

an o.m.st. of order at most n •♦■ 1 , where n is the dimension of B. 

Moreover, if the y—player has a p-dimensional set of o.m.st. of 

order one, then the x—player has an o.m.st, of order at most 

n — p ♦ 1. 

Without convexity the solutions, even of games on the unit 

square, may be much more complicated.  If M is a polynomial, 

Dresher has shown that o.m.st. of finite order exist for both 

players [2j. But Blackwell and Girshick have found a unit square 
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game with continuous pay-off in which the only o.nust. for each 

player makes use of every strategy £2], 

It might be worth-while to illustrate the way in which the 

results for convex games can be applied to other games. A linear 

function is of course convex, and the expected pay—off of a game 

is always linear in the mixed sti'ategies. It follows that, in any 

game, if B is a finite set with m elements, then the x—player has 

an o.m.st. of order m or less. A more general statement is that 

if B can be subdivided into m closed, convex, non-overlapping 

components B., of dimension n., such that the pay—off is convex 

over each component, then the y—player has an o.m.st. of order 

at most m and the x—player one of order at most m ^ 21 n.. The 

verification of either statement is accomplished by constructing 

an equivalent, convex game with an enlarged set B* of strategies 

for the y—player. 

Symmetrically corresponding assertions obviously hold, here 

and throughout the paper, v.'ith concavity in x replacing convexity 

in y. 

Thus consideration of convexity (concavity) is a handy tool 

for uncovering the existence of simple solutions in potentially 

complicated games. The question of computing such solutions when 

they exist will be discussed in § V of the present paper. 

III. Theorem on convex functions. 

Let B be a compact, convex region in an (n — 1)—dimensional 

space whose elements are denoted by y. n function f is linear 
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(non-homogenous) if fQT X^Y^) ' 2! X^iy^  when 21 A^^ • 1 • The 

function f(y) = 1 , denoted by J^ , is linear. The linear functions 

form an n-dimensional linear space E. F will denote an element of 

the conjugate space E . 

LEMMA 1.1. If P(4) ■ 1 there exists y such that F(f) - f(y) 

for all f in E. 

Proof; It suffices to show that the n equations F(f.) ■ f^ly) 

have a solution in y for n linearly independent elements f. of E. 

But one may take f] ■• 1 and get an identity for t 9 first equation. 

The remaining n — 1 equations, still independent, have a solution. 

LEMMA 1.2. The set of all f which are non-negative over B 

forms a closed convex cone PCE, with vertex at the origin, containing 

JL in its interior. Moreover, the region over which P(y) > 0 is 

precisely B. 

(The notation ,,P(y)n will mean nf(y) for all f in P"; nf(B),t 

will mean ,tf(y) for all y in B.") 

Proof: The first part is obvious. For the latter, B and any 

y not in B can be separated} i.e., some f in £ will have f(y) < c < f(B). 

Then f - c is in P and is negative for y. 

LEMMA 1.3»  Let Q be a compact convex set of E which does not 

intersect P. There exists y in B and S such that ii(y)  < -^ < 0. 

Proof: P and Q are separated by some F in E ; that is, for 

tome  5 > 0, F(Q} 4 d < F(P). Since P is a cone with vertex at the 

origin and F(P) is bounded from below, F(P) must be non—negative. 

Since 1 is in the interior of P, making F( 1 ) > 0, F may be chosen 
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so that F(l ) - 1. By Lemma 1.1 a y exists satisfying 

y{y) ♦ § < o < P(y). 

while, by Lemma 1.2, y must be in the sot B. 

LOflki 1.4. If Pi , •••, p are points in an (n — 1 )-dimen3ional 

space, then any point in their convex is in a convex spanned by at 

most n of them. 

Proof:  Take a simplex S in (m - 1)-dimensional space and a 

linear transformation mapping it on the given convex C, the vertices 

of S going into the points (p/j-• The inverse transformation maps 

each point p of C onto a plane L(p), of dimension at least m — n, 

which intersects S . When a plane meets a simplex but not its 

boundary, the intersection is a point. Hence there is a simplicial 

face of S which intersects L(p) in a point.  Its dimension must be 

less than n, and its vertices obviously correspond to a subset of 

.p.I which spans p. 

Lmiti  1.5. If supaf(X(B) is positive for a family of [faj, then 

for suitable A* > 0, ^1 L ■ 1, and a., i ■ 1, •••, n, the function 

f - T A.r  is in P; that is, f(B) > 0. 

Proof;  The Heine—Borel covering theorem permits one to work 

with a finite sub—family of "jf-)-» since f (y) > 0 defines an open 

set.  (This is the only use made of strict positiveness. The 

hypothesis might alternatively read "If sup f^CB) > 0 for a finite 

family ...".  In this form Lemma 1.5 is equivalent to Ville's lemma 

[jfl.) The conve • Q spanned by the finite sub—family must intersect 
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P, by Lemma 1.3»  Since Q is bounded and P is not, some boundary 

point of Q lies in P. This point is on a polyhedral face of dimension 

at most n - 1.  Lemma 1.4 now gives us the desired representation. 

THEOROd 1 .  Let JVj be a family of continuous convex functions 

defined over a compact, convex, (n — 1 )-dimensional region B. Then 

sup t(y) attains its minimum value c at some point of B; and, given 

any 5 > 0, 

n 
TAi^B) >c-S, 

for any suitable choice of OL.   and A. > 0, X ^i " 1« 

Proof; Let 

• 

a > inf sup f   .- c. 
y6B  a  O- 

The set of y in B with i?,(y) < a is non—void, closed and convex, and 

decreases as a decreases. The intersection of all these sets is 

non-void, and any point in it satisfies the first part of the Theorem. 

For the second part, let |f/jl be the family of linear functions with 

[f - fß] (B) > 0 for some a. This family contains all planes of 

support to all f ; therefore sup„f ■ sup f„.    Apply Lemma 1.5 to the 
(X ß   ß OL  U- 

family 

J    • \te - ic - S)i] . {§>0). 

Each ß*   so obtained corresponds to an CL  with ig    > f    • These & 

and the A. of the Lemma provide the representation of the Theorem. 
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I 

COHOLLART 1.1. If the (convex) set Y of points for which 

sup f {y)  ■ c has dimension p, then the number of functions f a. a, 
required is at most n — p. 

a* 

Proof: Take an (n - 1 — p)-dimensional cross section B^D 

perpendicular to Y and intersecting Y in an interior point yo. 

Let d] be the distance from y0 to the nearest boundary point of 

Y, and let d^ be the diameter of B. Apply the Theorem to Bf and 

0 " S^]/^z*    The Xi and 0%   so obtained, i ■ 1, •••, n - p, must 

work for the original B and S • 

The following will be obtained in a somewhat different form 

in S VII and is put here for the sake of completeness, 

COROLLrtRY 1.2. If Y is in the boundary of B, then the number 

of functions required is at most n - p — 1. 

IV. application to games. 

Consider a boundsd pay—off function M{x, y) where the choice 

x [y] of the maximizing [minimizing] player is taken from the set 

A [Bj . M is continuous and convex in y for each x, and B is a 

compact, convex region in (n — 1)-dimensional Euclidean space. 

Let Y £ B denote the set of points which minimize sup M(x, y) 

and let p denote the dimension of Y.  (Y is non—void, closed and 

convex.) Let I denote the pure strategy by which the point z is z 

chosen with probability one. A mixed strategy will be called 

fr-effective if the value of the game is not more than £ better 

than the expected return guaranteed by the mixed strategy to its 

user. Thus, an o.m.st. is O-effective. 
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THEOREM 2. The value of the game described is 

c - min sup Mix, y). 
y6B xfA 

For any 6 > 0, there is an £—effective mixed strategy for the x- 

player of the form 

n-p /J2ZE \ 
(5)      F0 - ^ Xilx fy"  Ai ■ 1. Ai > Oj ; 

f^T 1 Vi-i / 

while all pure strategies I  on some yo in Y are optimal for the 

y-player. 

Proof: The Theorem is a direct consequence of Theorem 1 and 

Corollary 1.1, 

COROLLARY 2,1,  If in addition A is compact and M is continuous 

in x for each y, then some mixed strategy of the form (5) is optimal. 

Proof;  The added conditions make |M{(X, y)[ a closed family, 

hence it is permissible to take £ - 0 in the Theorem. 

COROLLARY 2,2.  If, moreover, M is strictly convex in y for 

each x, then the y—player^ o.m.st. is unique. 

Proof;  Using some fixed o.m.st. 2 A^I« • define Y  as the 

set of y with 

V Ai M{xil y) < Q * ^/v ^ - i, 2, •••. 

Let  P denote the set  function associated with any optimal y—strategy. 



-10- 
P-66 
Rev. 0/12/49 

Then it is easily seen that P(B - Y ) - 0 for any V .     But strict 

convexity implies that PlY-,, is a single point y0; hence the o.m.st. V 
I  is unique. 
Mo      4 

V.  Computation of the solution. 

Suppose, to avoid the complication of 6-effective mixed 

strategies, that the conditions of Corollary 2.1 are met, so that 

the game has an o.m.st. of the form (5)« The determination of the 

value of the game 

c ■ min max M(x, y) 
y6B x6A 

and of the sets 

Y - those y for which max M(x, y) ■ c, 
xU 

X - those x for which, for all y in Y, M(x, y) - c, 

must be considered a routine computation in the present discussion, 

since any difficulty here will have arisen from the nature of the 

unspecified set A. 

To complete the solution it is sufficient (a) to discover a 

finite subset X» - jx/l of X with 

min max M(x, y) ■ c 
yCB x6X» 

and then (b) to find weights A for the x, not more than n-p of 

which are actually positive, and which make 21 A**  an o.m.st. 
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The process is best described geometrically. 

Let y0 designate a fixed interior point of Y, and let B* be 
< 

some (n - p - 1 )-dimensional cross section of B, meeting Y in 

precisely JQ.    Each x of X describes a convex hyper—surface over 

B* which has one or more supporting hyper—planes at (yoi c)» Let 

S be a small sphere in B' with y0 as center, and with each x 

associate the set S of points in S corresponding to the directions 

of steepest ascent of all the planes of support to K(x, y) at 

(yo» c). S« will denote the union of the S for x^X. 

The progress of the reduction may be traced through the following 

four statements which, for any fixed finite X'Qx, are either all 

true or all false: 

min max M{x, y) ■• c, 
y^B x6XT 

rain max M(x, y) ■ c, 
y^B' x^X» 

lim min max M(x, y) - c, where Pis  the radius of S, 
f>-*0  yCS xW 

min max  yy' > 0. 
ytS y'(LSx, 

(o) 

The inner product y^y* is taken relative to S as the unit sphere. 

Thus yy* is the cosine of the angle sf   WoV* * 

If any plane is horizontal, the game is solved instantly, since 
the plane must correspond to a pure optimal x—strategy. 

- 
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(7) Y is not in the boundary of B, 

(Ö) min max  yy1 

y6S y^S1 

d > 0. 

Viithout the first, S would contain non-strategies. Without the 

other it becomes more difficult to show that the computation is 

finite, «s will be seen in §711, failure of either (7) or (0) 

actually reduces the order of the optimal x—strategy, thus simplify- 

ing the computation. Geometrically, {^) states that y0 is interior 

to the convex in B' spanned by S„. 

To continue: select y] at pleasure from S,. and proceed by 

the recursive instructions (k ■ 2, 3» •••): 

iik) ir 

(iik) 

m, ■ min max yy] < 0, 
K  y6S i<k    1 

then let y. denote the (unique) y in S at 

which the minimum occurs; if m. > 0, terminate 

the process. 

Let yJ denote a point of Sx for which 

K K y,^sx 
K 

Note that S^ is a closed set. 
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The iteration terminates after a finite number of steps. For 

if not, there vould be k, < k2 < ••• < k. < ••• for which the 

subsequences y.   and y.   both converge. But then 
L Jy 

Um m  >Um y  -y'    - llö yk -y^ > d > 0 

implies a finite termination after all. 

The jy,, •••, y | so obtained leads back to a set X» ■ Xj, •••, x J 

for which the statements (6) are all true. Moreover a particular 

£. apporting plane P^Jy) is denominated for each x.. The supporting 

planes are distinct, but the x. may not be. 

The weights which solve the original game M(x, y) will also 

solve the semi—discrete, linear game 

Pi(y) - xi»y > c (i " 1| •"i m; y6S), 

and conversely.     The y—player here does not have  a pure  o.ra.st.  since 

the point y0  is  denied him,   but any  convex, combination of y^S giving 

y0  will be optimal,  by the  linearity.     The  linearity moreover makes 

it  sufficient  to  consider the  equivalent,  wholly discrete game 

iiPijii ■ UVV" (i'1' ",, m; j °1' ,,,' n""p) 

where the y. are any n—p points on the sphere S whose convex contains 

a neighborhood of the center, y^ The y—player here has a unique 

o.m.st. with all weights positive.  It follows (see [V]) that m > n—p 



/ 

■ 

P^6 
Hev.   0/12/49 

and that  some  n-p x n-p submatrix P'  will have the  property 

X v 
-J-- £L_ > o, 

¥ i PJ^ 
all 7/ - 1 , 2, n-p, 

P..  being the cofactor in P' of p, ..  P' may be discovered by a 

finite inspection. Then 

Fo(x) - 
z^-i   H 

is the desired o.m.Bt, 

VI» The solution in »ne dimension.   

A complete description of the solution in the case n ■ 2 will 

serve to point up the discussion of the preceding section. For 

deflirltenessv i^t M(x, y) be defined on the unit square A x B • 

[?• 0 x &» Ü » änd let it l)e continuous in each variable with 

the cross section at each x a convex curve over B, 

Suppose first that max M(x, y) has a unique minimum c at a 
in 

point y0 interior to Ihe interval B. Then the set X of convex 

curves passing through (y0, c) will be the union of two sets X 
7 

and X , not necessarily disjoint, defined by: 

a« V. Martin collaborated with the authors in the original 
study of this case. 

\ 

v 
I 



-15- 
P-66 

M(x,y)  - M(x,y ) 
I     - tho«« xel intliH'Cx, y ) «       li» — 2-   < 0, 

MCacj) - ll(xfjj 
Xr   - tho«i xfcX vlth^x, 7^  -       11»         -— 2-   > 0. 

*^7t o 

To otottlA «i optlaal x-itrntagy, ■•iMt «BJ XifeX^, x« t-X   and aMl^x nco- 
nogatlT» v«l«tat«   ^x    and   ^a • 1 -   ^i    •Atljfyln« 

TbM« wight» will b« jjortoli»!/ doteznlaid oalor   «tMA «(Xi^) and M(xa,y) 
are actually dlffarantlabla at 7 .    Otharvlaa tkara vUl ba two axtrvaa palra 
of valghta.    CooHrac llnaar caabinatlana of thaaa ajitiia atratagioa, for all 
poaalbl« palra Xi, x*^!., I , will prorlda all oja.at. of flalta order for the 
x-playa»*. 

If M' • 0 for any x irl^,  or Ml - 0 for any x^I , than that x rapreaenta 

a pore optlaal atrategy. (Cf. the eeoond rednotlon dlacnaeed la § fU.) 

The ease foznlation la valid for 7 • 0 or y » 1 If the oonteatloa 
0 o 

M|(x,0) - - ^, M^(x,l - ♦ co le adopted.   In theae oaaea   Xr C X^  - X aa& 
X. C X    « X reapeetlrelj; honoe o juat. of order one, aKoog other», YIU be 
foond (af. Corollary 1.2 abore aad the flrat reduotloa of ^ VII). 

The aaa» fomUtlon la alao mlU trlTlall7 If majA(x,j) haa Ita 
■lalw over an lattarml T.    If 7    la an7 Interior point of Y, then 
M'(x,70) - K^(x#yo) - 0 for all x€l.    la thla oaae all the eiti—j oja.at. 
are pore.    (Thla la the oaae n - 2,    p • 1.) 

KXANPLI.   Let M(x,y) - f(7-3t)  In the unit aqaare vlth f"(u) > 0 for 
ne [-1, l]     .    Suppoae f(-I) > f(0)  < f(l), than the 

The velghta (0,1) vlll be detexmlned uniquely eren without differenti- 
ability at 7o, proTlded that K^(zef 70) - 0 > ^(x^y^ ; alao «he velghta 
(1,0) In the ayiaetrlo oaae. 
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.-■■■ 
equation f(u)  - f(u — 1)   has a unique  solution u - a,  0 < a < 1. 

In the  light of the  preceding discussion the following results may 

be  stated: 

(a) The value of the game  is  f(a); 

(b) The unique optimal y-strategy  is I   ; 

(c) The unique  optimal x-strateg^  is al©  +  (1  - OL)!, ,  where (X 

is-given by  the  equation Of1 (a)   ♦  (1  -(Xlf'U - 1)   - 0. 

If f(-1 )  < f(0),  or if  f(0)  > f{l),   then the  unique optimal strategies 

are I0  for both players,   or I]   for both players,   respectively,  and 

the  value is f(0).    If f(-1 )  - f(0)  or f(0)   - f(1),  or if one assumes 

only that fn(u) > 0,   the  optimal strategies are in general  not  unique. 

VII.     Sharpening of the  results. 

The discussion of this  section will  dispose of assumptions   (7) 

and   (Ö)   of   ^V and the   proof of Corollary   1.2  of   ^IHf   and   concurrently 

describe  improved results  for certain special  situations. 

First  it may  be  remarked that,   by using known  properties  of 

discrete gamet  (see   (VJ,   and   [ij  Theorem  l),  two sharper  conclusions 

may  be   drawn from the matrix obtained  in   <SV: 

(i)     every o.ra.st.   (of the discrete game)   is a convex  linear 

combination of extreme o.m.st.   of order n—p or less; 

(ii)     every strategy  i  participates  in  at  least one  such  extreme 

o.m.st.   of the  x—player. 

Referred to the original  game,   (i)   implies  that all o.m.st.   of finite 

order may  be put  in  terms  of extreme  o.ra.st.  of order n—p or  less. 
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The construction of ^V, of course, does not lead to a complete set 

of finite o.m.st. (to say nothing of the infinite ones that can 

easily be shown to exist whenever X is infinite). But, in consequence 

of (ii) and the arbitrariness of y in £ V, it will succeed in 

producing an extreme o.ra.st. involving any one given x of X with 

positive weight. 

Suppose now that Y is in the boundary of B, and hence that 

yo is in the boundary of B*.  In order to contain the sphere Sf 

Bf must be enlarged. But if it is to become legal for the y—player 

to choose y from outside of B, it must also be made unprofitable, 

if the solution is not to be disrupted. Therefore, introduce a 

dummy strategy x0 into the set A with pay—off 

M(x0, y) < c   interior to B, 

M(x0, y) ■ c   on boundary of B, 

W(x0, y) > c   exterior to B. 

This function may be made continuous and convex in y since B is a 

convex region. It may also be made arbitrarily "steep" as it crosses 

the boundary, making it unimportant whether or not it is actually 

possible to extend the other functions M(x, y) convexly into the 

exterior of B. Now by the remark of the last paragraph an o.m.st, 

of order n—p or less may be found utilizing x0 with wei/'ht AQ > 0, 

But the mixed strategy obtained by redistributing AQ among the other 

components, in proportion to their ov/n weight's, must be optimal in the 
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original game.  Therefore, at least one of the extreme o.a.at. is of 

order n-p-1 or less. Removed from the games context this conclusion 

becomes Corollary 1.2 of §111.-" 

It might be remarked that a reduction of more than one — while 

possible — can not be deduced in general from the hypothesis that T 

is situated in a lower—dimensional "corner" of the boundary of B. 

To gather in the last loose end, suppose that assumption (Ö) 

of 6v does not hold. This would rr.ean that along some directed line 

in B» emanating from y0 none of the set of supporting planes actually 

increases. Equivalently, this would mean that the "bottom", Y, of 

the hyper-surface z - sup M(x, y) is less extensive than the "bottom", 

Y| , of the envelope from above of the linear functions supporting 

M(x, y) at Y. The prescription for dealing with this situation, 

should it occur, is simple: using Y, in place of Y, define the 

cross section b* and sphere S. . Then, replacing (Ö) with 
L L 

rain    max      yy»   • d > 0, 
y£SL yUSu 

proceed with  the  computation.    The  results  involving  p • dim Y 

will  be replaced by  stronger results  involving p»   ■ dim Y,   < p.    Thus, 

unlike the boundary  reduction detailed above,  this  case  reduces all 

the  extreme o.m.st.   to order n—p.   or less. 

Finally,   it  is  clear that the two reductions  just described act 

independently,   their effects being additive if both occur together. 

The  formal  proof is  straightforward. 
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