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SOLUTIONS OF DISCRETE, TWO-PERSON GAMES

by
L. S, Shapley, S. Karlin and H. F. Bohnenblust

LNTRODUCTION

Ja this paper propose, to investigate the strusture of solutions of
disc ete, sero-seum, two-person games, For a finite game-matrix it is well
known that a solution (i.e., a pair of frequency distributions deseridbing the
optimal mixed strategies of the two players) alvays existss(sss—ielmynSmpter
AilgtBNESSEER). Moreover, the set of solutions is known to be a convex
polyhedron, each of whose vertices corresponds to a submatrix with speeial
properties W . s ‘-‘ ”

-In Part I of tles gpssewt puper‘ a fundamental relationship be-
tween the dimensions of the sets of optimal stutegiu‘,- and devote particular
attention to the set o>f games whose solutions are uniquo;l Par4 'l/f‘.gl"i-z. the
problem of constructing a game-matrix with a given solution. A number of ex-
amples and geametrical arguments are interspersed to illustrate the theory,
and Part III describes the solutions of some matrices with special diagonal

properties,

PART 13 STRUCTURE OF SOLUTIONS

_ll. Introduction and definitions.

Let | be the game described by the matrix A = (c“), with rows a, and
columns aJ(i = 1,2,000p0} § = 1,2,,..yn)e Lot X be the set of all optimal

# urbers in square brackets refer to the bibliography at the end of the paper.

\
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mixed strategies x = (x’.) (x1 20, lex =1, mi.ny xAy = v) of the maximising
player; Y that of the other player. Let Il(x) be the set of indices i for
which x; > 0, and I,(y) those for which a ey = v; and similarly Jl(y), Jo(x).

Then define

I, = 2_ I,(x), Jyo 2 J
1 xeX l(x 1 yeY l(y)

I

2
“

i i i - T
= T 1,(¥), g, = 777 J,(x)
oox 2 2™

X, = the set of x with I,(x) c I, L =1,
Y, = the set of y with J,(y) c J,, 4=1, 2,

Thus xl is the anallest face of the fundamental simplex of nixed strategies con- .
mnine x’ Otc.

The purpose of Part I is to prove the relationss

(1) I =1, Jy=J, (Theorem 1)

(2) dinxl-dimx-dmxl-dim! (Theoren 2)

’

for'all g=es with finite sets of ;ure stratezies., We also show that the set of
m x n game-natrices with unique solutions is dense and open in (mn)=-space
(Theorem 3). Under (2) we may subsume the corollary that a unique solution must
be " square" —that is, involve the same rumber of pure strategies on each side.
This is of especi:l interest since, by Theorem 3, pames " in general position"
have unique solutions,

For infinite matrices these results are not valid, even when I, and Jl are

1



==
P-57
1-Lim49

finite, Yor does the analogue of Theorem 1 'old if the matrix is replaced by
3 continuous function, even though the nure strategies fom compaect sets, Simple

ex.mples supporti:g t'ese assertio..s will be found in §7, -

_é:. Reduction to the essential part of the ane,
Lamta 1. There exists x in X such that Il(x) = I, and J(x) = Jy [y i1 Y such that
Jl(y) = Jy and I';(y) - 12: 5
'(1) (1)
Prooft To each l¢ I, and Je J, there corresponds an x wdth x, > 0 and
an x"(J) with aJ-x“(J) = ¥, The center of gravity of these x'(i) and x”(J) can

be taken to be the x of the lar a,

- -
Lemma <. Ilg‘I2 LJng‘?J 5

Proof: Choose x and y as in the preceding lema. Then ¥ xi(‘i'Y) « v {nplies
that x, > 0 ouly If asey = v, Hence I, = I(x) g 1.(y) = L.

"ot [*' be the garw deduced fran [’ by taking only the indices of I. and JZ'

\ 1 t
Ay solution of [ 418 a solution »f [" § hence v (") = v([" ) and

(3) X(r)ycx(ry, wr)ycy(r)
Lertna 3o 7Lt [‘" derived from (" as above,

W) dim X(7) = dbn X() YD) = dm Y()

1
Proof: Plek x¢ X([") by Lemma 1 and pick any x'e X( 7" )e Then there exists
" ]
w1 x  interior to the segnent xx which is in X(/ )1

A sluple corsequences of (3) and (4), we observe that
]
(5) Il, Jz' x‘) Yl([ ) - Il’ JA’ I[' Y‘( Iﬂ )l L= 1""

In view of (4) wnd (5), we need to prove the assertions (1) and (2) only for
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the smaller game 7". Or, whac s the same thing, we may henceforth assume for r

itself the properties:
(6) for cvery x« X, ayx = v, J = 1,2,0se,08
(7) for every yeY, a ey =V, 1 = 1,2, 000p™e

Under these assunptions we shall verify (in§4) that each player hes an
optinal nixed strategy to which every pure s! ~atery contributes positive weipght
(Theorem 1). In §3 we describe the reometrical otivation for the alrebraic
argument.,

Geametric Analopgue,

The gane-matrix A may be plotted in n=space as the convex U of the m points
8. U is then the image under the linear tnnsfomau‘on represented by A, of the
fundamental sinplex of mixed strategies of the x=-player,

Suppose for simplicity that v = 0, and let ., be the ® positive quadrant' in
n-space, Then U has no interior point in corvion with ;, but these two convex
polyhedra touch in some non=empty sei T, the {roe of X. Under the reduction
assunption (6), T will be precieely the oriin, The opti-al rixed stratesies for
the y-player will correspond to the hyperplanes through tlie origin which separate
Q and U.. Reduction assunption (7) means that every serarating plane actually
eontains the entire set U,

The parameter a of § 4 has the effect of shrinking U about an interior point
8. Lama 5 states that U may be so shrunk and still maintain contact Wdth Q.
This leads easily to Theorem 1, which states that the contact point is the center

of gravity of a set of positive nasses ["1 > O] at the vertices [16 I,‘,] of U,

# The proof that a .gno has a solution (the minimax theorem) may be reduced to the
proof that two convex sets with no interior points in corron can always be %o separsted,
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&L, Study of the reduced pame,

Let . fulfill conditions (6) and (7). Put

2Za

ae

g

i ’

then for any y €Y, aey = v, Fom the new game r‘. - (biJ) with the rows
bi-(l-c)uioa'a', 0<ax<l,

Por any yeY, byey = v for eact; 1, hence ¥( r“a) <V,
Lema 4. If !1( I"a) and Y have a cammon point, then v( F‘q) -V,
Proof: Take any y in both rl(r*a) and Y, and choose y‘e!(["a) by Lemma 1,
The segment yy' may be extended beyond y' to y" = (1« e)y' -y, €>0,
Then .

W) Shaxgbeey’ = (1 €)W(,) - ev

and thus vsv(r‘u). But in any case v(l'-‘a) sSvi
Lemaa 5. There exists a > O such that '(r‘a) - v,

Proof: By compactness there must exist a sequence {'(n) }, ’(n) «¥(M, )
a —0, which converges to some nixed strategy y. Since the number of pou:blo
sets Yl( Mo ) 4o finite, we may further stipulate that they all be the same (cloeed)
set and t.hu: all contain y. But because bioy(n) < v for each i, n, m.nm! that y
is in Y. By Lerma 4 the desired a therefore c&m.
Theorem 1, I = I [Jl - Jz] .

Proof: Choose a by Lemna 5 and x€X(" ). Then the mixed strategy x , all

of whose camponents

X = (1-a)x ¢ afn

are positive, satisfies
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aJ-x' = bJ-x 2v, all,

and is therefore in X. Jence I1 contains every index { in the reduced game,
i:, The fundamental theorem. .
Theormn 2. dinY) - dim Y = din X, - din X,

Proof: We may suppose v = O without impairing the final result. The conditions

defining X may be set forth
' (a)  ayx=0 forally,

(b) lex = 1.

(e) xigo for all 1.

(a) and (b) together define a set C containing X; (a) alone defines a larger set

C'. C' is in fact the null space of A, and therefore
(8) dim ' = m - rank A,

Since the orizin is in ¢’ but not C, oondition (b) sctuslly lowers the dimension,
i.e.,

(9) din C = dim C' = 1.

By Theoren 1 the inequalities (c¢) hold strictly for some x in X (and thus for a
neighborhood); hence

(10) dim X = dim C,

Finally, and obviously,

(11) dim Xl =n-1,

Therefore, by (&) =(11):

(12) rank A = din X, - din X,

This, With the symmetrical expression for A‘r, suffices to prove the theorem,
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We observe for futur: use that in gasmes whose value is not sero, the
analogne of (12) is
(1) rank A = dim X; - din X + 1.

A, in these expressions, is of oourse the essential part (in the sense of §2)
of the total same-matrix.

The theorem may be interpreted also as a relationship between the seros and
the range of an operator and its adjoint. Let T and T dencte the operator
corresponding to A and its transpose, and let n, n#* and R, R* denote the manifold
of seros and the range of T, T¥,

Then ‘t is easily shown tlhat

(13) dim n* e dinm X
di!l) T - di.m Yo

Now 1* 13 isauorphic to pi , the orthogonal manifold to Rj thus
dimn*-dimll-dimﬂ.

But di R = dim X - dinm n, hence Theorem 2 {s confimmed,
T'is point of view will be helpful in explaining the method of Part II,

_;6. Unique solutions.
Let U be the set of m x n game-matrices which have unique solutions (m and

n are fixed throurhout the (iscussion), Form lly A€ U 4f and only if

(1) din X(A) = din Y(A) = O,

We shall prove

heorem 3. U is open and everywere dense in (mn)=-cpace,



Proof that U is open:

If Je (Sl) is a matrix or a vaotor, define

’F' * max, ls‘

lemia 6. v, X, and Y are continuous functions of A in the following sense:

Given A and any 6 > 0, there axiats t sngh that }B - AI < & imples

() |¥(B) = Wa)< 8,

(b) rinimum :Ix'- x' < &,
x ¢ X(A)
x'ex(n)

()  smintom ly'-y|< s,
y < Y(A)
y'e Y(B)

Proof: Any ¢ < ¢ is suita le for (a). For (b) and (e), take any sequence
{B“}—-o A and choose for each p same x' ¢ X(B*). By campactness, every » after

K :
some x ° vdll be W thin § of same accunulation point of fx“f. But since
b‘i°xp 2 '(B“)o all J§,u,
J

every ac umulation point 48 {n X(A). An argument by contradiction row shows that

the de-ired £ > 0 axists.

we now prove that U {s open., Let Al be the essential nart of At
Al - (aij), 1rIl - I.’Z' JéJl - J/.

Take A< U, If B - A {s small, 7 has a solution x', y' near the unique solution

X, y of A, by Lema 6. (Two-sided uniqueness here makes an essential appearance
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in the proof. Thus t'e set U, of rames wdth uni e »ti=4l stratey for the

X
'
first rlaver is ot oven,) The corvonents positdve in x will be positive i x ,

l.ance

Also Ay will be near By', hance
I () 21 (A

It follows that A, and B, correspond and that

1 1

(15) X (8) = X, (8).
Now for an- matrix Co'

N rank C > rank Co;

~ .
»
v .

-

we 1.y therofore write

(1o) ronk 31 > rink Alo

rsoizie v(A) $ O, then by (1., L.') of Part I,

(17) dirn X, (&) = di= X(A) = rank Ay - 1,

1

dtr X,(B) = din X(R) > runk 3, - 1.

1{
suetions (15), (W), (17) ~ive us
dim X(1) s din X(A).

After Lhe sxw armzient on Y, we conclude i €1, sirce the restriction v g0
cannot be relevant, in this co:vext, every AecU 'as a neighbortiood in U,

(4 parallel prvof could .e “‘ven in oper«tor teridnolo y., Thus, the
canpnion to (1) 4o the fact *hat the ddrenalon of the zeros of an operator can

only decrease f£or 5 all pertirt Loons,)
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Proof that U is everywhere dense: '

We shall call a ma;.rl.x A '"general'' if no r x r ¢+ 1 submatrix of A or AT,
with a row of 1's subjoined, has a vanishing determinant, The set G of general
m x n matrices is evidently not empty for mn > 1,

Lama 7. G is everywhere derse.

Proof: Take any Aj} and ce = A ++B, BeG, It suffices to find 60 such that
G €G for all positive €< €, Every determinant obtained from C, as in the pre-
ceding paragraph is a polynandal of x-*’h degree in £ , Take £, > 0 smeller than
any positive root of these polynamials,

Lema 8. Gc U,

Proof: Take any A*U with y, y.eY, y# y'; and let B be the submatrix Ay

witli & Tow of 1's subjoined. Then for any x¢ X,

(18) (x,-v)'B = O, .
Also
(19) - Bly -y ) = 0.

Every sulriatrix of B having as many rows as B (by(1lc)), or as many columns
(by(15)), mist be sinsular. Therefore at least one of the determinants obtained
fran A as above vanishes, and A is not general.

The proof of Theorem 3 is campleted by direct apnlication of Lemr 7 and 8.

él. Same games w' .h infinite sets of strategies.

The manner in which infinite game-matrices deviazte fron the theory so far
developed will be illustrzted here by a number of examples, It is t'e lack of
compactness, rather than the infi.ite umber of strategies, that appears to be
chiefly responsible for these deviations, However, we must observe thut the

non-discrete gane with the pay-off function f(x,v) = yz- Xy defined on the unit
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SOLUTI NS OF DISCRETE, TWO-PERSON GAMES

by
L. 3. Shapley, S. Karlin and H. F. Bohnenblust

Revision of & ~, pages 10-13

2 7. Some games with infinite sets of strategles,

——

Virtually none of the foregoing theory applies without drastic moditication
to games with infinite payof{f matrices. e sutm!t here some mmplef W Justlify
this assertion., ¥e shall not, however, enter into a systematic study at this
time either o infinite pame-matrices or of games with continua of strategles,

First we must observe that many infinite matrices do not possess values or
optinal straterles, eve:n approximately, and hence should perhaps not be called

;ames at all, As a case in point, consider the unbounded matrix

Al Bij-i"J (1-1,2, "O,J-l,.,ooo).

This game has no value and hence no solution. For consider the mixed strategy x
in which Xy {s 1/t if1 = ., 4, &, ¢+s, and zero otherwise. Then aj-x =00 ., By
symmetry we a'e led to the curious result:

inf sup a4y = 8up infa,ex=-40.
y 14 x J

(For bounded nmatrices the correspordi:; expressio. is always non-negative, But

#  For helpful comment and suggesti ns concerning these examples the guthors are

indebted to H. Kuhn of Princeton University.
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with |A | = 0, multiplication of matrices is no longer associatives xT(Ay) p (xTA)y.)

The mat. .x

\10azj (aij

B: b as ahove),

1y "8y /
1s bounded, but likewlse has no value, Ftor, given any y and ¢ > O, we may choose
nsothat.y1+ 4yn21-§ . Then for any i > n/c ,wehavel‘:bi-y>1-?r..

B symmetry:

-~

inf sup b, ey = sup inf b ,ex = 2,
i 3
y 1 x
Confining ourselves now to infinite game-matrices which do have snlutions, we
still find violations of all of our chlef theorams, The following two games each

have unique solutions.

c O_ c—l-—l_“ck)- c3 CA . . .-
0 ¢y cL-l ¢4 c, €, 2¢.," o,
0 cy c c.-1 <, zck - 1.
0 <y c ¢y cl‘-l

v(C) = 0; X(C) = \'(Cl; C o "')} 3 Y(C) = <(lp Yy Oy "'): .

(To prove the last, we observe thut any optimal » rust play all stratecies after

the first with equal frequency—hence with zero freguency.,)
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Ds d 2d 1/2 24 1/L < . . d £ 0,

d 1 2d 13 .d

v(D) = dj X(D) = {(1/, 1/V; 5 X(DY = ((1, 0, 0, =)} .

Theorem 1 fails in the former ;ane, since J2(C) is infinite, Jl(C) f<nite.
The dimensionality relation of Theorem 2 leads to ¢ = 0 and 1 = O in the two cases,
Thus it breaks down even when thec essential part of the game is a finite submatrix.
The contimuity of solutions, as set forth in Lemma 6, is violated in the
nel tiborhoods of both games. For example, given any ¢ > O we can move Y(D) a
distance of 1 by subtracting t from colwans .and n + 1 of D, wheren> 1/c , n ¢ 1.
The failure of Theorem 3 is illustrated again by both gumes. It is easy to
verify that all x within » of X(C) or within ¢ /2d of X(D) becane optimal 1f any
- > 0 18 subtracted from the first colunn of C or D. Thus U i{s not open for in-
finite matricea. U continues to be everywhere dense in the subset of matrices

which have solut! s,
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square 0 < x,y < 1 has the saddle point at x = y = O for its unique solution;

hence the analopues of Il and Jl are single points. Yet the counterpart of 12 is

clearly the entire un!{{ interval, contrary to what Theoren 1 would seem to imply.
Consider the infinite matrix:

Ae 0 -1 o 8, ., ..
S Tl T , B ™0
0 » s, a3-1 ., 2 a, =1
0 & ., . ul‘-l

|- :

and the two 2 x «o matrices:

Be by byeb, 1/2 b +b,, 1/4 * % 5 bb, >0
b2 1 b10 b2 1/3 b].’ bz e o o
Ce |o 1 =2 3 -l - - 6, +¢,<0

sl 23 Lfe=-

All three games have unique solutions, to wit:
v(A) =0, ¥(B) =3(bj +b), W(C)=3(e; +e);
X(A) = (a,8,.00),  X(B) = X(C) = (3,5)3
Y(A) = Y(B) = Y(C) = (1,0,0,004)0

Only the uniqueness of Y(A) need be justified here. Suppose X(A) to be
already inown and take

J = (yoo Y10 ylfn“-) € Y(A).
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Tts inner product with the 1" row, 1 = 1,2,..., ust be w(A) = O

a0
20 ‘J’J -y, =0.

J=1
Thus _Vl.yz.YB ® eeep
and y = (1,0,0,...).

Theoren 1 is violated in game A, since J2(A) is infinite, JI(A) finite.
However when both sets are finit.o the theorem apparently retains its forece.

The dinensionality x:elat.ion of Theorem 2 leads respectively to <© = 0, 1 = 0,
and 1 = 0 in the three cases, Thus we see it breaks down even vhen the essential
part of the ;ome is & finite matrix.

In game B we observe that the set J2 of essential columns is not invariant
under certain infinitesimal perturbations; mixed strategies can be found ocutside
of J:z(B) which come ar-itrarily close to being optimal, This is obviously impossible
in a f‘nite pame, To put it another way, this means that the fir;t colunn may be
excluded from B wdthout decreasing the value of the game (defined now using '' inf'',
not "nin' ). Game C is included to show that this effect may be avoided (the
value of C swdthout the first column is sero), though only at the price of an un-
bounded ratxs |C| = =© ,

The failure of Theoren 3 is illustrated by game A, and by game B if bl - b2.

In each case 2 level decrease in the 7irst column by any amount £ > 0 destroys
uniqueness, It is easy to verify that all mixed stratesies within & of X(A) or
within & /(bl N b2) of X(B) become optimal. Thus U is not open for infinite
uatrices, U is indoed. everywhere dense in the set of matrices which have sclutions,

but not every infinite matrix has a solution, or even a value., For example, take
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the matrix
De (dij). diJ - i-J. {i - 1.2...0' J - 1,2..00'
or the bounded matrix
x-(ou), ou-du/‘/dfjol , Ix'-l.

The con.inuity of solutions, as set forth in Lemma 6, apparently holds for

infinite mtrigea whenever their solutions exist,

PART II: CO!STRUCTION OF GAMES JITH GIVEN SOLUTIONS

£8s The problem; Canonical forms,
e

We suppose that we have been riven a pair of (convex) polyvhedra X and Y,
each situated in a sinplex, and thaot we wish to find a gane whose sets of
optinal strategies correspond exactly to X and Y,

The problean is made no more difficult by prescribing t = velue the ame is

?'O h.’.‘.ve °

be the amallest faces of the simplices containing X and Y.

.

IAtXlandYI

Fron Theorem 2 we know that our problem has no answer unless

(20) dm X) - din X = din Y, - dim 7,

Our subsecuent work w'll show that condition (20) is sufficient as well
(Theorem 4, § 13).
The construction we describe in gé 10 = 12 produces a specific (except for
a certain frecdom in ordering the rows and coluinm) standardised matrix for each
X, Y satisfyins (20). This ;ives us in effect & set of canonical forms, FHowever,
there is no apparent way of relating an arbitrary matrix to its canonical counterpart

short of finding all its solut!ons and constructing the standard matrix to order
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(A finite though tedious process for finding all solutions is desoribed in

[3] gé.) These canonical forms, therefore, are no* promising as a camputational
aid. In answering theoretical questions, however, it may sametimes be helpful
to have to consider only a snall subset of all possible matrices,

A more genersl classification might Lmp together games whose sets X, Y are
isanorphic under a projective transformation., There would then be only a finite
number 6f types for matrices of each particular sise. The canonical gamee could
have their solutions oriented in some natural, aimp]:o fashion; for example, the

canonical unique solutions could always be of the form:

Xeoxts (%J esey ‘]';:. 0’ ece) o)l

Y= " - (%‘. ecey !l., o. soey 0)0

The solutions of any game would be identical to the solutions of a game BAC
where A 18 one of a finite set of canonical games and B and C are nonsingular
matrices representing the appropriate projective transformations on the two
simplices of mixed strategles,

R 9. Geoanetrical description of the construction.
We return to the operator point of view introducad at the end of §5.

Suppose first that the polyhedra 7Aiven, X and Y, are in fact the interpections of
the linear spaces X and ¥ with the fundsmental sinplices ((m = 1)= and (n = 1)=
dimensional, respectd vely) lying in m= and n-dimensional Euclidean space. Suppose
further that X and Y ocontain points interior to their respective simplices. The.
essential pert of any game (see §2) will have such solutions,

In view of (20), the orthogonal manifolds 2L and YL have the same dimension.

Take any (non-eingular) linear transformation S mapping ¥+ on ¥+ , and any pro-
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Jestion P of m-epace on ¥* which naps X into the orizin., Then the game-
matrix eorresponding to the transformation T = SP has value sero, and sets of
optinal strategies X and Y. (See §5, esp, equations (13).)

In general, the riven polyhedra X and Y may have both " natural " faces,
caused by the boundary inequalities xq 20, 75 > 0 of their simplices, and
""unnatural® faces defined by arbitrary inequalities. Each unnatural face of
X [!] ocorresponds to a column [mv] outside of the essenti:cl part of the
game matrix. (See 5,12 below,)

Thus ur ability te oo.n-tmt a gane with Aven solutions is conditioned not
only by the dimensional restriction (20) tut also by whether we are provided with
enouzh " dumy'' strategies, not involwed in any optimal strate;y, to take care
of the unmatural faces, It is always possible, of course, to handle a surplus of
dunny strategies, without disturbing the rest of the construction,

s&, Unique solution ;iven.

We proceed now to the algebraic deteils of the construction, In this section .
we suppose that the glven X and Y are points, The general treatnent of § 1l in-
cludes this case: we consider it separately only to illustrate the general attack
and because of the particular interest of games wit!h unique solutions,

Disregard any dwmy strategzies, and denote the positive components of the

unique optimal strategies by
Xoo Xqp ooy X =X, t-dimx.l;
Top T1p eeer ¥y 7 Y = din ch

The ordei’ may be taken arbitrarily (see Remark 3 below),
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v .1iue,

c-Xy o=X,,

C
c*

———

ey
X, '
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Let It represent the t x t identity ratrix (1 on the main diagonal, sero

Then v(A(e)) = ¢ and, ;rovided ¢ F 1/t, x%,; is the wu.i ue solution of A(c).

Froof: (me ray verify directly thit x,y 18 a 3olution and that ¢ {5 the

To auts. 174 '1n{ juaress, we obiserve tht

ri..k A(c) =

« 4 v(i(c)) = O,

b e ived strategies x' - Yy
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1 1 '
arc optimal as well as x and y. X(A({)) and Y(A(t)) are tle sepments x x and .

y'y extenced to the edges of tte simplices X, and Y,., For a game with unique

1 1

solution x,y an value 1/t we ri it use (for example) the Latrix B = %(A(%)).
demark 2: A construction using any non-sinmular ¢t x t matrix in place of

It' {s equally posuible, The ;eneralisation of the eritical value 1/t is

1/ X ZbJ w2 (bij) is the inverse of the 'atrix used,

J
Ranark 3: Glnce the number ' ng of the rows and colurns {8 purely a matter

of norenclature, the matrix A(c) is not wi.olly specific. We may remedyv this defect
by positing

2y

xOlea...th, Va2 12"'2}'?,'

é:ll. Polyhe .ra of peneranl dimension 7 ven,

we shall require in this section only that X [and Y be completely
4
Jescrile¢ ir sare (r~1)=dimensio al (s=1)-«ii .ensional plane by the character-

istde ins,wilities of the 8. plext

HZO) »YJZ(),-

Ahen o wae A Lae such wvets of solutiony, 'ts essential part Al will lave

precisely the cw.e sots, 1,e:

X(r) = X(Ay) Y(A) = Y(A

l/’ l)

(eampare (3) of g2). It will Lo mosl econo ical, tlien, to construct a gane

whici: ‘s its own essential part. X, an. Y, will con;rise tlie full si.plices

1 1
of ~ixed strute, les,
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Defi e

r =1+d X, o= 1 ¢ din Xl,
s =1+ din Y, n-14d1:"fl,

t *m—-ren-gs,

L]
Choose r k) 8 linearly ‘nderendent points in X ard Y respec ively

x, = (xm, ole sl 'kr.) kel, «.op, 1,

)’l'(}’ﬂ; seey ym) £=1, ..., 3

ard use tie. as rows in fomiin, the rutrices

X, = (xy) ad YO = (v,,).

T'¢ superscripts &Y ow rand-y the double subseripts show size, OQur presant problem

ray o te stoted 1 eiradeallyr to find A"r_'l satlisfying

(' ¥ oA =l
r 1 r.
(1) )
N v,
,“,-itl
t, vV = O, Py
(=) ¢ -
(L +1, \ 2 JRSH

T'e coniitinn on |, prevcoits X(4), Y(A) froz belng of 4t.er al ension than he
{ven X, Y (see (L, 12') {n E;S).

Cwstert (21) comprises m o+ e e uations {n Lhe in unknowns 8y e However,
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as the followiny construction reve:ls, thare {8 just e01sh interdepende.ace

to pemit tz of the uninowns to be chosen arbitrarily,

Sefore proceedi .- witii the constructi n, {1t will be covenient to re-

r o -~
arra e the columns of XI__1 and Y;r‘ s0 that the first r s colunns are

linearly {:dependent, fGeametrically, th's si:oly wans p ckin;

)

the order of

il

coordinates so th .t the nrojection of X on the sirplicial face derined b:r the

first r cooru . tes ('i =1, oo, r) will be one—o.e,

Now we plice It in the lower rit corner of A (

reainin. elamne ts a,

b)

.:rxr
L

e il

\Im)
|
]txt
.'
(L —

for t.e u or

see the ™ wure),

are the:. detciv ined uniquely bty (.1).

rit comer (i = 1,

cey Iy

The

apecificilly,

Y2r s+ 1, ..., ) use tie systans
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Hl.]d’".’x«h'.fj.'-xu'.
(23) :

X121y * 77T Xer®py Y 7 Xy

The lower left corner is analagous, The upper left may be filled in from either
direction: the result rust be the same., The finished matrix A is happily inde-
pendent of our choice of poirit.s x, and Y

A simple check reveals that condition (22) on the rank of A is fulfilled
except when v = 1/t, In that instance we find the extraneous optimal strategy
x' = (0, ceep 0, 1/t, o, 1/t). The restriction we put on the first r columns
of ‘:. tells us that x' is not in X. Therefore, if a valus of 1/t is desired,
we must use some such device as proposed in Remark 1, §10.

Remark 2 of § 10 applies with equal force to the present case. As to the
point raised in Remark 3, it is not e¢lear that any generalisation of the order-
ins proposed there would necessnrily make the first r columns of t:n [l oohnu of !:\\]
indepandeit, as required, ° |
gl2s The moet zeneral cgse.

We must now cansider iven polyhedra whose boundaries are not entirely .
descri ed by the natural lirdits x; > Oy vy 2 O. Each unnatural (r - 2)=face of
X [(s - 2)=face of !] ecorresponds to a new column ay [m .1] outside of the
essent::]l submatrix Ay There is no restriction on the mmber or arrangemert of
these unnatural faces, provided of course that X and Y remain convex. Purthermore,
there 18 no interaction between the new ocolumns J+J1 and the new rows 1*113
elanents 8y camon to both may be assigned arbitrary values,

It suffices to describe the calculation of Ly for s particular (r = 2)-face

F of X. Choose a set of r - 1 independent points X,y eeep X, OB F and another

.
-
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point X in the interior of X. Let the distance of tl'e latter to the plane of F be

A >0, Porm the matrix F_ = (x,,). The ofly condition that ay must satisfy is

':‘.J o (V44U V) eoep V), u >0,

To get a definite result we take a,, = O for {1 > r, and 4 = A, The latter makes

13
the result independent of the points chosen. The fomer is Justified because,
after our manipulation in §11, the first r columns of F;n constitute a non=
singular matrix ?:r. Thus we have

(24) ':.r ‘J =(V*1r, ¥, ceep V),

which determines a exactly, The sinilar expression for the y-player !{nvolves
v « A in place of v + A, It is only at this point that the anti-symmetry in the
roles of the two players shows up in the construction,
$10, Sumary.

Sections § §11, 12, taken with Theoram 2, § 5, coprise a constructive
proof of the following: '
Theorem 4. Let X be a convex polyhedron of dimension r = 1 contalned in an (n = 1)=
dimensional face X,, but in no smaller face, of an (m' - l)l-di.mnlionnl simplex.
Let there te just u (r - 2)~dimensional faces of X not contained in the boundary
of ‘1‘ Similarly for Y, s, !1’ n, n', and V., Then an m' x n' game-matrix A
exists having sets of optinal strategies corresponding exactly to X and Y if and
only if

Mersne-g

n' >m + v, n2ne+ .,
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The camplete oonstruction may be summed up (see figure):

A= (.13)'

n!

(1) Construc‘ the essential submatrix A, around the identity matrix
It, tem-ren-g, using equations (20) of § 11,
(11) Canmpute each additional row or column required as outlined in §12,
(111) Square off the matrix by putting a,, = 0,141, §$J;.

S 14, Example.

Find & gane having value 2 and optimal strategies as indicated:

3
Xt /
Zi’:
me3
wel 1 2

Extreme points (1/2, 1/2, 0)
(Vup 1/u, 1/2)

In attempting to form (‘ we find
we muat reorder the ocoordin: tess
1l'e 2, 2'« 3, 3'«a 1, Then

%- 1/2 0 1/2
/3 13 1/3

i/
o

4
Ts

2 .
Extreme points (1/3, 0, 0, 2/3)
(0,12, 0,1/2)
(o0, 0..1/3.2/3)
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Putting I" 4n the lower right comer means setting a;,, = 1. Column 4 s found
by using ﬁu (as in (23), § 11), and the first three eolurns may be camputed
sintlarly using (Y3 ). By taking points with sero eonponents in eamposing the
matrices KL, and !:n we were able to make the equations extremely ahrap‘:Le.

X has an unnatural face F; we rust therefore include a dumy strategy, J = 5,
for the y-player. To find colwumn 5 we select the points (1/3, 1/3, 1/3) interior
to X and (1/4, 1/2, 1/4) in F. The distance between them is A = 6/12, Sub=
stituting the matrix

Ve ™ Vi 3
Vi 1/2

into (24) gives us 85 and a,,
The campleted game-matrix:

5 Finally, we set u3,5 = 0,

b 1 2 3 4 5 )

-

{1 1'e2 o 1 0 3;1..15'5
20 =3 2 2 2 z|2-“‘-,:-€
el L 3 i1 0
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PART IIT: SOLUTIONS OF SOME SPECIAL GAMES

glé. Completely nixed jares; basie solutions,

Part TIT will describe the solutions of three easily recognisable types of
square matrices with special diagonal properties. The first two (§§16, 17)
generalise the " separation of diagonals" criterion used in (2] (Chapter IV,
section 18) for solving 2 x 2 matrices, while the third ( §1:) is a special case
of the second,

We shell find it convenient to introduce the notions of basic solution and

conpletely nixed game. A solution x, y of A 1s basic if x is a vertex of X(A) and

y a vertex of Y(A)s If v(A) is not sero, a solution x, y is basic if and only if

there exists a non=sinpular submatrix of A whose inverse D = (bji) satisfies

(25) X, = <Z:Jb51/ 211,3b31' vy - b ibji/ z;l’Jin .
The value turns out to be

Ve UZXbJ’.'

(See reference [3| , of whish this is the main theorem). The submatrix in question
will contain the one defined by Il(x) and Jl(y), and be ocontained in the one defined
by I;(y) and Jz(x) (see the definition of §1).

A game 18 said to Lo eanpletely mixed if all of its solutions involve every
strute;y of both players (reference (1] ), It follows that a completely mixed
game must have a unique solution and 8 square matrix, which is non-singular unlees
the value is sero, The solution may be obtained by inverting the matrix and using
(25).
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Lemna 9. All four of the game-matrices + A, + AT, or none of them, are completely
mixed.

The proof is routine.
16 n diagonal se ted and daminant.

Consider an n x n matrix A = (.13) which satisfies, for some fixed q,

8y >q 11y,

(26)
yy<a 14y

and either (a):

zi.ij Z nq fﬂr .n J.

or (b)s ,

z

1% 2 nq for all i,

Then ¥(A) 2 q and A 1s canpletely mixed. (See Fig. 1 in which q is taken to be
sero.)

Proof: (aX Putting x;, = .o -x"-%nmilthat v2q. Shouldany y in Y
have y, = O, then the inequality Zu‘JyJ<q.<_vumu-thatx‘-0formq
x in X, But whenever x, = O the inequality Z‘it‘i < V prevents x from being
optimal, Thus A is eanpletely 'xed,

Proof:t (b): Tele any y {1 Y and # suech that Y, max yye Then
szn‘Jngq.

The proof continues as in (a).

Cases (a) and (b) mizht have been deduced one from the other with the aid of
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of Lama 9, Similarly we may reverse the inequalities of the hypothesis, The
followins example shows that the confition ® either (g) ... or (b) ... * , which

ensures ''uniform'' dominance, cannot be replaced by the weaker provisot

(27) zidau > nzq.
Bxanple 14
1 =2 0 ve 0
-2 1 0 unique xeX: (0, 1, 1)
0 0 12 verticee of Y3 (%, ;, 0), (;', :1;. 0).

The nain diagonal is separated, and dauinant in the sense of (27) for every q
satisfying (26)3 yet the game is not completely mixed.

§l’7,, Diarorals separated and ordered. *

Consider an n x n matrix A = (nu) with

a“él.k, k=13 (modn),

where the intervals Lk are disjoint and ordered:

(23) L°<L1<ooo <Lh-1.

We shell estalblish that A is conpletely mixed., (See Fig. 2.)

Proof: Suppose sone xeé X has = 0, Then

X
Zagx>Zag g% 2.
[enge every ycY has Y, " 0. Si:flarly, if some yeY has i 0 then

<Za

ey SV

2 85,57
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Hence every x in X has Xen ” O. Repeat these two steps n _timeo, redueing
subscripts modulo n when nescessary. The resulting absurdity x = y = O proves
that A is completely mixed.

Without the ordering (28), A is not necessarily campletely mixed. In any

case, use of the mixed strategy ('-1;, evep %‘) cannot cost either player more than
the mean diameter of the sets Lk‘ The next section solves the case where the Lk

are points,
'Y - eee - Z 0 Lo Ii e Ln"l ‘O .1 XX le
- ® oo = % 0 Ln-l LO Y Ln-z ‘h“l ‘O eoe ‘n_z
: ) - :
- - (XX * 2 o ) ‘
Ll Lz ese Lo .1 .2 ece ‘0
z (o] Z 0 oo 2 0 — - -
(a)
um 1, m 26 Pigure 3.

§ 16, Constant diagonals.
Consider an n x n matrix A = (.1") with

8y " & k=1-J (mod n).

(See Fig. 3.) One imediately observes that (%, - %), (-};, T— %) is a
solution and that v(A) = % z a,. Since any other optimal mixed strategies for
either player must be symmetricelly disposed about (i]i’ coey é) , this solution

will be unique if and only if it is basic. Sudpose Za 4 O. Then A is camplete-

ly mixed if and only if the dete: :inant l‘ijl $ 0. But it 1: easily verified that
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1l n=l
o = T Z e

th

where «w is a primitive n* reoot of unity. If none of the factors vanishes, them

A 1s completely rixed. On the other hand, 1f Za o/ = 0 for £ = £, the real

£, 24, (n—l)l°
part r, of the camplex vector {1, oy w ) 48 in the mll-
()

n » ooo’wn

space of A and AT, The optimal mixed strategies for either player will be just

those of the fom
l 1l
CRIE R

where r is a vector in the space spanned by all such r , oend their cyclic permutatioms.
o
Example 2:

01 3 2| veg, v, =r, = (1, -, 1, -1).

2 01 3 s .

3 20 1: X and Y are the line segnents, in their respective

13 2 0 tetrahedra, joining the points (3, O, 3, 0) and (0, 3, O, ). .
219, Conelusion.

Remark 1: Any matrix which is derivable from one of the types here discussed
by permutation of the rows or columns is of eourse not essentially different,

Remark 2: A relaxing of the otrict inequalities appearing in %16, 17 gives
rise to a host of specizl cases, most of them not campletely mixed, whieh are not
worth describing in detail,

Repark 3: 2 x 2 game is completely mixed if and only if its diagomla.m
separated. Unfortunately, our generalised conditions of §§16, 17 are not even
Lroad enough to cover all 3 x 3 campletely nixed games. One of the mavericks is
the following:
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Bxample 3: - '
h =3 =2 v "]"n
=3 4 =2 unique x€ Xi (%’ %p ;)o
o 0 1 unique ye Y (3, ;. 3)e

Only the main diagonal is separated and it is not dominant,
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