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(Ml  miu THLUHY  OF üGür-ÜLHüNiJtNT STOCKAbTIC  BKäNCHING PKOCE^SES1 

Richard Bellman and Theodore Harris 

61.     Introduction» 

Ma ara 1n»nii»w».wri in 4 WM■ ■ t i gaA^g the following problem    -tT^^mJ 

which is of possible biological, chemical and physical interest,. € 

A particle existing at time tV-" 0 is assumed to have probabilities 

4 jf  nl^ 0,  of being transformed into n similar particles at 

some random time t > 0. Assume that-we—start^ with a single particle 

at t * ü.  Under the hypothesis that any particle has a life—length 

probability distribution independent of its time of birth and of 

the number of other particles existing at this time, the problem 

is to determine the probability distribution of Z(t), the number 

of particles in existence at time t. —— ^ t&     f,    -2- 

The simplest caso, and the one most often considered 

previously, is that where the probability that a particle in 

existence at t be transformed between t and t + At :Ls aAt ♦ o(At) 

and is thus independent of age and of absolute time. Here the 

cumulative distribution G(t) of the random transformation times 
~~at has the form G(t) ■ 1 - e  •  For this particular case, the problem 

is more tractable due to the convenient fact that the non-linear 

integral equation which is obtained in the general case reduces 

to an ordinary non—linear differential ecuation which in the case 

of binary splitting is of Bernoulli type and hence can be solved 

in elementary terms; see, for example, B. G. Kendall, [4]. 

Expansion of results announced in Proceedings of the National 
Academy of Sciences. Vol. 34 (1940), pp. 601-^04. "~ 

) 



• -2- 
hüOP 36 
Rev. 7/U/50 

Unfortunately, the assumption that the probability of trans- 

formation is independent of the age of the particle is not realistic 

in many cases of interest.  Rather, it is more likely that the 

distribution of transformation times is concentrated about a certain 

mean life length. This is particularly likely to be true in 

biological phenomena such as the growth of a colony of bacteria. 

In our work, we assume that the random transformation times 

have a cumulative distribution Git), where 0(0-0 B 0, G(au) ■ 1. 

\ 

Depending upon what we wish  to prove,   further assumptions  are  added. 

The  precise  restrictions^rill   be given  below. 

l^r^- I  Wn   ihft]l rrntirict  <Z\IT**I***^^**  far as detailed exposition goes, 

to the special  case where  only binary  transformations occur;   that  is, 

one  particle can be transformed only  into  two  others.    This   is  the 

most important case biologically,  and  the  methods employed  to deal 

with this  case are easily extended^Haa will   br  pninterl  nnt   Inter, ^tn 

deal with the general  case with n-ary  transformations. ^  

It  should be mentioned that  D.   G.   Kendall   p]   has recently 

treated  the  case  where  G(t)   is  a k—fold  convolution of  distributions 
—at of the form  1  — e       .     In  this   case the  process  can be   considered 

as a Markoff process  involving k types  of particles. 

We  now make   some definitions  and  assumptions.     Set 

pr{t)   -  Prob[2(t)   - rj, r  - 0,   1,   ••• 

F(s,   t)   -    X    Pr(t)sr   . 

The  generating function, 

(1) F(5,   t)   -    Z Pr(t)8r 
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where 

(2) pr(t) - Prob[Z(t) - r], r > 0, 

and Z(t) is, as in the first paragraph, the number of particle« in 

existence at time t, will be the focal point of our investigations. 

Setting 

(3) h(s) 
n 

where q , as above, is defined to be the probability that a particle 

is transformed into n particles when transformation occurs, standard 

probabilistic reasoning leads to the non-linear integral equation 

t 
(4) F{s. t) - T  hß^s. t-yQdG(y) ♦ 8(l - G(t)) 

Jo 

The classical method of successive approximations yields the 

result that there is a unique bounded solution of iU)   for |s| < 1, 

which possesses all the elementary properties of a generating 

function.  We next consider the distribution of the random variable 

defined by 

(5) W(t) - Z(t)/E(Z(t)) . 

To this end, we reauire the existence and asymptotic behavior of 

the expectation of Z(t),  E[Z(t)]] * m,(t).  The expectation satisfies 

the linear integral equation 

iMt) - b! T m,(t-y)dG(y) ♦ l-GU).   (b| - 21 no ). 
do 1   n 

(6) 
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In this paper, we discuss only the  case where 1  < bj   < a>.     In this 

case there is a positive probability  that the family of  particles 

«rill not become extinct. 

Equation (6)   is a special  case of the familiar eouation of 

renewal theory which has been treated generally by Feller   [2], 

Täcklind  [7],  and Bellman and Harris   [l] •    In the  present  case 

there are special   conditions satisfied which enable more precise 

asymptotic results  to be obtained. 

Under the assumption that bj  > 1   we show that  the  random 

variable W(t)   converges  in mean square  to a random variable w. 

The connection between Z(t)  and w is as  follows.    Let K(u)  be the 

distribution function of w and set 

(7) ^(s)   -   T^e^dKU), Re(s)  < 0. 
Jo- 

Then it follows that 

at 

t ^OD 
(8)        ^(s) -  lim F(e8/e  . t),    Re(s) < 0, 

and  consequently that ^(s)  satisfies the  non-linear integral equation 

(9) ^(s)  -   T00 h^(s/eat)]dG{t) . 

at The tens e  occurs because of the fact we prove below that 
\       at. 

KvZ{t)) /x" mje  as t —> oo ; the constant a will be defined below. 

The properties of the solutions of equation (9) are now 

studied.  It is shown that for the solution of (9) of the form (7), 
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we have 

(10) Kit) 0,  as t 1 ® . 

if h(ü) - 0, where Ms) is defined by (3)* A consequence of this 

is that K(u) is continuous in u, except for a discontinuity at 

u • 0 which occurs only when h(0) / 0. 'Imposing a further condition 

of the type 

(11) 1 - G(t) - 0(« Ct),     c > 0, 

we demonstrate the existence of a density function for K(u), u > 0. 

The investigation of the properties of the solutions of the 

non—linear integral equations requires a large number of ad hoc 

methods, patched together in no obvious fashion.  Considering that 

we are dealing with non—linear processes, for which the treatment 

is as yet little standardized, there seems to be no alternative to 

this potpourri of methods. 

The models treated in this paper are susceptible of generaliza- 

tion in several important directions.  One may consider the more 

general case where the probability of transformation is dependent 

on the time of birth and on the number of contemporary particles. 

Then there are the problems of the distribution of ages, the number 

of transformations in a riven interval, and so on.  Finally, there 

is the case where there are particles of different types which give 

birth not onl., to those of the same type, but also to those of other 

types.  The case of biological mutation is an example of this. 
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Finally, we may mention that the results of this paper are 

generalisations of those contained In a paper by one of the 

authors, Harris (3J , where further references are given, and 

that several of the methods of the present paper are contained 

In ovo In this. 

We should like to express our appreciation for the many 

helpful suggestions of the referee. 

§2.  Derivation of the Integral Equation. 

The function p (t), the probability that r particles exist 

at time t, satisfies 

(1) pr(t) - P     P[Z(t) - rl/JdGly) *    S1r[l - G(t)] 

where S*     is the Kronecker delta function and Pfit) ■ r\y]  is 

the conditional probability that Z(t) ■ r given that the initial 

particle was transformed at time y.  It is clear that this condi- 

tional probability is given by 

(2) Pp(t) - r'yj - ^1 Pi(t-y)pr_i(t-y) . 

Substituting (2) in (1), multiplying both sides by s , and 

summing from r ■ 0 to oo gives the followinf integral equation for 
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Vis,  t) - XPrtt)8
r: 

t  2 
(3)        F(s, t) - T F (s, t-y)dG(y) ♦ *[}  - GU)] • 

If G(y) • 1 - e"ay, (3) may be reduced by differentiation 

with respect to t to an ordinary differential equation. 

§3.  Formal Definition of the Process. 

In order to define formally the stochastic process with which 

we are dealing, we consider the space/V of functions Z(t), 

U < t < oo, whose values are nonnegative integers. First we must 

define the probabilities 

PpU,) - r,, ZUJ - r^f •••, Z(tk) • rJ • 

Pr,r2 ... rk 
(ti' **• '••• tk) 

for every  k nonnepative  integers r1,   •••,  rk and every k nonnegative 

numbers t|,   ..*,  t.;    k ■  1,  2,   ••••    Once these definitions have 

been made,   provided certain  consistency relations hold,   it  follows 

from a  theorem of Kolmogoroff   [6]  that a  probability measure is 

uniquely defined on the  Borel sets of-Tl.     By "Borel sets of J\n 

we mean the  Borel extension of the field of   cylinder sets.     A 

cylinder set  is a set  consisting of all  functions Z(t)  such that 

ZU.)  € S^,     i  -  1 ,  2,   •••,  k,  where 3^ is any set of nonnegative 

integers. 
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We define the probabilities P„ . , - (t), •••, tu) by means r, rk K 

of the generating functions 

Fjs,f   •••,   s. ;     t1f   •••, tw)   - 

Pr,   •••  r,,  (t"   •••• V  s»     '••   *k 

We define the F.   inductively,  for 0 < t|  < t2 <  ••• < tk, and agree 

to define 

Fk[sn(l)»   ,**»   8nlk);     ^(1)»   "*»   ^(k)]  * 

^[s,.   •••.  sk;     tIt   •••. tj 

for any  permutation rr{1)t   •••,  n(k). 

Having defined Fife,,  t] )   * F(slt  t|)   by means of  (4), 

Section  1,  and assuming that  F|,  Fg,   ***»  F.   have been defined,  we 

define F. 4l   by .neans of  the equation 

SQ  ^PW8"   ••••  8^lJ     ^-y»   ••••   tk41 -y)]dG(y) 

*  a}   f     h^is^,   •••,   sk+1;  t^-y,   •••,  tk4l-y]dG(y) 
u 11      " 

. t 

♦   •••   ♦ s,s^   •••   sk J   k<,h[F,(8kt1:  tk+1-y)JdO(y) 
'k 

* s>^ ••• »k^it1 -G<Vi>] 
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The probablli^ic reasons for the definitions (1) are analogous to 

those given in paragraph 2. 

If Fi , •••, F. are known to be probability generating functions, 

it can be shown, following methods to be used in Section 4, that 

(1) determines uniquely among bounded functions the probability 

generating function Fu.*« » provided Ü < t| < ••• < tj^ • 

It remains only to show the consistency of the probabilities 

that have been defined.  This can be done by repeated application 

of the following type of argument. Set S| - 1 in (1), thus 

obtaining an equation for Fu.^1» 82t ***) which is now identical 

with the eruption used to define F. ; because of uniqueness, this 

implies Fjj^, d i »^ . ' * *) ■ Fk( Sg , • • •; tz,   • • •). 

Q4.  Existence and Uniqueness. 

We shall demonstrate the following result; 

Theorem 1:  Under the assumptions 

(1 )   (a)   dG > U,  G(O^) - 0,  G(cx)) - 1 , 

(b)  G continuous from the right. 

there exists a solution of the integral equation. 

(2) F(s, t) - s(l-G(t)) +   P   F2{s, t-y)dG(y)l 

which nag the following properties: 
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(3)      (A)      *(B9  t) 
m2l pAt)**,    for  isl < 1. and all t > ü. 
r-l 

(b) FU.  ü)  - 8.       F(1t   t)   - 1, 

(c) p,(t)   - 1 - G(t) 

Pr(t)   -J1    j|: Pj(t-y)pr_j(t-y)dG(y)f       r > 2. 

whencf.  in particular. 

(d) pr(t) > 0. 

The functions pr(t), r - 1 , 2, •••, and F(s,t),  |8|<1f 

are of bounded variation over every finite t—interval. 

Furthermore, the above solution is the sole solution of (2) 

which is uniformly bounded for all t > 0, for each s in !s| < 1. 

Proof;  Let us agree to the convention that a Stieltjes integral 
J,b p b^ 

f(y)dg{y) is to be interpreted as  /  f(y)dg(y). 
a     ^ (J a* 

««e shall utilize the method of successive approximations. 

Define 

U)        Ms, t) - s(l - G(t)) , 

t 
Fn41(8, t) « s(l - G(tO ♦ J  rnt

8. t-y)dG(y),   n > 0. 

It follows readily by induction that 

(5) |Fn|  < 1,      t > 0,       |8|  < 1,       n > 0. 
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For if the inequality, clearly true for n - 0, be assumed to hold 

for some n, we obtain from ik), 

t 
(o) IVI' ^ f dG(y, 4 1-0<t) 1. 

We  first  prove  that  the  sequence  ^..(8,   t)   converges  for all 

s   in  the   interval   [ü,   l]   as  follows.     Each  F    is non—negative,  and 

since F,   > FQ,   it  follows  by  induction that  F 41  > F  .     Consequently, 

since  for each s  in   [O,   ij ,   the sequence  JF   [■  is monotone   increasing 

in  n and  bounded,   it  converges for all   s  in   [0,   1J.     Call  the limit 

function  F(s,   t).     Usin^  the Lebesgue  bounded  convergence  theorem, 

we  see   that 

(7) 
^..2 F(s,   t)   -     /'   F   (s,   t-y)dG(y)   ♦   s(l-G(t)),     0  < s       1. 

JO 

The  setjuence <JF   [is  thus a  uniformly   bounded sequence  of 

analytic  functions  of  s  in  the unit  circle,    (sj  < 1,  which  converges 

on the   segment ü < s ^  1.     It follows  from  Vitalif3  theorem,  that 

the   sequence  converges  uniformly   to an analytic function  in any 

closed  re.-ion within  the   unit  circle.     It   is  not difficult  to  give 

a  further argument   showing  thrat  the  convergence  is uniform  in and 

on  the  unit   circle  aue  to   the  positivity  of  the  coefficients  of the 

power series  aevelopments   for F  (s,   t).     However,   it   is  not  entirely 

easy   to  generalise  this   line  of  proof  to  cover systems  of  equations 

of  type   (2),    3 3«     For  this  reason,   we  present the  following proof, 

which,   although more  pedestrian,   is   ^uickly  applicable to  the more 

general   situation. 
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We have for M < 1,  n > 1, 

S    P'n18» ^y^^-l13» t"y)][Fn{s» t"y),' Fn-1(s' ^-y)]00^)» 

whence 

(9) 'Vl'^nl ^2J       lFn(s' t">r)-i'n-1{s' t"^,l dG(y)- 

Kestrict L, temporarily, to the interval [0,  Tj, where 1 is chosen 

so that 

T 
(10) 2  P     dG < b < 1. 

ü 

This   is   possible since G(ü)   - 0.     ifcith  this  restriction  (9)   yields 

1'' ' ,SlPr  ''^«l   - Fnl i b 0
S"PT   ^n " Fn-1 ' • n ^  ' • 

From this,   we  obtain 

(12) Sup     |F        - F   | ^  bn, n > 1, 
ü^t<T      n ^ n 

since |Fj — FQ | < 1•  Consequently, for 0 < t < T,  |s! < 1, the 

series 

(U)       ^(FrM ~Fn)  • n-0  n 1   n 

converges uniformly in t and s. 
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Let us now establish convergence in the interval T < t < 2T« 

We have, in this interval, 

(14) 

and thus 

fn^l   pn 
t-T 

/t^r
Fn{8' ^J-V». t^)][...]dQ(y) 

t-T 
dG(y) 

♦ 2 /'  |Kn(s, t-y)-F  (s. t-yJldGCy).  n>1. 

We have already shown that |Fn4l " ^nl ^ ^
n in ^e interval 

Ü < t < T. Hence, since 0 < t-y < T for t-T < y < t, we have 

(16) 
t—T 

'^l""^1 - 2C/   
|Fn(8» t~y)~Fn-l(s' t-y)ldG^)'' 2bn.  n > 1 

IK, - F0I < 1. 

From this  it  follows easily that 

(17) Sup       |Fn^1   - Fj < (ün  *   1)bn 

00 

ana,   therefore,   that  the  series    21   (F     ,   — F   )   converges   uniformly 
n-Ü  n ^   n 

in s and t. 

This same arrument :nay be ti.en repeated over the interval 

[üT, 3T], and so on.  From this we conclude that F  converges 

uniformly to F(s, t) over any fixed t—interval, for \s\  < 1. An 

arf.ument of similar type shows that (^) has only one bounded solution. 
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Heferring to  (3),   we  see that   (a)   follows from the  fact  that 

Ha,   t)   is  a  limit  of  bounded sequences  of   power series with  non- 

negative   coell icientb;   the  beconci  part  of  (b)   follows  from the 

uniqueness  of a  bounded   solution - in this   case  1;  and   (c)   follows 

by equating  coefficients  in   (2). 

It  remains  to show bounded variation.     We have,   for 

ti   > t,,  >   •••  > t^   > tn , 

(18) r(s,  tk)-F(s.   t^^   -    rWk F2(s,   tk-y)dG(y) 
utk4l 

♦   /      4   ^(s.   tk-y)-K2(s.   tk4l-y)]dG{y) 

* s:G(tk^1) - G(tk)). 

Thus, 

Otic41 

(19) |F(s,  tk)-F(s,   t^^l  ^2   / |f(s,   tk-y)-F(8,   tk^-y)!dG(y) 

♦  2(G(tk)   -  G(tk41)) . 

Write 

^ _ ^n. PVI ....    rtk 
(20) / "     / ♦     / ♦   ...   ♦     / 

Jo J t n L/tk^1 

and 

N-1 
(21) VN  -  SUD    Z   1^(8,   tk)  - F(s,   tk^)|, |s!<1. " R k-1 
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Clearly V^ < VN4.1 .  Adding the inequalities of (19), using the 

decomposition of (<i0) ana  the notation of (21), we obtain 

(22)   ZVU. tk)-F(s. Vl)| <2Vni^
ndG(y).2Vn_1 f^^iy) 

♦ ••• ♦ 2V2 /  dG(y) 
t2 

♦ 4>''G(t|) - G(tn)) 

u 

Therefore 

< 2Vn  r 
1dG(y) ♦ 2(G(t1) - G(tn)) 

(^3)       Vn < 2 /   dG(y) Vn ♦ 2 . n     L/ Q       / n 

If we at first restrict ourselves to the interval (O, T], where 
T 

2 /  dG(y) ■ b < 1 , we deduce that V ^ 2/(1-b), for all n, whence 

bounded variation.  To establish bounded variation over [T, 2T] , we 

proceed as in (15) ana (It). 

Let us note that to extend our result to cover the more 

generol equation 

t \ (24)       K(s, t) - ;   h F(s, t-y)dG(y) ♦ s 1-G(t)) , 
0 

where 

CD      _ 00 

(25)       h(x) - Z a, xn ,     Z «n " 1 •     ar, > ü. 
n"2 n*2 
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we need only add the additional condition h'(l) < a>.  The method of 

proof is then the same. 

§ 5»  Properties of the foments. 

Let us now discuss some further properties of the solutions. 

The first result is 

Theorem k*    nssuming 

(1 )        dG > u,    G(0*) - 0,    0(00) - 1 , 

then all the moments 

(2)        m. (t) - X nKpw(t),     K « 1, ^, •••, 
K     n-1   K 

exist, and for fixed k , and any £ > Ü, 

(3)        mk(t) - O e 

as  t —^ 00,  where a  i^s  the  positive root of 

(4) 1-2   r^ e   GtdG(t). 
03 

0 

For  each k,    m   (t)  ^s  a  nondecreasing  function of t. 

Once the moments   have been shown  to  exist,   their  nondecreasing 

character follows   if we  can show 

($) Prob^U» )  > z{t)]   -  1 
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for all t* > t.  In order to prove (5), which is of course 

intuitively obvious, we consider the defining equations (1), 

Section 3i with k ■ 1.  We need merely to show that if 

^(sif 8^i ti » t,,.) is written as a power series in s, f the 
K k coefficient of s,, for each integer k, contains s^ as a factor. 

This is reaaiiy done by successive derivation of (1), Section yt 

with respect to S| at S| •» 0f using induction on k. 

Now consider m^t).  For |s| < 1 , we have 

(6)        K'(s, t) - Ü / k'is,   t-y)F(5, t-y)dG(y) ♦ 1-G(t). 

('   denotes  differentiation with respect to s.)     Hence 

t 
(7) |F'(s,   t)|   ^ 2 |F'(s,  t-y)|dG(y)   ♦   1 . 

~   do 

3et !Ff(s, t)[ • e v(s, t), where b > a,  a being defined by (4) 

Then, 

t 
(8) v(s, t) < 2 /' vis, t-y)e bydG *  e bt. 

and  consequently. 

(9) Sup    v{s,   t)   <    Sup     v(s,   t) f  2 
u^t^T " u^t<T r e-^dG ) 4  i , 

or 

(10) 
00 

;up    v(s,   t)   < 1/  (1   - 2   /'     e  bydG). 
Ü^t<T u0 

Si 

The  bound  is   independent  of  s  and  this  together  with  the fact that 
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pr(t) ^0,   implies   (3)  for the   case  k  -   1,   since m,{t)   -  FMl,   t). 

Since  F^^l,   t)  - E&Ct)]^ - E[Z(t)],   and   in  general 

(11) V(k)(i,   t)  -  E[Z{t)]k  ♦   expected  value  of 

powers   less  than  k  of 7At) t 

Ik) it  suffices  to  consider F*     (1,   t)   rather than m. (t). 

The  second  derivative for   jr>j   < 1   satisfies 

(12) F(2,(s.   t)   -  2   T   F(£,   t-yjK^is,   t-y)da(y) 
^0 

t 
♦  2   r    [F'(s,   t-y)]   dG(y) 

'J 0 

Using the result for k ■ 1 and the method above, we easily show that 

Sup |F(-i)(s, t) | 
CKt<a) 

has a  bound  independent  of  s   for   |sj   -^  1.     Now 

F(2)(sl   t)  -    Z  (r* - r)p{t)sr~2 

r-1 r 

and since r — r is positive for r > 2, thf tneorem follows for 

k ■ 2. The process may now be continued 'ind the general result 

obtained by induction, 

before proceeding to the  uestion of the  arymptotic behavior 

of the moments we prove the following 

Lemma 1•  If v(t) satisfies the equation 

(12)       v(t) - f      v(t-y)dH(y) ^ K(t) 
^0 
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fand is  bounded on every finite  interval,  where 

(13)      (a)       dH>ü, H(0-O   -0, H(oo)   -   a<1 

(b)        |K{t) I  < C| , 0 < t ^ a> 

(c)       K(t) c*    as    t OD, 

then 

(U) v{t) —> c2/ (1  - a), 00. 

Furthermore,   if  |K{t)  - c^ |   -  OCe   £t)    and   IOL - H(t) |  -  0(e    6t)l 

6   > 0,   as t —> GO,  then there  is a    & > 0  such that 

(15) |v(t)  - c/ (1   - a)|  -  0(e    5t). t—»OD. 

Proof»  Kirst «ssume c^ - 0.  Since v(t) is bounded for 

0 ^ t < T, we have from (1^) 

Jup  |v(t) | < H(T)  sup  Iv(t) | ♦ c, , 
j^t<i' u<t<r 

or 
c,      c, 

cKt£r '  ' - 'y - H(T) " :r:r^L 

Thus | v (t) I ^ c, / (1 - og ,  u < t < w.  Using (1 <:) again , let 

v(t) - Jup |v(T) I , 
T> t 

K(t) - Sup |K(r)I ; 
T^ t 
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then for any T > 0 and Integer n, 

T 
(It) v[(n*1)T]<    P     v^n^ 1)T - y]dH(y) 

♦   r vlin* 1)T-y]dH(y)^ K[(n* 1 )T] 

<3Lv(nT)   ♦  ,   z ex.       *  K0n4 1)T] • 

— ci 
Let k be  a  positive   integer.     Since   |v{t)| < 1   __ ^   and  is monotone 

decreasing,   the   inecuality 

(17) 7((n*1)T) >7(nr)  - ^/ig,) 

must  hola for  at  least one  value  of  n between 0 and  k —1,  say  n  •  n^. 

Combining   (17),   for n • no,   with   (16)  gives 

(,8) 7(„0T) < -L^|7rfi_r *  C' ^"_H^):!   *  K[(n0 * , )T]}  . 

Öince v(n0T)   > v(kT),    K[(n0 ♦ 1 )T]  < K(T),    we have 

(19) 7UT>iT^{rn4^J  + ^^)I*K(T)].       .-1...   .... 

Krom  (19)   follows   (14)  for  the   case  c^  • 0.     The  general  case  is 

proved by maKing the change  of variable 

v*(t)  - v(t) - c2/ (1  - a). 

The proof used here, although lengthy, shows, by means of (19), that for 

each t, .'v( t) — c2/(1 - J.) | can be bounded by a quantity which depends only 
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on {ÖL- H(t)| and Sup |K{T) - c^ |, a fact we shall need later. 
t< T 

If |K(t) - Cü' and |a-H(t)| are both 0(e"6t)f choose A, 

(14) to the function 

Ü ^ A < ^l small enough that P   e^t,dH(t) < 1. We can then apply 

v*(t) - eAt[v(t) - c^/ (1 - Ot)] 

obtaining (15).  Apain, the bound 0(e " ) in (15) depends only on 

la- h(t)| and Sup |c^ - K(T)!. 
t<r 

We  are now ready   to  consider the  asymptotic behavior  of the 

moments.     Setting  s  ■   1   in   (t)  we  obtain 

t 

0 
ikO) m^t)   -   ^   /     m,(t-y)dG(y)   ♦   1-G(t) 

'JO 

This  is the familiar integral equation of renewal  theory,  for which 

general  results,   including  theorems  on the asymptotic  behavior of 

ra,(t),   have been  obtained  by Feller   [2]   and Tacklind   [7j .     However, 

there are  special   conaitions  satisfied  in  the   present  problem which 

make more  precise  results  possible.     On  the other hand,   as  Feller 

has   shown,   still  more  specialized assumptions on G(t)   would  enable 

us   to  use  the T.ethod  of LotKa to expand mj(t)   as a series  of 

exponentials. 

It   is  well   Known  that  the  solution of   (-ex))  may be written as 

m,(t)   -   1   ^  51 2n"1Gn(t). 
n-1 n 

the series coriverping uniformly in every finite t—interval, where 
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GjCt)   - GCt).       On4l(t)   -   /     Gn(t-y)dG(y) n -   1,   -d,   •' 

Thus continuity of G(t) implies continuity of m,(t)t and similar 

expressions for the higher moments show them to be continuous if 

G(t) is.  Furthermore, if G{t) is a step function the moments are 

step functions with discontinuities only at points of the form 

t| ♦ t^ ♦ ••• ♦ t . where tj, t^, ,,*» t fire points of discontinuity 

of G(t). 

For convenience we call G{t) a simple step function if it is 

a step function, all of whose steps occur at integral multiples of 

some unit. 

Theorem J.  nssume dG > o,  G(J^) - 0,  G{a>) • 1, and that 0(tj ^s not 

a simple step function, then the solution of (20) satisfies 

UD m, (t) ni e at 00, 

n: 1 / 4a r--" dG{t) 
where a ij5 defined by (4). 

By virtue of (3)f Theorem <:, we can take Laplace transforms 

of both sides of (20), obtaining, for Uels) > a. 

(22) f Wm1(t)e 
stdt 

JQ 

1    [l-G(t)]e'^tdt / 1 - 2 /  e"stdG(t) 

1 - ^(s) 

where 
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^(s) * e  stdG(t), Re(s)  > 0. 

The rifht side of (22) , which can be extended analytically to the 

region he(s) > 0, has a simple pole at s • a, and no other 

singularities on the line Ke(s) - a, since G(t) is not a simple 

step function, .'oreover, we have shov/n th:.tm|(t) is nondecreasing 

We can therefore apply a Tauberian theorem of Itcehara [Ej , which 

immediately gives Theorem 3. 

Theorem 4a.  nssume G(t) - /  ß(y)dy,  g{y) > 0,  Gluu) ■ 1 end 
a o 

GD      ___ ^ 

that    ^(s)   •   /     e       g(t)dt  satisfies  the  condition that for every 
0 0 

bt     0 <  b •< a, 

(^3) 
CD 

—U) 
m^* ^ oo 

Then ra^t)   satisfies 

(24) ra^t)   - n)e
at[l   ♦   0(e   't)], ^ > 0. t CD 

where n) is  defined in (21). 

Theorem 4b.  If dG > 0,  G(u-0 - 0,  GM - 1,  and G(t) ^s a simple 

step function, the smallest step beinF. at A i then for each ÖL9 

U ^ JL v^ A f and integer n, 

ui}(/-    ♦ nA) 6 > 0,  n 
00 

4(1-e"aA)2;kb.e-ka^ 
1   K 
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where b. ^is the magnitude of the .lump of G(t) at t » kA and b) > 0. 

nt 
Theorem 4c.  If dG > Ü, G{0*)   - 0,  G(üD) - 1,  G(t) - /  gi(y)dy ♦ 
—— - Jo 

G^t), g,(y)>0.  r^giCyldy > 0.  ^, ( s) - J000 e"9^, (t)dt 

satisfies (23), and G^(t) ijs a step function;  then (24) holds. 

Before giving the proof we remark that there are two simple 

conditions, either of which insures that (23) holds.  If for some 
 rit 

d,  ü *v d < «,  the function g(t)e   is of bounded total variation 

on (0, 00), then (*:3) follows from integration by parts.  Another 

condition, which permits g(t) • C(t  ),  t —> 0,  for any 

U < F. <s 1 , is the assumption that for some p > 1 , 

(25) P*  g(t)pdt ^ 00. 

For, applying Holder's inequality, with 0 < b < a, 

(26) ^liiiiiiil,^   rm*^yu*'^(r-^-J. 
(J-Oi   1 ♦ l/l J-u /  \J-a. (1* |y|P/ 

1 * 4- - 1. 

Since ^(b ♦ iy) is the Kourier transform of e  g(t), we have, usi 

the Hausdorff-Young inequality for Courier integrals, 

(27)       (   /^ |^(b*iy)|P,dy)P ^ c(^( f^ e-Pbtg(t)Pdt)P . 

ng 
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From (25), (^6), and (27) we get (23). 

The proof  of Theorem kix  is  by  the method of  residues,   used 

with  v^hat  Üoetsch  calls the "indirect Abeiian" method.     Since ra](t)   is 

continuous  (and nondecreasing)  we have  from  (22)   for any t>Cf  b'>af 

(26) 1 b'^iT 
m| (t)   -  lim    Tr~r   I e 

T-^CJD ^ni Ub'-iT 

st I      1   - VU) 
s[i-2 ns)2 _ 

► ds . 

The  function  1   - 2^(3)   has a  simple  zero  at  s  •  a and vanishes 

nowhere elre   on the  line Ke(s)   ■  a.     Moreover,  since     Ms)   is the 

Laplace transform  of  an absolutely  continuous distribution v/e have 

lim     r/^b  *   iy) I   - 0 
y—^.i® 

uniformly in b lor 0 v b ^ a.  We can therefore find b,  U ^ b < a, 

such thai  1 — 2 VHS) has no zeros, except at s - a, in the strip 

b ^ he(s) < a (clearly there are no zeros for He(s) > a) and is 

uniformly bounded away from 0 on the line he(s) - b.  Then, using 

Cauchy1^ theorem for the rectangle b _♦ iT,  b' ♦ iT,  we obtain 

(the integrals along the horizontal sides of the rectangle clearly 

—> Ü as T —> u>) 

(29) m,(t) - n,eat ♦ lim ^ /     est 

T^oo ^ni Üb-iT 
1 . '/(s) 

s (1 - 2 n a) 
ds 

at  bt 
nie  ♦ e ♦ lim 

!___ nbMT ^  ^(s)ds 

w   2nif/b_iT s'j - 2 >1s) 

at where n, is defined by (21) and n,e  is the residue of the integrand 

at s - a. The conditions imposed on YM s) in Theorem 4a insure that 



-20- 
UAOP 3d 
Kev. 7/U/50 

th« integral on the right side of (29) is 0(ebt), and this 

concludes the proof of 4a. 

To prove Theorem 4b we note that in this case the function 

^(s) has the period 2ni/^ , 

n ) -  f* e^dGU) - Z b.e"^8 , 

bk > Ü,   b, > 0,   Z bk - 1. 

Thus 1 — 2 V^ls) has simple zeros at the points a ♦ 2nir/^ , 

r ■ u, 1, ''*$  and because of periodicity we can find b,  u ^ b ^ a, 

such that 1 — 2 ^(s) is uniforn»iy bounded away from U on the line 

He(s) - b, and such that if b* > a, the only zeros in the strip 

b < he(s) < b* are those on Re(s) - b.  Moreover, ^(s) and 

^1 —Vis)]/ [}   -  2(//(s)] are twice continuously differentiable 

on Re(s) - b.  Thus 

^-2'nb*  iy)   k^o Ck< 
- Z c. e1^ ,   ck « C(l/k2),  k^i», 

Using Cauchy*s method as before, we obtain the principal term in 

Theorem 4b by summing the residues on He(s) ■ a, with the remainder 

T-^oo ^'J-T  D  iy   k-'OD K     / 

Since Z lc I ^ ^ änc^ since 
K»-QD *c 
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1     rT 6ity6ikAy Je~b(t4kA,
f       t  ♦  kA > 0 

(31) T1-^) ^ J-T      fa4ly      ^  "   lQ> t*^<0 

and since  furthermore the   convergence   in  (31)   is bounded uniformly 

in t  and  k  provided   t   ♦  k^ is  bounded  away  from 0,  we   can  interchange 

summation and   integration  in  (30),   obtaining 

(32) ebt       ±        cwe-b(t^)   . 
k—'It/A] 

This  proves Theorem  4b. 

If the  coiiciitions  of Theorem  4c   hold,   the  Laplace  transform of 

m^t)   can be  written 

(33, 1*     r118'        ,*      ^(S) 

s[l-ü / (s)]       s[l -2 ^(s)] 

where 

^(s)   -   P" e stg1(t)dt, Jo 

e  stdG2(t)   -     Z dwe    k 

ü k-1    K 

As  in Theorem 4a,   1   — 2 ^s)   has  a  simple  zero at  s  •  a and no  other 

zeros on Ke(s)   »a,   and    if^ib  4  iy)  —> 0 as  y —> ♦ oo,   uniformly in 

b  for u <. b < a.     We  can thus  find  b,     u < b < a,     so that s  ■ a  is 

the  only  zero  of   1   - ^^'(s)   in  ihe   strip b < Ke(s)  < a.     By our 
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assumptions,    '/^(s)/   [8(1-2/(3))]   is  absolutely  integrable  on 

he(s)   •   b.     As  regards   the  third  term   in   (33),  we  can write 

(34) ; H  - ZW   " sfl - i VJ   *  sd   - 2'fJ(l  - 2 "pi     • 

The second term on the right side of (34) is absolutely integrable 

on He(s) ■ b.  If a — b is sufficiently small and positive, we have 

N'Pjb * iy)| ^ 1 

uniformly  for -a» <. y < ao.     Thus,   since    t^   is  an absolutely   convergent 

series  we  have,   for a —  b  sufficiently   small  and   positive, 

rjs) «       -/is 
r"feiT " ^V        •       ^ <"•   ^^- 

The   proof  of Theorem  Uc   is then  carried  out   using   the  procedure   of 

4a  and  4b. 

It   is  now  easy  to   get   the  asymptotic   form  of  the   higher  moments, 
( k) using   Lemma   1,     Let  u,(t)   ■  K       (1,   t).     Then,   as   remarked  earlier, 

we   can   consider  the  asymptotic   behavior  of  u.(t)   rather  than m.(t). 

Setting  s  ■   1   in   (12)   gives 

(35) u^t)   »   2 ujt-y)dG(y) ♦ 2   /      [n,(t-y)]   dG(y). 
'J 0 ' ' 0 

Put  ujt)   -  e^atv(i:(t) .     Then 

(36) vjt)   »   2   T   vJt-y)e~"aydG(y) 

4   2    /  t[e-^^)mi(t-y)]%-2aydG(y)  . 
J Q 
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Now 2 T  « iiaydG{y) v IJ'Q   e aydG(y) - 1, and if G(y) is not a simple 

step function we have, from Theorem 4a,  e  m^t) — 

whence 

ni as t 

CD 

lim 2 /   re"a{t-y)m1(t-y)l e'^dGty) - 2nt T e'^dGCy). 

Therefore, since from Theorem 2 v^it)   is bounded on every finite 

interval, we can apply Lemma 1 to (36) obtaining 

Theorem 5.  Under the conuitions of Theorem 3. 

lim  m^itje 
t —J>00 

-.at  ^"t/oe-^dCUy) 
CD 

1-^^ e-^dGCy) 

where n i i^s defined by l Ü1 ) , and a is  defined by (4) . 

Results corresponain^, to Theorems 4a, b, and c can be obtained 

in the same way.  This will be seen more generally in the next section 

when we consider the .-nixed moment E [Z( t )Z( t ♦ h)] . 

31.  Mean Sruare Convergence of Z(t) / mi(t). 

Theorem 6.  Under the hypotheses of Theorem 3 the random variable 

Z (t) /m, (t) converges In mean ^nuare to a ran dona variable w as t —>> a>. 

Under the hypotheses of Theorem 4b, Zinh)/EZ{nA)   cojavergee with proba— 

bility one to a random variable w, and also in mean square. 

Vheorerr. c of course implies also convergence in probability to 

w. 
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Define w(t)   by 

at- w(t)   -   Z{t)/ [n.e01']   . 

It   is   clearly   sufficient  to  show  that  w(t)   converges  in ra.s.,  which 

we  do by showing  that 

(1) lim       EjwUM   - w{t)]^   -  0. 
t.t'-^oc 

Differeritiation  of   (1),   Section 3,   with  K  •  1,  gives 

U) 
fkzis) ,   s^j;   t, ,  t^) 

♦ s 
- Efzujuu^r 

s^s^-l 

m^lt,,   t^)   -  2   /'"'   m^{t,-y,   t^-yldGCy) 
Jo 

t. 

♦  2   i ni, (t,-y)m, (t2-y)dG(y) 

>  2   /■   "  rn, (t^-yldGly)   ♦   1 ~G(t2). 
it, 

Set t,* - t, td  - t^h, h>ü, and let m^tt, t ♦ h) - eahe2atu{tf h). 

Then (2) becomes 

(3) u(t, h) - 2 /' ' u(t-y, h)e 2aydG{y) ♦ C3 ♦ o(l) as t 
0 

a>, 

using the known asymptotic behavior of int(t). H routine estimation 

shows that the o(1) in (3) is independent of h. The constant C3 is 

given by 
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(4) C3 • 2nt r     e 2ayda(y). 

It follows now from Lemma 1, Section 3» that 

c3 
(5) lim u(t, h) -  - n2 

t->tt 1 - 2 /  e"2aydG(y) 
Jo 

uniformly in h. Thus (see the remark following (19), Section 5) 

(6) E[Z(t)Z{t ♦ h)] - n2e
ahe2at[l ♦ o(1 )],   h > 0. 

Equation (1) now follows from (6) and from Theorem 5« 

If the conditions of Theorem 4a or 4c hold, the o(1) in (3) 

goes to zero exponentially and it follows from (1$), Section 5 

(under Lemina 1), that there is an ^ > 0 such that the o(l) in (6) 

is 0{e   ).  From (b) and the remarks following Theorem 5i there 

exists a (different) 6 > 0 such that (uniformly in h > 0) 

(7)        t[w(t ♦ h) - w(t)]  - 0(e et)1 t —> a> 

which  iii.plies  also that 

(t) h^w - w(t)]'   -   C(e"" &t) , t -> oo. 

Krom   (6)   we  have 

Theorem Ca.  Under the hypotheses of Theorem 4a or 4c the random 

variables w(nh) , n • 1 , *:, • * * » for any h > 0 , converige with 

probabi iity 1 ^to the random variable w. 
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For 

OP i» 

(9) ^.  E[w - w(nh)]     < OD, 
n-1 

which implies almost—everywhere convergence.  Rather than the 

sequence r,h we coula consider any sequence t  such that n ^ r ^ - 
n 

If the conditions of Theorem 4b hold, similar arguments 

show that Z(nA) / tZ(nA) converges with probability 1. 

We define the moment—generating functions of w(t) and w by 

^(s, t) - E |exp|>Z(t)e"'at7 n,]j 

-  F [exp[se"at/n1],   t], 

^(s)   -   t e3W, Re(s)   < 0. 

Since w(t) converges in mean souare to w the function ^{s, t) 

converges to ^(s) for each s whose real part is nonnegative. 

(kepiace t by nA if G(t) is a simple step function.)  Moreover, 

^(s) is continuous and the derivatives  ^j'—*• are uniformly 

bounded for he(s) ^0, being bounded by L w{t).  Thus 

^(s, t) —>  ^(s) uniformly in every bounded portion of the half 

plane he(s) < 0.  Now replace s by expose   / n{\   in (7)| 

Section 4;  letting t —> oo gives, because of uniformity of 

convergence, 

(10) ^(s) - ,   ^(se"'ay)dG(y),    he{s) < 0. 
^0 
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Summarizing we have 

Theorem 7. nsaume G(O^) - Ü, G(üO) • 1 ,  dG > 0. Xllfi coment 

generating function ^(s) of the random variable w satisfies (10). 

(if GU) is a simple step function w is l.i.m. 2(nÄ) / E^(n^); 

otherwise w« l.i.m. Z(t)/LZ(t).) 

§ 7.  Analyticity of ^(s). 

Theorem S.  There is a unique function ^(s) which is analytic in 

some nciphborhood of s • ü, and satisfies (10) of Section 6, with 

^(0/ - ^T(J) - 1, provided that GlO) m 0t   T    dG - 1 ,  dG > 0. 

First, assume 

(1 )        ^(s) « 2 cns »      c0 - 1,  c, - 1. 
n-0 n 

Substitution   in the  integral  equation  gives,   for n > 2, 

(2) c     -    X    ck
ci)r

a> e~naydG(y), 
n       k + j-n   K  Jü0 

or,   setting  In  -J     e  naydG{y), 

^U-n^)1"711-21"' (3) 

kj>i 

Since  1   - 21^ > 0, and  I    —> 0 as n —> OD  (because G(O^)   - 0) , we 

can   picK  n0   bo  that   lor  n > n^,,     In/ ^   " 2I
n^   <  ^     We  now   show 

that   there  are  constants  d and  A  such that 
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(4) cn <; Ad11/^, n >  1 . 

Assume  that  the  inequality   (4)   hold.««  f.r 1   < n < N,   where N > no« 

Clearly   this   can be accomplished with an A which  satisfies 

(5) 32A   21 -^ < 1 

by taking d sufficiently large.     Then 

(0) C^   S  A'dN+1   ^     '  
K!|   _        - ^    k2(N   +   ,   _  ^J» 

^1   M    , »^ d 2"    -L < 32A  d ^- J_ 
N^ k-1    k2 ""   (N   ♦   1 )      k^l k2 

Combininf, (5) and (6) gives (4).  It can now be verified that the 

series defined by (1) satisfies the conditions of the theorem 

uniquely. 

§0.  Asymptotic behavior of ^( it) as t —> ♦ oo . 

Since the substitution s • it converts the Laplace transform 

into a Fourier—iitieltjes transform, the cumulative distribution of 

w may be evaluated by means of the formula 

T -it,*^ -it,x 
(1)        K(x^h)-K(x)- lim   T  1 -e     e    ^(it, )/(2nit, )dt, 

whenever x and x ♦ h are continuity points of K. 

There are several theorems available which relate the behavior 

of K(x) to the asymptotic behavior of ^(it).  Hence it is of some 

theoretical interest to study the function ^(it) as t —>  ♦ oo. 
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Furthermore, it is practically important, when actually determining 

the cumulative distribution by numerical methods, to know how much 

of an  error  is  committed  by  omitting part  of  the  range  of  integration. 

The   result  we wish  to   prove  is 

Theorem  9.     «s t —> ♦_ oo 

(2) wit)i - o(Vrc/a) . 

provided     T   dG'0(eCX).   c>U,   asx  —^ CD,   G(0+)   -  0,   G{OD)   -   1 , 

dG  > 0,   and  G(t)   is. not  a  step  function with  one  step. 

The   proof  ic  rather long,   ana we  shall  breLk it  up into a 

succession   of   lemmas. 

Lemma   1 .     /%s  t —> 1 ^ t   ^( it)  —> 0.     ( The assumption     /     dG{y)  _is not 

required   for  this.) 

Proof:     Since 
-    00 

(3) tf(it)   -   I       eixtdK(x), 
J 0- 

for  small   (tj,   we  have  the  expansion 

(4) frfUt)   -   1   ♦   It - ^-  /       x^dKtx)   +  o( |t|*) (U) ^(it)   -1   ♦   it - -^  / 
^   do- 

(since     /'      xdK(x)   *   1).     Hence,   by  a  familiar   argument  based  upon the 

Schwarz   inequality,   for   It|   small,   |^(it)|     <  1   if t  / 0.      (The   strict 

inequality   (Ew)     -^ Ew    is a  consequence  of our  assumption  that  G(t)   is 

not  a  step function with  one   step. ) 

..e  remark that   some  such discussion as   that above is  necessary 

to  distinguish the  function  ^(s)  we are   actually  interested   in  from 

other  functions  satisfying  the. same  equation,   and in  particular  from 

the   function  1,   which  is  a  solution  not  approaching  zero as  t —^ ♦ oo. 
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It   is   convenient  to  show lirst  that 

lira  sup  |^(it) |   v  1. 
t 

Suppose  the  contrary.     Let  t3 > Ü  be  such   that   Mlitj)!  < ]   - dt 

where  d > 0,   and  such  that   J^{it)[   < 1   for U < t < tj,  and  let  tj 

and  t^   be  the   first  points   to   the   lefc  and   right  of  tj  for which 

l^it,)}   -   \^{itk)l   -   1   - d.     Pick  A  - 1 log ^   .     Then 

^(itfc)   -   /'     j {itiie~üy)dG{y)   ♦   f* /dG{y) 
(^ Ü J h 

and 

1   - d  -  M(itJ| ^(1- dj^Gln)   ♦   1   - G(A) 

whence 

ib) (2   -   d)G(n)   <   1. 

Now let  tj   remain  fixea  while  d —-> 0;   then  t,   —> 0  while  t^   increases, 

so that a —^ oo,     G(A)  —>  1,     and   (5)   cannot   continue  to hold. 

Thus  we   can  suppose  that   |^(it)I  <  1   — d     for     t > t,.     Take  B 

large  enough  so   that   1   — G(B)   <.   i ,  and  t   large  enough  to have 

te        > t, ,   where * is,  as  above,   log{ t^/t ^ )/a .     Then 

I^(it)|   <  (1   - d)   I'       I^(ite""ay)|dG(y)   ♦   i 
0 o 

or,   letting    V (t)   -  sup   ;^(iT)f, 
T^t 

(6) nt)   ^ (1   - d)G(n) ^(te"aA)   *   r . 
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From   (6)  it follows,   in  the manner of  previous proofs,   that   f(t) -> 0 

as t -^ OD.    A  similar argument  shows ^(it)   -> 0 as t -> -oo.     (We have 

purposely not made use  of the anaiyticity   of ^(s),   since  in the more 

general case where fission is not binary  ^(s) may not be analytic*.} 

So far no  condition has been imposed  on the rate  of approach 

of  G(t)   lo  1   an   t  —> OJ.     We now   shov;  that   by  imposing   suitable 

conditions  on this  approach, we  can   derive   explicit bounds   for 

|^( it) |  as  t —>  ♦ a». 

Lemma   *i.     IT as  x a> 

(7) 
OLI 

—cx dd  =  0(e  '•A), c  >  O, 

theri  as  t 1 <*>. 

(ö) l^it)|   -   Ciltf 

f9r  some  a > u 

Choose n  ■   (lo^  t)/^a.     Then from  the   integral  equation we derive 

A 
(9) 

ay M(it)I   <.    /        |^  (ite tiy) |dG{y) ♦ 1   - G(A) 

from  the  ael'ir.ition  of  n,   we  have 

(10) Ut)   &   1   - GU)   =  1  - G[(log t)/2a]   . 

Once  again  set 

(11) V(t)   »   üup   !^(iT)l 
T> t 

rtith   this   notation,   from   (9)   we  derive 
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(^ (12) ^(t)  <  r   (A/t)   ♦   b(t). 

Under the  assumption  of   (V),   we  have,   for  large  t, 

(13) ^(t)   <   ?2(Vt)  ♦  exp(-c  lop  t/2a). 

Hence 

(14) ^(t2       )  v.    f   (t^       ♦  exp(-2n   c   log  t/a) 

or,   setting   u    »   ^1t       ^ 

(15) un^1   ^ u^  ♦   exp(-<cin   c  log  t/a). 

npplyin^:  the  inequality   (u*v)     < 2(u   ♦ v2)   after  squaring both  sides, 

the result   is 

(1C) u^1  ^ ^[u^  ♦   exp(-2n+1   c   lor  t/a)]   , 

whence 

(17) un^ < u^1 * exp(-2n41 c log t/a)   <  2un ♦ 3  exp(-ün41 c log  t/a). 

Repeatinf  the   process,   we  obtain at  the   k—th  step 

k 
(10) u     .        v.u^     ♦  w.    exp(-2n*k  c  lor  t/a) n+k —    k  n k       r 

where  v,    and w.   are  constants  for which  we  will  now obtain  upper  bounds. 

In  fact  we   have 

i*r.\ ■  -^k"'1-1     ^K        12
K~1-1   Ä 0n*K-1        ,        ,. /o , (19) uri4k ^2 un     +   3 exp -2 c  log  t/a    , 

the  validity  of   (IV)   being  readily  established   by  induction.     Hence, 
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taking n  - U, 

(20) (j. i\ 2 
\ 

W k—1 
2"   '-1f^/.^2     .   ,2      -1   eXp(_2k~1   c  log t/a). t-   ) < 22 '[Ht)]-     ♦   3 

It   follows  from Lemma   1   that we may  choose t0 > 1   and  large enough  so 

that   ^Uo)  < ^ and   c log t0/a > log 3.    Then if x > tg  we may write 

ok 2 
(21) x   -   t to   ^   t   <   t0   , 

wher«  (21)   defines   uniquely   the  positive  integer  k.     Then   UO)   gives 

k-1 - k-1 
(22) hx)   <^[2^(t)]' - Uexpdog 3 - c  log  t/a)] 

3 '- 

AL u 
< U^ V^ito)]^ ♦   l[exp(log 3 - c log t0/a)]2   , 

where L  is   the   logarithm of  x  to   the  base to-     From   (22),   Lemma  2 

follows immediately   for t —^ <»;   similarly for t      > -». 

Lemma  3.     If   ^( it) |   - C ( 111"0 ) ,     d  > U ,     ast 

^(it)|   -   C (!trc/a). 

♦ oj,   then 

Proof: The relation !^(it)I - 0(!tf~tl) may be written |^(it)| 

O [(1 4 KI )~dJ t ^nd in this form it is more convenient for our 

purposes.     '*e  have 

(23) |**(it)I   < ct  T00  (1   ♦   It|e~ay)       dG(y). 
<v ü 

Integrating by parts, this becomes 
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(24) < 
CD 

dG(y)/(l   ♦   Me^y) 
2d" GU 

00 

dG(x) ^  (1   -   Itle"^) 
-2d 

dy 

-^d 

(T itil^ ' C
Vü 

dy 

Integrating   by  parts   a^ain,   we  obtain 

(25) «^ 

(1   *   Itl) 
2d   +   C^ 

<ÜL 
J U (1   *   lt|e"ay) 

7H 

Make   the  substitution  e  ^  «   IMv,   obtaining 

-c/a-1    . 
C 3 /       0 GO V d 

(i - !t!)2d * C5\Ji/!t| (i  * i/v) 
(26) V tI-c/< 

The   integral   is 

(27) 
OD —c/a—1 ♦2d r /,    JJ 

Jl/Itl (v   ♦   1) 
c/a / 2d, 

as  t —> uu, 

hence  if  ^d >  c/a,   we   obtairi   the  desired  estimate.     If  not,  we 

obtain   j^dt)]   « C   {|t|        ).    This  process may  now be  repeated  using 

tne  new  estimate,   and   since  2   d  >    c/a   for   some   integer  n,   we  will 

eventually  obtain  the   desired result.     Clearly  d may  be   picked  so 

that  2nd    is  never equal  to c/a. 

This   completes   the   proof of  Theorem  6. 
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It is possible to continue in this w«»y and obtain bounds for 
i 

^5 (it).  However, since we are principally interested in showing 

that 

UiJ) 
,00 

J-U) 
^ (it) |dt < öD, 

we  shall  iMerely   show that  this   is   implied  by  the   relation   |^(it)| 

0(t     ),   d  ^ 0,   ana  by  the  integral   eouation  satisfied  by fi. 

Vie   have 

(k9) 
Jo 

i   (s)   -  2  /       ^   (se  ay)^(se ay)e  ay  dG(y). 

From  this   we   obtain   for T > 0, 

(3u) 
-   GO T 

\6   UtMdt v ^  j       '   /     I^(ite~ay)|   l^lite-^Hdt 
^o   1J 0 

■e   aydGly) 

In the   inj.er   integral make  the   substitution  te    y  "  u.     Then 

T 
(31 ) ^(T)   -   f    l^'lit) [dt v. 2 

ool   ^ie     ' 

X 0 
\i>   (it) I  |^(it)|dt 'dG(y) 

Since  ^(it)   -   OU"0)   as   t 

(32) D(T) 

u u 

T 
2   /       |/(it)|   I^(it)|dt. 

JO 

CD,   we have  for  some   constant  c, 

c .7 (it)|dt/(1   * t)u. 

Intefratinp now by parts, 

(33) B(T) ^ cb(T)/(1 ♦ T)d ♦ cd /  B(t)dt/(1 ♦ t)d + 1 . 
Jo 
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Choose T large  enough so that  c/(l   ♦  T)d < 1/2   ;  then 

T 

(34) B{T)   < 2cd   T^  B(t)dt/(1   ♦  t) 
JQ 

d-H 

Hence 

T 
(35) B(T)/(1   ♦  T)0*1  <   [2cd/(1   4 T)d41]   T *   B(t)dt/(1   *  t)d+1 

T 
or,   setting V(T)   -    j       b(t)Gt/(l   ♦  t) 

(36) V'(T)   < 2cdV(T)/(1   ♦ T)0*1 

Hence  V(T),   and thus  B(T),   are  bounded as T —> CD,     M  similar 

argument holds as  t —> — a> , 

§9«     Existence  of a üensity  Function. 

Krom the  results  of the  previous  section follows 

Theorem  1Ü:     The  distribution K(u)   of w is  a  continuous function 

^f  u.     If,   in addition.   1  - G(y)   -   0(e""cy),     c  > 0,     then K(u)   is 
u 

ic( v)av. 
u 0 

Part  1   of  the  theorem follows  from the fact  that  ^(it)  —> 0 

as  t —> oo;   part   '*.  follows,   using  (1 )   of   3ti»  anc*   t^e   f^ct  that 

/_     Iff  (it)|dt < a>,   cf.  the argument  in   [3J,   p.  4ÜÜ. 
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J1Ü.     An  Example. 

Suppose 

G(t'--ÄT/f,   ^"'«"^ 
Let 

A(S) - r 
CD 

e^^dGCt)   •  (1   ♦  s/b) —n 

Proper choice of n and b ^.ive any desired values for the moan life 

length, -Mf(ü) c n/b, and the variance, An(ü) - [HMO)]  ■ n/b^. 

The root of A(s) » -^ is given by 

a « b(2l/n - 1), 

and 

Similarly, 

at E[Z(t)] ^  (a ♦ ble31"/ (2an). 

^.at ^ «i 
ht(t)] ~[EZ(t)] ^(41^- l)e'at{a^ b) / Q^a^n^d - 21J] 

—n 
where 1& - nUa) - (1 * 2a/b) ". 

611,  Remarks. 

The aiethods alreaay employed can be used to treat the case 

where instead of binary fission there is a probability q . 

n ■ 0, 1, t, *•', of transformation into n particles.  The proofs 

for existence, uniqueness, and generating—function properties of 
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F(s, L) are essentially unmodified.  The rest of the treatment 

deptnas on the value of m ■ 21 "^n*  J^s^ as in the simpler case 
n n=ö  n 

treated in [3J there is a positive probability that Z(t) never 

vanishes if ana only if m > 1 .  If m > 1 and 3" nkq < oo, the *— n 
results  on  the asymptotic   behavior  of m..(t),   j <  k,  are  the  same 

except  for different  values   of the   constants  involved;   the  theorems 

on mean square  convergence  of Z{t)/EZ(t)   hold   if m >  1   and 

>    n q    < oo.     The  theorem  on  analyticity of  ^(s)   at  s  ■ Ü  is  not 

generally  true  but   presumably   holds   if the   radius   of  convergence 

of Ms)   » 3* q^s"  is greater than  1.     The  function ^(s)   satisfies n 
.OD 

(1) ^(s)   -   r     h[>(se"'ay)]dG(y), 

m r00  e atdG(t). 

From  (1 )   we  see that  ^(-xa)   -   h^l-oo)]   » 14,   so  that  Q,   the  proba- 

bility  that   w  ■  0   (ani  also   the   probability  that   for  some  t, 

Z{t)   ■ Ü),   is  the  unique nonnegative  root,   less  than   1,  of 

(2) 4 -  hU). 

The  transformations 

,    v       h[s(l   - Q)   ♦ Q]  - w h*  s     - —^ ~  
1   - Q 

^(s) . ———d— 
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make   (1)   take  the  form 

(3) ^(s)   -   r00  h«[y*(se"ay)]dG(y). 

From  (3),  using the  methods of  Section  8,  we  can show 

j 
showing  that the  distribution of w is   absolutely  continuous  except 

for a  jump of magnitude Q at 0. 

The  condition  G(U^)   ■ Ü  can be  partly  dispensed with.     The 

condition G{0+)  > 0 means  that an instantaneous chain reaction may 

occur at   the  very  instant   of birth of  each particle,   producing a 

whole  family at  once.     If  hMl)G(O)   <  1   it  can be shown that the 

number  of  particles   produced  in a  finite  length of time   is  finite 

with  probability   1,   and  a  treatment   analogous to that   of  this 

paper   can  be given. 
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