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ON THI THEOKRY OF AGE~DEPENUENT STOCNASTIC BKRANCHING PROCESSES'
Richard Bellman and Theodore Harris

§1. Introduction.
We are interestedin—investbgetgps the following problem !? 7

) A
which is of possible biological, chemical and physical 1ntercs§r

A«l—'
A particle existing at time t,*= O is assumed to have probabilities
>on 18 .
YR it
§d’ :3£§o, of being transformed into n ai?ilaz particles at

some random time t > O. Assume that -z/e-—start‘ with a single particle
at t = 0. Under the hypothesis that any particle has a life—length
probatility distribution 1ndependeﬁc of its time of birth and of
the number of other particles existing at this time, the problem
is to determine the probability distribution of Z(t), the number
of particles in existence at time t. ——> 179 7% 2

The simplest case, and the one most often considered
previously, is that where the probability that a particle in
existence at t be transformed between t and t + At s aAt + o(At)
and is thus independent of age and of absolute time. Here the
cumulative distribution G(t) of the random transformation times
has the form G(t) = 1 - o_at. For this particular case, the problem
is more tractable due to the convenient fact that the non—linear
integral equation which is obtained in the general case reduces
to an ordinary non—linear differentiual ecuation which in the case

of binary splitting is of Bernoulli type and hence can be solved

in elementary terms; see, for example, U. G. Kendall, [b].

)
Expansion of results announced in Proceedings of the National
Academy of Sciences, Vol. 34 (1948), pp. 6015385.

/
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Unfortunately, the assumption that the probability of trans-—
formation is independent of the age of the particle is not realistic
in many cases of interest. Rather, it is more likely that the
distribution of transformation times is concentrated about a certain
mean 1life length. This is particularly likely to be true in
biological phenomena such &s the growth of a colony of bacteria.

In our work, we assume that the random transformation times
have a cumulative distribution G(t), where G(0+) = 0, G(w) = 1,

Depending upon what we wish to prove, further assumptions are added.

f;z rrecis reptrictions:w}ll be given below.
T Pl ST

_We—shall-restrict ourselves Yas far as detailed exposition goes,

to the special case where only binary transformations occur; that is,

one particle can be transformed only into two others. This is the
most important case biologically, and the methods employed to deal
with this case are easily extenaed,_ns—wtk}—be—poin&ed-outmlacet.lto

deal with the general case with n—ary transformations. <

It should be mentioned thet D. G. Kendall [5) has recently

treated the case where G(t) is a k—fold convolution of distributions
of the form 1 — ¢ 2%, 1In this cuse the process can be considered
as a Markoff process involving k types of particles,

We now make some definitions and assumptions. Set

Pr(t) = Prob[Z(t) = r], r=0G, 1, *°°

(o)

F(s, t) = r% pa(t)s” .

The generating function,

(1) Fls, t) = = p_(t)s’
° S Fr

s
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where

(2) pe(t) = Prob[z(t) = r], r >0,

and Z(t) is, as in the first paragraph, the number of particles in
axistence at time t, will be the focal point of our investigations.

Setting
(3) his) = 3 qs"
s) = 8
n-an

where q , as above, is defined to be the probability that a particle
is transformed into n particles when transformation occurs, standard

probabilistic reasoning leads to the non-linear integral equation
t
(&) F(s, t) -J; h[F(s, t—y)]dG(y) + s(1 = G(t)).

The classical method of successive approximations yields the
result that there is a unique bounded solution of (4) for s8] <1,
which possesses all the elementary properties of a generating
function. We next consider the distribution of the random variable

defined by
(5) Wic) = 2(t)/E(2(¢)) .

To this end, we reauire the existence and asymptotic behavior of
the expectation of Z(t), E[Z(t)] = m;(t). The expectation satisfies

the linear integral ecuation

t ™
(0) m(t) = b, J:) m (t—y)dG(y) + 1 -G(t), (b, 'ann).
1
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In this paper, we discuss only the case where | < b; < ®. In this
case there is a positive probability that the family of particles
will not become extinct.

Equation (6) is a special case of the familiar ecuation of
renewal chebry which has been treated generally by Feller [2],
Técklind [7], and Bellman and Harris [1]. In the present case
there are special conditions satisfied which enable more precise
asymptotic results to be obtained.

Under the assumption that b; > 1 we show that the random
variable W(t) converges in mean squure to a random variable w,
The connection between Z(t) and w is as follows. Let K(u) be the

distribution function of w and set

(7) g(s) 'L/;i e?YdK(u), Re(s) < 0.

Then it follows that

N\

t
(8) g(s) = 1im F<o°/°a , t), Re(s) < O,
t—ro /

- and consequently that g(s) satisfies the non—linear integral equation

(9) g(s) -L/;m h{g(s/e®*)])dG(¢) .

L occurs because of the fact we prove below that

The term e
E(Z(t)) ~ m,eat as t —> o ; the constant & will be defined below.
The properties of the solutions of equation (9) are now

studied. It is shown that for the solution of (9) of the form (7),
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we have
(10) g(it) —> 0, ast —> + o,

if h(0) = O, where h(s) is defined by (3). A consequence of this

is that K(u) is continuous in u, except for a discontinuity at

u ®= O which occurs only when h(0) ¥ 0. .Imposing a further condition
of the type

(11) 1 = G(t) = O(e Yy, ¢c>0,

we demonstrate the existence of a density function for K(u), u > 0.

The investigation of the properties of the solutions of the
non—linear integral equations requires a large number of ad hoc
methods, patched together in no obvious fashion. Considering that
we are dealing with non—linear processes, for which the treatment
is as yet little‘atandardized, there seems to be no alternative to
this potpourri of methods.

The models treated in this paper are susceptible of generaliza-—
tion in several important directions. One may consider the more
general case where the probability of transformation is dependent
on the time of birth and on the number of contemporary particles.
Then there are the problems of the distribution of ages, the number
of transformations in a given interval, and so on. Finally, there
is the case where there are particles of different types which give
birth not onl, to those of the same type, but also to those of other

types. The case of biological mutation is an example of this.
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Finally, we may mention that the results of this paper are
generalizations of those contained in a paper by one of the
authors, Harris [}], where further references are given, and
that several of the methcds of the present paper are contained
in ovo in this.

We should like to express our appreciation for the many

helpful suggestions of the referee.

§2. Derivation of the Integral Equation.
The function pr(t), the probability that r particles exist

at time t, satisfies

t
(1) p (t) = J; Plz(t) = rlyJdaly) + & [1 - a(t)]

where S1r is the Kronecker delta function and P[2(t) = rly] is
the conditional probability that Z(t) = r given that the initial
particle was transformed at time y. It is clear that this condi-

tional probability is given by

r
(2) Plz(t) =rly] = igbpi(t--y)pr__i(t,—y) N

Substituting (2) in (1), multiplying both sides by s', and

summing from r = O to @ gives the following integral ecuation for
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- & r
F(s, t) -!%pr(t)s :
P
(3) Fs, ¢) = [ F (s, t-y)dGly) + s[1 - G(t)].
o)

If G(y) =1 - e—ay’ (3) may be reduced by differentiation

with respect to t to an ordinary differential equation.

§3. Formcl Definition of the Process.,

In order to define formully the stochastic process with which
we are dealing, we consider the space fL of functions Z(t),
O €t <w, whose values are nonunegative integers. First we must

define the probubilities

P[Z(t') il & Z(Lz) ® gy "', Z(tk) .- rkJ [

Pryrg oe ry (B10 tan 00 ty)
for every k nonneguative integers ry, °°°, r. and every k nonnegative
nunbers t,, °°°, tyh k =1, &, ***. Once these definitions have
been made, provided certain consistency relations hold, it follows
from a theorem of Kolmogoroff [6] that a probability measure is
uniquely defined on the Borel sets of fL. By "Borel sets of /L"

we mean the Borel extension of the field of cylinder sets. A
cylinder set is a set consisting of all functions Z(t) such that

Z(ti) € S i=1,2, °**, k, where 5, is any set of nonnegative

i’
integers.
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We define the probabilities Pr, oo (o, 2te tk) by means
k
of the generating functions

Fk(s" Qoo’ ak; t" ooo’ tk) -

ry !'k
N WL L TR Pt

We define the Fk inductively, for 0 < t; < t, < e¢¢¢ < t,» and agree

to define
Fe[oa(1)r "% Ba(i)d tn(1)r *° tma)] -

Fxfslo **% sk; Lyy °°°, td

for any permutation m(1), °<*°, n(k).
Having defined F;(s;, t;) = F(s;, t;) by means of (4),
Section 1, and assuming that F,, F,, °°°, Fk have been defined, we

define Fk*l by means of the equation

(1) Fk”(s" oo.’ sk¢1; t" ooo’ tk#’) -

t
fo h[Feoqs1y o0y 8pgqi Gy, o0ty by, —y)] doly)

L.
+ 8, L/'; h[Fk(S‘, i e sk"'; t.—-y, *°°°, t'k§1-)']dG(Y)
"L

Cie
4 e 4+ g8, °°° skft, h[F'("'kﬂ; tk*"—y)]dG(y)
k

* 8)8; °°t s, [1 - G(t'kﬂ)] o
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The probabilistic reusons for the definitions (1) are analogous to
those given in paragraph Z.

If Fy, °°°, Fk are known to be probability generating functions,
it can be shown, following methods to be used in Section 4, that
(1) determines uniquely among bounded functions the probability
generating function Fk+1' provided U < t) < *°° Sty

It remains only to show the consistency of the probabilities
that have beén defined. This can be done by repeated application
of the following type of argument. Set s, = 1 in (1), thus
obtaining an equation for Fk+l(1’ 82, °°°) which is now identical
with the ecuation used to define Fk; because of uniqueness, this

implies Fk*1(1’ 82, "°°) = Fk(sz. soes Bp, *°%)s

§t.. kLxistence and Uniqueness.
We shall demonstrate the following result:

Theorem 1: Under the &ssumptions

(1) (a) dG >0, G(O+) =0, Gl(x) =1,

(b) G continuous from the right,

there exists a solution of the integral equation,

t
(2) F(s, t) = s(1-G(t)) +J£) F2(s, t-y)dGly),

which las the following properties:
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(3) () Fls, ) =3 p(e)e”, for ls] <1, and ald v 2 0.
r.
(b) F(s, O) =8, F(1, t) =1,

(e¢) py(t) =1 =G(¢)
t
pelt) = ! é1pj(t-y)pr_J(t—y)dG(Y). r> 2,

whence, in particylar,
(d) p.le) 20.

The functions pr(c). re=1,2, *°**, and F(s, t), |s] <1,

are of bounded variation over every finite t—interval.

Furthermore, the above solution is the sole solution of (2)
which is uniformly bounded for all t > 0, for each s in !s| < 1.

Proof: Let us agree to the convention that a Stieltjes integral

b b+
of the form u[‘ f(y)dg(y) is to be interpreted as L/W f(y)deg(y).
a a+

" We shall utilize the method of successive approximations.

Define
(4) Fo(s, t) = s(l - G(t)) 5
t .
Fooq(8, t) = s(1 = G(t)) «JZ) Fo(s, t—y)dG(y), n > 0.
It follows readily by induction that

(5) ¥l <1, t20, [s] <1, n20.
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For if the inequulity, clearly true for n = O, be assumed to hold

for some n, we obtain from (4),
t
(c) IF | < L/; dGly) + 1-G(t) = 1.

We first prove that the sequence Fn(s, t) converges for all
s in the interval [0, 1] as follows. kach F_ is non-negative, and

since F;, > Fp, it follows by induction that F > Fn. Consequently,

n+1
since for each s in [b, 1], the sequence {Fn} is monotone increasing
in n and bounded, it converges for all s in [0, 1]. Call the limit
function F(s, t). Using the Lebesgue bounded convergence theorem,

we see that

i
(7) F(s, L) = JO F (s, t—=y)dG(y) < s(t-G(t)), 0 <8 1,

The sequence {F“} is thus a uniformly bounded sequence of
analytic functions of s in the unit circle, |s] < 1, which converges
on the segment v < s :» 1. It follows from Vitali's theorem, that
the sequence converges uniformly to an analytic function in any
closed resion within the unit circle. It is not difficult to give
a further aryument showing that the convergence is uniform in and
on the unit circle due to the positivity ot the coefficients of the
power series aevelopments for Fn(s, t). However, it is not entirely
easy to generaligze this line of proof to cover systems of equations
of type (2), §3. For this reason, we present the following proof,
which, although more pedestricn, is ~uickly applicable to the more

gener:.l situation.
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We have for |s| <1, n > 1,

(8) F —F =

n+1 n

t
L/; [Fn(s, t—y)-Fn_,(s, t—y)][Fn(s, t—y) + Fn_1(s, t—y)]dG(y),
whence
0 ) t .
(9) [F o =F | < 2(/; IF (s, t—y) =¥ __,(s, t-y)| dG(y).

Restrict t, temporarily, to the interval [0, T], where 1 is chosen

80 that

T
(10) 2J 4G < b < 1.
J

This is possible since G(U) = O. Wwith this restriction (9) yields

(11) Sup |F —F |l <b Sup 'F_-—F | n>1,.
From this, we obtain
(12) Sup |F s F | < b7, n>1,
ost<T ™ ik -
since |F, — Fg| < 1. Consequently, for u <t < T, |[s] <1, the
series
m .

converges uniformly in t and s.
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Let us now establish convergence in the interval T < t < 2T.

wWe have, in this interval,

-T
(14) I-‘m1 - Fn -b/t')t OJ:T[Fn(s, t.—y)-Fn(s, t.-y)][---JdG(y)

and thus

=T
(15) ,Fnﬂ-Fnl < 2J0 ]Fn(s, t.-y)—Fn_1(a, t—y) | dG(y)

oy
+ ZJt,—'I'an(s’ t-y)—F__,(s, t=y)|dGly), n2>1.

We have already shown that |F - F | < b® in the interval

n+1t
O< t £T. Hence, since 0 < t—y <T for t-T <y < t, we have

. =T n
(16)  [F_,,—F_| < 2L/0 |F (s, t-y)—F__ (s, t—y)[dGly)+ 2b", n > 1

[Fy = Fol <1,
From this it follows easily that

(17) ,1‘52521‘ [F oy — F ! s (2n + )07,
~

ana, therefore, that the series i (Fnﬂ = Fn) converges uniformly
in 8 and t. n=0

This same argfument muy be ti.en repeated over the interval
[2'1‘, 3TJ, and so on. From this we conclude that Fn converges
uniformly to F(s, t) over any fixea t—intervul, for |s! < 1. An

argument of similar type shows that (<) has only one bounded solution.
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keferring to (3), we see that (a) follows from the fact that
F(s, t) is a limit of bounded sequences of power series with non-
negative coefticients; the second purt of (v) follows from the
uniqueness of & bounded solution — in this case 1; and (c) follows
by equuting coefricients in (2).

It remains to show bounded variation. We have, for

ty Dty > e >t >t

1

t
08) Fls, y)mFlsy by = L F°(s, t,~y)dG(y)
Tket

%
k*1p 2 2
¢’/o [E (s, t —y)-F (s, tk,,—y))dG(y)

+ 8(G(t,,,) = Glt,)).

Thus,
~ e
(19)  [F(s, t, )= Fls, t,,,)] = 2(]0 |F(s, t,~y)—F(s, t, ,~y)!dG(y)
+ 2(Glt, ) = Glt,,,)) -
Write
t t

L -t -1 N Uk
(ZO) J K- ‘/' n*JP n * c00 o L/ :

) J 0 Jt e
and

N—1
—

(21) V, = Su F(s, t ) —F(s, ¢t __.)I|, Is! < 1.
N {t§ ké'il k k+1 ,
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Clearly V) < Vy,q. Aadding the inequalities of (19), using the

decomposition of (20) ana the notation of (21), we obtain

ne ®n *n—1
22 -
(22) qu IF(s, t, )-F(s, t )| < 2vm/'0 dG(y)+ 2V __, L/:'n dG(y)
’)t'l
+ Blee 3 2V / dG(y)
() t‘2
+ 216(ty) = G(t))
!
s 2V J; dG(y) + 2(G(t,) - G(tn)).
Therefore
(23) V. < 2 s dG( )\'v + 2
n-— (-‘/O y / n ¢

I1f we at first restrict ourselves to the interval [b, T], where
2‘/ TdG(y) = b <1, we deduce that V_ < 2/(1 = b), for all n, whence
bounded variacion. To establish bounded variation over [T, 2T], we
proceed as in (15) ana (1¢).

Let us note that to extend our result to cover the more

general equation

t
(24) F(s, t) = » h'F(s, t—y)dG(y) + s 1-G(t)),
where
(2] n Q@
(25) hix) = gg%anx , Eg%ah -1, a >0,
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we need only add the. additional condition h'(1) < ®. The method of

proof is then the same.

§5. Properties of the JMoments.

Let us now discuss some further properties of the solutions.

The first result is
Theorem <. assuming
(1) dG > v, G(O+) = O, Glw) = 1,

then all the moments

= k . [
(2) m(t) = n;1n Plt), K =1, 2, ,

exist, and for fixed k, and any £ > O,

[ (ka+ i)t.:‘
(3) mk(t) = O e

s t —> o, where a is the positive root of

o

(4) 1 = zfom e 2t4qc(t).

For each k, m_(t), is a nondecreasing function of t.

Once the moments have been shown to exist, their nondecreasing

character follows if we can show

(5) Problz(t') > z(t)] = 1
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for all t' > t. 1ln order to prove (5), which is of course
intuitively obvious, we consider the defining equations (1),
Section 3, with k = 1, We need merely to show that if

Fa(sy, s,; Ly, t.) is written as a power series in s,, the

coefficient of af. for each integer k, contains sf as a factor.
This is readily done by successive derivation of (1), Section 3,
with respect to s; at s, » 0, using induction on k.

Now consider m;(t). For |s| <1, we have

t
(6) F'(s, t) = z(/o F'(s, t—y)F(s, t—y)dG(y) + 1-G(t).

(' denotes differentiation with respect to s.) Hence

t
(7) [F'(s, t)! < 2L/” [F'(s, t—y)|dG(y) + 1.
0
Set !F'(s, t)! = ebtv(s, t), where b > a, a being defined by (4).
Then,
E b -bt
(8) vis, t) < Zb/\ vis, t—y)e 2YdG + e A
J O
and consequently,
® -b
(9) Sup vis, t) < Sup vis, t)</2£/x e yd?) + 1,
UstsT Uxst<sT : 0
or
. , N® -by
(10) Sup v(s, t) <1/ (1 -2J e dG) .
Ost<T 0

The bound is independent of s and this together with the fact that
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Pp(t) 20, implies (3) for the case k = 1, since m (t) = F'(1, t).
Since F(Z)(1, t) = E[Z(t)]‘ - E[2(t)], and in general

(11) V(k)(1, t) = E[Z(t)]k + expected value of
powers less than k of Z(t),

(k) (g

it suffices to consider F t) rather than mk(t).

The second derivative for |s| < 1 satisfies

t
(12) Fl2)(g, ¢) = 2J’ Fle, t—y)F' (s, t=yids(y)
0

t 2
s Z'fo (F'(s, t-y)] dG(y).

Using the result for k = 1 and the method above, wc easily show that

Sup jF(a(s,t)]

O<t<w
has a bound independent of = for || < 1, Now
o <
F(Z)(s, t) = > (r = r)pr(t)srhz
r=1
2 .
and since r — r is positive for r > ¢, the treorem follows for
k = 2, The process may now be continue! < nt the general result

obtained by induction.
before proceeding to the - uestion o! the arymrtotic bernavior

of the moments we prove the followinrg

Lemma 1. If v(t) satisfies the equation

t
(12) vit) -J”O vit—y)dH(y) + K(t)

1
v
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and is bounded on every finite interval, where

(13) (a) dH >0, H(O+) = 0, Hw) = L <1
(b) [K(v)] < ¢y, V<t<o

(c) K(t) —>» ¢, as t —> o,

(14) vit) —=> ¢/ (1 =), t — .

Furthermore, if |K(t) — cz] = Ole ) and | - H(t)]| = Ole” <ty

€ >0, as t —> o, then there is & § > O such that

(15) v(t) —c,/ (1 —0)] = Ole” &%), t —> w.

Proof. First assume c, = O. Since v(t) is bounded for

O0<t T, we have from (12)

Sup [v(t)] < H(T) sup [v(t)] + ¢y,

ustsT ust<t
or
’ l € <y
Sup vit) | s — < — .
Outer T -HM=1T-0&

Thus [vit)] s ¢ /(1 =), U st <w. Using (12) again, let

vit) = S (™1,
v T;ptlv l

K(t) = S K(TY ] ;
Tgptl |
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then for any 1 > O and integer n,

- T _ |
(10) v[(ne+1)T1] SL v[(n+1)T = y]dH(y)

(ne1)T _ -
+f‘ vi(n+1)T—y]dH(y) + K[(n+1)T]

El"H(T)JC)

SJV(HT) * 1 — oC + E[(n’ ’)TJ . !

Cy
—g and is mornotone

Let k be a positive integer. Since [v(t)] <

decreasing, tha inecuclity

(17) v((n+ 1T) 2 ¥(n!) = =%

must hola for at least one value of n between U and k—1, say n = ng.
Combining (17), for n = ng, with (16) gives

_ e o= H(T —
(18) vingT) < 5 lO.J[K(II—OJ * c,[1 = (CL)J *+ K[(no *”TJ} ‘

Since v(ngT) > v(kTl), K[(ng+ 1)T] < K(T), we have

[ < ¢y pt—i(T)]

(19) -\;(K'I')§1la~l‘(—(1_®¢ T ¢K(T)}’ K =1, 2, *°-.

From (19) follows (14) for the case ¢, = O. The general case is

proved by making the change of variable
ve(t) = v(t) —co/ (1 - Q).

The proof used here, although lengthy, shows, by means of (19), that for

each t, 'v(t) —cz/(1— x| can be bounded by a quantity whichdepends only
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on |- 1l(t)] and Sup |K(T) — c.|, @ fact we shall need later.
t< T

If |K(t) = c.! and |0 — H(t) | are both C)(e-Et), choose A,
Y
O < A < £, small enough thatL/O eAth(t) < 1. We can then apply

(14) to the function

ve(t) = ertv(t) - c./ (1 — 0]

§ obtaining (15)., Agpain, the bound C?(e—ét) in (15) depends only on
|t — ii(t)| and Sup Jc, = K(T) /.
t< T

We are now ready to consider the asymptotic behavior of the

noments. Setting s = 1 in (0) we obtain

t
(20) m (L) = zfo my (t—y)dG(y) + 1-0G(t).

+‘his 1s the fumiliar integral equation of renewal theory, for which
generul results, including theorems on the asymptotic behavior of
my(t), huve been obtuined by Feller [2] and Tacklind [7] . However,
there are special conaitions satisfied in the present problem which
make more precise results possible. On the other hand, as Feller
has showr.,, still more specialized assumptions on G(t) would enable
us to use the method of Lotka to expand m,(t) as a series of

exponentials,

it is well known that the solution of («<J) may be written as
= n—1
m(t) =1 + > 277G (t),
n=1

the series converging uniformly in every finite t—interval, where



_‘Z‘-
HAOP 38
Rev. 7/14/50

. N
Gi(t) = Glt), G, (¢) -JO G (t=—y)dG(y), n=1,2, .

Thus continuity of G(t) implies continuity of m;(t), und similar
expressions for the higher moments show them to be continuous if
G(t) is. Furthermore, if G(t) is a step function the moments are
step functions with discontinuities only at points of the form

ty ¢ty ¢ o0 v L, where t;, t_., °°*°, t_ are points of discontinuity

n
of G(t).

For convenience we call G(t) a simple step function ir it is

a step function, all of whose steps occur at integral multiples of

some unit.

Theorem 3. assume dG > v, G(u+) = 0, G(w) ® 1, and that G(t) is not

a8 simple step function, then the solutiou of (20) satisfies

(21) m;(t) ~ n,eat, t —> o,

m'1/Piﬁ

where a is defined by (4).

R -

t e_ath(L)J

By virtue of (3), Theorem <, we can taxke Laplace transforms

of both sides of (20), obtaining, for ike(s) > a,

- Q@ @™ -, @
(22) ' (t) TSty = [ 1—-G(t) e 3%y [1—-2 e—Sth(tﬁ
]O my e \fO L ] / /O

where
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¥(s) = J’c’)" e 3%4G(1), Re(s) > 0.

The right side of (22), which can be extended analytically to the
region he(s) > O, has a simple pole at s = a, and no other
sinpularities on the line He(s) = a, since G(t) is not & simple
step function. !.oreover, we have shown Lh;txnﬂt) is nondecreasing.
We can therefore apply a Tauberian theorem of Ikehara [8], which

immediately gives Theorem 3.

. 4
Tneorem La. aAssume G(t) = /' gly)dy, gly) >0, G(w) =1, and
¢ 0

m—
that #(s) -k/‘ e St'g(t.)dt. satisfies the condition that for every
v

@
(| b + iy)! ;
(23) j Li%L;—T;Tll* dy < o .

Then m,(t) satisfies

(24) m(t) = n,e®¥[1 + Ore™tY) ], £>0, t—>o,

where n, is defined in (21).

Theorem 4b. I1f dG > 0, G(0+) = 0, G(w) = 1, and G(t) is a simple

step function, the smallest step being at A, then for each (,,

O< X~ 4, and integer n,

anbry , o(e™)
m,(/.*nA)"e = ] ’ é>o! n-—9°)

_ @
L(1—e aA)1Ek b, e kab
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where b, is the mugnitude of the Jjump of G(t) at t = kA and by, > 0.

t
Theorem Lc. If dG >0, G(0+) = 0, Glw) = 1, G(t) -fo g (yldy +
Gi(t)o gl(y) 2 Ov J: Bn(Y)dY >0, (’VI(S) 'JZ G-StGI(t)dt

sautisfies (23), and G.(t) is a step function: then (24) holds.

Before giving the proof we remark thiat there are two simple
conditions, either of which insures that (23) holds. If for some

—dt is of bounded total variation

d, O <«d < a, the function g(t)e
on (O, @), then («<3) follows from integration by parts. Another
conaition, which permits g(t) = C)(t—t), t —> U, for any

O £ <1, is the assunption that for some p > 1,

(25) J“u g(t)Pdt < o.

For, applying Holder's inequality, with O < b < &,
L
1

1
w | + w ' p N
(26) J S ALLES TR [ ¥ee 1y) [Py <J —‘3’——>p,

~ 1 [yl ‘ ~ (14 ly|P

1 1
-+ L 1.
P P

—bt

Since (b + iy) is the Fourier transform of e g(t), we have, using

the Hausdorff-Young ineqgu:.lity for rourier integrals,
1 1

® e \PT it bt P
(27) (J“ [#b+1y) [P dy> < c(p)u P g(t.)pdt) .
U w —w
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From (25), (<t), and (27) we get (23).

The proof of Theorem La is by the method of residues, used
with what Doetsch calls the "indirect ibelian" method. Since m,(t) is
continuous (and nondecreasing) we have from (22) for any t>C, b' >a,

b'+iT ,
(28) h(t) = lim = st J_1-7l(s) 1,4,
" T—>0 2™ Jprogr {SD—Z (s)]

The function 1 — 2 ¥(s) has a simple zero at s = a and vanishes
nowhere elce on the line he(s) = a. Moreover, since 913) is the
Laplace transform of an absolutely continuous distribution we have

lim | (b + iy)] = 0
y—>iw

uniformly in b for O <« b < a. we cun therefore find b, 0O < b < 4,
such that 1 — 2 #(s) has no zeros, except at s = &, in the strip

b ~ he(s) < a (clearly there are no zeros for Re(s) > a) and is
uniformly bounded away from O on the line he(s) = b. Then, using
Cauchy's theorem for the rectangle b ¢+ iT, b' + iT, we obtain
(the integrals along the horizontal sides of the rectangle clearly

—> 0 as T — w)

beiT g
(<9) my(t) = nieac* lim E%I j eSt % e L8} - +ds
T—>w J b=iT s(1—2+#(s)
2 , bedT ¥(s)ds
- n,e“to-ebt+ lim 3%? /' est ,f/ ;
=0 ( o=4iT s 1—2Hs))

t

where n, is defined by (21) and n,ea is the residue of the integrand

at 8 = a. The conditions imposed on ¥ (s) in Theorem La insure that
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the integral on the right side of (29) is C)(ebt), and this
concludes the proof of 4La.

To prove Theorem 4D we note thut in this case the function

¥(s) has the period 2ani/A

@ o]
9/(3) - lf:) Q—St‘dc(t) - kz1 bke—kAS ,

b, 2 0, b, > 0, 1Zbk-l.

Thus 1 — 2 ¥(s) has simple zeros at the points a + 2nir/p ,

r=uv, 1, **¢, and because of periodicity we can find b, U ~b < a,
such thaet 1 — 2 #(s) is uniforly bounded away from O on the line
ite(s) = b, and such that if b' > a, the only zeros in the strip

b < Re(s) < b' are those on Re(s) = b. Moreover, #(s) and

M =Hs)]/ [0 = <¥(s)) are twice continuously differentiable

on Re(s) = b. Thus

1 — (b + iy) @
1-2Ub+ iy) ) ,:4;) ckeimy ’ St C(1/k%), k > + @,

Using Cauchy's method as before, we obtain the principal term in

Theorem 4Lb by summing the residues on ke(s) = a, with the remainder

T _brteiyt @
1 e [ ikAy
(30) lim = IR - 2 c, e >dy.
T>e <" ’j—T brdy |k

¢}
Since 2 [c.| < @ and since
K=
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T ity ikdy e-b(t‘hﬁ), t + kA>O
(31) lim '1— ' 8 e dy =
T = 2n —-T b+iy o, t + KA<O]|’

and since furthermore the convergence in (31) is bounded uniformly

in t and k provided t + kA is bounded away from O, we can interchange

summation and intégration in (30), obtaining

m —
k=—{t/4]
This proves lheorem 4b.

If the conaitions of Theorem 4Lc hold, the Laplace transform of

m; (t) can be written
9/1(5) r '/2(5)
s[1i—-21(s)] sh-2%s)] "’

(33) <
wliere
L
Y (<) .J’ e Stz (t)dt,
0

, ® _ @ —A- €
¥ao(s) =k[; e st‘dGz(t) = k:; dke k :

>0, d. >0, > d, < 1.

As in Theorem 4a, 1 — 2 #(s) has a simple zero at s = a and no other
zeros on Ke(s) = a, and # (b *+ iy) —> 0 as y —> *+ o, uniformly in
b for v < b<a. We can thus find b, U <b << a, so that s = a is

the only zero of 1 — 2#(s) in the strip b < He(s) < a. By our
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assumptions, #,(s)/ [s(1-2+4(s))] is absolutely integrable on
ke(s) = b. As regurds the third term in (33), we can write

lf/g Lf/‘ 27“' (f/d
(34) ST =29 " s =2%) ' s =2%J0 =27 °

The second term on the right side of (34) is absolutely integrable

on nRe(s) = v. If a — b is sufficiently small and positive, we have

[t (b + iy)] <1

(o
uniformly for —w <y < w. Thus, since fd is an absolutely convergent

series we lave, for a — b sufriciently small and positive,
‘fld(s) fos] "/URS e o)

The proof of Theorem 4Lc is then carried out using the procedure of
La and 4LbL.

It is now easy to pget the asymptotic form of the higher moments,
using Lemma 1. Let uk(t) = F(k)(1, t). Then, as remarked earlier,
we cun consider the asymptotic behavior of uk(t) rather than mk(t).

Setting 8 = 1 in (12) gives

(35) u lt) = 2] L= y)dG(y) * 2 [ Ty (t=y)] dG(y).

Put u_ (t) = ezatvd(t). Then

t Y
(36) v.(t) = zt/w v.(t—y)e “4Yd4G(y)
)
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)m -—) s Dm -—
Now 2bh) e d“de(y) < 4/6 e 2YdG(y) = 1, and if G(y) is not a simple
step function we have, from Theorem 4La, e_atm,(t) —> n, as t —> o,

whence
Yo —a(t-y) < —2a ¢ n® —2a
lim 2 ] [e Yin,(t=-y)] e Yac(y) = anj- e “¥VdG(y).
t—=> o Y0 ) 0

Therefore, since from Theorem 2 v,(t) is bounded on every finite

interval, we can apply Lemma 1 to (36) obtaining

tTheorem 5. Under the conaitions of Theorem 3,

dj‘m pr:

. 2ny | e “*Yde(y)

lim m(t)e <3% = 0 — '
e l—-2vfb e—zade(y)

/

where n, is defined by (21), and a is defined by (4).

Results corresponding to Theorems La, b, and ¢ can be obtained
in the same way. This will be seen more generally in the next section

when we consider the mixed moment E[Z(t)Z(t + h)].

§6. Mean Scuare Convergence of 4(t)/ m(t).

Theorem 6. Under the hypotheses of Theorem } the rundom variable

Z(t)/m,(t) converges in mean square to & randgm variable w as t — o,
Under the hypotheses of Theorem 4b, Z2(na)/EZ(nf)) converges with proba—-

Lility one to & random varjavle w, und also in mean square.

‘heorem ¢ of course implies also convergence in probability to
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Define w(t) by
wit) = 2(t)/ [n,e2%] .

It is clearly sufficient to show that w(t) converges in m.s., which

we do by showing that

(1) lim  Efw(t') — w(t)]" = 0.
t,t'"2o

Differentiation of (1), Section 3, with <« = 1, gives

) b j y bty te)
(2) ARSI - E[2(t,)2(t2)]

,\S| A Sd

3,=8_=1

t,
= my(t,, tz) = 2L/5 mo(t, —y, t.—y)dG(y)

v
' my(ty—ylm(ta—y)dG(y)

+ 2 / m,(tz—y)dG(y) + 1—G(t2).
/t,'

" Set ty =t, t, =t+h, h>0, and let m;{t, t+h) = eahezatu(t, h). °
Then (2) becomes

t .
(3) u(t, L) = 2JO ult=y, h)e “®¥dG(y) + c3+ 0(1) as t —> o,

using the known asymptotic behavior of m;(t). A routine estimation

shows that the o(1) in (3) is independent of h. The constant cj is

given by
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Q O R
(L) Chy * 2“1(/40 e Zade(}')o

It follows now from Lemma 1, Section 5, that

(5) lim u(t, h) =

Cs
\—w 1 - ZL/' e 28Y4g(y)
O

uniformly in h. Thus (see the remark following (19), Section %)

(v) E[2(t)Z(t+h)] = nzeahezat‘ﬁ + o(1)], h > 0.

Equation (1) now follows from (¢) and from Theorem 5.

If the conditions of Theorem 4a or 4c hold, the o(1) in (3)
goes to zero expouentially and it follows from (15), Section 5
(under Lemma 1), that there is an £ > O such that the o(1) in (6)
is C)(e_'gt). From (0) and the remarks following Theorem 5, there

exists a (different) & > O such that (uniformly in h > 0)
(7) Efw(t + h) —w(t)]” = Ole™ %), ¢t —> o,
which 1uplies also that

(v) Efw —w(t)]” = Ote” %), t —> o.

From (2) we have

Theorem ¢Ca. Under the nhypotheses of Theorem 4a or 4Lc the random

variables w(nh), n = 1, <, *<+, for any h > O, converge with

probabiiity 1 to the random variable w.
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For

(9) %15[\' -w(nh)]‘2 < o,
n-

which implies almost—everywhere convergence. HRather than the

sequence nh we coula consider uny sequence th such that
— £t
“n

Ze < @e
n

If the conditions of Theorem 4b hold, similar arguments
show that Z(nA) / EZ2(nld) converges with probability 1.

we define the moment—generating functions of w(t) and w by
gils, t) = E {exp[sZ(t)e-at/rnj}

= F {exp[se—at'/n,], t.} :

g(s) = e, Re(s) < 0.

Since w(t) converges in mean souare to w the function g(s, t)
converges to ¢(s) for each s whose real part is nonnegative.

(lkeplace t by nA if G(t) is a simple step function.) Moreover,

s, t

g(s) is continuous and the derivatives -

are uniformly
bounded for he(s) < O, being bounded by bk w(t). Thus

g(s, t) —> @(s) uniformly in every bounded portion of the half
plane he(s) < O. Now replace s by exp[ﬁe_At/ n,) in (7),
Section 4; letting t — o gives, because of uniformity of
convergence,

(10) d(s) -uo"’ 6 (se™)dG(y),  kels) < 0.
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Summarizing we have

Theorem 7. assume G(O+) = U, G(w) = 1, dG > 0. The moment
generating function #(s) of the random variable w gatisfies (10).

(1f G(t) is a simple step tunction w is l.i.m. Z(na)/ EZ(nd);

otherwise w = l.i.m., 2(t)/ 22(t).)

v

§7. snalyticity of g(s).

Theorem 8. fThere is a unigue function #(s) which is analytic in

some neighborhooc of s = 0, and satisfies (10) of Section 6, with

1 @ .
g(o, = 4 (U) = 1, provided that G(0O+) = O,L/; dG = 1, dG > 0.

First, assume
= n
(1) g(s) = > c.s, cCo = 1, c; = 1.
n=0
Substitution in the integral equation gives, for n > 2,

m -—
(2) c. = > c,c (/) e "®4G(y),
n K+ 3 J 0
W
or, setting I ’“ju e nade(y),

\
(3) c, - (K;%_n ckcJ/ In//(1 - 21).
k, 3>1 '

Since 1 — 21, >y, and I —>0asn —> o (because G(0+) = 0), we
can pick ng so that tor n 2 ng, In/ (1 — 2In) < 1. We now show

that there are constants d and A such that
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(&) cnSAdn/nd, n>1.

Assume that the inequality (4) holds for 1 < n < N, where N > ng.

Clearly this can be accomplished with an A which satisfies
- 1

(5) 321\2 <1
S

by taking d sufficiently large. Then

2,N+1 JL 1

(v) Cneq S ASd T o —
LA k=1 k5N + 1 - k)

b4

ga2ah* dN+1 [5”] 2 N+t

S J < 32A d
N k=1 kz-(N*1) K

=

1 k°

Me

Combining (5) and (¢) gives (4). It can now be verified that the
series defined by (1) satisfies the conditions of the theorem

uniquely.

§8. Asymptotic Behavior of g(it) as t —> *+ .

Since the substitution s = it converts the Laplace transform
into a Fourier—SLieltJés'transform, the cumulative distribution of
w may be evaluated by means of the formula

| T —it)h\ —it,x
(1) K(x+ h)=K(x) = lim J 1—e le glit,)/(2nit, )dt,.
T=>»w U-T"

whenever x and x + h are continuity points of K.

There are several theorems available which relate the behavior

of K(x) to the asymptotic behavior of g(it). Hence it is of some

theoretical interest to study the function g(it) as t —> * w,

= |
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Furthermore, it is practically important, when actually determining
the cumulative distribution by numerical methods, to know how much
of an error is committed by omitting part of the range of integration.

The result we wish to prove is
Theorem 9. as t —> +

(2) [g(it)] = Q(!t!"c/"") ,

1o -
provided J dc = Ole *), ¢ >0, as x —> ©, G(0+) = 0, Glwo) = 1,
X

dG > O, and G(t) is not a step function with one step.

The proof is rather long, ana we shall break it up into a

succession of lemmas.

o o)
Lemma 1. as ¢t —> + o, #(it) —> 0. (The assumption L/) dG(y) 1is no
X

required for this.)

Procf: Since

(0]

(3) gliv) = [ e**Tak(x),

L 10=

for small |t|, we have the expansion

2 g

(4) glie) =1+ i - & x2dK(x) + ol [t]%)

O—
(since L/Si xdK(x) = 1). Hence, by a familiar argument bused upon the
Schwarz inequclity, for [t] small, [d(it)]d <1 if t ¥ 0. (The strict
inequality (Ew)d « Ew® is u consezuence of our assumption that G(t) is
not a step function with one step.)

we remuark thut some such discussion as that above is necessary
to distinguish the function g(s) we are actually interested in from
other functions satisfying the same equation, and in particular from

the function 1, which is a solution not approaching zero as t —> * o,
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It is convenient to show first that

lim sup [glit)]| < 1.
t —>o

Suppose the contrary. Let tj > O be such that |g(it;)] <1 - d,
where d > O, and such that |g(it)] <1 for U < t < t;, and let t,
and t, be the first points to the lefc¢ and right of t; for which
|g(it, )] = (it )! = 1 —d. Pick A = % log %% . Then

A

glit ) = /' dz(itze"“y)dc(y) + /'m dZdG(y)
0 . A

and

1 —d = |glit)] < (1 — d)G(a) + 1 - G(a)
whence
(5) (2 — d)G(a) < 1.

hNow let t, remain fixea while d —> 0; then t, —> O while t, increases,
so that A — o, G(A) —> 1, and (5) cannot contirue to hold.

Thus we can suppose that !gd(it)] <1 —d for t >t,. Take B
large enough so that 1 — G(B) < &, and t large enough to have

¢ e oA > t,, where a is, as above, log(t_./t,)/a . Then

) A .
[6(iv)] < (1 - d)/ 1g(ive @) |dG(y) +
J Q0

or, letting ¥ (t) = sup |g(iT)],
>t

(6) Fl) s (1 = d)Gla) Hleedhy « ¢,
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From (6) it follows, in the manner of previous proofs, that ¥t) = O
as t > ©o. » similar argument shows g(it) > 0 as t > —o. (We have
purposely not made use of the analyticity of g(s), since in the more

general case where fission is not binary ¢g(s) may not be analytice.d

So far no condition has been imposed on the rate of approach
of G(t) to 1 as t —> w. Wwe now show that by imposing suitable

conditions on this approach, we can derive explicit bounds for

|[g(it) | as ¢t —> + .
Lemma <. 1If as x —> w

(7) 4G = O (e Xy, c > 0,

(c) [ =N VR,
for some u > u.
Choose a = (log t)/Rua. Then from the integral equation we derive

/”A < -—
(9) [g(it) ] S'Jo 6 (ite 2Y)]dG(y) + 1 - G(A).

From the detinition of », we have
(10) b(t) = 1 = G(a) =1~ G[(log t)/2a) .
Once again set

(11) #1lt) = Sup '(iT] .
T™>t

with this notation, from (9Y) we derive
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(12) F(r) < PAUAT) + ble).

Under the assumption of (7), we have, for large t,

(13) Fle) < IFZ(Q/E) + expl(—c log t/24a).
Hence

, / »n+1 N T
(14) ?(tz > S ‘fd(te + exp(—2" ¢ log t/a)

20
or, setting u_ = %(t !

e ¢
neq = un * exp(=2" ¢ log t/a).

(15) u

. 2
applying the inequality (u+v)” < 2(u®+ v2) after squaring both sides,

the result is

< .
(1¢) PRI z[ﬁn + exp(—2nﬂ ¢ lof L/u)] ,
whence
< 4
(17) T I exp(—Zn‘1c log t/a) < 2u  + 3 exp(—2n‘1c los t/a).

Repeating the process, we ovtain at the k—thL step

K

< s W, exp(-

n

,n+k-1

(18) u L S VU c loy t/a)

where Vi and w, are constants for which we will now obtain upper bounds.

In fuct we have

(19) U ek N i -1 u: + 32 -1 exp —pRe it c log t/a’,

the validity of (1Y) being readily estuablished by induction. Hence,
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taking n = O,

K k—1_ k k=1_ _
(20) (f\tz 5 < 2= 1[9‘/(t)]2 o g€ ! exp(--'Zk L log t/a).

It follows from Lemma 1 tlat we may choose to > 1 and large enough 8o

that (f‘(to) < % and ¢ log tgo/a > log 3. Then if x > te we may write

P 2k 2
(21) x =t ’ tu St <o,

where (21) defines uniquely the positive integer k. Then («<0) gives

k—1 -
2 k-1
(22) t(x) < %[z (f"(t.)] + %[exp(log 3 - ¢ log t./a):]2
) Ly ol
< 12[( v (LO)J‘2 + %—[exp(log 3 —c log t.o/a):]‘2 r

P
where L is the logarithm of x to the base tg. From (22), Lemma 2

follows imrediately for t —> w; similarly for t — —ow.

Lemina 3. If |g(it)] -(“([t,!_d), d >uU, as t —> + o, then

16(it)] = C(le]~¢/5),

Proof: The relation 'g(it)| = O(It.l—d) may be written |[g(it)]| =
O[U + [t.l)_d], and in this form it is more convenient for our

purposes. we have

® —2d
(<3) lg(iv)] < cff (1 + Je]e @) dGly).
'

Integrating by parts, this becomes
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241
(24) < [—cffm dG(y)/(I * ]c[e—“y> ]
y 0]

+ c. 'J dG(x)M— (1 + 't]e™® -Zdey

‘ -—
<y @ . —-<2d
—cy, d —ay
S + c,; e -— (1 + Jt]e ) de.
(1+ [t])°C ‘u/o |3y
Integrating by parts apgain, we obtain
c W S 4
(25) < 3' 55 * c‘,/ e d :
St O e ]e™)
Make the suustitution e?Y = |t|v, obtaining
-C/n"‘1
Cy ' n © dv =
(26) g 167/
(1 + 1% \Jt/'t! (1 + 1/v)

The integrul is
P v—c/a—1*2d
Ja/le] (v + 14

(27) v . C'[max'1, ‘.L,C/a—dd '] . c/a ¥ 2d,
as t — w.

herce if 2d > c¢/a, we obtain the desired estimate. If not, we
obtain [g(it)] = ( (]t,]_Zd). 'his process may now be repeated using
tne new estimate, and since 2"d > c/a for some integer n, we will
eventually obtain the desired result. Clearly d may be picked so
that 2" d is never equal to ¢/a.

This completes the proof of Theorem €.
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It is possible to continue in this way and obtain bounds for
!
g (1t). However, since we are principally interested in showing

that
y @ '
(<) (/ [ (it)]|dt < w,

we shall merely show that this is implied by the relation |g(it)] =
()(t—d), d > O, and by the integrul ecuation satisfied by ¢.

ve hLave
' @ ' — _r -
(29) £ (s) = 2L/; é (se @Y )g(se ®)e BY ac(y).

From this we ovtain for T > 0,
T L@ l I

(3v) [ fa'(mzdn;zj /

N o) 1¢'(ice"ay)| :é(ice’ay)]d;}e"aydc(y).
J s

v

In the inier integrul make the substitution te 2Y = y, Then

fl\ l| ay 1
. N LA ' |
(31) (1) '\J [¢ (it)]de < [ Lj g (it) ] lﬂ(ithdt}dc(y)
J U

I/

2\/;T 16" (1t)] |6(it)]de.

Since #(iv) = CW(t_d) as t —> «©, we have for some constant c,

T '
(32) BIT) < c/; 16" (it) ldt/(1 + ¢)d

Integrating now by parts,

T
(33) BIT) < eB(T)/(1 + T)9 » cd-/ﬁ B(t)de/(1 + ¢)9*7,
/0
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Choose T large enough so that c¢/(1 + T)d < 1/2 ; then

T

(34) B(T) < 2ch/p B(t)de/(1 + ¢)9*! |

0
Hence

T
(35) BIT)/(1 + T)9*" < [2cd/(1 » T)d’1]‘/\ B(t)et/(1 + )¢
Jo

T .,

or, setting V(T) = u[ B(t)at/(1 + ¢)° : ,
0

(36) VI(T) .< 2¢dV(T)/(1 + T)9*T |

Hence V(T), and thus B(T), are bounded as T =—> w. x similar

argument holds as t — —o.

§9. Existence of & Density Function.

From the results of the previous section follows

Theorem 10: The distribution K(u) of w is a continuous function

of u. If, in addition, 1 — G(y) = O(e Y), ¢ > 0, then i(u) is

u _
absolutely continuous, K(u) -JO ik(v)dv.

Part 1 of the theorem follows from the fact that g(it) —> 0

as t —> o; part < follows, using (1) of §6, and the fact that

@® 1
f_m | (it)]dt < @, cf. the argument in [3], p. 48u.
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§10. An bLxample.

Suppose

n—1 —bydy

n L
G(t)'j——?m‘/é y e

Let

A(s) -L/;m e—Sth(t) = (1 + s/b)" ",

Proper chloice of n and bt ;jive any desired values for the mcan life
2 .
length, —n'(0) = n/b, and the variance, A"(0) - DU(U)] = n/b<.

The root of ils) = % is given by
a = b(2V/0 _ 4y,
and

E[2(t)] ~ (a + b)e®"/ (2an).
Similarly,

l:.{}'(t)]z = [EZ(t.)]2 ~ (LI —1)e“?%a+b)"/ [Lan®(1-21,)]

where 1_ = a(2a) = (1 + 2a/b)" M.

§ 11, Hemarks.

The methods alreaay employed can be used to treat the case
where instead of binary fission there is a probability Qp,
n =09, 1, <, ***, of transformation irnto n particles. The proofs

for existence, uniqueness, and generating—function properties of
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F(s, t) are essentially unmodified. The rest of the treatment
depenas on the value of m = i nq. Just as in the simpler case
treated in [3] there is a p;;itive probabiiity that Z(t) never
vanishes if ana only if m > 1. If m > 1 &and >_ nkqn < ®, the
results on the asymptotic behavior of mj(t), J < x, are the same
except for different values of the constants involved; the theorems
on mean square convergence of Z(t)/EZ(t) hold if m > 1 and

}E:nzqn < w. The theﬁrem on analyticity of g(s) at s = 0 is not

generally true but presumably holds if the radius of convergence

of h(s) = > qnsn is greater than 1. The function ¢g(s) satisfies

(1) é(s) -J;m h[g(se™Y Jda(y),

Q

1 -rndp e-ath(L).
0]

From (1) we see that g(-w) = h{g(-w)] = , so that Q, the proba—
bility that w = O (ani also the probability that for some t,

Z(t) = 0), is the unique nonnegative root, less than 1, of
(2) Q = h('@).

The transformuations

his(t = Q) + ¢J -«
1 —-Q

hﬂ(s) -

_ Bl —Q)s] - Q

g*(s) T - Q
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make (1) take the form
m —

(3) g% (s) J’ h* [« (se 2¥)]dG(y).
O

From (3), using the methods of Section 8, we can show

« ’
f g% (it)]dt < @,

™

showing that the distrivution of w is &absolutely continuous except
for a jump of magnitude Q at O.

The condition G(U+) = O can be partly dispensed with. The
condition G(VU+) > O means that an instantaneous chain reaction may
occur at the very instant of birth of each particle, producing a
whole family at once. If h'(1)G(0O+) < 1 it can be shown that the
number of particles rroduced in a finite length of time is finite
with probability 1, and a treatment analogous to that of this

paper can be given.
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