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ABSTRACT 

The basic concepts of signals and linear systems are 

formulated in terms of finite-dimensicnal vector algebra. 

Important ideas, often confused or omitted in classical 

signal theory, are clarified by the system of notation and 

nomenclature presented in the dissertation. Measurement 

and specification are emphasized In the notation as is 

appropriate to their importance in engineering practice. 

The theory and notation are extended to finite- 

dimensional tenser product spaces. The extension to multi¬ 

linear systems of the engineer's Intuitive knowledge of 

linear systems is illustrated. The abstract notions are 

illustrated by appli ation to the familiar problem of 

time-domain multiplication. 

The utility of the notation and the tensor product 

concepts is demonstrated by application to satellite 

navigation signal processing. Descriptions of feasibility 

tests on the IBM 709^ and excerpts of results are presented. 

The results confirm the expected simplicity and indicate a 

surprisingly high accuracy of the processor designed by the 

tensor product approach. 

The dissertation consists of 212 pages including 29 

tables and 36 figures. 
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CHAPTER ONE 

INTRODUCTION 

My main purposes in writing this dissertation are: 

(1) To present the theory of signals and linear 

systems in terms of an appropriate notation and nomen¬ 

clature based on linear vector algebra, with particular 

emphasis on finite-dimensional representations. 

(2) To extend the theory and notation to multilinear 

systems through the use of tensor products of finite- 

dimensional vector spaces. 

(3) To demonstrate the utility of the vector and 

tensor concepts by application to a current problem in 

systems engineering. 

One chapter of the dissertation is devoted to each 

purpose, and suggestions for further work are given in the 

closing chapter. The system of notation and nomenclature 

described in the dissertation has been tested by application 

to two other problems studied during the research project: 

(1) optimum filtering and signalling in a comnunications 

system, (2) the system identification problem. Future 

papers on the results of these studies are planned. 
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point in preserving any difficulties which might have been 

encountered in such experiences. 

The classical literature on signal theory often tends 

to confuse a physical system and its mathematical model. 

The principal goal of the notation and nomenclature 

described in this dissertation is to facilitate precise 

statements which distinguish between reality and model, 

between entity and representative, between measured entity 

and measuring device. The operations of measurement and 

specification which connect a physical system with its 

mathematical model, as illustrated in Figure 1, play a 

major role in the notation system as is appropriate to 

their importance in engineering practice. 

Observables \___!_/ Data 

Figure 1 Physical System and Mathematical Model 

The notation system presented here was developed 

for application to practical engineering problems. 



9 

Nevertheless, pure mathematicians are invited to evaluate 

the notation by the criterion of mathematical elegance. 

The utility of abstract mathematics is beginning to be 

appreciated by engineers, not merely as a tool for use 

in calculation but as a language in which to think and 

communicate about the overall structure of a complex 

system. Systems engineers will increasingly study 

algebraic structures and other areas of abstract mathe¬ 

matics in their undergraduate education and will find 

therein a source of ideas for system structures Just as a 

component engineer is stimulated by his knowledge of 

physics. 

Our system of notation and nomenclature provides for 

discourse on three levels: (l) physical system, (2) cor¬ 

responding abstract operator, (3) matrix representative 

on one of several possible bases. The third level is a 

generalization of the usual method of description. The 

first two levels are closely connected, exact isomorphism 

being prevented only because of the impossibility of exact 

measurements. The notation employed at the second level 

is that of abstract vectors and operators, permitting a 

view of system structure stripped of unnecessary compli¬ 

cations related to representations on particular bases. 

This notation satisfies the objectives of Heaviside in 

that it provides the simplicity and the overall view 
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needed In the early stages of system design. 

Some readers may feel that time and effort spent In 

developing notation and clarifying nomenclature Is wasted. 

The counter-examples to such opinions are few Indeed but 

are all of major Importance: the symbol for zero, the 

Arabic system of decimal arithmetic, the use of literal 

symbols for numbers, etc. Thus, the high stakes offset 

the poor chance for success. Nor Is the Indiscriminate 

criticism of new notation free from risk -- witness the 

Judgment of history on the many forgotten authorities who 

defended the Roman numerals for centuries. Whatever be 

the merit of the approach described here, there is no 

doubt that the analytical notation and nomenclature of 

classical signal theory lacks important features. Thus, 

the Incentive for Improvement exists, following the spirit 

of the following quotations. 

"It is a profoundly erroneous truism, repeated by 
all copy-books and by eminent people when they are making 
speeches, that we should cultivate the habit of thinking 
what we are doing. The precise opposite Is the case. 
Civilization advances by extending the number of Important 
operations which we can perform without thinking about 
them. Operations of thought are like cavalry charges In 
a battle — they are strictly limited In number, they 
require fresh horses, and must only be made at decisive 
moments." 

— Alfred North Whitehead 

"It Is hardly possible to believe what economy of 
thought ... can be effected by a well-chosen term. 

— Henri Poincaré 
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One of the reasons for emphasizing the use of flnlte- 

dlmensional algebraic models, as opposed to the more 

familiar analytic ones. Is that engineers need to be 

rigorous and it is much easier to be rigorous with algebra 

than with analysis. However, the continuity of physical 

processes has been an article of faith among many physicists 

ever since Newton, and has become dogma among many 

electrical engineers aware of the successes of Maxwell 

in the last century and of analog computers in the last 

two decades. These considerations are at the center of 

the philosophy of science and relate closely to the foun¬ 

dations of mathematics. Many of the most respected 

scientists, mathematicians, statisticians and communications 

theorists have written on these fundamental questions. 

Selected quotations from these works have been collected 

by the author in a forthcoming paper (Ross 1964). The 

temptation to present a small sample of these quotations 

here could not be resisted. 

"... we are less interested in continuous variational 
processes than we are in certain discrete versions of these 
processes. ...it is often assumed that the discrete version 
is an approximation to the continuous version. Many times 
It is far more appropriate to consider the continuous case 
as a mathematical fiction employed to simplify the analysis 
of the actual discrete process. This is certainly the 
case in many control processes." 

Richard Bellman 
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Strictly apeaklng, there Is no need to consider 
'continuous' wave forms at all In signal analysis. 
'Continuous' functions are the creation of mathematicians, 
and enable methods of analysis of great elegance to be 
used. But such analysis may well be done algebraically. 
Against this. It may be argued that algebraic methods 
must necessarily Introduce approximations; this may be 
true, but It should be remembered that signal analysis 
concerns the use of mathematical methods for describing 
physical signals and their properties. Mathematicians 
deal with mental constructs, not with descriptions of 
physical situational Approximations can be reduced as 
much as we wish, at the price of Increased algebraic 
labor. A 'continuous' function Is not a physical Idea 
but a mathematical one; when solving problems In physics 
(or applied mathematics), such an Idea need not be 
regarded as holy, as sometimes seems to be the case." 

— Colin Cherry 

"It Is Impossible to prove, by mathematical reasoning, 
any proposition whatsoever concerning the physical world. 

— G.H. Hardy 

"... mathematical existence and physical existence 
mean basically different things; ... physical existence 
can never follow from mathematical existence; ... physical 
existence can In the last analogy only be proved by 
observation; ... the mathematical difference between 
rational and irrational forever transcends any possibility 
of observation. ... 

"Be that as It may, there will remain unimpaired the 
possibility and the grand beauty of a logic and a mathe¬ 
matics of the Infinite." 

- Hans Hahn 



CHAPTER TWO 

VECTOR ALGEBRA OF SIGNALS AND SYSTEMS 

The first section of the chapter presents the 

correspondence between physical signals, linear transducers 

and measuring processes in the real world and the abstract 

vectors, linear operators and linear functionals of the 

mathematician's finite-dimensional vector spaces. In the 

second section, representation of the abstract entities is 

identified with the physical process of measurement. The 

discussion here is limited to concepts essential to the 

applications discussed in later chapters. The notations 

and nomenclature which will be used in the dissertation 

are introduced gradually In the first two sections and are 

summarized in Appendix 1 for reference. Differences 

between our notation and that of the existing literature of 

signal theory are discussed in the third section along with 

some of the reasons for the differences. 

2-1 SIGNALS, PATTERNS AND OPERATORS 

The traditional point of departure in signal theory is 

some continuous function of time, usually written f(t). It 

is usually assumed, perhaps tacitly, that "the signal" is 

f(t). We do not do this. We consider f(t) to be neither 

"the signal" nor any signal. What we do consider f(t) to 

be will be discussed later and what we will mean by 
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"signal" will be presented first. 

Signal Vectors 

A signal Is an entity which exists in the physical 

world. It may be a node voltage, branch current, shaft 

rotation, pressure, magnetic field Intensity, etc. The 

term "signal" refers to the entire behavior of some partic¬ 

ular physical entity throughout one complete operation of 

the system of which the signal is a part, i.e., throughout 

one complete operation of the signal generator. Prom this 

point of view, an excellent way to describe any particular 

signal is to specify a generator of that signal, and by 

"specify" we mean "to identify" some existing generator or 

"to provide manufacturing, installation and operation 

instructions" adequate for the production of some desired 

generator by competent technicians. Indeed, description of 

a signal by specification of its generator is the only form 

ultimately useful in engineering for describing the objects 

of signal analysis or the results of signal synthesis. 

Signals of the same physical type can be combined. 

Familiar examples are: (1) series connection of voltage 

generators, (2) superposition of the magnetic fields of two 

currents, (3) combination of shaft rotations in a mechanical 

differential, etc. Let us consider ¿he first of these 

examples in some detail. Prom experiments on many different 

voltage generators, we find that our measured results are 
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not affected If the spatial order of the series connection 

of any two voltage generators Is interchanged as In Figure 

2(a). In a series connection of three such generators, we 

find that it makes no difference whether we first connect 

the first two generators and then the third, or first 

connect the second and third generators and then connect the 

combination to the first. In short, we can show experi¬ 

mentally that the composition of signals satisfies all of 

the axioms of vector addition (H 1958). 

Measurement of any of the signals requires some scale 

of physical magnitude. The set of all possible magnitudes 

corresponds to the field of scalars which forms a 

necessary part of the definition of an abstract vector 

space. If we limit our interest to measurement of existing 

systems and specification of systems to be constructed, the 

field of complex rationals is convenient and far more than 

sufficient. In design problems Involving certain optimi¬ 

zation steps, a more convenient choice is the field of 

algebraic numbers. If a valid mathematical model of the 

system is available, the use of the field of reals or the 

field of complex numbers may be convenient. 

A signal may be multiplied by a magnitude. Familiar 

examples of scalar multipliers are: (l) resistance 

networks, (2) electronic amplifiers, and (3) gear trains. 

Again, from measured results on many sets of signals and 
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,-! , ! 

|o> ! 

(b) There Is a unique signal , |o) 
such that |A) + |0> = IA> 
for every signal |A). 

(c) Multiplication of signals by a magnitude 
Is distributive with respect to signal 
addition. 

Figure 2 Selected Axioms of Signal Vector Algebra 
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magnitude scales, we learn that signal addition and 

multiplication of signals by magnitudes satisfy (within 

tolerably small errors) all of the axioms of an abstract 

vector space )0. Thus, we are Justified in Identifying 

signals with vectors and magnitudes with scalars. We will 

denote a signal vector by a symbol of the form |f) in 

text and by an open arrowhead in system block diagrams. 

Finite-dimensional vector spaces are sufficient for 

signal theory. In some problems, it may be convenient to 

introduce spaces of infinite dimensionality for approximate 

calculation or for the purpose of using valid mathematical 

models. Similarly, when we speak of an ensemble of signals, 

we will mean an ensemble containing a finite number of 

signals. 

Even though the dimensionality of our signal spaces 

will seldom be as small as three, it is often convenient to 

think of a signal as a geometric vector. This follows from 

the fact that a complex problem can frequently be broken 

down into a sequence of small steps, each of which involves 

the consideration of only two or three vectors. Thus, we 

are able to employ our knowledge of geometry and the mental 

pictures which it provides to think about complex signal 

analysis problems in a way which would be impossible if our 

thinking were confined to strings of mathematical symbols. 

One must be careful, however, not to confuse the geometric 
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picture of our abstract vector space with either the 3- 

space of everyday experience or with the 4-space of the 

theory of relativity. Within limits, thinking and manipu¬ 

lation of geometric vectors is every bit as rigorous as that 

based on algebraic symbols, though any result obtained from 

’’signal geometry" should be checked by "signal algebra" for 

the simple reason that checking by an alternate method is 

always good practice. 

In both the real world and the world of mathematics, 

there are instances where some operation is confused with 

the result of the operation; in some cases, the same word 

is used for both ideas. The word "measurement" is an 

example. Though "signal" and "generator" have not been 

similarly confused, we have pointed out that a signal may 

be identified with its generator, and conversely. Since we 

could describe a generator as a device which converts 

magnitudes into signals, we might wish to describe the 

elements of our abstract space as being linear transform¬ 

ations which map scalars into vectors. By an appropriate 

Insertion of unit scalars into our diagrams and equations, 

it is always possible to adopt this latter point of view. 

Pattern Vectors 

We will restrict our attention to systems in which 

signals are not only generated by some transmitting 

apparatus but are also measured by some physical receiving 
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apparatus. By "measure" we refer to a device or process 

which produces a set of numbers or magnitudes at its output 

in response to a signal at its input. Writers on the 

philosophy of science (Churchman and Ratoosh 1959) 

customarily insist that the output of a measuring process 

be a number, and in every application that we will consider 

the narrower definition suffices. The usual definition 

seems slightly too restrictive in that the essential 

function of a measuring process seems to be one of storing, 

staticizing or recording information in some form suitable 

for the purposes of reading, interpretation or duplication 

at some later time and on a time scale having nothing 

directly to do with the timing associated with the measure¬ 

ment process itself. It appears that such a process of 

measurement takes place in all systems of interest in signal 

*ory. 

A commor example of a measuring apparatus is a four- 

terminal electrical network followed by a sampler and 

perhaps also by a digitizer. We may sometimes use "siftor" 

in place of "measuring apparatus" in order to have a term 

paralleling "generator" and to serve as an abbreviation. 

Thus, a generator converts magnitudes (or numbers) into 

signals, and a siftor converts signals into magnitudes (or 

numbers ). 

Just as new generators can be formed from old by 
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composition and scalar multiplication, we know from 

experience that new siftors can be formed from old in quite 

similar fashion. For example, the composition of two 

siftors is accomplished by applying the same input signal 

to both and summing their scalar outputs. Again, we find 

that the operations of siftor addition and scalar multipli¬ 

cation satisfy all the axioms of an abstract vector space. 

In the modem axiomatic treatment of vector algebra, 

a linear functional is defined as a linear mapping of the 

vectors in some given vector space into the field of 

scalars. Furthermore, the set of all such linear 

functionals is shown to be a vector space. This space CÍ 

of linear functionals is called the dual of the given 

vector space. 

We identify each physical siftor in a signal analysis 

problem with some linear functional in the world of 

mathematics. More often than not, we will refer to the 

linear functional as a vector. To avoid confusion, we use 

the term pattern vector to distinguish from signal vector. 

Though patterns and signals are both vectors, they are not 

at all the same; as we have noted before, they do not even 

belong to the same space. Most of the existing literature 

in electrical engineering does not clearly distinguish 

between signal and pattern, or between impulse response 

and weighting function. This omission is the source of 
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some confusion and Is partially responsible for the lack of 

any discussion of the essential process of measurement In 

most Introductions to signal analysis. Sharing this 

responsibility Is the universal failure to distinguish 

between entitles In the real world and their corresponding 

models in the world of mathematics. 

We will use a symbol of the form (g| to denote a 

linear functional corresponding to some measuring apparatus. 

The scalar result obtained by evaluating some linear 

functional (g| at some vector |f), i.e., the result 

obtained at the output of measuring apparatus (o| in 

response to signal |f) , is denoted by (g|f) as shown in 

Figure 3. In flow charts, a siftor is indicated by a box 

with a signal indicated by an open arrowhead at the input 

and a scalar magnitude indicated by a solid arrowhead at 

the output. 

Some of the correspondences shown in Figure 3 precede 

our discussion of them. For example, we will restrict our 

vector spaces by defining an inner product. Occasionally, 

we may confuse correspondence with identity, e.g., by 

writing "operator” when we mean "fAlter" or vice versa. 

Such lapses occur frequently in the literature and are to 

be tolerated but not encouraged. 
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Linear Algebra 

Vector 

Scalar 

Squared length 

Direction 

Result of basis change 

Operator 

Linear functional 

Coordinates 

Inner product 

Signal Theory 

Signal 

Magnitude 

Energy 

Waveform {or spectrum) 

Transform 

Transducer or filter 

Measuring apparatus 

Measured results 

Measurement process 

<o|f> 

|f> <o| 

Figure 3 
Correspondence Between Signal Theory and 

Linear Vector Algebra 
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Operators 

Corresponding to the various linear physical devices 

and processes which yield an output signal in response to 

an input signal, e.g., RLC network, electromechanical 

transducer, linear distortion in a communication channel, 

etc., we have the mathematical construct variously called 

linear transformation, linear operator or Just operator. 

Any system that we will consider can be described mathemati¬ 

cally as a cascade of signal, operator and pattern. The 

boundaries between the three elements of the cascade can 

be located quite arbitrarily. In fact, we can eliminate 

the middle element entirely by absorbió it as part of the 

signal or of the pattern. In other words, we are at liberty 

to consider an operator as operating on a signal or on a 

pattern, whichever is convenient. This point is illustrated 

in Figure 4, where we introduce symbols of the form |h| 

to denote operators. 

Normally, we will consider that an operator which 

operates on signal vectors in some given space will yield 

an output which is a signal vector in the same space. This 

is not a necessary restriction and is easily removed. In 

many problems it is convenient to think of an operator as 

mapping vectors from one space into vectors in some other 

space. For example, in the familiar equation 

e = Ri + L di/dt 
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e, R1 and L di/dt represent vectors in the same space, but 

i represents a vector in another space, and di/dt still 

another. Ignoring these distinctions, as is frequently 

done, corresponds to dealing with representatives free of 

physical units. Such a practice is permitted, provided 

that the physical units involved in the problem are checked. 

Similar statements can be made if we regard the pattern 

space as the domain of the operator. 

Figure 4 Typical Cascade 

Since we are interested here in applying linear algebra 

to signal theory, it is necessary that we restrict our 

attention to linear operators, and we will avoid using the 

adjective "linear" repetitiously. 

Extension of our notation to multi-linear systems will 

be considered in Chapter 3. We may define in physical terms 
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the addition of transducers and their multiplication by 

magnitudes. Prom experiments performed on a wide variety 

of transducers, we find that these operations of addition 

and multiplication satisfy all the axioms of an abstract 

vector space. If we wish, we may then regard the idealized 

mathematical counterpart of the transducer, i.e., the 

operator, as being not only a transformation defined on 

some given signal space but also as an element of a vector 

space itself. If the signal space has n dimensions, then 

the pattern space has n dimensions and the operator space 

has n2 dimensions. Ordinarily, we make no direct use of 

the fact that operators are vectors in their own right. 

Particular operators of general Interest are: the 

null operator |o|, the identity operator |l| and the 

inverse of an invertible operator. The null operator is 

defined by: |o|f) = |o), and the identity operator by: 

I i|f) = Ip), for all If). The inverse of an invertible 

operator |h| is denoted |h | and is defined by: 

IhIh”1! = |l| = |h ^hJ. There are several other particular 

operators of general utility, e.g., the delay operators, 

which can be defined only by reference to a particular 

basis. 

A aubspace & of an n-dimensional vector space 
is a vector space satisfying 
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|o> e # g X) 

0 ^ Dlm^ ^ n = Dim XD 

Subspaces of C! are similarly defined. In geometric 

terms, a subspace is either: (l) the origin |o), (2) a 

line, plane or hyperplane containing the origin, or (3) the 

entire space XD . The image of the subspace Ä under 

some linear operator |a| is the subspace |a|£? defined 

as the set of all vectors of the form |a|x) where |x) e 

ÍO. In signal theory terms, U| Is a filter, | x) is an 

input signal, & la a set of input signals, and the image 

|a|# of & is the corresponding set of output signals. 

The image of ÎO under |a| is called the range of |a|, 

and the null-space of |a| is the subspace % with 

Image |o). The dimensionality of the range of |a| Is 

the rank of |a| and Dim % is the nullity of U|; the 

sum of the rank and nullity of any operator must equal n. 

Thus, for some filter |a|, we may regard the range, null- 

space and rank as analogous to pass-band, stop-band and 

bandwidth. 

We will find uses for a symbol of the form |p)(oI 

which is called a dyad and which is easily seen to be an 

operator of unit rank. A dyadic is a linear combination 

of dyads. Any operator can be written as a dyadic; for 

example. 
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m 

lAl = X lFiXQil 
i = 1 

provided that m is not less than the rank of |a|. 

Descriptions of a set of signals in which all of the 

signals are obtained from only one generator can always be 

found. Such a description involves identification of each 

signal in the set with a suitable operator which produces 

the signal under consideration in response to the output of 

some "standard" signal generator, as indicated in Figure 5. 

Similarly, all of the patterns in some given set could be 

described in terms of a set of operators and some single 

pattern. Thus, if we wish, we car. relocate the two bound¬ 

aries in the signal-operator-pattem cascade in such a way 

as to reduce any problem to a study of operators. 

Switch ’on" for 
0 St <T 

« h> 

Figure 5 Generation of a Set of Signals 
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Inner Product 

Introduction of auch concepts aa signal energy, squared 

error, noise variance, etc., is accomplished by restricting 

0¡ and XD to be inner-product spaces. The modern 

mathematical approach is to define a mapping from the set 

of ordered pairs of elements of the vector apace ÏO into 

the field Q such that the mapping is Hermitian symmetric, 

linear in the left factor and positive definite. We depart 

from the usual nomenclature by calling the entity Just 

defined an intra-product. The defining properties of an 

intra-product [|X>. |Y>] of vectors |x) and |y) in 

¡O are given explicitly by 

¡X> , |y>] = [|y> ,|x)]* (1) 

[1*1 >01+ l*2> (32< lY>] = IK> (3i> lY>] + Ex2)^2'(iy] 

0 ^[x), lx)] with equality if and only if |x) = |o) (3) 

Intra-product is somewhat inelegant in that it fails to 

be linear in the right factor; instead, we have 

[|X>. 1¾ 01+|X2>02] = [jx>» |Yi)]@ Î+ ix>, |y2^02 W 
i.e., intra-product is conjugate linear in the right 

factor. In other words, intra-product is conjugate 

bilinear and not bilinear. Since ft is real in the 

ap, TIcation problem considered in this dissertation, we 

will not dwell on the details involved with complex fields. 

The reader is referred to ^ 59-70 (particularly 



29 

^59-61, 67, 69) of Haimos' excellent treatment (H I958). 

In his § 67 is the theorem which appears in our 

notation as follows. 

TM To any linear functional (a | on a finite¬ 

dimensional intra-product space there 

corresponds a unique vector |z) in ÏO such 

that (a|x) = [jx), |z)] for all |x). 

We use this theorem to Justify the definition of matching 

by introducing the notation 

<*1 = 1^= <z| (5) 

and calling (a| = (z\ the match of |z). The large tilde 

symbolizes the linear operator "take the match of" which 

maps a vector space into its dual. The small tilde is a 

label used to conserve base letters and to recall relation¬ 

ships. We may also write 

|z> = ^ÃT = |Ã> (6) 

Two applications of "match of" is equivalent to the identity 

operation. We will return to the subject of matching in our 

discussion of representation. 

Correspondence has been established between: 

(l) intra-product of two vectors in ¡O, and (2) the inter¬ 

action of a functional in CÍ with a véctor in ¡O . 

This correspondence is employed in the modern mathematical 

literature to Justify dropping the linear functional 

notation in favor of intra-product with the result that 
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attention is focussed on X) . Perhaps this choice stems 

from the bias of the older literature which generally- 

ignored the dual space CX . 

Since we wish to emphasize the balanced use of both 

the signal and the pattern spaces, we take the opposite 

choice by employing the correspondence to drop the intra¬ 

product notation. This is accomplished by defining the 

result of evaluating a linear functional (g| in CX at 

some vector ¡f) in XD > where an intra-product has been 

defined in XD , as the inter-product of (g| and |f) . 

Summarizing, we may define inter-product in terms of intra¬ 

product by writing 

<o|f) = |[f), I g)] (7) 

It follows immediately that inter-product is Kermitian 

symmetric, linear in the left factor, linear (not conjugate 

linear) in the right factor, positive definite and bilinear 

(not conjugate bilinear). 

If an inter-product has been defined between CÍ and 

X) , we will call them inter-product spaces. We may also 

revert to the usual term "inner product" since it will 

always be clear in context that we mean the inter-product 

of a pattern vector (g| and a signal vector |f) . The 

reader is free to perform the unnecessary steps of 

replacing the inter-product (g|f) with the possibly more 

familiar intra-product [|f) * | o)] if he finds this 
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convenient. 

The proper article to uae with Inner product Is not 

"the" but "an" as is emphasized in the more recent texts 

(Hoffman and Kunze 1961, MS&M 1963). Associated with each 

possible definition of inner product (inter- or intra- ) 

is some Hermitian form or, perhaps more conveniently, some 

Hermitian matrix H. Thus, all of the terms associated with 

inner-product spaces, e.g., orthogonal, normal, orthonormal, 

unitary, etc., ought to have some such phrase as "with 

respect to the defined inner product" or "with respect to 

H" or Just "H" attached as a suffix or prefix. The real 

diagonal matrix unitarily similar to H is called the 

weighting of the inner product. Ordinarily, we will choose 

bases and define inner product so that H is the unit matrix 

I and the tags regarding H may be omitted. 

Perhaps some motivation is desirable for the very 

general definition of inner product given above. In 

signal theory the procedure of "noise-whitening" is often 

used. Here, we intend "white" to include not only 

uniform distribution of noise energy over the n 

dimensions of Oí and rO but also the absence of 

correlation between the noise on different dimensions. 

The usual explanation of the whitening procedure is the 

active or "alibi" interpretation, e.g., "whitening filter" 



32 

or"whitening operator". An alternative explanation is the 

passive or "alias " interpretation obtained by considering 

that noise-whitening involves a change of basis and a change 

of inner-product definition to one where the noise is white. 

We proceed now to define some of the well-known 

concepts already mentioned which are associated with the 

inner product. Let CÍ and X3 be n-dimensional inner- 

product spaces. The inter-product of any element of either 

space and the match of that element is a positive real 

scalar called the energy or squared length of the selected 

element (or matched pair); for example, Cp|f) , (^1¾) > etc. 

The (positive) square root of the energy of some element is 

called its length or rms value. Any element (or matched 

pair) of unit length is called normal. If (g|f) = 0, then 

each of the pairs: (g| and |f), | f) and 1*5) , (g| and 

(f|, |g) and (?| is said to be orthogonal. An 

operator |u| which preserves length is called unitary if 

Í7 is complex and orthogonal if is real. For real 

inner-product spaces, the angle 0 between |f) and I'g), 

or between (f| and (g| is defined by 

ñ = <°If) = (fI°> 0*6 *tt 

V(g|q) <Íf|f) V(pIf) (alô) (8) 

This concept of matching may be extended to operators 

with the aid of Figure 6 where orthonormal bases 

and in real inner-product spaces and Cl 
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are assumed given. If and only if the two systems shown in 

Figure 6 have the same output for every combination of i 

and J, then |l| Is the operator matched to |k| or the 

match of |k|. Thus, 

|L| = Í¡CÍ= |K| <=£ (Bj K| Bj) = (^lLlB1) (9) 

This definition is extended to complex spaces by conjugating 

the last term in Equation (9). We may also write 

IKI = ITT = |l| (10) 

and, again, two applications of "match of" is the identity 

operator. 

(BllKlBj) 

Figure 6 Systems Used in Defining Matching Operators 

2-2 REPRESENTATION AND MEASUREMENT 

Description of signals, transducers and patterns in 

terms of abstract vectors, operators and functionals 

provides a powerful way to think about a complex problem, 

free from the unnecessary complications associated with any 

particular representation. However, at some point it is 

necessary to relate the abstract symbols to apparatus and 

measurements. Thus, a chain of progressively more concrete 

representations of the abstract entities is required. The 
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first link in this chain is the subject of this section; 

the remaining links are well-known to engineers for at 

least the time-domain and frequency-domain representations. 

This first link involves a choice of basis for represent¬ 

ation of the abstract entities. A tremendous range of 

choice is available here, though the existing literature 

employs only two or three bases almost exclusively. We 

adopt the view that we might wish to select a basis for 

each particular signal analysis problem, rather than the 

traditional approach of using two or three bases of great 

generality for all problems. At the beginning of this 

section, ÎO and (X are general linear spaces and are 

later restricted to inner-product spaces. 

Basis 

Before formally introducing the idea of basis, we need 

to define linear independence. Following our earlier 

examples, we will formulate the definition in physical 

terms. Suppose that we are given two signal generators and 

that we find, after an adequate series of experiments on the 

system indicated in Figure 7> that the only scalars which 

produce the null signal |o) at the output are = 0 

and ^2 = °* Tllis physical situation is described mathe¬ 

matically by saying that (b^) and [fijare linearly 

independent. That is, the following two statements are 

equivalent : 
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]bi) and |B2) are linearly Independent 

1¾)¾ + fB2>P;2 = 1°) ^ = fa" ° 

Similarly, n signals Ib^ are linearly independent if 

and only if no summation of them yields |o) except for 

the trivial one with all n coefficients equal to 

zero. 

——*(¡5 
Scalar Signal 
Multipliers Generators + -o To 

Measuring 
Apparatus 

Figure 7 Test for Linear Independence 

Now consider the set of signals formed by all possible 

linear combinations of the n signals |bi), i.e., the 

space spanned by . This set satisfies all of the 

axioms of an abstract vector space. The set of vectors 

lBi) *s a bas^a the space and the dimension of the 

basis, and of the space, is n. We will always be inter¬ 

ested in the sequence of labels of the basis elements and 

will regard {^), |B2>,..., |Bn>) and jjBg), ¡B^,..., 

|Bn)} as different bases. 

Conversely, if we are given any finite set of signals 

we can find a basis for the set by selecting any signal in 
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the set as |b^), and then selecting |b2) as the first 

signal found to be linearly independent of |. The 

process continues by discarding any signal linearly 

dependent on the partial basis and adjoining any signal 

found to be linearly independent of the partial basis. The 

process stops when every signal in the set has been 

examined. The residual ordered set of linearly independent 

signals is a basis for the original set, and the space 

spanned by the basis is equivalent to the space spanned by 

the original set of signals. 

Representation 

The importance of a basis 13 that ^ may be 

used to represent any vector |p) in the space by listing 

in sequence the unique set of n coefficients cp>^ in the 

following equation: 

|f) = 1¾)^ + |b2)4>2 ...-i- |Bn) cf>n (h) 

The ith term on the right side of Equation (ll) is the 

ith component of |f) and consists of the ith basis vector 

multiplied by the scalar ^ which is called the ith 

coordinate of If) on the given basis. Representation 

of an arbitrary vector on a basis is a mathematical idea 

corresponding to the engineer's idea of the specification 

of a generator for an arbitrary signal in terms of some 

given set of n standard signal generators as indicated 

in Figure 8. 
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Figure 8 Use of Signal Basis 

It is convenient to display the coordinates of a 

signal vector as a column or n x 1 matrix. Thus, the 

representative of | f) on {l ®i>} la 

1 

2 

n 

Similarly, if (cj is any basis for the pattern 

space, we may represent any pattern (g| by the n 

coefficients in the equation 

<o| = (Cil + y2 <C2I ... + ïn <Cn| (13) 

corresponding to a specification of the pattern (g| in 

terms of n standard siftors as indicated in Figure 9. 

The coordinates of a pattern vector will be displayed as 

a row or 1 x n matrix. Thus, the representative of 
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(o I on is 

Figure 9 Use of Pattern Basis 

Corresponding to any basis {1¾)} for the signal 

space, there is a basis {(¾)} of the pattern space, 

such that (D |Bj) = Sir Given {^)} we say that its 

dual is {(D11| or that the latter is the dual basis. 

It is also true that each basis is the dual of the other. 

There is no need to choose any particular basis for the 

pattern space imposed by the choice of any basis in the 

signal space; however, it is usually convenient to employ 

bases that are mutually dual. 

One basis suffices for the representation of vectora, 

but two bases, one for the signal space and one for the 

pattern space, are required to represent an operator. For 

example, an operator |a | is represented on and 

{<Dil} by displaying the n2 scalars (d^aIb ) as an 

n X n matrix A with row index l and column index j. 

let us now restrict our attention to spaces in which 
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an inner product has been defined and to convenient 

choices of bases. A basis in which each pair of elements 

is ortuogonal and each element is normal is an orthonormal 

basis. If {<Dii} and M are each orthonormal and 

are also mutually dual, then the bases are mutually matched, 

i.e., = (b±\ for all i. An orthonormal basis may 

be constructed from any basis by means of the Qram-Schmidt 

orthonormalization procedure described in any of the 

standard texts on linear algebra or matrix algebra. 

We relate our discussion of representation to inner- 

product spaces by presenting a few theorems which will be 

needed later. Let and be orthonormal 

bases in inner-product spaces XD and CX. Let I?) be 

any signal vector in X) and let (g| be any pattern 

vector in CX defined by 

lF> = Ç <Bil (15) 

The intra-product of (?) with itself is given, in general, 

by the Hermitian form 

[|f), |f)] = where = 7ji 

We will be Interested in the special case, the Cartesian 

form, where = 

[lF>* lF>] = ^ Sijfy = I 4¾ 

The general element of the column F) representing |f) 
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la ^i* Suppose the general element of the row repre¬ 

senting (f| is Then 

(p|f) = X 1>Â>, 
i,J 1J 

and the definition of inter-product requires that 

^ W) = Ç 
which must hold for all possible choices of ¡f). Thus, 

=<Pl 
and the row representing (f| is the adjoint (conjugate 

transpose) of f) which we denote by (F. Note that this 

notation depends on the assumption that the bases used 

must be mutually dual and mutually matched. A similar 

argument shows that |o) is represented by o) if and 

only if (a I is represented by (g. 

Suppose we are given some operator |k| represewted 

on the given bases by the matrix K with general element 

(b^|k|Bj). Let |ÍCI be represented by the matrix J 

with general element (bJicIBj). If Equation (9) is 

extended to the complex case, we have 

(SilKlBj) = (BjlKlBj)* k = j 

Thus, if the large tilde is understood to mean "adjoint of" 

when applied to representatives, we have the following 

theorem. 

TM Given |f) and (g | as in Equation (15), and 

|k| represented by K, then (l6a)-(l6j) follow. 
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Tp5 = (fI = y (b±\ (l6a) 

= Ig) = ^ lBi>^î (l6b) 

9) = (I (l6c) 

(g" = G> (l6d) 

TkÍ = |k| (l6e) 

^ = K (l6f) 

^1=(¾^) (l6g) 

di = <G IBj) (l6h) 

<GIf) = (g f) = X ( )* = <?©*= <Ffã>* (I6i) 

|f) = |o) <==> (f| = (o| <=> (f|f) = o (i6j) 

Note that the conjugate Isomorphism between Cj and 

X) which we call "matching" is quite distinct from the 

operation of "reversing" (Lai i960). The "rev" operator 

121 operates on a signal in a real inner-product space to 

yield a signal with coordinates on some orthonormal basis 

(e.g., the finite time basis) reversed in sequence from 

those of the given signal. Thus, |2I maps from X) to 

X) (or from C¡ to CÍ ), while maps from ÍO to 

G! (or from CÍ to )0 ). 

Some Useful Bases 

We wish to consider the employment of a basis tailored 

to the special requirements of each particular signal 

analysis problem with which we are confronted. This ad hoc 
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approach has received leas attention in the classical 

literature than it deserves. On the other hand, there are 

a few bases which have been found to be useful in a wide 

variety of applications and which ought to be given first 

consideration. Since these bases are /ell known, our 

discussion of them will be brief. The only point in 

describing these familiar bases here at all is to relate 

them to our notation and nomenclature. 

We have emphasized the importance of defining any 

particular signal |f), operator |h| or pattern (g | by 

identifying or specifying some actual generator, transducer 

or siftor. Similarly, we define any basis in ÍO by 

identifying a bank of generators and any basis in C¡ by 

identifying a bank of siftors. Thus we will proceed by 

defining some of the familiar bases in terms of their 

correspondents in the real world. 

Perhaps the »ost useful basis of all, for purposes 

both theoretical and practical, is that defined by 

apparatus such as that shown in Figure 10. Despite the 

importance of this finite time basis, it is hardly ever 

discussed in the theoretical literature. 

Related to the finite time basis is another basis 

which ijj discusned in engineering literature of the past 

decade. This basis is called the sampled-data or discrete 

time basis and is useful in analysis. It is abstracted 
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from the finite time basis by allowing the dimension n 

to become denumerably infinite. An even more familiar 

basis, useful in analysis, is the continuous time basis 

abstracted by imagining that n can become non- 

derumberably infinite. We can regard a representative 

of a signal on the discrete time basis as being a column 

of an infinite number of discrete scalars, and, on the 

continuous time basis, as an infinite column of densely 

packed scalars. 

Figure 10 Finite Time Basis 

An interesting relationship between our algebraic 

approach and the familiar continuous time representation 

may be seen by considering various expressions for the 

inner product. In Equation (l6i), let (g| = (f|. Then 

(f|f) = <5 f) 



44 

If we allow n to become uncountably Infinite, f) 

becomes a densely packed Infinite column of scalars which 

we Indicate by f) and the classical literature denotes 

by f(t). Similarly, ( F becomes (f, and Equation 

(17) becomes 

(f|f) = (f f) 

where the latter expression Is commonly written in the 

form 

dt f*(t) f(t) 

Similarly, 

Is (gf) or 

the continuous time representation of 

dt g(t) f(t) 

<g|p) 

which rather thoroughly obscures the important fact that 

inner product is related to measurement which necessarily 

involves the interaction of two different types of entities, 

l.e., signal and pattern. 

Orthonormal exponential bases (Kautz 1954, Huggins 

1956) are useful in both theory and practice. The contin¬ 

uous time representative of each element of such a basis 

is a linear combination of some finite set of exponential 

functions of time. The exponents may be either real or 

complex. A typical orthonormal exponential basis formed 

on shown in Figure 11 where we have used the 

familiar complex frequency basis to describe each of the 



filters required. The importance of the exponential bases 

stems from the fact that the eigenfunctions of stationary 

operators are exponentials. 

Figure 11 Orthonormal Exponential Basis 

An important special type of orthonormal exponential 

basis is the familiar truncated Fourier series represent¬ 

ation, corresponding to a choice of poles at equally-spaced 

points symmetrically located on the imaginary axis of the 

s-plane. The truncated Laguerre series representation 

(Wiener 1949) is an orthonormal exponential basis formed 

by choosing all the poles at one point on the real axis. 

The familiar continuous frequency representations (Fourier 
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or Laplace transforms) may be regarded as orthonormal 

exponential bases with a non-denumerably Infinite number 

of poles densely packed on some simple closed contour In 

the complex plane. 

Extensive development of the experimental techniques 

has been carried out by Investigators at The Johns Hopkins 

University and elsewhere over the past decade (Huggins 

19i>8, Lai 1958). Orthonormal exponential bases have been 

successfully applied In analysis of electrocardiograms 

(Young and Huggins I962), spoken vowel sounds (Dolansky 

i960), non-linear operators (Lory, Lai and Huggins 1959) 

and nondestructive testing (Lltman and Huggins I963). 

Theoretical work on orthonormal exponential bases has 

been extended to Include multi-epoch signals and to expon¬ 

entials growing In the pre-epoch interval as well as to 

exponentials decaying In the post-epoch interval (Young 

1963). A study of the difficult exponent-selection 

problem has been completed (McDonough I963). A general¬ 

ization of the Kautz procedure using arbitrary zeros and 

more than one pole at each step has been developed (Ross 

1962). 

Measurement 

In the literature and in everyday usage in engineering, 

the word "measurement^ may mean the process in which a 

physical entity to be measured Interacts with a measuring 
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apparatus to yield a number (or numbers). Alternatively, 

the word "measurement" may refer to the numerical result 

(or results) obtained by the process. We will adopt the 

first meaning and will use the word "coordinate" for the 

second meaning. 

The mathematical process of evaluating some linear 

functional (g| at some vector If) in a pair of mutually 

dual inner-product spacer, is identified with measurement, 

the vector jp) with the signal to be measured, and the 

linear functional or pattern vector (g| with the 

measuring apparatus. This correspondence is illustrated 

in Figure 12. 

Signal to be Pattern matched Amount of |b.) 
measured to in |f) 

Signal matched Pattern to be Amount of (B | 
to (S'! measured in (g| x 

Figure 12 Measurement of Single Coordinates 

A convenient way to begin a mathematical treatment of 

measurement is to discuss the proof of Equation (l6g). 

TM (¾] F> = <p± 
PF {j®!)}’ ls orthonormal c=C> (b^J BJ> = Sij 



Thus, to measure the ith coordinate of a signal in X) we 

apply the signal to the measuring apparatus characterized 

by the pattern matched to the ith element of the basis in 

ÍO . If |f) is represented on the continuous time 

basis by f(t) and by b1(t), the previous 

statement would be given in classical terms by: 

To measure the ith coordinate of a signal on an 

orthonormal basis, apply the signal represented 

by f(t) to a filter matched to b,(t), i.e., a 

filter with impulse response b*(-t), and sample 

the output at t=0. 

For further discussion of the relationship between the 

vector space concepts discussed here and the classical 

approach based on continuous time and/or frequency repre¬ 

sentations the reader is referred to the doctoral 

dissertation of D.C. Lai and to the papers by W.H. Huggins 

and T.Y. Young listed in the Bibliography. 

Similarly, Equation (l6h) shows that the ith coordinate 

of a pattern (o| on any basis may be measured or 

"calibrated" by applying the signal |Bj) to the pattern 
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(g|. Both processes are illustrated in Figure 12 for th<* 

case of measurement of a single coordinate. 

In Figure 13, the process of measurement of all n 

coordinates of a signal is illustrated in two ways, the 

second of whicn suggests the introduction of an addition to 

our notation. The entity to be added may be described 

loosely as a "matrix” in which each "row" is one of the 

n patterns (i^|. However, reflection indicates that 

this description is unsatisfactory. The entity we are 

attempting to describe is not a matrix since its elements 

are vectors, while the elements of a matrix are scalars. 

We see the entity under consideration operates on a signal 

vector and yields the representative on {l^)} of the 

signal, and that the entity corresponds to the basis of 

the pattern space. This last remark Justifies a redefin¬ 

ition of the term pattern basis to mean precisely the 

entity which we have Just been discussing. 

The symbol that we will use for the pattern basis is 

b|, incorporating the vertical bar associated with abstract 

entities and the underlined capitals associated with 

representatives. This choice is appropriate in view of 

the mixed nature of B| through its role of transformation 

from signal vectors to representatives of signal vectors. 
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Figure 13 Measurement of All Coordinates of a Signal 

Similarly, signal basis is redefined to mean the 

entity |B which may be described loosely as a "matrix" 

in which each "column" is one of the n signals |B^. 

These mixed symbols may be manipulated according to the 

formal rules of matrix algebra and may be considered as 

bridges between abstract vector space entities and their 

representatives. Also, |B is identified with the oper¬ 

ation of signal generation and % | with signal measurement, 

processes in the real world which bridge between magnitudes 

and signals. The use of the mixed symbols is Illustrated 

in Figure 14. Note that all of the connections in the 

system diagram implied by the expression (q|b cannot 

be made simultaneously (unless n replicas of (o| are 

available), so it is interpreted as the application of 

signal generators |B one at a time to the pattern (o| 
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and recording of the results (a. 

l) 
=(£)=*> 1¾) |B¿> • • • 1¾) 

ISf) =|P> 

-O 

f) = B|f) 

Measurement of a Signal 

Generation of a Signal 

If we multiply b| and |b we see than an n x n 

matrix is obtained with ijth element (B^|B^ = and, 

therefore, 

B|B = I (18) 

The mixed symbols can be generalized. For example, let 

|b indicate some oblique basis ln X) and d| some 

oblique basis ln C!. Then d|b Is the Gram matrix 
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defined by these bases, and 

d|b = I (19) 

If and only If the bases are mutually dual. 

How shall we Interpret the product of |b and b| 

In the order given here? Our notation |B S| suggests that 

the product Is an abstract operator which we see to be 

self-matching and Idempotent. Let us see what |b || does 

to an arbitrary signal |p). 

|b||p) = [b [b|f)] = |b p) = |f) = |i|f) 

Since this Is true for all |p), we obtain 

(20) 

Up to this point we have assumed that the basis |B 

was complete. Now suppose that the operator |B b| formed 

on the n-dlmenslonal orthonormal basis |B and Its dual 

b| acts on a signal | a) which lies In some space rO 

containing the subspace & spanned by |b, i.e.. Dim# ^ 

Dim ÍO and Clearly, |b b|a) Is a signal vector 

in #-, and |a) - |B S|a) lies entirely outside # in the 

orthogonal complement of #, i.e., in where 

and every vector in & is orthogonal to every vector in 

Since |B 11 Is self-matching and Idempotent, It Is a 

perpendicular projector (H 1958). That is, if |a) is 

any signal, then |B b|a) Is the perpendicular projection 
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of I a) onto the subspace & spanned by |3 as shown in 

Figure 15. 

TM If |b is an arbitrary basis and d| is its 

dual, then |b D] is a perpendicular projector. 

PF d| = (llBr1!! since this expression satisfies 

D|B = I and D| is uniquely defined by |b. 

Then |B D| = 13(116)-½] is clearly self¬ 

matching and idempotent. □ 

The physical interpretation of |b B| is illustrated 

in Figure 16, where it is assumed that some signal |r) 

has two components, a desired signal |s) and some inter¬ 

fering signal |x). Suppose that |s) lies in some 

subspace & and that |x), by design or good luck, lies 

in Then, the physical operator corresponding to |b b| 
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will yield Is) in response to |r), and we see that 

I® ®l ia a filter. A perpendicular projector could be 

called a £?-pass filter and has been called an “ideal" 

filter (Zadeh 1952). 

Desired 
Signal 

|b b|r) = |s) 

Figure 16 |b5| is a Filter 

Measurement of an operator |a| on some orthonormal 

basis |b and its matched dual can be indicated conven¬ 

iently by the expression B|a|b. If |B is oblique and 

D| is its dual, then the measurement of |a| is indicated 

by D|a|b. In either case, these expressions are equivalent 

to the matrix A representing |a|. In summary, 

S|A|B = A = ^®i|a|Bj)] (21) 

for the case of orthonormal bases. This equation indicates 

that the measurement of an operator |a| Is accomplished 

by connecting each combination of one of the generators |B 

and one of the siftors B| to the operator |a| and 

recording the n2 measured results as the matrix A. 

Conversely, we may specify an operator in terms of its 

representative on some given pair of complete bases. 
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|a I = |B A (22) 

Thus, the physical operations of measurement and specifi¬ 

cation are connected by a sort of duality; one operation 

maps from the real world to the world of mathematics and 

the other maps in the opposite direction. 

The time scale of the measuring apparatus must be 

synchronized, at least approximately, with the time scale 

of the signal generators. Maintenance of synchronism 

presents measurement problems which are always important 

and frequently difficult, but we will omit a general 

discussion of the subject. Suffice it to say that three 

types of synchronizing techniques are widely used and are 

well-known: (l) extraction of timing information from the 

received signals, (2) the use of ancillary signals specially 

designed to facilitate timing measurements, (3) the 

transportation of accurately synchronized clocks to the 

system terminals. The measurement of signal epochs has 

been discussed in the literature (Young 1963) as well as 

the design of synchronizing signals (Huffman 1962). 

Units of measurement are associated with signals, 

patterns, operators and bases. Representatives are arrajs 

of scalars without physical units. Consider a case in 

which some operator |l| maps from a vector space '¡O to 

another vector space T. For example, suppose |l| 

corresponds to a transducer of translational position to 
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voltage. Then the physical units of the various entitles 

are given by 

meter 

volt/meter 

volt 

|b and |f) ln XD 

W 
lç and IG> = |l|f) in f 

meter/volt 

meter”1 

volt'1 

while b|b, £|c, f|F), e|o>, c|l|b, |l|i,|, |l|l|, b|l|c 

have no physical units. From this example, we can see a 

distinction between vectors of one dimension and scalars, 

i.e., the former have physical units and the latter do 

not. 

In closing our discussion of measurement, we note 

that several physical and mathematical operations have 

been shown to be closely related and yet clearly distin¬ 

guished through the introduction of the mixed symbols ]§| 

and |B. For example, inspection of the expression |b b| 

indicates that a perpendicular projector is equivalent to 

cascading the operations of measurement and generation, as 

shown in Figure 17. The identity b|b b| = b| shows that 

representation is equivalent to cascading perpendicular 

projection and measurement. Referring to Figure 15, we 

see that the least-squares approximation by a vector in a 

given subspace £Ü to some arbitrarily given vector U) 
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Is obtained by perpendicularly projecting |a) onto 

Throughout this dissertation, the "least-squares" criterion 

(minimization of squared error or mean squared error) will 

be employed and the word "best" will refer to this 

criterion. 

_ Figure 17 
|B B| is a Cascade of Measurement and Generation 

Manipulation of Operators and Matrices 

A one-to-one correspondence exists between abstract 

vectors, operators and functionals in a dual pair of n- 

dimensional linear spaces and their matrix representatives 

on some pair of dual bases. The mapping in one direction 

is called "representation"; the Inverse mapping is called 

"abstraction". Our notation and nomenclature are designed 

to show the isomorphism clearly without allowing it to 

become confused with identity. 

Matrices of three types (ixn, nxn, nxl) arise naturally; 

general rectangular matrices m^n, nig^n) arise 

in representing operators of rank n or less. In summary, 

all abstract operations symbolized by our vertical bar, l.e., 

(g|f), (g|h| , IhIf), IhIkI map into matrix multiplications. 
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As far as multiplication is concerned it is perhaps worth 

noting that the rule for the matrix product of m^xm2 and 

m2xm^ matrices covers all cases. We will not dwell here 

on the basic rules of matrix algebra, since several 

excellent works on the subject (Perils 1952, Marcus i960) 

are available. However, some of the more important facts 

and rules of manipulation will be noted. 

We have seen that |b b| is an alternate expression 

for the unit operator |l| if |B is orthonormal and 

spans ïO. We are then free to insert or delete |b |T| 

in any chain of abstract symbols. For example, 

(q|k|f) = (q|b b|k|b b|f) 

= <o|b b|k|b b|f) = (0 k f) (23) 

Thus, we can map conveniently between abstract entities 

and matrices. 

These manipulations can be generalized. Consider the 

expression... |j |k|...and suppose that |k| ÎO is the 

subspace ¿2 of spanned by Ja. Also, suppose that 

C¡|j| is the subspace of CÍ spanned by z| and 

that all bases here are orthonormal. Then 

...|j|k|... = ... |j|z z|a a|k|... 

= [... |j|z]I|a[a|k|...] (24) 

If ¿2 C ^ then 

|Z2|A A| = |AA|Z?| = |A A| 

corresponding to a generalization of the cascade of two 

(25) 
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band-pass filters where one band is completely contained 

within the other. The generalization of the case of 

overlapped bands is indicated by 

\Z%\Ll\ = |AA|ZZ| = |P|| (26) 

which implies that the space spanned by |P satisfies 

P ^ (2 K'Y (27) 

Generally, however, the matrix ?|a defined by the two 

bases must be included between the matrices representing 

|j| and |k| . It is clear from these manipulationi? hcv: 

rectangular matrices arise in dealing with operators of less 

than full rank. 

C. Lanczos has recently shown several results 

concerning rectangular matrices which allow them to be 

manipulated almost as easily as square matrices of full 

rank (Lanczos 1958). One result is a generalization of 

the spectral theorem which will be presented here in 

operator form. 

TM Any operator |l1 of rank r on a pair of 

mutually-dual inner-product spaces can be 

written in the form 

|l| = |b D a| (28) 

where D is a real positive diagonal rxr 

matrix, |B is orthonormal and spans £ ¡O, 

and AI is orthonormal and spans c 

It is easily seen that |A consists of the r largest 



6o 

eigenvectors (i.e., corresponding to r largest eigen¬ 

values) of |l|l| and |B consists of the r largest 

eigenvectors of |l|l|. Also, |l|l| and |l|l| have 

r positive real eigenvalues ; where the diagonal 

elements of D are the 

Lanczos' theorem provides a convenient introduction 

to the definition of the pseudo-inverse (Qreville i960). 

Again, we translate from matrix to operator form. 

DN The pseudo-inverse |l^| of an operator 

|L| = |B D A| is given by 

|L*| = J A D"1!! (29) 

TM |L|L*| = |B B| 

|L* |L| = IA AI (30) 

The pseudo-inverse is, thus, related to perpendicular 

projectors and to least-squares approximation and estimation. 

An operator of particular importance, along with its 

matrix representative on any pair of matched dual bases, is 

of N the covariance operator |C | of an ensemble 

signals. We assume that the mean signal ^ iB zero, 

by first subtracting the mean from each |Fk) if necessary, 

Then, the covariance operator is defined by 

¡C| = Ç lpk)(?kl <31> 
which is self-matching and non-negative definite. The 

rank r of |c| is the number of non-zero eigenvalues 

Xj. of |c I, 0 < Ar < ... < X2 < A . Also, the mean 
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energy over the ensemble is 

E s <FkiFk> TrlC I = Tr C (32) 

Let |b be the r eigenvectors of |c| , i.e • » 
Ie lBi) = !Bl) i = 1,2,...,r (33) 

TM 

PF 

The m normal vectors which best represent an 

k>} ensemble <|F, ),^ with covariance |c| are the 

m largest eigenvectors of |c|. 

Let m = 1. (b1|b1) = 1. The approximation to 

|Fk) is lBi ) ( B^l F^) and contains energy 

[(¾ 1¾) ( l] [1¾) (\\Fk)] whlch may be 

rewritten as ^B^ |Fk^ ( F^ |B^, The mean energy 

in the approximation is 

Ë <SlFkXFklBi> = <rilclBi> = X1 
Let the tentative choice of ¡B^ as the best 

single basis element be perturbed by adding 

Ib^ <pi and reducing the coefficient of |b^) 

from 1 to Vi - 4>| . The mean energy changes 

from 1-4^)+A1<^ . Since 

\ < X the change cannot be for the better. 

Let m = 2. Replace |c | with |c| - 1¾) 

and repeat, etc. This operator "deflation" 

procedure also shows that r elements in the 

basis suffice for exact representation of the 

given ensemble. □ 
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DN If the covariance operator of an arbitrary 

ensemble is represented on some matched pair of 

orthonormal bases by C, then the correlation 

matrix of the ensemble is 

(Dg Ç)-* C(Dg G)"? (34) 

and the spectrum of the ensemble is the set of 

eigenvalues of C. The ensemble is said to be 

white if C is a scalar matrix. 

2-3 NOTATION AND NOMENCLATURE 

In the first two sections of this chapter, we have 

presented the basic concepts, symbols and terms of our 

algebraic approach to signal theory, and have said little 

about comparison with alternate approaches or Justification 

of our approach. Discussion of these comparisons has been 

reserved primarily for this section. Here we will present 

some additional details of notation and nomenclature, 

illustrate the notation and clarify some of the basic 

concepts by a few simple demonstrations. Justify our 

definition of inner product and related concepts, and 

discuss some of the advantages of our approach. 

Notation Requirements 

Reflection on the notation Introduced here and compar¬ 

ison with the classical notation and perhaps others are 

necessary steps prior to listing requirements on a 
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notation system for signal theory. One should also consider 

the importance of such operations as measurement, least- 

squares approximation, projection, change of basis, 

specification, etc., and to the need for distinction 

between these and other closely related ideas. Whether we 

are interested solely in analog or in digital instrument¬ 

ation, or, on the other hand, are concerned with both types 

as well as hybrids, might affect our thinking here. Some 

investigators may be influenced by preconceived notions as 

to whether the world of signals is "really" continuous or 

not. After due consideration to these matters and others, 

we conclude that the following is a reasonable list of 

requirements for a signal theory notation. 

The notation and nomenclature ought to: 

(1) Distinguish the abstract entities from their 

representatives. 

(2) Distinguish signals, operators and patterns. 

(3) Distinguish representatives of signals, operators 

and patterns. 

(4) Facilitate thinking at the systems level in the 

conceptual phase of problem formulation. 

(5) Provide for convenient manipulation in the 

computational phase of problem solution. 

(6) Provide for a variety of representations, some of 

general utility, others for specific applications. 



64 

(7) Provide for convenient description of the 

important processes of measurement and specifi¬ 

cation. 

(8) Be simple and compact, yet rigorous. 

(9) Suggest theorems and facilitate memory of theorems. 

(10) Extend conveniently to tensor product spaces. 

(11) Relate conveniently to system diagrams. 

(12) Preserve the sequence of physical operations. 

In short, what is needed is a notation and approach to 

signal theory which provide an inventor's language suitable 

for dealing with complex signal-processing problems. Such 

problems require that analysis and simulation be used in 

the early stages of development rather than physical 

experimentation, because of the high cost of the latter. 

Thus, the notation must be such that it is easy to 

manipulate rigorously. 

The classical notation of linear algebra and analysis 

fails to meet several of these requirements, and the more 

common notation of differential and integral equations 

fails to meet any of them. The only notation in the 

literature which comes close to being satisfactory is Dirac 

notation (Dirac 1958). Thus, we follow the suggestion of 

D.C. Lai and adopt Dirac notation (Lai I960), with 

numerous modifications due principally to W.H. Huggins, 

D.C. Lai and D.C. Ross. The only discrepancy between our 
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modified Dirac notation and one we would presently consider 

ideal is that it cascades symbols for operator-on-operator 

from right to left while engineers (at least, in the 

Occident) draw systems diagrams with the cause-effect 

stimulus proceeding from left to right. This discrepancy 

is one which stems from the notation of elementary 

mathematics. Other difficulties are traceable to the same 

source (Menger 1955). The discrepancy is maintained here 

for lack of time to reverse the correspondence: pattem- 

bra and signal-ket. The more nearly ideal notation has 

been used in a recent paper (Huggins I963) and will be 

employed by the writer in future papers on signal theory 

and application. 

Additional Details on the Notation 

The Dirac bra-c-ket (gIf) is employed here to 

indicate the scalar result of a process of measurement 

involving the interaction of two vectors of different types, 

i.e., the evaluation of a linear functional (g| at some 

vector |f). As we have noted before, we associate (g| 

with a measuring device and |f) with a device to be 

measured. In this dissertation, we restrict the spaces to 

be inner-product spaces. However, the measurement process 

along with most of our basic concepts apply also to normed 

linear spaces where the norm might be something other than 

inner product. 
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Common type fonts used to distinguish among abstract 

entities and representatives on various bases are shown in 

Table 1. Boldface would replace underlines in printed text. 

Note that the symbols for representatives do not use 

the vertical bar (or bars). We see that the bar is con¬ 

nected with the abstract level. The mixed symbols, such as 

|b, act as bridges between the levels of abstraction and 

representation; thus, they are designed so that one side of 

the symbol suggests abstraction and the other side suggests 

representation Script capitals sans bar, bra or ket 

denote subspaces. 

Table 1 Use of Various Type Fonts 

êaUty 
Scalar 

Abstract 
entity 

Representative 
on finite basis 

Discrete time 
representative 

Continuous time 
representative 

Cont. frequency 
representative 

.font 

Qreek lower case 

Roman capital,with 
vertical bar(s) 

Roman capital, 
underlined 

Roman lower case, 
underlined 

Roman lower case 

Roman capital 

Examples 

? 

Ir> 

«> 

i> 
r> 

H> 

Classical 
Counterpart 

None 

None 

r(tk) or rk 

r(t) 

R(s) or R(O)) 

It is rather curious to see that we have selected from 

mathematical constructs of various levels of abstraction 
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the moat abstract entities for identification with the 

real-world objects with which we are concerned. Therefore, 

one must be careful to avoid any confusion which might 

result from the puzzling interchange of roles of the words 

"abstract” and "concrete" which the correspondence entails. 

A similar situation occurs in the foundation of mathe¬ 

matics where the term "real number" is used to denote an 

entity abstracted several levels from the reality 

experienced by most people. 

Classical Notation Systems 

Some cf the difficulties with the standard notation 

f linear algebra may be seen by reference to pages 64-68, 

73-83, 130-I33 of Halmos’ book, where he discusses several 

confusing details pertaining to indices, adjoints and 

conjugation (H 1958). Three quotations from the places 

cited are of particular interest: 

p 66 "It is a perversity...of nature,.../that/ 

somewhere in the process of passing from 

vectors to coordinates the indices turn 

around." 

p 83 "To express this whole tangle of ideas..." 

p 132 "One way, for example, of avoiding the 

unpleasantness of conjugation..." 

It would seem that when a pure mathematician of the stature 

of Halmos uses such words as "perversity", "tangle" and 
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unpleasantness" that we should be forewarned thau the 

notation contains subtle difficulties which ought to be 

removed If possible. We will see that our approach 

eliminates the "perversity" of Indices completely, 

separates the "tangle" of Ideas somewhat more clearly, and 

reduces the "unpleasantness" of conjugation, as compared 

with the standard notation of modern linear algebra. 

It might be argued that the classical approach to 

signal theory based on integral and differential equations 

in which f(t) is central is quite useful, adequate, 

concrete and "natural" and that time and effort spent in 

developing and studying other notation systems is wasted. 

It is certainly true that f(t) and its associated 

paraphernalia has been and will continue to be useful in 

signal theory. In the sense that f(t) is a represent¬ 

ative, perhaps a mathematician would regard it as concrete, 

but in the sense that it refers to a vector in a space of 

uncountably infinite dimensionality, it is quite abstract. 

We have already noted that the f(t) approach is not 

adequate for our requirements. The feeling that f(t) is 

a "natural" way to describe signals is related to the fact 

that physicists and engineers have, following Newton and 

Maxwell, employed continuous representations of time, 

frequency, position, etc., almost exclusively. Until the 

recent advent of adequate digital techniques, there was 
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no other choice. 

We might profit by considering just what is meant by 

the symbol f(t). Is it the value of some function at 

some particular instant? Or does it refer to the charac¬ 

teristics of the mapping from the domain to the range of 

the function? Or does it mean the entire set of values 

of the function corresponding to some given set of instants? 

The difficulty is that f(t) may denote any of these 

three ideas, and perhaps others as well (Menger 1955). 

But f) has only one meaning, i.e., the third meaning 

given above. 

Scientists and engineers are usually impatient with 

suggested changes in well-established notation, and 

properly so. However, we are suggesting here not merely a 

change in notation, but also a revision in the basic 

mathematical approach, a revision which is needed to 

clarify and simplify our conceptual basis for signal 

theory, a revision which is closely related to and will be 

facilitated by the revolution in the teaching of engine¬ 

ering mathematics which is already started (Stone I96I, 

CUPM 1962). This revolution will inevitably thrust linear 

algebra into a dominant role in our thinking and will 

include the classical approach as an important adjunct. 

Thus, the notation of signal theory and of engineering 

generally is going to be overhauled extensively, and we 
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need to be concerned with this problem now. 

However, all arguments as to the usefulness of any 

new notation and approach are to no avail, unless utility 

can be demonstrated by application to real-world problems. 

In Chapter 4, the results of an application study using 

our modified Dirac notation will be presented, and the 

reader will be able to Judge its utility for himself. For 

the moment, note that expressions of the form H L J are 

represented classically by double integrals of the form 

/h(T,^) dAL(Xc^) d<£j(<£,cr) 

where the limits are -ooand +oo for each of the two 

dummy variables. An equation with several terms of this 

complexity can hardly be regarded as a statement in a 

language suitable for use by systems engineers and 

inventors. 

Duality and Matching 

The first statement that needs to be made about duality 

and matching is that they are not the same. Duality applies 

to bases and to spaces, while matching applies to pairs of 

elements, i.e., vectors, functionals and/or operators. For 

example, |f) has a match but not a dual. 

From a mathematical point of view, the "dual of" some 

given basis or the "match of" some given vector uniquely 

defines some basis or vector. From an engineering point 

of view, these terms do not even approach the definition 
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of unique entitles, a statement which can be extended to 

all of our abstract symbols. In order to make this point 

clear, consider an example In 2-space where we assume that 

we are given two actual siftors (Dj and (D2| as 

specific operating pieces of equipment. Now consider some 

signal generator |f) which produces scalars F) and 

(d2|f) at the outputs of the siftors. Consider the wave¬ 

form of |f), i.e., its representative f) on the 

continuous time basis. Is there any other waveform which 

would yield the same two outputs (D1|F) and (^1F) as 

the given generator produces? The answer is affirmative; 

in fact, there are an infinite number of such waveforms. 

However, there is no way of distinguishing among this set 

of equivalent generators through the use of and 

(d2|, so they are all labelled |f) as far as their use 

in our 2-space is concerned. This set of equivalent 

signal generators can be progressively distinguished only 

by considering them as elements in spaces of progressively 

greater dimension. Similar remarks may also be made about 

patterns and operators. 

We use "adjoint of" differently than do Halmos and 

other authors of texts in linear algebra. The reason for 

this difference stems partly from our use of Dirac notation 

and partly from the fact that engineers may regard the 

same filter either as operating on an input signal to 
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yield a new signal or as operating on a siftor to yield a 

new siftor. Note that the definition of adjoint used by 

maps over Halmos in his §44, i.e., Ax,y| = jx,A'y 

into our notation in the form illustrated in Figure 18. 

In other words, his definition can be paraphrased in our 

terms: A system may be divided arbitrarily into two parts, 

i.e., generator and siftor. This view of the situation is 

reconciled with the standard mathematical approach by 

noting that the same equipment cascade appears in the two 

diagrams (engineer's view) but the vectors and functionals 

are different (mathematician's view). 

(y|a|x) 

Signal |a|x) 
_! 

r 
<y|a|x) 

Figure 18 The Signal-Pattern Boundary 

Mixed Symbols 

The mixed symbols |b and D|, or |B and b| in the 

case of orthonormal bases, are useful symbols indeed. They 

are extremely compact, mnemonic, consistent with the rules 

of matrix algebra, and closely related to important 

mathematical and physical operations such as projection 
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and measurement. Their utility derives from their role as 

bridges between abstract entities and representatives, 

which we place in correspondence with the roles of measure¬ 

ment and specification in the real world. 

Changing from one representation to another involves 

certain confusing details in the standard notation. The 

mixed symbols avoid this confusion. Consider a general 

linear space XD with basis |B, its dual D|, a basis 

IA and its dual Ç |. Then 

d|b = I = CIA 

|b d| = III = IA c| 

We Introduce a signal |f) and an operator |h¡ which 

are represented by F)» H on |B and its dual, and by 

g) and K on |A and its dual. Then 

D|f) = F) 

C|F) = G) 

G) = C|i|f) = C|B d|f) = C|B F) 

Thus, CI B is a matrix which premultiplies representatives 

of signals on |B to yield representatives of signals 

n I A. A matrix such as C|B is a basis-change matrix, 

and the result of a change of basis is a transform. 

The representatives of operators are also manipulated 

easily. For example. 



» Ç¡B H p| A - (çIb)H(cIb)-1 

which is, cf course, the familiar similarity transformation. 

The proof that d|a and CjB are mutually inverse is seen 

by multiplying them in either order. 

J9!A c|b * p111b = d|b * i 

Ç IB D| A = c |I| A “ Ç IA * I 

The adjoint or conjugate transpose of a matrix com¬ 

bined with our basic notation scheme implies the definition 

of the match of an operator as shown in Figure 6. This 

choice agrees with the well-known "matched filter" idea in 

signal theory and with the "adjoint matrix" of modern 

algebra. Note that "adjoint" has nothing directly to do 

with cofactors and inverses as in the older mathematical 

literature. 

We close the discussion of duality and matching with 

some additional theorems presented in terms of represent¬ 

atives. 

TM 

TM 

Z A 

"= K J 
This last theorem Justifies defining the match of a scalar 

as the conjugate of the scalar. 
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TM LL and L L are self-adjoint for all L. 

TM U represents a unitary operator on orthonormal 

bases if and only if U"1 = U. 

Inter-Product and Intra-Product 

We have emphasized the interaction of linear function¬ 

als and vectors in preference to the classical inner 

product, i.e., inter-product rather than intra-product. 

The former was defined in terms of the latter in order to 

use the standard literature as a background. It is also 

possible and perhaps desirable to rearrange the order of 

definitions and theorems so as to develop the inter- 

product directly. 

The system of notation and nomenclature described 

here works out so well that one is moved to inquire why 

the concept of intra-product of two vectors in the same 

space is needed at all. A signal analyst might feel that 

he needed the idea of intra-product to "correlate" two 

signals If) and |ö), i.e., to compute the amount of 

energy in that part of |f) which was "like" |g). But 

it is Just as meaningful to say that one wanty to measure 

one signal with the siftor matched to the other as indicated 

in Figure 19. 
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Figure 19 Correlation of |f) and |g) 

Also, consider a common example from elementary 

physics which may have been the original motivation for the 

concept of inner product, i.e., the work done by a force on 

a body displaced by the force. Here, it seems quite odd 

to view the situation as the interaction of two vectors 

of the same kind! 



CHAPTER THREE 

TENSOR PRODUCT SPACES 

Tensor products of finite-dimensional vector spaces 

are discussed in this chapter. Following the pattern of 

the preceding chapter, the approach taken is that of modem 

algebra. Although the older literature (Levi-Civita 1927) 

may be more familiar to engineers, it is unsatisfactory for 

our use since it tends to regard tensor algebra as merely 

an introductory step toward tensor analysis and skips over 

tensor product spaces completely. In order to make the 

presentation as simple as possible, we follow Lichnerowicz 

by defining tensor products in terms of their important 

properties (Lichnerowicz 19^7, 1962). These properties 

of tensor products appear as theorems rather than as axioms 

in the more general approach taken in the most recent 

literature in algebra, some of which may be of interest to 

mathematically inclined engineers (Chevalley 1956, 

Jacobson 1953* B 1958, H 1958, MS&M 1963). 

The highly abstract approach to tensor products used 

by the modern algebraist allows for many possible tensor 

products of two given spaces and then shows that they are 

naturally isomorphic and that the term "the tensor product” 

symbolized by "<g>" is justified. Rather than introduce 

confusion through unnecessary generality, we will always 

deal with a single tensor product and with a single inmr 
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product induced naturally from the two vector spaces on 

which the tensor product space is erected. In applications, 

we tie our definitions to some one basis in each space — 

a restriction which need not be troublesome. Despite all 

efforts to make our theory independent of choice of bases, 

there is always one basis which necessarily underlies any 

particular problem in signal theory — a finite time basis 

referred to some epoch. 

In the Interest of brevity, we will depart from the 

practice of Introducing the abstract entities concurrently 

with their counterparts in the real world. The abstract 

entitles associated with tensor product spaces will be 

discussed in the first section, representations in the 

second, and a practical application in the third section 

of the chapter. Before discussing tensor products in 

abstract terms, it seems desirable to give a preview of 

the discussion on representatives so that any reader 

encountering tensor products for the first time can have 

some example in mind as the abstract entities are introduced. 

For the moment, it is sufficient to note two facts. First, 

the tensor product operation on two abstract entities is 

represented by the Kronecker product of the corresponding 

matrices. Second, the Kronecker product of two matrices, 

for example. 
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1 2 (1,1)(1,2)(2,1)(2,2) 

(1,1) 

(1,2) 

(1,3) 

r- 

8 6 .4 -3 

-4 10 2 -5 

0 -6 0 3 

is obtained by replacing each element of the first matrix 

with that element multiplied by the second matrix. 

3-1 TENSOR PRODUCTS OF VECTORS AND OPERATORS 

A tensor product (including tensor as a special case) 

is an abstract entity and is represented by a matrix. We 

regard tensor products as invariant under change of basis. 

Just as in the case of vectors. The terms "covariant" and 

"contravariant" refer to variation directly or inversely 

with the choice of basis and ought to be applied to 

representatives and not to the abstract entities. This 

view agrees with our choice of abstract algebraic structures 

as appropriate mathematical models of physical generators, 

siftors and transducers which are unaffected by how we 

choose to describe their performance. 

Tensor Product of Vectors 

The formal definition of tensor product space is 

based on two vector spaces £> and T over the same 

field ÇI . The real-world entitles corresponding to the 
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elements of X3 and P need not have the same physical 

units and n = Dim ¡O need not be equal to p = Dim P 

On the other hand, P may be quite closely related to iO , 

e.g., It may be Identical to P) or to C . 

Let |x), |x^), |x2) denote arbitrary vectors In 

P) and let |y), |y2) denote arbitrary vectors In 

P. Let , (3 be any scalars ln P? . Let {1¾) : 1 = 1, 

...,n} be any basis in XD and let ||Cj) : j = 1,..., 

be any basis in P . Let P) & P be a vector space. 

Let |x) ® |y) denote any element of O ® P . we may 

then write the formal definition of tensor product as 

follows. 

DN Let every ordered pair of vectors |x) in P) 

and |y) in P map into some element |x) ® |y) in 

P)®r and let the law of correspondence satisfy the 

following five conditions. 

|X> <g> 

|X> (g) 

lYl) + lY2> .ri/ ' 1-2/j - rv'o'i 

jY>@] = [|x)®|Y)]ß 

= I^OlïO + |X)®|Y.) 

JXl) + 1½)] ® |ï> = IX1>® |Y> + |x2>®|y> 
|x>0] <8 |y> = [|x)®|y)]0 

{lBi> ® |Cj>} The np elements 

xd ® r. 

form a basis In 

(35) 

(36) 

(37) 

(38) 

(39) 

Then IO ® F Is called the tensor product of the spaces 

O and F # and |x)®|y) Is called the tensor product 

of the vectors |x) and |y> (Llcherowlcz 1947). 
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These properties may be paraphrased. Equation (35) 

states that tensor product is additive in the right factor, 

(36) states that tensor product is homogeneous in the right 

factor, and the two properties are equivalent to the single 

statement that tensor product is linear in the right factor. 

Similarly, for the left Tactor and Equations (37) and (38). 

Note that we need not worry about conjugate linearity in 

connection with tensor product, even if fi is complex. 

The linearity of each of the two factors may be combined 

into the single property of bilinearity. We may also 

introduce the symbol |b 0 |C to stand for the set of 

np possible tensor products of the elements of |b and 

IC. Thus, we may abbreviate the definition as follows. 

DN Tensor product maps every ordered pair |x) in 

O and |y) in T into an element |x) <8> |y) 

in <8> P such that : 

(1) the mapping is bilinear, and 

(2) |B 0 |c is a basis in X30) P . 

An immediate consequence of the definition is that 

(^0) 
|y) are given by 

|x) and |y) is given by 

Dim X3 0 P = np 

Suppose that |x) and 

Then, the tensor product of 
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¡X>®|Y> , L g J ® [X iCj) íj 
J 

= Xj 0Bi> ® lCJ>] ïj (41) 

Thus, the (i,j)th component of |x) (g) |y) on the given 

basis (in X) <8> T ) is [|B1> (g) |Cj)] íj and the 

(i,j)th coordinate is (¾ 

Consider the special case P = X) and n = 2 = p. 

Then 

|x)(g)|Y> = (Jb^ ® |Bl)] (31i1 4- [|Bi)®|b2)] ßir2 

+ Pb2) ® |Bl)] + [|b2)®|b2)] (32¿r2 
(42) 

If we form the tensor product with the factors In reverse 

order, we have 

|Y> 0 |X) = 

-t 

jBi)®^)] ÿ 1(31 
[|B2)0|bi)] 

•f JBl)®lB2>] 
|B2)®|B2)j ¿í2(32 

(43) 

Inspection of Equations (^2) and (43) shows that, in 

general. 

lx)® I Y > / |Y> <8> IX) (44) 

Note that |x) <g |y) and |y) (?) |x) cannot even be 

compared if P ^ XD since ¡x)<g> |y) belongs to 

!0 ® P and IY ) ® | x) belongs to P X). 

In the application problem considered in this 

dissertation, the number of vector spaces over Q on 

which the tensor product space is formed will not exceed 
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two. Thus, we need not be concerned here with associativity 

of the tensor product. It is interesting to note, however, 

that there is a canonical isomorphism (B 1958) which links 

any two tensor product spaces based on the same finite set 

of vector spaces (MS&M I963). In this sense, the tensor 

product of spaces is commutative and associative. 

Duality and Tensor Products 

At several points in the abstract development of the 

tensor product concepts, we must say "is canonically 

isomorphic to" rather than "is" or "equals" if we wish to 

be strictly rigorous. For example, Bourbaki shows that 

the tensor product of CÍ and H (i.e., the duals of ÎO 

and P ) is canonically isomorphic to the dual of X)®r 

and that 

where ( w|eC:, (Z| e H, |x)eX3and |Y) e f (B 1958 §105). 

In the interest of convenience, we will follow the example 

of the mathematicians and write "is" and "equals" even 

when these expressions are not strictly correct (MS&M I963 

p 525). Thus, 

a (SH = the dual of ¡O <8 P (46) 

and conversely. 

Referring to Equations (45) and (46) we see that 

(w| ®(z| is to be regarded in two ways: (l) the tensor 

product of two linear functionals, one in O! and one in 
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1 , and (2) a linear functional defined on Note 

that no apology is needed for the "= " in Equation (45) 

since the elements on both sides belong in the field Q . 

Tensor Product of Operators 

Consider any operator |K| on XD and |L 

i .r ., maps x) into |K[X) and |L maps 

on P 

|y) 
into |l|y). The operator on XD P which maps the 

tensor product of ¡x) and |y) into the tensor product 

of |k|x) and |l|y) is denoted |k|®|l|, the tensor 

product of |K and |L|. That is. 

|k|x) ® |l|y) = x) ® I y) (^7) 

(U8) 

are 

K| (g) |L 

Bourbaki shows the following important result 

1*21*11 ® = [1*2! ®|L2|] [1*11 ®|Lll 

where the [K^J are operators on XD and the |L.| 

operators on P and i = 1,2 (B 1958 §1.4). This result 

extends to operators mapping from one space to another. 

Equations (47) and (48) may be described in block 

diagram form as shown in Figure 20. For the moment, no 

physical interpretation is intended for 0 ; this point 

will be considered in the closing section of this chapter. 

The block diagram form of presentation of the basic 

properties of tensor product is very useful for systems 

engineers, since such diagrams form the common language 

of the profession. The fact that the sequence of operators 

in the diagram is opposite to that in the equations has 
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been noted before. This particular confusion is standard 

and can easily be purged by making signals correspond to 

rows and vectors in Cl and making patterns correspond to 

columns and vectors in XD . 

. J-Xw M 

Ihl 

i 

T 

ï 
-t> 

Figure 20 Tensor Product of Operators 

The significant fact about the use of tensor product 

spaces in engineering systems which is made clear by 

Figure 20 is that operators can be moved through the ® 

junction by simple rules reminiscent of those used in 

familiar linear system diagrams. Thus, the engineer is 

able to extend his intuitive understanding of linear 

systems in a simple yet rigorous manner. Consideration of 

diagramc similar to those in Figure 20 leads to the 

recognition of a class of multi-linear systems intermediate 

between linear systems and the most general non-linear 

systems. 
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Figure 21 Classification of Systems 

Tensor Product of Inner-Product Spaces 

If CX and are inner-product spaces and so are 

1 and T , then so are 0 H and XD 0 P . This 

fact follows from the bilinearity (recall that "inner 

product" is interpreted as "inter-product" here), Hermitian 

symmetry and non-negativeness of inner product. Bilinearity 

follows directly from the definition of inter-product 

between CX 0 H and XD 0 P . The other two properties 

are established by the following two theorems. 

TM If <w|x> = <x|w>* and (z|y) = (yJz)*, then - 

[<w| ® <z|] [|x> ® |y>] = |¡x>®Íy)J <[p|®<z|]}* 
PP [<W| ®<Z|] [|X> ® IY>] = <W X) <Z|Y) = <X|W>* (Y|Z)'# 

= (X |W> <?|Z>* = [<X| ® <Ÿ|] [|5> ® |z>] * 
The last step follows from the theorems 

1x) ® |y) = (x I ® <y| (49) 
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\w| g) (z| = |w) 0 |z) 
which may be demonstrated simply via representations 

which are discussed later. □ 

(50) 

If 0 <(x|x) and 

then 0 < 

TM 

|X) 0 IY>J [|X> 0 |y) . 

PF [|X> 0 ¡Y> jx) ® i y)J = [ (x I 0 (?| j [|x)®|y) 

= <x|x) <y|y) a 0 

with equality if and only if |x ) 0 |y) = |o), 

i.e., if and only if |x) = |o) or |y) = |o). □ 

Thus, the Inner product defined between and X3 coupled 

with that defined between 1 and Í Induces an Inner 

product between and . 

Tensors 

The elements of a tensor product space erected on a 

finite number of vector spaces each consisting of some 

space X3 or Its dual are called tensors. The general 

example of such a tensor space may be written 

cb3 = 
^ r G © :o 

j 

1 — 1,...,r 

J = 1,...,3 

where r -f s = v. If Is regarded as the starting point 

as far as choice of basis Is concerned, then the elements 

of 45 3 are called tensors of valence v, with represent- 
r 

atlves which are r times covariant and b times 
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çontravariant. Despite the emphasis on invariance in the 

engineering literature on tensors (Kron 1939), it is some¬ 

what surprising that the word tensor ' has usually been 

applied to non-invariants and the invariant quantities 

have been given such names as "geometric object" or no 

name at alll We regard tensors as invariant under change 

of basis, although the representatives of the tensors do 

depend on the basis. 

Thus, and XD are spaces of tensors with unit 

valence. The columns representing elements of )0 are 

contravariant and the rows representing elements of C! are 

covariant. The scalars in are called tensors of 

valence zero. The algebraic structure consisting of all 

tensor spaces defined on XD is called the tensor algebra 

of O . 

Tensor spaces of particular interest are XD ® X) , 
C-,®CX and XD®CX . The first two spaces will be 

employed in the application considered in this dissertation; 

the third is the space of operators on XD (or on CX ). 

The really important properties, however, are not those 

pertaining to the special case of tensor spaces but are 

those possessed by tensor products in general. 

Summary on Tensor Products 

The section on tensor products is closed by listing 

some of the most important theorems relating to abstract 
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entities. Proofs are omitted in most cases. The more 

basic theorems are proved in the literature (B 1958, MS&M 

1963). The remainder may be demonstrated easily through 

an argument employing representatives on some basis. 

TM Scalars CX,(3 in a field Q. and the following 

entities are introduced as in the previous text. 

Signal Vector Spaces 

Dimensionality 

Indices 

Signal Bases 

Signal Vectors 

Pattern Spaces 

Pattern Bases 

Pattern Vectors 

Operators 

Then the tensor products of these entities satisfy: 

X) 

n 

|B 
|x> 

a 

J2i 
<W| 

k| 

r 
p 

|c 

IY> 

1 

A 

<ZI 

L| 

Dim XD ® P = np = Dim CX ® H 

|x) <g> |y> € XD(g)r 

(w i 0 (z i e c ^ n 
[(w| ® (z|] [|x> ® |y>] = (w|x) ® (z|y) 

= <w|x) (z|y) 

0 is bilinear 

|k|x) ® |l|y) = [|k I ® I l I 

(w ¡KI ® (z|l| = [<w I ® <z I 

B 0 |C is a basis in XD ® T 

lx) ® |y> 
Ik I ® |l 

(51) 

(52a) 

(52b) 

(5ia) 

(53b) 

(51*) 

(55a) 

(55b) 

(56a) 
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D¡ (X) a| is a basis In C! 0$ H 

fD| ® A 

^i jj ]i; 

B & |C = D I B (8) A |C 

(^6b) 

t5iF 5,J (57a) 
1 if (l,j) = (fJ.IS), 0 otherwise 

lK2lK,l » !lpIli |K 2 

(57b) 

& !lo|| [I k1| <g) I 
(58) 

C?) |I I = |I 

0 I 

o) 

(59) 

( 60a ) 

( 60b) 

( 60c ) 

Io I ¿) |l| |K I & I 0 I 

lo) |y) - |x) 'g) |o) 

(o I g> (z I = (w I g) (o I = (o 

Note that the meanings of the unit and null entitles vary 

from one appearance to another In an obvious way. The 

f 11 owing theorem Includes Invertible operators as a 

special case and follows directly from Lanczos' theorem and 

the definition of pseudoinverse. 

: lK*l |k O 1 L\f 

[|x) O |Y)]; 

® <ZIJ 
g) 

¢5 |L I 

71 ® 71 

p> « |z) 

|K| «1 III 

(61) 

(62a) 

(62b) 

(62c) 

Spectrum 
Spectrum 

IkI = {X. 
ILI 

¡L|í) " ^ jKl®|L|j (b>®h) 

Spectrum |K | g)| l| ={A1ctlj 
(63) 

|x)3|y)X<í> 
(6Ua ) 

Similarly for left eigenvectors. (64b) 

If |b and |c are orthonormal, so is |b g)| C. (65 ) 
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If |k| and |l| are (unitary, self-matching, 
non-negative, projection, or perpendicular 
projection) operators, then so la |K|(8)|l|. 

(66a-e) 

3-2 REPRESENTATION OF TENSOR PRODUCTS 

Since a tensor product space is a vector space, the 

approach used in Chapter 2 may serve as a guide. For 

example, a discussion of representation requires the 

introduction of a basis. In the case of a tensor product 

space ® T , it is convenient to choose a basis formed 

by taking the tensor product of bases in the spaces O and 

r . 
Tensor Product Bases 

We have already seen that, if |b is a basis in O 

and |C is a basis in P (both usually orthonormal), 

then |B ® |C = {|B1) <g) \C^) : i = 1,..., n; J = 1, 

..., p| is a basis in . it is convenient to use 

the ordered pairs (i,j) to index |B (¾ |C and it is 

customary to write them in lexicographical sequence, i.e., 

(l»l)* (l*2),..., (l,p); (2,1), (2,2),..., (2,p);... ; (n,l), 

(n,2),..., (n,p). Thus, 

B (g) |C = 
Bl) g 1C1> llBl) g |C2)[ - l|Bn) ® lCp) 

(6?) 
and if DI is the dual of |B and A 

ÇI then the dual of |B <g) |C is 

AI is the dual of 



92 

D| ® A J 

(68) 

If IB is orthonormal, then D| = B|. Similarly, if 

|C is orthonormal, then A| = C|. If both conditions 

hold, then D | ® A | = B | (g) C| = and |b 0 |c 

Is orthonormal along with its dual. 

As we have seen in Chapter 2, the symbol formed by 

multiplication of a signal basis by a pattern basis is a 

unit operator on the two spaces under consideration. Thus, 

B 0 D| 0 AI I 

where 11 | indicates the unit operator on 

left side of this equation may be written 

xd® r The 

|B D| 0 |C A| = |I| 0 |I| 

where the first |l| refers to the unit operator on )Q 

and the second |l | refers to the unit operator on T . 

In view of the multiple meanings we assume (often tacitly) 

for "+ ", " =" and Juxtaposition, there does not seem 

to be any reason to balk at writing 

|I| 8> |I| = |I I or |0| ® |0| = |0| 

where a single symbol has three meanings in one expression. 

Kronecker Product of Matrices 

The notation system described in Chapter 2 for linear 

vector spaces extends naturally to tensor product spaces. 
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For example, suppose that the signal vectors |p) In ¡O 

and |g) in P are giv?n by 

|p> = in) = Ç iBi) ¢1 

l°> = |£2> = Ç lcj> 

and, thus, 

|f) <g) |g) )\) ® lcP] (69) 

Is the signal vector In )0 & P called the tensor 

product of |f) and |o). Note that Equation (69) may 

be written 

|f> ® |o) = [|b ® |c][f> 1¾ 0)] 

if it la understood that f) ® o) is the column of 

scalars in lexicographic order. 

The column 0 â) can be obtained from the 

columns F) and G) by using the rule for Kronecker 

multiplication of matrices. Thus, 

F) <8> G) = 

1 

2 

n 

(p g 
» ft • 

(1.1) 

(1.2) 

(n.p) 

^ 1 

^ 1 y2 

(70) 

In general, the Kronecker 

A = [^ij] and an m2 x n2 

(m^g) x (n^) matrix 

A (g) B = [o<1J g] 

product of an m1 x n^ matrix 

matrix B = [Ppp] bhe 

(71) 
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with rows indexed by the ordered pairs (i, |J ) and 

columns indexed by the ordered pairs (j, ) in lexico¬ 

graphic sequence. Note that ® means "tensor product" 

when applied to abstract entities and "Kronecker product" 

when applied to matrices. 

The process of signal measurement in which the dual 

basis (set of siftors) operates on a signal vector to give 

the column representing the signal is indicated by writing 

f) ® a> = [d| ® A|] [|f) <8 |o) (72) 

A series of equations similar to (69)-(72) can also be 

written for patterns and rows. 

At this point, the mnemonic advantages of our modified 

Dirac notation over the usual index and summation notation 

ought to be apparent. The form of many theorems involving 

" (g) " is seen to be 

[□ a] ® [ O v] = [□ ® O] [a ® v] (73) 

where □ , V may be any pair of entities of the same 

type, e.g., patterns, operators, pattern bases or matrices 

associated with two vector spaces (not necessarily distinct); 

similarly for A , V with "pattern" replaced by "signal". 

Consider the tensor product of operators |k| on X3 

and |L I on T and their matrix representatives K and 

L on the given bases. 
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K = D|K|B 

L = A|L|Ç 

The operator |k 

by the matrix 

Dl ® A 

K I = |B K D| 

L| = |Ç L a| 

|l ! on ¡O ® P is then representen 

Kl (g) I L I IB g) |C = ÇiK|B g) A I L: 0 

= K g) L (jà) 

obtained by Kronecker multiplication of K and L. 

Adjoints of Kronecker Products 

Consider |f) in and its match (f| in G 

represented on orthonormal bases |B and ïl by 

F) = and (!• Similarly for |g) F, (g | i , 

|Ç, Ç|, G) = and (G. Then |f) g) |g) is 

represented by F) g G) = . Note that taking the 

adjoint of f) g G) yields the row 

Y) g G) = i¡ òl • • • 4>'nt* 
n P 

and that the same result is obtained by Kronecker multi¬ 

plication of (F and (ft. Thus, 

= <F ® <0 (75) 

The left side of Equation (75) represents ^Fy^g^jo^ 

which is an element of the dual of XD g F while the 

right side represents (F | g (g | which is an element of 

F-1 ^ I . The equality of the two representatives is an 

illustration of the canonical isomorphism between G g I 

and the dual of ÎO g F . 
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We have demonstrated Equation (62a) and (62b). It 

is easy to see that 

(76) 

and, again, by corresponding representatives with entities 

represented, we can deduce (62c). 

Summary on Kronecker Products 

The discussion on Kronecker products is completed by 

listing some of the most important theorems without proofs. 

Other aspects of matrix algebra have also been summarized 

in a convenient list of theorems (Marcus i960). 

TM The following matrices are introduced, 

n X n matrices K 

p X p matrices L 

n X 1 columns X) 

p X 1 columns Y) 

1 X n rows (W 1 X n rows (W 

1 X p rows ¢22 

Then the Kronecker products of these matrices have the 

properties : 

[<W ® <z] [x> ® Y>] = <w X) ® (Z I) (77a) 

(77b) 

(78) 

(79a) 

(79b) 

= <W X)<z 1) 
® is bilinear 
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K2 il ^ h Ll 

I (g) I = I 

(¾ L! 

0 '50 L = K (g) 0=0 

0) ^ X> = 2^) ® o) = 2) 

(o g) (z = (w 50 < o = (o 

(80) 

(81) 

(82a) 

(82b) 

(82c) 

Note that the meanings of the unit and null matrix symbols 

vary from one appearance to another In an obvious way. The 

following theorem Includes Invertible matrices as a 

special case and follows directly from Lanczos' theorem 

and the definition of pseudoinverse. 

® L [K ® L 

'X) ® ^ = (X ® (Ÿ 

'<W ® (Z - W) ® Z) 

h = K ® L 

Í 
(83) 

(84a) 

(84b) 

(84c) 

> t=C> Spectrum K ® L 
I» 

(85) 

Spectrum K 
Spectrum I = 

I?> - ^*1 ® i][i> ® ï)] = X> ® Í)H 
- ^ (86a) 

Similarly for eigenrows. (86b) 

If K §yQd L are (square, scalar, diagonal, 

column, row, triangular, unitary, self-adjoint, 

non-negative, idempotent, or normal) matrices, 

then so is K ® L. (87a-k) 

The theorems above on Kronecker products are, for the 

most part. Images of those on tensor products. The 



98 

correspondence is made via mutually dual tensor product 

bases in O ® P and C> . Other important theorems 

following from (85) are given as follows. 

TM Tr 

Det 

Rank 

K ® L 
jmmm 

K ® L 

(jÇ ® L 

Tr k] [Tr l] 

Det k] n [Det lJ p 

[fiank kJ [ Rank L 

(88) 

(89) 

(90) 

3-3 TIME-DOMAIN .•IULTIPLICATION 

We proceed now to apply the abstract concepts of 

tensor product spaces and the corresponding Kronecker 

product representatives to a signal-processing problem 

which arises frequently in communication, computation, 

measurement and control systems engineering. The problem 

is that of Instantaneous multiplication, i.e., multipli¬ 

cation in the time domain. A general discussion of the 

problem will be presented in this section. A specific 

application to satellite navigation will be considered in 

some detail in Chapter 4. 

Examples of real-world devices which may be modeled 

by the product f(t)g(t) of two functions of time include: 

(1) an amplitude modulator in a radio communication system, 

(2) a potentiometer used as a multiplier in an analog 

computer. In the first example, f(t) might be the value 

of a modulating signal at the instant t and g(t) the 

value of a sinusoidal carrier at the same instant. In the 
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second example, f(t) might represent an electrical Input 

and g(t) a mechanical motion of the potentiometer contact. 

In both examples, the value of the electrical output of 

the device at the Instant t Is expressed by the product 

f*(t)g(t). 

Algebras 

Instead of the usual analytic formulation of time- 

domain multiplication, we are interested here in a formu¬ 

lation in terms of abstract algebraic structures. We have 

seen that finite-dimensional vector spaces are appropriate 

models of signals and related physical entities. Can 

time-domain multiplication be included in such a model? 

More specifically, if |f ) € ¿0 and |g) e ^ , is there 

an element of corresponding to the output of a time- 

domain multiplier with |f) and |o) as inputs? Since 

the defirition of a vector space does net provide for a 

multiplication of vectors which yields a vector in the 

same space, the answer to both questions is negative. 

Then is there an extension of the definition of a vector 

space which will serve as a model of time-domain 

multiplication? 

An n-dimensional vector space furnished with a 

closed multiplication 13 of vectors is called an algebra 

(H 1958) and the product of any two basis elements Ib^), 

|Bj) under this multiplication must satisfy 
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Ibí) Ej Isp - X 1¾) ¿T1Jk (91) 

for some set of n3 scalars T¿ (Chevalley 1956). 

The are called the "constants of structure" or the 

"multiplication table" of the algebra. 

It Is Immediately clear that an algebra will not meet 

our requirements, since the multiplication furnished by 

the algebra leads to a contradiction In physical units. 

For example. If the unit of each Is the volt, then 

we would want to assign the unit (volt)2 to each 

IBj) Ë3 !Bj) . However, Equation (91) Indicates that the 

unit of |b1) ^ |Bj) Is the same as that of each basis 

element, since the ^ijk have no physical unit. The 

elements of an algebra must be free of physical units if 

Equation (91) Is to make complete sense. Thus, we must 

look In other directions for an appropriate extension 

which will include time-domain multiplication and the 

vector structure of signal theory discussed in Chapter 2. 

Change of Basis 

One of the Important ideas in the application of the 

abstract algebra of vectors and tensor products to physical 

problems is that of invariance, i.e., invariance under 

change of basis. It is informative to consider the effect 

of basis change on t-domain multiplication. 

We begin by considering the system of Figure 22 
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Involving the instantaneous multiplication of two signals 

IC) and ¡D) in the inner-product space XD defined 

by an N-dlmensional finite time basis |_t. Several 

interpretations of ¡t and T| are possible. Each 

element |tk) of |_t may be a signal generator consisting 

of a battery and a switch such that the output is i/l/T 

for (k-l)T^t<kT; each element (t^l of î| may be 

an Integrator of weight ^l/T over the same interval of 

time. In problems where an appropriate analytic model of 

the system Is available, It^) may be represented on |t 

as a Dirac delta at the mid-point of the kth sampling 

interval, and similarly for (t^.| on "t| . 

Figure 22 Time-Domain Multiplication 
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The operation of the instantaneous multiplier is 

defined by 

= *1 ^ i = 1,2.N (92) 

where N may be quite large, e.g., several hundred or 

more, in typical problems. We will suppose that |c) and 

|d) are known to lie in subspaces of relatively small 

dimensionality, e.g., ten or less. Thus, 

|c) e Æ c O m = Dim CL < Dim ¡O = N 

|d) e £2 c XD n = Dim £? < Dim )0 = N 

Let |a and |B be orthonormal bases in Ci and & 
defined in terms of the basis-change matrices 

£|A = [«J,] = A j = 1,2,...,m 

Í|B = [@lk] =B k = 1,2,.. ,,n 

Then, if F) and Q) represent the input signals on |A 

and |B, we have 

£> = t|C> = t|A F) 

d) = i|D) = I|B G) 

which may be rewritten ir the conventional notation as 

follows : 

= J (93) 

= J Plk fk W 

Substituting (93) and (94) into (92) yields 



V 
J lj J j 

Ç (3 iK f K 

= ,,4,. (C^i, (iTk) ' iJ v lk/ ' r k 

which can al3vo be written as the product of N x m n and 

m n X 1 matrices where the second factor is f) ® g). 

This cbservation raises the question as to whether the 

first fact r of the matrix product might also be put in 

Krcnecker product form. 

We note that 

(95) 

A $ B Vk_ fJ , U = 1,2, ...,N (96) 

which can be rewritten in the form 

T N A ® B 

N(N-l) 
(97) 

by rearranging rows. We observe that the upper submatrix 

is cf the form desired in the matrix form of Equation (95). 

Let be the subspace of spanned by the 

n elements cf |_t ® |t^ of the form (t^) 1¾ |t^ Let 

|P be the basis in formed by these elements. Then 

|P P| is a perpendicular projector on P . Also, 

t (g) 11 
T A 
N = P (98) 

*c-n n(n-i)-h 

P ¡A ® -] = 0 ik] (99) 
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We will call 'P the principal aubapace of Note 

that P Is not invariant under change of basis. If any 

basis in XD other than is employed to define a 

principal subspace of XD^XD, qualifying nomenclature 

must be included. 

Equation (95) can now be rewritten as follows. 

0 A ® B [f> ® 0) 
We conclude that the column e^ represents a vector 

where 

(100) 

Ie>, 

Ie) € P <= doí) 
and not some vector in ¡O . Thus, the physical operation 

of time-domain multiplication can be modeled in vector 

algebra terms via the tensor product extension. We note 

that the tensor product interpretation satisfies the check 

on physical units, provided that we assign as the unit of 

XD®XD the square of the unit of XD . More generally, 

the physical unit of a tensor product space is the "product" 

of the physical units of its factor spaces. 

The correspondence between time-domain multiplication 

apparatus and its tensor product model is shown in Figure 

23, The following manipulations serve to illustrate 

further this important correspondence, 

e) = P [A ® b] [p) ® 0)] 

= Zl [ll ® |tj [t|A 0 T|b] [f) ® 0)' 

= il [li 11 ® |t 11] [|a f) ® |b o) 
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p|iiyc> o |d)J 

= il [|c> ® |d)J 
Premultiplication by 

\1 e> = |Z I 
|E) = |P PI 

P yields 

c > ^ lD>] 
> ^ |I>>] (102) 

It may seem rather curious that we have Introduced a 

model involving N2 dimensions to handle a problem which 

seems to require only N. However, this abundance need 

cause no concern, since there is a problem only when the 

situation is reversed and the model is deficient. A 

somewhat similar case is the familiar use of complex 

exponential functions of time to represent modulated 

sinusoidal carriers when the real part alone suffices. In 

both cases, the model includes "unnecessary" features 

which provide mathematical convenience and elegance. The 

tensor product model of time-domain multiplication is not 

only convenient, but is also a practical and useful tool 
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for signal-processing System engineering. 

The application problem discussed in Chapter 4 

illustrates the finite-dimensional tensor product concepts 

which have been introduced. The existence of this detailed 

example, coupled with the simplicity associated with finite 

dimensionality, makes an elementary example unnecessary at 

this point. 

However, the habit of viewing the world of signals 

through "continuum-colored glasses" is so prevalent that 

the finite-dimensional tensor product model of time-domain 

multiplication may seem strange. It may be desirable to 

connect our approach with the more familiar continuous 

time representation. The following example has been 

included to indicate such a connection. " reader convinced 

that Nature is inherently continuous may applaud this 

effort as a step toward reality, but that is not the view 

advocated here. Rather, the various models of any partic¬ 

ular system stand on an equal footing until measurements 

on that system indicate that one of the models is preferred 

for the problem at hand. 

Example 
"rnrnmmiiimmmmÊÊtmmmmmmmm 

Let Dim ¡0 = 2 and r = ¡O . Let ^), |b ) 

be the elements of an orthogonal basis |B in ÍO which 

are represented on the continuous time basis |t by the 
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graphs shown In Figure 24(a). Let the signals |c), 

|D> e XD be represented on |t by the graphs In Figure 

24(c). Then the 4 time-domain products of all possible 

pairs of tIb^) and t|B2) are represented by the 3 

graphs In Figure 24(b), and the time-domain product of 

t|c> and T|d) Is represended by the graph In Figure 

24(d). 

The same problem may be treated efficiently In tensor 

product notation by representing |c) and |d) on |b 

where oí = 3/3/2 = 1/tf. Then, |c) ® |d) Is represented 

on |B 0 |B by 

Ç) <g> D> 

(1,1) 

(1,2) 

(2,1) 

(2,2) 

Note that the graph in Figure 24(d) is equal to that given 

by summing the graphs in Figure 24(b) with weights: 

-2, 2o(-^ , 1. This observation completes the illustration 

of t-multiplication; however, additional insight regarding 

tensor product bases may be gained by further study of the 

example. 
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1/4 - 

Figure 24 Classical View of Time-Domain Multiplication 
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Consider the tensor product of and |B2) 

represented on |t <8) |t by tlß^) (¾ ^Ib^). The latter 

Is the set of all possible products of pairs of coordinates, 

the first selected from the first factor and the second 

fr m the second factor. Let u, v represent the instants 

of time corresponding to the pair of coordinates selected. 

(Note that time is regarded as an index here, and not a 

coordinate.) It is convenient to graph the (u,v)th 

coordinate of TIb^) (¾ t|B2) as a function of u and v 

in the usual way. The resulting graph is a plane parallel 

to the u-axis. Similarly, [t | "tl Ib^) ® ¡B^) corre¬ 

sponds to a plarp parallel to the v-axia, (^1 t | |§_) 

to a horizontal plane of altitude 1/4, and ["t| ® t |] |§2) 

to a saddle-shaped surface. An interesting exercise is to 

check the orthogonality of |b (¾ |B by Integration over 

u and v of each of the 16 possible products of pairs of 

representatives on |t (8> |t of the 4 elements of the 

tensor product basis. 

Projection onto the principal subspace corresponds 

to selecting only th se coordinates for which u = v. Only 

one index, t, is needed from here on to index the principal 

sub-basis |p of It 0 It. The sets of coordinates 

resulting from the projection operation on the surfaces 

Just described are the graphs shown in Figure 24(b) which 

are the Intersections of the surfaces with the plane u=v. 
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The extension to the case of continuous representations 

for the tensor product model of time-domain multiplication 

has been illustrated. No use will be made here of the 

results of this brief departure from our objective of 

exploring finite-dimensional spaces. 



CHAPTER POUR 

SATELLITE NAVIGATION SIGNAL PROCESSING 

The Doppler shift of a sinusoidal carrier propagated 

between terminals in relative motion is useful in several 

applications. Doppler tracking of artificial satellites 

had an Impromptu beginning at several laboratories within 

hours after the surprising appearance of 1957 0< (Prenatt, 

Bentley and deBey 1958)» A system of satellites as 

artificial radio "stars" has been proposed for use In 

celestial navigation (Kershner i960) and in geodesy 

(Newton i960). In this chapter, attention is confined to 

the navigation application, although the technique to be 

described appears to be sufficiently accurate to be applied 

to satellite tracking and perhaps even to geodesy. 

At the beginning of the present study the primary goal 

was to simplify the signal-processing subsystem with the 

tacit assumption that reduced accuracy would necessarily 

accompany any major simplification. The results of the 

project shew that a simple special-purpose processor, 

quite slow by modern standards, suffices for the navigation 

terminal with little or no redaction in accuracy as com¬ 

pared with the classical least-squares approach. 

The satellite navigation system as described In che 

unclassified literature is presented in the first section 

of the chapter. The strategy of our design approach and 
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the problema which it entails are discussed in the second 

section; the proposed processor configuration and its 

optimization are presented in the third. The fourth and 

last section is devoted to some of the numerical verifi¬ 

cation and error appraisal experiments which have been 

completed to date. Special terms and symbols used in the 

study of the satellite navigation problem are tabulated 

for convenient reference in Appendix 4. 

^-1 SATELLITE NAVIGATION SYSTEM 

The purpose of this section is to describe briefly the 

main features of a satellite navigation system. In the 

interest of brevity and simplicity, several restrictions 

are imposed. The purpose of the system will be restricted 

to the measurement of the latitude A and longitude <p 
of a fixed point on the surface of a spherical planet of 

radius pp rotating with angular velocity ¿¿;p. We will 

consider a single satellite In circular polar orbit of 

radius pg with angular velocity transmitting a 

sinusoidal carrier of frequency fc< we will confine the 

study to the signal-processing portion of the navigation 

terminals, and all five of the parameters Just introduced 

are assumed to be fixed and known. The system can be 

generalized by removing one or more of the restrictive 

terms underlined above, but we will generally Ignore 
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that fact in the present chapter. 

Major Subsystems 

The division of the navigation satellite system into 

major subsystems is indicated in Figure 25. The tracking 

computer maintains an up-to-date ephemeris (and rate of 

change of orbit) for the satellite by combining data from 

passages of the satellite near tracking receivers at 

several places and at several times. The ephemeris is 

then transmitted to navigation terminals along with 

accurate timing signals. Ephemeris communications may 

use the satellite itself so that the data is available 

when it is needed, or other means of communication may be 

used to provide the orbital data before the satellite 

passage. 

Figure 25 Satellite Navigation System 
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Instead of dealing with Doppler shift, represented on 

the continuous time basis by the familiar S -curve, we 

will deal with the range-rate p . The graph of the 

latter vs. time looks much like the hyperbolic tangent 

function. The Doppler shift Is, of course, a scalar 

multiple of -p . The graph of tne range p is almost 

symmetrical but not quite (unless 60p= °) • Large values 
• • 

oi' Po correspond to close approaches. 

Limiting the Doppler data to some interval of time 

centered on the epoch of closest approach is 

convenient. The duration of the pass, as far as data 

recording is concerned, will be limited here to an 

interval 2NT, N sampling intervals of duration T before 

and after the epoch, fixed for all passes such that data 

from low elevation angles, e.g., less than 10°, is never 

used. Typical values of 2NT and T are 600 sec and 1 

sec, for a total of 2N + 1 = 601 data points (including 

the epoch) for a single pass. The magnitude of the Doppler 

shift at the ends of the pass will be slightly less than 

the shift corresponding to the orbital velocity of the 

satellite, e.g., 

( fc> <^s(VC> - (200 Me) 18,640 mlle/hr 

186,400 mile/sec 

= (1/180) Me = 5555 cps 

1 hr 

3600 sec 



115 

A block diagram cf the navigation terminal is shown in 

Figure 26. Two radio receivers are shown with intermediate- 

frequency outputs mixed in order to produce a first-order 

compensation of the refraction effect of the ionosphere 

(O&W I960, ¿eiffenbach i960). This requires that the 

satellite transmit two sinusoidal carriers with frequencies 

related by a simple ratio. If the compensation is exact, 

then the signal at the tracking filter input is noise plus 

a sinusoid of frequency fd + f0 where fd is the 

Doppler shift and f0 is a fixed offset frequency 

sufficient to insure that fd + fQ is positive. 

Receiver 

Receiver 

-o Ionosphere 
Refraction 

—0 Compensation 

r-5 Tracking 
Filter 

lavigation 
—|_C ompu t e r 

Counter 
Clock 
Sampler 
Storage 

Figure 26 Navigation Terminal 

The tracking filter is, in effect, a narrow band-pass 

filter with variable center frequency. Its function is to 

reduce noise by reducing band-width from that of the 

receiver, e.g., 15 kc, down to a few cps. In the absence 

'f noise, the output of the tracking filter will differ by 

negligible dynamic lags from the input. Reference is made 

to the literature on tracking filters for the satellite 
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navigation application (Richard 1958) and for theoretical 

and experimental studies of tracking filter behavior in 

general (Viterbi i960). 

The cycles of the tracking filter output are counted. 

Two variations on the system design are possible at this 

point. Either a clock can be read after some fixed number 

of cycles, or the counter can be read after some fixed 

interval of time. We select the latter scheme and will 

assume that the record of each pass consists of 2N -f 1 

samples each consisting of the number of cycles counted 

over a sampling interval of duration T. In order to 

reduce quantization noise. It may be desirable to measure 

fractions of cycles, e.g., eighths. This might be done by 

using a frequency multiplier and operating the tracking 

filter at a harmonic, e.g., the eighth, of the compensator 

output. 

The tracking receiver is similar to the navigation 

receiver, principal differences being environmental. Also, 

the tracking receiver must meet standards set by the entire 

system, while the navigation receiver must satisfy only 

one user. 

The study on which this dissertation is based has 

resulted In a new design approach for the signal-processing 

portion of the navigation terminal. No new ideas were 

discovered of any consequence to the rest of the system up 
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to and Including the tracking filter output. Therefore, 

the discussion of the over-all system has been limited to 

that sufficient to provide a background for the signal¬ 

processing problem which will be treated in detail in 

other sect! no of this chapter. Articles are available 

on the development of the satellites (Schreiber and Wyatt 

i960), on Doppler measurement techniques (Weiffenbach i960), 

on computing techniques (Lorens 1959), and on ionospheric 

effects and other sources of error in the system (G&W i960). 

Analytic Model 

Refraction effects will be neglected here on the 

assumption that the multiple-carrier compensation 

technique (G&W i960) produces results sufficiently close to 

what would be obtained with a single carrier and a planet 

with no ionosphere. With this restriction and those 

mentioned before, the system can be accurately represented 

by a simple analytic model. It seems appropriate to note 

that the proper standard for testing the proposed processor, 

or any processor, is not how well it fits the analytic model 

but how accurately it operates in actual practice. The 

analytic model is a convenient basis for determining 

feasibility, estimated cost and estimated accuracy, but 

it cannot serve as the ultimate test of accuracy. 

The geometry of the system is indicated in Figure 27 

where N represents a navigation receiver at latitude X 
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and longitude <£>, 0 'S A s 71/2, - 7T/2 s s jy2; S repre¬ 

sents the satellite. The origin of time t Is chosen at 

the north-bound equatorial crossing. The longitude scale 

Is such that the prime meridian is directly under S at 

t = 0 and positive values of (p correspond to points 

east of the prime meridian. For convenience, we will 

limit attention to northbound passages of S. 

Figure 27 System Geometry 

It turns out that the geodetic coordinates A and 

are unwieldy choices of independent variables. The 

angles o( and Q defining the navigator's location in 

inertial coordinates are convenient. 

= ^ £ = 7"0 + (103) 

Note that CX is the latitude of S at the instant 

of closest approach where t = T0, and 6 is the 
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longitude of N relative to the orbital plane of S at 

the same Instant. The signal-processing scheme to be 

developed requires that signal measurements be referred to 

some epoch, and we choose the instant t = of closest 

approach, i.e., when p0 = 0. Time referred to the epoch 

will be symbolized by T'. 

t - T + T -NT < T ^ NT (104) 

Signal measurements will refer to the epoch and T" ; the 

ephemeris will refer to the origin and t. The satellite 

latitude provides a convenient alternate to the time scale, 

so we will often deal with 6c>at, T and C< in place 

of t, T and We also introduce the angle ¿Í 

corresponding to the duration of the recorded data. 

J = 2NT tds (105) 

The basic equations of the model are derived by 

introducing a coordinate system with origin at the planet 

center, z-axis through S at t = 0, y-axis through the 

north pole, and x-axis so as to make a right-hand system. 

Then, at time t, the satellite and navigator are located at 

0 
sin ¿Ost 
cos CJ3t 

and 
cos X sirTTaTt^K^Ty 
sin A 
cos A cca( ¿¿/pt+Cft) 

and the square cf the slant range is given by 

cosX cos cf s( Cdpt +<p) 
+ sin A sin ¿<Jat 

(106) 
Differentiating v/ith respect to time yields 
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-f á^gcoa A aln4¿t ¢03(0^t + Cp ) 

At the epoch, t = p =po = 0 and 

(107) 

tan A = aln^ + tancx'cosö 

(p = 0 - (o^/aj^cx 

Thua, A and (p are easily found If ex' and 0 are 

(108) 

(109) 

known. 

We will usually deal with p rather than with Doppler 

shift. In these terms, the operati'n of the counter used 

as the measuring device In the navigation terminal is 

accurately represented by 

Counter output 

at tk (110) 

provided that the counter la reset at the beginning of 

each sampling interval of duration T or, equivalently, 

the first differences of the counter readings are recorded. 

Equation (llO) shows that an accurate model of the measured 

data is obtained by taking first differences of the range 

p given by the analytic model. For the sake of 

simplicity, we will assume here that the epoch occurs at 

the midpoint of one of the sampling intervals so that the 

epochal measurement is zero and 
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tk = 70 + [k + (1/2)] T 

k = -N,..., -lf04lj...4N 

This restriction can be removed easily. 

A program called EPOCH was written to provide 

tabulations of the epochal values of several of the 

important quantities in the satellite navigation system 

as functions of o< and 0 . A brief description of this 

program is given in Appendix 2. Expressions free of 

physical units for use in EPOCH and other programs were 

obtained by dividing distances by (Op and angular 

velocities by aJp. This is equivalent to using the 

planet radius as the unit of distance and the planet 

angular velocity as the unit of angular velocity. The 

corresponding unit of time is the time required for the 

planet to turn through one radian. All of the final runs 

of EPOCH and other programs used ( pa/pp) = 1.1* # =24° 

and (¿Ja/cdp) ~ 14.798 corresponding roughly to the 

system parameters given in the literature (O&W I960). 

Classical Least-Squares Approach 

The approach to the navigation signal-processor 

design described in the literature is based on the use of 

classical least-squares techniques to fit the range-rate 

measurements to the analytic model (O&W i960). The latter 

is obtained by combining Equations (I06) and (IO?) to 
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obtain Equation (ill) which equates the following expression 

to p/aJ8p#co8^. 

(¿jp/á^cosàJjt 8in(a^t-Kt)) + sin^t cos(a^t«KÍ)) - tanAco34¿t 

í 1 ~ 2((!,b4)cob ^ [cos^8t cos(a'pt'KÍ)) 4- tanAaln^tj 

The least-squares procedure consists of the following 

steps. 

(1) Form the (2N + 1) x 2 matrix W of partial 

derivatives of p with respect to A and <f> evaluated at 
each of the sampling instants tk for some initial 

estimated value. (A j, 4^). 
(2) Form the (2N+1) -column e^ of elements p(tk) 

for the initial estimates 

(3) Subtract from the data column d) to form 

the column of residuals. 

(4) Solve for in 

A(p 
(112) 

(5) Select ( A2, cp2) ( Ax + aA , + as 

an Improved estimate of ( A, 4>). The procedure may be 

iterated as many times as desired. A typical stopping rule 

would be to continue until the magnitude of both aA and 

¿\(p were within preset bounds. The limit of 

as n increases without limit is ( ), the least- 

squares estimate of ( Á , <fi) given d). The norm of the 
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{( residuals for ( A, 4)) is a minimum over all of 

The least-squares procedure can be described in terms 

of linear algebra with the aid of Figure 28. The vector 

¡d) is represented by the data and the |En) by the 

sequence of (2N 1)-columns corresponding to the sequence 

of estimates ( The space is the 2-parameter 

hypersurface containing all (2N+l)-dimensional vectors 

represented by columns with elements p (tk). The space 

is a 2~d:,.mensional vector space with origin at Ie^) 

and with basis elements represented by the (2N + l)-columns 

of elements áp(tk)/áA and dp(tk)/d<p. Solution 

for ¿L A and A (p corresponds to perpendicularly 

projecting |d) - |E^) onto ^ to obtain The 

limiting vector |e) Is the perpendicular projection of 

|D) onto and will lie near the vector |t) corre¬ 

sponding to the "true" values of A and (p if the 

noise, |d) - |t), is not too large compared to the size 

of any nearby folds of ^. 

The navigation computer must employ digital techniques 

in order to obtain the required precision. A measure of 

complexity, suitable for preliminary system design 

purposes, is the total number of computer instructions 

required per pass. Unpublished results of a preliminary 

study of the navigation computer done in 196I at the IBM 

Space Guidance Center indicated that the number of 
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arithmetic instruction required for three iterations would 

be about 300 4* (2N+1)(500). A rough check on this 

estimate is available via reports on the complexity of the 

tracking computation using the classical least-squares 

approach (Lorens 1959). This more difficult problem 

requires several thousand instructions per data point. 

4-2 THE SI0NAL-PROCESSINQ PROBLEM 

One approach to the simplification of the navigation 

computation is to measure fewer points on the Doppler 

S-curve, with correspondingly larger effects of noise on 

the position estimates produced. In this section, we 

will present an approach to the design of the navigation 

terminal which uses all the data and yet provides a 

significant reduction in complexity. 
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Efficient Representation 

The ntrategy employed here Is based on the observation 

that the set of range-rate vs. time graphs appears to have 

a very simple structure. However, the standard approach 

uses several hundred dimensions to represent the set, and 

an extensive computation is required for each satellite 

passage. Perhaps the navigation computation ought to be 

factored into two steps as shown in Figure 29. The purpose 

of the first step Is to represent the received signal 

efficiently, e.g., using 3 parameters rather than 601. The 

second step performs the same function as before, i.e., 

least-squares estimation of position given a received 

signal, and its complexity is greatly reduced since the 

least-squares fit is now to be carried out in 3-flpace rather 

than 601-space. Whether this strategy results in an actual 

simplification or a mere transfer of the problem depends on 

the complexity of the representation step. 

From Tracking 
Filter 

Study of p vs. t graphs and of Equation (ill) 

fails to show any simple choice of basis for a linear 
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vector representation of the range-rate signal. We consider 

next the possibility cf a linear basis of few dimensions 

for some simple function of p , and we find that p 2 

meets our requirements. This important result is empha¬ 

sized by introducing the symbol <r for p2, and is found 

from Equation (l06) by letting t = + 7^. We immediately 

find that O" can be represented as a linear combination 

of 7 terms. 

o-(T) = A pib1(7') 1=1,...,7 (113) 

Expressions for the 7 basis elements represented on |t 

and the corresponding 7 coordinates are given in Table 2. 

We may rewrite Equation (113) in our notation as 

(11*0 

Table 2 Representation of Range-Square 

1 

1 

2 

3 

4 

5 

6 

7 

MT)_ 

sin 

sin U) T sin uy'T s p 

cos tJ-T sin 
s p 

cos ¿¿^T' cos 

sin Li)cos U)^T 

cos OJjT 
8 

V(2 Ps/pp) 
(1/2) [(p8/pp) + 

-Bln A cos o.’ 

-cos A siníX sin Q 
4-cos X cosCX sin Q 
-cos X cose* cos ß 
♦cos X sincX cosé^ 
-sin X sincX 

(pp/(V] 
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Typical variation of tu^T is from -12° to 12°, 

and from about -3/4° to 3/4°. Inspection of 

the biiT^) indicates that they are almost linearly 

dependent on seme sub-basis of dimensionality considerably 

less than 7. A computer program called BASIS was written 

to investigate the b^fT" ) at 49 points, -NT <'T 5NT, 

N = 24, NT = 12°. Results from this program showed clearly 

that elements k - 'J were almost exactly dependent on 

elements 1-3. The correlations between each of the 

first 3 elements and each f the 7 are given in Table 12 in 

Appendix 3. Thus, the range-square signal can be repre¬ 

sented as a vector in 3 dimensions with small error and 

with no error at all in 7 dimensions. We will choose the 

3-dimensional representation and, despite the fact that 

the error involved here is negligible, we will take the 

trouble later t>. compensate fv r it exactly. We will call 

the 7-dimensional basis |A and the 3-dimensional sub¬ 

basis j B. Representation of the latter on |P is given in 

Table 14 and its utility in representing a typical ensemble 

- |s) ‘ is shown in Table 15. Note that neither |A nor 

|B is orthonormal. The corresponding subspaces are ¿2 

and 13 where 

Presumably, we can als^ find some basis ¡M on which 

to represent the range-rate signal (and, thus, the range 

signal) such that Dim 713 is considerably less than 601. 
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We could proceed by selecting the elements of ¡M arbitrar¬ 

ily, e.g., by orthonormallzlng the power functions of 7^. 

Alternatively, we could construct an ensemble of typical 

range signals and find the largest elgencolumns of the 

covariance matrix of the ensemble. Both techniques were 

used In the computer programs to be described later. For 

the moment, we merely observe that these techniques exist 

and that we cannot expect them to lead to such an efficient 

representation as In the case of the range-square signals. 

The signal-processing problem comes down to finding 

a way to reconcile two facts. 

(1) Convenient and effective apparatus are available 

for measurement of range-rate. 
mKmmmmmrnmmiÈÊÊÊmmmmmimmmmmmmmmmmm 

(2) The most efficient linear representation known 

Involves range-squared. 

Tensor Product Approach 

The two facts stated above were noted very early in 

the present study. A simple and effective way to take 

advantage of both facts did not appear until the problem 

had been considered as a possible application of finite¬ 

dimensional tensor product spaces. The direction in which 

to proceed is clear after the discussion on time-domain 

multiplication in Section 3 - 3. 

Let |r) and |r) be the range-rate and range 

signals in XD , where Dim O = 2N + 1. Let |s) be the 
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range-square signal such that 

|s) ï Cl^ 'P C 
We will also be Interested in the perpendicular projection 

of \s) onto Therefore, if d|b = I, we have 

|B D |s) 0®~D 

where ^ is the set of all elements of O&XD of the 

form 

V V 2\ 
R) (g) R) = R) 

The dimensionality of is given by 

Dim = (115) 

if Dim XD = n. 

Advantage of the restriction here to tensor squares 

of vectors in ÍO can be taken by symmetrizing the basis 

in XO® O. Let |t be an orthonormal basis in ÏO and 

let the corresponding tensor product basis in be 

permuted to the sequence: 

(1, 1),(2, 2),...(n, n) ; (l, 2),(1, 3),...,(n-l, n) ; 
(2, l),(3» i)i**«j(n, n l)• 

Note that the numbers of elements in the three sub-bases 

are: n; n(n-l)/2; n(n-1)/2. Let every element 

|Bi) g) |Bj) in the second sub-basis be replaced with 

(1/-/2) [iBj) 1¾ |Bj) + |Bj) »iBi)] and every element 

of the third with (I/V2) g |Bj) - |Bj) g Ib^] . 

The resulting basis is clearly orthonormalj it is called 

the symmetrized basis in X3<8)X0. The first n(n+ 1)/2 
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elements of the symmetrized basis, i.e., the first two 

sub-bases given above, spans £) . All n(n-l)/2 

coordinates on the third sub-basis of any vector of the 

form |r) 0 |r) are identically zero. 

The symmetrizing step is accomplished by multiplying 

the permuted basis by the matrix 

IV2 0 0 

0 I I 

0 I -I 

where the partitioning is as given above. Note that U 

is both unitary and self-adjoint. A tensor product basis 

formed on any sub-basis in XD can be symmetrized with 

the advantage of reducing the dimensionality required by 

almost a factor of two. 

The basic scheme requires that we obtain a represent¬ 

ative of |r) from the range-rate measurements representing 

|r). We postpone discussing the "d-c restoration'' problem 

of establishing the proper constant of integration. The 

subsequent steps in the representation process, described 

in abstract terras, are the following. 

(1) Project |r) onto Tfl to forra ¡M m|r). 

(2) Take the tensor product of the resulting vector 

with Itself to form |m ÍIr) € 4 ^ o c 080. 

(3) Project the resulting vector onto e ( equiva- 
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lently : onto fí, then onto ¿2, then onto e ) to form 

I I2 2I2\ IB DIM M|R>. 

The signal vector diagram of the processor is shown 

In Figure 30 where all of the operations on |r) are 

referred to the tensor product space. Note that all 

projections are perpendicular. 

The navigation section can be designed to fit |B D|s) 

rather than |s) so that the small difference between 

these two vectors need have no effect on the final 

estimates of position. Thus, the representation error 

M Is the produced by the lack of completeness of 
I 2 2 2 

difference between |B DIM M|R/ and |B D|s). Since 

we have 

Figure 30 Vector Diagram of the Processor 
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The basic scheme of the representation section of the 

proposed processor is shown in Figure 31 where the d-c 

restoration problem has been ignored. Note that 

MM|r) |MM|R) = [|M0|M]||®MÍ][|R)<g)|R) 
2 2, 2 
M M| r) 

This diagram is intended as an illustration of the abstract 

level of thinking about system concepts rather than actual 

hardware. If we were planning to instrument the various 

elements using analog techniques, we might call |s| an 

"integrator", but a more appropriate term here is 

"accumulator". 

Figure 31 Processor Design - Step 1 

D-C Restoration 

The range signal |r) has a substantial d-c component 

(i.e., its representative on the time domain has a 

substantial constant term). We are given, not |r), but 



133 

the column r) of data equal (neglecting noise) to the 

first differences of t_ j R ) » r). The vector represented 

by r) is |r). 

However, there are some constraints in the system 

under discussion which permit the restoration of the d-c 

term with accuracy sufficient to meet the system require¬ 

ments . The proposed d-c restoration scheme is based on 

three points: (l) the epochal value of the second time 

derivative of range-square, i.e., cf0, is practically a 

constant over all possible passes, (2) po is easily 

measured, given M|s]r), (3) the following simple 

derivation. 

cr = p2 ,o-= 2pf 

O- = 2p(= + 2(pr , cro=2p>opo+0 

?o = ^0/2^0 (117) 

The near constancy of cf0, as can be seen from Table 10 

in Appendix 3, allows an accurate estimate of çfQ to be 

obtained from the a priori estimate of position which any 

competent navigation system would always have available. 

If we attempted to measure po directly from r), noise 

might cause difficulty. One of the reasons, besides 

simplicity, for introducing the measurement basis |m was 

to provide smoothing so that a reasonable estimate of po 

could be found by operating on M||3|r), or M|r), with 

the row defined by the elements 
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(tlllMk) - 2(t;|Mk) + (tjlMn) (118) 

T2 k = 1,...,m = Dim | M 

Thus, a reasonable approach to a solution of the d-c 

restoration problem is to use the procedure Just described 

to find one point on the representative of range on the 

time basis, i.e., p0. It is convenient to define |s| so 

that it operates on |r) to yield a vector which has zero 

for its epochal coordinate. Then, the d-c restoration step 

is effected by adding p0 to all coordinates of t |s|r). 

Since we have assumed that projection onto )7% has already 

taken place, it is desirable that the d-c restoration step 

be accomplished by operations on the representative on 

|M rather than that on |t. This is accomplished most 

conveniently by defining | M1) to be d-c. In that case, 

the d-c restoration step consists merely in adding 

p0 -{2ÑTl to the d-c coordinate of m'IsIr), leaving the 

other m-1 coordinates unchanged. For this design, the 

first coordinate of (f is zero. 

4-3 DEVELOPMENT OF THE PROCESSOR 

In this section the basic design approach is developed 

into a proposed processor configuration of operations 

which are clearly realizable. This is accomplished by 

rewriting the abstract version of the system diagram in 

terms of representatives. 
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Bases and Subapacea 

A brief review of the several bases and corresponding 

subspaces Involved in the problem seems appropriate. In 

the tensor product space O&XD , we have the bases !B, 
2 

]A, |P, |M and ;t ® 11 of dimensionality 3* 7» 601, 

m(m+ 1)/2 and (601) ; in XI), the bases |M and |t of 

dimensionality m and 601. In general, Dim |jt = 2N+1. 

Initially, it seemed that |m would require not more than 

10 dimensions; results of the computer experiments indicate 

that a design baaed on m = 5 yields accurate estimates. 

We have also introduced D|, the dual of |B. 

All of these bases are referred to the epoch. The 

measured value of the epoch is also used in the navigation 

computation. The method proposed for this measurement 

is the determination of the Instant when p (t) = 0, i.e., 

the instant when the frequency of the tracking filter 

output equals the offset frequency. 

Note that the epoch T0 occurs almost exactly T/2 

sec before the axis-crossing defined by the data 

column r). This can be shown via Figure 32 where 

p(t) = t - r0 
for t near 7^, and the time origin Is shifted to the 

sampling instant prior to the epoch for convenience. The 

measured coordinates of r) at t = T and t = 2T are 

given by 



136 

(T - ro)2/2 - 7^/2 and (T/2) [(T - T0) -. (2T - 7^)] 

Then, ro is found by 

T - rx 2T - ^ 

(1/2) [t^ - 2T 7'0] ' (T/2) [3 T - 2r0] 

TS - 2T + 2T T0 = O 

r0 - Tj - (T/2) (119) 

In order to reduce the effect of noiae on the epoch 

measurement, the axia-croaaing defined by the beat-fitting 

straight line defined by several data points in the vicinity 

of the epoch could be used. A convenient design results 

if several data points up to and including the first 

positive one are used to measure 7^. In the computer 

experiments, was assumed to occur midway between 

sampling instants labeled -1 and 0. 

Figure 32 Epoch Measurement 
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The second step in evolving a processor design Is 

obtained by Inserting projection operators at appropriate 

points In the system diagram., moving |M through the 

tensor product step, using D¡B D| = D|, regrouping 

factors, and inserting the d-c restoration step. The 

resulting configuration is shown in Figure 33. Note that 

t| symbolizes the combined operations of counting, 

sampling, epoch measuring and recording. The vectors and 

columns used as labels in system diagrams correspond to 

an idealized error-free situation. 
2 2 

The column m|r) and the matrix p|m are represented 

on the symmetrized basis defined by ¡M. The symmetrized 

Kronecker product operation symbolized by 0 in the 

system diagram implies the following simple transformation. 

(1,1)! 1 

2 

m|r> = 3 

It 

5 

Vi 

V3 

Ml 

2 2 * 

<=> Ä|r) = (5,5) 

(1,2) 
(1,3) 

(4,5) 

Mi 

/4/4 4 
/4^3 if7 

/Vs ^ 

m 
t 

m(m-l) 

1 

This operation can be further simplifjed by absorbing the 

Vlf factors in the subsequent matrix multiplication step. 

The matrix t|s|t accumulates r) outward from the 
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(120) 

epoch so that the epochal coordinate of r) la zero. 

t|s|t r) = p) - I> po 

For N = 3, Equation (120) stands for 

-3-2-1 0123 

-3 

-2 

-1 

0 

1 

2 

3 

P-3~(^4 

P-g~P-3 

P-1- 
Po'Pl 
Cl- Po 
P2" Pi 

P3- P2 
The d-c correction Is obtained by 

2N + 1 

-3 

-2 

-1 

0 

1 

2 

3 

P3-P0 

P2-P0 

f?l-Po 
Po-Po 
P1-P0 
P2-P0 

P3-P0 

V2N + Í p0 = ijw + ï 0^/(2 po) (12i) 

The Proposed Processor 

The final configuration of the proposed processor Is 

shown In Figure and Is obtained from the previous 

design by Inserting two minor correction steps, showing 

the d-c restoration In more detail, and combining cascaded 

matrix multiplication steps. The latter Is done In two 

places. The 5x601 matrix M|t and 601x601 matrix t|s|t 

are replaced by the 5x601 matrix M|s|t, and the 3x601 
i ~ 2 

matrix D|P and 601x15 matrix p|m are replaced by the 

3x15 matrix d|m. 
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The latter step is the culmination of a sequence of 

simplifications beginning with a square matrix of 361,201 

rows! Fortunately, we have not had to calculate matrices 

of such proportions, but only to think about them. 

The two correction steps take advantage of the 

a priori estimate of position assumed to be available. 

The magnitude of the corrections are a measure of the 

incompleteness of the basis |M and will be quite small 

for appropriate choice» of |M. The table of p'o 

corrections is found by 

po correction = K - ( F m|r) (122) 

via the analytic model evaluated at some convenient set 

of equispaced latitudes and longitudes. Similarly, the 

representation corrections are given by 
2 2 2 

D|S) correction = d|s) - D|M m|r) (123) 

Then, if the a priori position estimate happended to be 

exact, the error in the estimate produced by the processor 

would be due only to noise, which we will consider, plus 

ionospheric refraction and other sources of error neglected 

here. 

The operation of the processor is described fairly 

completely by Figure 3^ and previous discussion of various 

components with the exception of the data recording steps. 

The processor must include storage for the m coordinates 

of m|s|r) and for the 301 coordinates of r) through 
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the epoch, since we assume that the epoch is not known 

(with sufficient accuracy) until it has occurred. At the 

beginning of the measurement cycle (prior to the instant 

7 =-NT), data points are measured ?>t equal intervals of 

duration T and stored sequentially in the 301-register 

memory. The 302nd measurement is stored in register 1 in 

place of the first measurement, and the process continues 

to cycle until the epochal coordinate is recognized and 

stored. An index counter is used to record the number of 

the last register used. 

During the post-epoch period, measurements continue 

to be made at equal intervals. After the +kth measure¬ 

ment, the m multiplications and additions connected 

with the +kth coordinate of r) in accumulating the 

m terms of 

M|s|R) = M|s|t r) 

are executed along with the same steps associated with 

the -kth coordinate. All of this is to be done in the 

interval of duration T prior to the (k-*-l)th sampling 

instant. As each coordinate measured during the pre-epoch 

interval is used, the index count is reduced by one, and 

one register is freed for other purposes if needed. 

Prior to the beginning of the pass, the a priori 

estimate of position is used by the processor to determine 

corresponding estimates of cr0 ~\j 2H + 1 /2, the two 
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corrections, and the initial values of the 1x3 and 

3 X 1 matrices required for the navigation calculation. 

These steps are accomplished by table look-up and 

interpolation. 

After coordinate +N has been measured and coordinates 

-N and +N used in completing the calculation of m|s|r), 

the subsequent operations shown in Figure 34 may be 

initiated. The remaining calculations in the representation 

section consist of 64 multiplications, 54 additions and 

1 division. Each iteration of the least-squares procedure 

in the navigation section will require 6 multiplications 

and 11 additions for the actual calculation of the estimate. 

Each recalculation of the initial values of the required 

1x3 and 3x1 matrices in the navigation section will 

require 6 table look-up and interpolation operations. 

Experience indicates that not more than 3 iterations will 

normally be required and the 1x3 matrix may not have to 

be recalculated for each iteration. Exactly what balance 

should be made between small tables and high-order inter¬ 

polation vs. large tables and linear interpolation will 

not be considered here. We have probably already delved 

into more detail than necessary for the present purpose. 

The point in presenting design details is to show 

that the proposed processor does actually simplify the 
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navigation calculation. All but a small part of the 

representation calculation takes place during the 

measurement phase at the rather alow rate of 2m multipli¬ 

cations and 2m additions per sampling interval of duration 

T, e.g.j 2ra = 10 and T = 1 sec. This is slow even for a 

serial computer with a one-bit arithmetic element. Even 

when allowance is made for the calculations necessary to 

account for the lack of synchronism of the epoch with the 

sampling clock, the M|s|r) calculation does not tax any 

computer which might be considered for this application. 

Consider the computing speed requirement dictated by 

the time which can be tolerated between the end of the 

pass and the availability of the newly computed position 

estimate. As we have seen, only a few hundred arithmetic 

operations need be performed in this interval, since the 

3005 multiplications and 3005 additions involved in finding 

HiS IR) are completed during the pass. Since the simplest 

modem computers operate at several hundred multiplications 

per second, it is difficult to see how the delay required 

for post-pass computation could be a significant problem. 

Thus, the proposed processor poses no problem as far 

as the cost of computation is concerned. Any computing 

capacity not otherwise needed can be devoted to more 

sophisticated interpolation in order to reduce storage 

needed for tables. Also, the system designer is free to 
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Increase the number of data points by a considerable factor 

If desired, without increasing the cost of the arithmetic 

element of the processor. On the ether hand, the classical 

least-squares approach leads to a processor design in which 

the number of data points is limited somewhat by the cost 

of computation (G&W i960 p 510). 

Improvement of the Processor Design 

Once the basic configuration of the processor Is 

established, practically all design steps depend on the 

choice of measurement basis IM. Some of the computer 

experiments were based on arbitrary choices of the elements 

of |M. Results indicated that a satisfactory processor 

design could be developed in this manner. 

However, it is fairly easy to obtain an improved 

processor design, for fixed Dim jM, by Judicious choice 

of the elements of |M. If M is to provide a best fit 

to the ensemble |IR)}* then should Involve the 

ensemble mean and the m-1 largest eigenvectors of the 

ensemble covariance. This approach v/as studied by means 

of a computer program called RINGE which generated a 

typical ensemble of signals, constructed the eigenvector 

basis, and calculated the representation errors. A 

modification of RANGE is included in all subsequent test 

programs, and results from this subprogram are given in 



1J45 

Table 20 In Appendix 3. These results Indicate that Dim 

|M ought to be about 5 and that each of the representatives 

on ¡t of the mean vector and first 4 eigenvectors is 

almost symmetric about the epoch, i.e., almost an even 

function of T , 
Results of some of the early computer tests of 

various designs based on arbitrary choices for t|M 

indicated that it ought to include at least one odd, or 

nearly odd, function of 7". Such a choice tends to con¬ 

centrate the capability f measurement ' f the sign of ß , 

the relative longitude. As noted earlier, the d-c 

restoration portion of the processor is simplified if the 

first element of |M is d-c. 

A compromise design used in the later phases of 

feasibility testing was developed using the tjM defined 

by the follovjing procedure. 

(1) Let the first element be constant. Normalize 

7° to obtain i.e., t|M^) = l) (1/ -^2H + Í). 

(2) Let the second element be linear in T'. 

Orthonormalize 7"^ to obtain t^Mg). 

(3) Project {|R>} on the partial basis, subtract 

the projections, find the mean of the residuals represented 

on |t, and orthonormalize to find t . 

(4) Project residuals on the partial basis, subtract 

the projections, find the covariance matrix C of the 
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new residuals represented on jt, find the largest eigen- 

column of Ç, and orthonormalize to find J:: M,,). 

(5) Repeat the preceding step to find t|M^. 

The fourth step can be repeated until the desired accuracy 

of representation is achieved. 

The relative longitude is measured with some difficulty 

for near-overhead passes. This fact is pointed out in the 

literature (G&W i960 p 511) and was confirmed by some of 

the early computer tests in the present project. In other 

words, the sign of 0 is hard to measure when II# II 13 
small. Worst-case distance errors in the final estimates 

produced by the processor occur when || 01| is small, e.g., 

less than Io. The difficulty in measuring small values 

of d Justifies giving it particular attention in 

designing the processor. 

The compromise design of |M includes only one 

element, (M2), which is designed to measure the sign 

of 0 . The other four elements are either even or nearly 

so. Thus, Improvement can be expected if any arbitrarily 

chosen |M2) is replaced with one designed to measure 

the sign of Q when I# II is small. Suppose we ignore, 

for the moment, the fact that one element has already been 

chosen and ask what is the best choice of a basis element 

|b), for our present requirement. The element we seek 

must be such that (b| yields maximum difference in 
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response to the two Inputs shown In Figure 35 for fixed 

Figure 35 Measurement of Small Q 

In other terms, we seek |b) satisfying 

Max 
j i 

B : 
(B 

l 

o Ir) 
à p 

and (b|b) = 1 

From the matched-filter theorem (Mason and Zimmerman 

I960) well-known to engineers, or from basic principles 

of linear algebra, it is clear that the best choice of 

iß) Is obtained by letting 

Í a Ir> 
a b .tz.±,.Q- (124) 

magnitude of numerator 

The question of what cá to use in Equation (124) is left 

open; (t ¡Kl) is nearly, odd f.r .small cx and nearly even for 

large c< . In the most recent runs of the feasibility 

test programs, a value of c/ corresponding to the center 
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of the test ensemble was selected. The resulting basis 

represented on ]t Is given in Table 16, and its utility 

in representing a typical ensemble {lR)} is shown in 

Table 17. 

Navigation Section 

Little attention was given in the present project to 

the design of the navigation section of the proposed 

processor since little was needed. The novel features of 

the processor are all contained in the representation 

section. The classical least-squares procedure used in 

the navigation section is described in Section 4-1. 

However, some work was done on the navigation section 

to permit transformation of errors found in various tests 

of the representation section into corresponding errors 

in final position estimates. For this reason, a program 

called L-S was written which generates, for several 

possible navigator positions, various partial derivatives 

useful in studying the navigation section alone or in 

combination with the representation section. This program 

is described in Appendix 2. 

Two approaches to the design of the navigation section 

are possible. Elsewhere in this dissertation we limit 

attention to Method 1 where an estimate of epochal satellite 

latitude cá is found by multiplying the measured epoch 
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7", by u) . The relative longitude 0 ia then estimated 

by a least-squares fit of d|s) given by the analytic model 

to the 3 measured coordinates of D¡S) at the output of 

the representation section. Method 2 uses the least-squares 

procedure to fit b th and 0 to all 4 measurements 

produced by the representation section. Both methods are 

c naide red in the program L-S. At this writing, it is not 

clear whether Method 2 provides sufficiently greater 

accuracy to justify the somewhat greater complexity required. 

Instead of 0 , It is convenient to deal with east-west 

distance expressed as a fraction of pp. The matrix 

used in the navigation section to transform the difference 

between measurement and initial estimate of D|s) = fo^J 

into a correction in east-west distance is the row 

j d /^/ à cr 

of the column 

It is found by taking the pseudo-inverse 

àcr^/ Ò j which corresponds in 

principle to the matrix W of Equation (112). For 

example, the matrix which transforms small changes in 

Dj s) Into corresponding changes in for points near 

(<*,#) = (30°,5°) is 

[ô/yó Cl (w w)"1^ 

602. -.423 -8.46 10 (125) 

Values of this matrix for other positions are given in 

Table 11 of Appendix 3. 
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The matrix W W In the leaat-aquarea procedure la 

called the normal matrix and Ita determinant la an 

excellent meaaure of the aenaltlvlty of the ayatem to 

varloua aurcea of error. In reglona where Det W W la 

very small, large errors In the position estimates produced 

by the processor may be caused by amall errors due to noise, 

etc. As shown In Table 13 in Appendix 3, Det W W Is 

small when Ilc9| Is small, and this effect is most pronounced 

for o< = 0. Thus, if navigation error magnitudes due to 

any fixed cause are plotted as a function of o( and 0 , 

we can expect a steep ridge of error centered on the sub¬ 

track of the satellite with broad low areas on either side 

and a peak in the ridge at the equator. Thus, it may be 

necessary to reject longitude estimates and to use only 

the latitude estimates obtained from near-overhead passes, 

particularly those near the equator. 

4-4 EVALUATION OF THE PROCESSOR 

The various sources of error affecting the represent¬ 

ation section of the processor and the tests which have 

been made on the magnitude of their effects are described 

in this section. 

Feasibility Testing 

In addition to the computer programs mentioned earlier 

in this chapter, a program called TEST was written. The 
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purpose of this program was to design the representation 

section of the processor using an arbitrarily chosen 

measurement basis ¡M, and to check the validity of the 

tensor product approach. The criterion employed in this 

early phase of testing was that 

|B D|S) - IB D|M M|R) 

be small for every |r) in a typical ensemble. As can be 

seen from Figure 30, this is equivalent to requiring that 

the lack of completeness of |M have tolerably an.^11--, 

effects on the output of the representation section. TEST 

is included as a subprogram of subsequent versions of the 

feasibility test programs. Results of the validity check 

from the most recent runs are given in Table 22. 

As soon as results of TEST showed that the tensor 

product approach was valid, various subprograms were added 

successively for the purpose of evaluating the effect of 

various sources of error on the output of the representation 

section. From this point on, the program has been developed 

in two versions: TRY and OPT; the former is based on an 

arbitrary |M and the latter on an improved choice of |M. 

Results given in this dissertation are obtained from the 

two most recent runs of OPT. The processor design developed 

by OPT (see Equation (128) and Tables 18, 19, 21, 22) is 

optimal in the sense that no better one is known at this 



writing and that it may be difficult to find an appreciably 

better one. However, no claim is made here that the design 

cannot be improved by some completely different approach. 

The sources of error considered in the feasibility 

tests to date are: 

(1) Noise on the range-rate data. 

(2) Epoch measurement error. 

(3) Error in a priori estimate of position. 

The d-c restoration step was given special attention in the 

tests, but it is not regarded as a source of error. Noise 

has a direct effect on the representation section output 

and also an indirect effect via the d-c restoration step. 

The other sources of error may be treated similarly. Error 

effects in addition to those considered in the present 

project are discussed in the literature (G&W i960). 

Noise 

The largest error effect considered here is that due 

to range-rate noise. Other effects are smaller or can be 

made smaller by compent at ion schemes and/or iteration of the 

processor operation. The noise on each coordinate of r) 

is assumed to have mean zero and variance cr^, and to be 

independent of the noise on other coordinates. The noise 

variance is actually somewhat larger for coordinates 

near the ends of the pass than for these near the epoch. 

This effect can easily be incorporated in the test 
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programs, If desired. The distribution of the noise la 

approximately normal. Since the first step in the operation 

of the signal processor involves linearly combining several 

hundred data points, the noise distribution on each of the 

coordinates of M|s|r) would be approximately normal 

regardless of the distribution of the range-rate noise. 

The rms noise level of 1.91 x 10“^ used in the test program 

corresponds to the 1.0 cps value used by Guier and 

Weiffenbach in their simulation experiments (G&W i960). 

The noise level is scaled so that the ratio of rms noise 

on each coordinate of r) to the satellite velocity 

^3 (°3 13 preserved. 

Let |Ñ) be the noise on |r) and let |n) be the 

noise on |R>. Note that t|N) - n) has mean zero and 

covariance matrix cr^I. The first coordinate consists of 

(M^|S|Ñ) and an additional term resulting from the d-c 

restoration step. The latter can be found almost exactly 

for small values of cr typical of the satellite navi- 

gaticn system. The error in po due to noise (see 

Table 25) is 

(F M |S|t n) * ls> 

so that 

Po - Po + ^ = po L1+ (¿VlM 
po = ^0/(2^0) •“ fo [1 - (^/p'o)] 

Thus, the noise on p0 is obtained by multiplying the 



154 

noise on pQ by 

then found to be 

(O o/p o * Tlie total noise on . is 

("llN) = [(”ll - ^ ( Po/PoKl Bl] |s|Ñ) (126) 
For any fixed position of the navigator, the bracketed 

expression in Equation (126) is a fixed functional. Thus, 

it is a straight-forward calculation to find a represent¬ 

ation of ]n) for any fixed signal. 

Subsequent calculations on the effect of noise are 

complicated by the mixing of noise and signal in the tensor 

product step. Instead of calculating the covariance matrix 

of the representation error, Monte Carlo simulation over a 

typical ensemble of 24 noise vectors (see Table 23) was 

used for each signal in a test ensemble of 25. The test 

ensemble differs from the typical ensemble used to design 

the processor in that the test ensemble has a much larger 

proportion of near-worst cases than the typical ensemble. 

The mean representation error due to noise Is 

negligible, as is seen from the following calculation. The 

Input to the Kronecker multiplier in Figure 34 is 

M R) -t In)] and the output is 

HI |jR) + I«'* S |n) + |n) ® |r) +|n) 

assuming that errors are due to noise alone. The output 
2 

of the multiplication by the matrix DIM is 
2 2 r 2 ~ 2 

D|M M I [ |r) + |r) ® |N> + In) ® |r) + |N> 

The representation output, assuming no error In the 
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a priori estimate of position, is given by 
2 2 2, 

d|s) = d\s) d|m m| l|r) ® |n) + ¡n)® |r) + |n)J (127) 

Thus, the representation error due to noise alone (see 

Table 24) is the second term in Equation (127) which 

consists of three terms where the first two have zero mean. 

The third noise tertu is of the order of 4 x lO"'*'2 times 

the signal (i.e., -228 db) and may be ignored. 

Inspection of Equation (127) shows that the magnitude 

of the representation error, for a fixed noise input | n), 

depends mainly on the magnitude of the relative longitude 

(7. In the first place, |r) increases in magnitude as 

¢9 increases, slowly for small 0 and linearly for 

large f . Secondly, a major fraction of the magnitude 

of IN) is proportional to and, thus, to p 

The latter is nearly independent of 0 for small ty , 
and varies as f ^ for large ¿y . Thus, the magnitude 

of the representation error for fixed |n) is nearly 

independent of >9 for small y and varies as the 

magnitude of p for large fl . These observations are 

checked by the results of OPT. 

Other Sources of Error 

Epoch measurement errors can arise due to noise and/or 

unpredlcted drift in the frequency f of the satellite 
0 

transmitter. Suppose that the cycle counts over intervals 

of duration T in the vicinity of the epoch were all high 
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by about I.5 cps (l.5cr) and that the slope of the Doppler 

S-curve were 20 cps/sec. The measur'd epoch would then be 

high by 0.075 sec and T} would be *lgh by 0.005° If 

the satellite latitude Increased at the rate of 1°/15 sec. 

If the navigation section employs Method 1, an epoch error 

of such a magnitude would result directly In a latitude 

error of about 0.35 mile (on Earth) and indirectly in a 

small longitude error. The latter is evaluated in OPT for 

errors in Tq of -0.005, 0.000, 0.005, 0.010 degree. 

Epoch errors of the order of 0.005° are higher than 

typical. Even if only two coordinates of r) are used 

to measure 7^, It Is unlikely that the average error In 

the two points will be off in the same direction by as 

much as 1.5cr; and there is no reason to employ such a 

crude epoch measurement. Also, an unpredicted component 

of drift of 1.5 cps is about 10“® times the typical value 

of fc# Stable oscillators for use in satellites can be 

obtained which would have unpredicted drifts of the order 
_ Q 

of 10 fc over a period of an hour or two. Thus, epoch 

errors are appreciable but not large enough to affect the 

feasibility of the system. 

The third source of error considered In OPT is the 

error in a priori estimate of position which affects the 

Po correction, C^, and the column of representation 

corrections. The last of these effects Is least and small 



157 

enough to be neglected. In fact, the magnitudes of the 

representation corrections are small enough (for m = 5) to 

raise doubt concerning the need for Including the repre¬ 

sentation correction step In the processor design. Thus, 

error In a priori estimate of position affects the d-c 

restoration step which, In turn affects the representation 

section output. All of this is illustrated by numerical 

examples based on the results of OPT. 

Operation of the Processor 

Some of the steps in the operation of the represent¬ 

ation section may be clarified by means of the following 

sample calculations. By setting 0=5»O°, these 

calculations are excerpted from Appendix 3. M»st of the 

latter is excerpted from OPT, with designed to 

/ o 
facilitate measurement of small u , by setting ^ - 30 . 

Parameter values used In the computer programs are: 

N r 24 (VPp = i-100 

d = 24° “l/'O = 1^.798 
” P ^ 

Range-rate noise (per coordinate) = 1.910 x 10 rms 

The processor design is given by T bles l8, 19, 21, 2? 

and the following equation 

2 3^5 

<fF = (105) 0-.106271 --194373 -.268333 .889200] (128) 

For (o<,(9) = (30.O, 5.0), we find that pQ= 0.127259, 

p0 = 1879.46, cf0 = 479.571, A =30.16, 0=2.97. The 
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corresponding column r) is found in OPT by evaluating 

C at equally-spaced values of T from -12° to 

+12°. The column r) could be found in OPT (but isn’t) 

by taking first differences of r) (p1U3 one more point at 

-12-5°). The column corresponding to accumulation of r) 

outward from the epoch could be found in OPT (but isn't) 

by subtracting 0.127259 from every coordinate of r). The 

M ¡Sit £> 
column M|r), obtained in the processor by 

plus the d-c restoration step, is found in OPT by M(t 

In the present example, 

M|R> = 

0. 

1 
2 
3. 
4 
5 

1.238808 
-.274608 
.053484 

-.000725 
-.000231 

(129) 

The magnitude of the error in M|r) is 0.000532 from 

Table 17. 

Multiplication of (F and M¡r) in OPT, gives the 

same result as multiplication of (F and M|S|r) in the 

processor. Addition of the correction yields the measured 

value of p0 which fits the theoretical model exactly in 

this error-free example. 

Po = 1877.65 + 1.81 = 1879.46 

Table 21 indicates that the correction will not be off by 

more than about O.80 for any Io error in a priori estimate 

of position, although more detailed tabulation of this and 

other tables is needed to make this and similar statements 



159 

• • 

mure precise. Table 26 indicates that the error in p0 

due to noise will rarely exceed 0.30 in magnitude. The mean 

error in p0 due to noise is zero and the sample standard 

deviation is O.178, for the sample of 24 noise vectors used 

in OPT. 

The a priori estimate of cr0 is 479.571 which yields 

47^71/(2) (1879.46) = O.I27582 for pQ and 

2) (24) + 1‘ (0.127582) = 0.89307^ to be restored to 

(m'iJr). This has already been included in M|r) as given 

in Equation (129). Inspection of Table 10 indicates that 

cr will never be off by more than about 1.30 for any 
0 

Io error in a priori estimate of position. In this example, 

the effects of error in a priori estimate of position on 

cr and p tend to cancel in their combined effect on 
^ o Vo 

the d-c restoration step, and the total error fraction Is 

about (1.3/480)- (O.8/188O) = (1/440) per degree error. 

Corresponding outputs of the 

Kronecker multiplication step 

and multiplication by the 

2 
matrix d|m are shown here. 

,2 2 2. 
d|m 3Ir) 

1 
2 
3 

.162610 
-.000148 

.162567 

1,1 
2,2; 
3, 3< 

4'4 
,5,5, 
1,2, 

,1,3 

>1>4, 
1.5, 
2»3, 

,2, 4 

2.5, 
3,4, 
3.5 
4.5 

1.53^64 

.75409 

.00286 

.00000 

.00000 
-.48110 
.09370 

-.00127 
- .00040 

-.02077 
.00028 
.00009 

-.00005 
-.00002 
.00000 
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Addition of the representation correction column 

1 
yields D|S) = 2 

3 

as the output of the representation section. This result 

is accurate to 6 decimals in this example in which no 

sources of error are present. 

Sample Error Analysis Calculation 

The error analysis performed in OPT is illustrated by 

the following sample calculations. The calculations are 

based on a navigator position typical of those situations 

in which the processor produces estimates of high accuracy, 

i.e., (cx:,$) = (30.0, 5.0). The magnitudes of the various 

perturbations employed in the error analysis ar* also 

typical. 

If the d-c restoration step had resulted in a value 

of \ IR ) that was high by 0.1% and the remaining 4 

coordinates of mJr) were exact, the representation error 

would be 

1 
2 
3 

(see Table 24) and the corresponding east-west distance 

error In the output of the navigation section is approx¬ 

imately 

[(602.)(468.7) + (.423)(.1) - (8.46)(154.2)] (lo~9) 

= (.281 ) ( 10“3) ~ - /^1 (131) 

do"6) (130) 

.162610 
-.000148 
.162568 

1 
2 
3 

.00000004 

.00000030 

.00000006 



This result is obtained by premultiplying the representation 

error by (W w)"1 from Equation (125). The approximation 

is based on the assumption tnat the points |e) and IT ) 

in Figure 28 are so close together that the rows (W W) ^ W 

corresponding to the two points are practically the same. 

For pp of about 4000 miles, the error evaluated in 

Equation (131) corresponds to a distance error of about 1.1 

mile. A likely source of the d-c restoration error assumed 

here would be en a priori position error of about 1/2° (or 

about 30 miles on Earth). Thus, one iteration of the 

processor operation might be expected to bring this error 

well within tolerance for navigation purposes (0.1 to 0.5 

mile). Convergence rates of this sort are typical of all 

navigator positions except those very near the orbital 

plane. 

The first noise sample (see Table 23) given by 

M|S|Ñ) 

1 -.019630 
2 -.294657 
3 .235789 
4 .235334 
5 -.120141 

do-4) 

U32) 

reduces p0 by 0.203 (see Table 25) so that the d-c 

restoration term is high by 

( .203/1879.^6)( .893074) = (.96½) (1er4) 
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(133) 

The direct and Indirect effects of noise are combined as 

Illustrated above in the most recent runs of OPT. The 

representation error produced by the first noise sample 

1 
2 
3 

(see Table 24) leads to an east-west distance error of 

[(602.)(14.1) + (.423)(1.6) - (8.46)(36.5)] (lO'S) 

= (.0818)(10-3) Ä ¡4 - U1 (131*) 

(about 0.33 mile). This error, as In the case in all of 

the results given by OPT, corresponds to the initial 

operation of the processor. 

One Iteration of the processor operation appears tc be 

necessary and probably sufficient, although further study 

of this question Is needed. Each such Iteration would 

accomplish the d-c restoration step using a value of 

obtained from the position estimate produced by 

the preceding operation of the processor. Representation 

error due to noise in each iteration would, therefore, 

include only the direct effect of noise and not the indirect 

effect of noise on the d-c restoration step. Thus, 

jj|H) = M|S|ÍI> (135) 

for each iteration of the processor operation. Prom 

do’6) 

m|n) 

1 
2 
3 
4 
5 

.9450 
-.2947 
.2356 
.2353 

-.0201 



earlier runs of OPT in which the effect of noise on the 

d-c restoration step was omitted, the representation error 

due to the first noise sample is 

1 -3.3 
2 -12.3 
3 -13.^ (136) 

and the error in is (0.0019)(10 ^). 

An epoch measurement error, referred to the o( 

scale, of 0.002° leads to a representation error of 

-1.0 
0.0 
0.1 

1 I-2.4i 
2 0.1 
3 0.4 

and an error in l?(0.00000)(10 ). 

Results 

Extensive listings are available from OPT of the 

errors expected in the output of the representation section 

at the end of the initial operation of the processor. A 

significant fraction of these results is given in 

Appendix 3. The sample error analysis calculation 

described earlier was performed for several cases and the 

resalts are given in the following tables. 

The calculated error fraction in (MilR) due to a 

5° error in the a priori estimate of longitude is given 

in Table 3 for various latitudes. In each case, the 

correct and estimated values of fc were taken as 5° and 

10° (see Tables 10 and 21). Typical errors in initial 

position estimates would be much less than 5°• 
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Table 3 D-C Error Due to 5° Error In Initial Position 

Error Error Fraction 

CX ^ Po Po <"ilR> 
0.0 

15.0 

30.0 

45.0 

60.0 

-5.54 -3.37 

-6.54 -2.51 

-6.56 -0.12 

-5.59 2.17 

-3.86 0.84 

-.0096 -.0071 

-.0122 -.0090 

-.0136 -.0098 

-.0128 -.0069 

-.0084 -.0057 

Representation errors due to an error fraction in 

R) of 0.001 for ¿X = 30° and for several values 

of $ are given in Table 24 along with the representation 

error due to the first noise sample. The corresponding 

east-west distance errors, expressed as a fraction of the 

planet radius, are found by premultiplying the represent¬ 

ation errors by [c)^,/ d crt 
V - ~JJ 

results are given in Table 4. 

from Table 11 and the 

Table 

ex' =30.0° 

Analysis of Navigation Error 

Cross-Track Distance Error 

e Noise Sample 1 (M-lIR) 0.1* High 

-2.0 

-0.5 

0.0 

5.0 

10.0 

-.578 E-6 

1.127 E-6 

•2773. E-6 

8.18 E-6 

25.8 E-6 

-.5^1 

-2.08 

13.82 

.281 

.257 

E-3 

E-3 

E-3 

E-3 

E-3 



Inspection of Tables 3 and 4 indicates that the 

processor operation converges (1.e., the effect of a 

priori position error is attenuated by the processor) for 

all positions except those within a few tenths of a 

degree of the orbital plane. For example, R) Is 

off by 0.1# for an initial posltl n error of about 0.5° 

(roughly 30 miles) and this produces an error in the 

output estimate of about 1.0, 1.1, 2.2, 8.3, 55. miles for 

Q - 10.0, 5.0., 2.0, 0.5, O.o. Table 13 indicates 

that the interval of divergence widens for navigator 

positions nearer the equator. 

The indirect effect of an error in U)^ TQ of 

0.005 on the output of the representation and navigation 

section is given in Table 5 for eX = 30.0° and several 

values of $ . In addition, such an error in epoch 

measurement would have a direct effect of about 0.005 

distance units on the estimate of the latitude of the 

navigator. Clearly, the effect of epoch error on the 

longitude of the final estimate of position is negligible 

compared to the effect on latitude. 

The most significant test of processor performance 

to date is the determination of typical longitude errors 

in the final estimates of position resulting from noise. 

This can be found easily for each possible signal by 

calculating the standard deviation of the east-west 
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distance error over an ensemble of noise vectors. If C 

Is the covariance matrix of the representation error, then 

Variance of ( ~ (W W)'1^ C W (W W)”1 (137) 

Table 5 Effect of Error in Epoch Measurement 

<x = 30.0° T0 - Tq) = 0.003° 

e 10° [o-± - cr. lûê( ) 

-2.0 
42.4 

.1 

.0 
-63.6 

-0.5 
15.0 

.0 

.1 
-89.6 

0.0 .0 
. 3 

-26.9 

5.0 
-2.4 

.1 

.4 
-1.44 

10.0 
“B'.o 

.1 24.2 

--—_____ 

The calculation of standard deviation of the error in 

estimates of has been done for fX = 30.0° and several 

values of 0 using the results of L-S and OPT given, in 

Tables 13 and 26 in Appendix 3. The results of this 

calculation correspond to errors in the estimates produced 

by the initial operation of the processor. Using output 

from earlier runs of OPT in which the indirect effect of 

noise via the d-c restoration step was omitted, the 

ultimate error due to noise was calculated. These results 

along with roughly comparable values read from Figure 1 of 
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Guier and Welffenbach'a paper are given In Table 6. The 

only significantly different conditions between the two 

situations is the satellite altitude; Guier and 

Welffenbach used p8 “ 

343.7 nautical mile. 

Table 6 Cross-Track Error Due to Noise 

<* = 30.0° r = (1.91)(10-6) 
p = 3^37 nautical mile 

\9\ 0.0 0.5 2.0 5.0 10.0 degree 

Cross- 

Track 

Error 

( rms) 

Initial(xlO 6) 1575. 111.8 30.9 I9.8 29.7 planet 

radius Ultimate(xlO 6) 889 38.1 9.8 4.5 9.^ 

Ultimate 3.1 0.1 <0.1 <0.1 *0.1 

nautical 

mile 

G&W i960 >3.0 0.3 0.1 <0.1 <0.1 

Distance to Subtrack 0.0 25.0 103. g5B. 516. 

The preliminary feasibility tests indicate that the 

accuracy of the proposed processor based on the tensor 

product approach is comparable to that based on classical 

least-squares. Thus, the original objective of simpli¬ 

fication of the signal processor for the navigation 

terminal can be satisfied without any accompanying 

relaxation of performance specifications. 

Further optimization of the processor can be obtained 

by v/hitening the representation error. The whitening re¬ 

quired is a function of navigator position. Since the 

matrices used in the navigation section must be found for 

P p ~ 2+00 where we have used 
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each location, there la nc Increase In complexity imposed 

by modifying the stored tables of these matrices to include 

the whitening operation. Preliminary calculation ■- n one 

case indicates that whitening might reduce cross-track error 

due to noise by about a factor of two. 

OPT provides for a repetition of the noise tests with 

Dim |M reduced from 5 to 4. This change pr duces no 

significant change in the representation error due to noise. 

In some cases, the errors are Increased slightly, and in 

other cases, decreased slightly. The main effect of 

reducing Dim |M Is that representation errors due to 

error in the a priori estimate of position are markedly 

increased. Changing Dim XD from 49, as in OPT, to 60I 

or more, as in an actual satellite navigation system using 

the proposed processor would result in a reduction In the 

error due to noise by a factor of 3.5 or more. 

Much more work must be done on the proposed processor 

in accounting for numerous details which have been omitted 

from the preliminary tests. However, sufficient results 

have been obtained to establish the tenser product approach 

as being worthy of consideration by satellite navigation 

system engineers. 



CHAPTER FIVE 

AREAS OF FURTHER STUDY 

Several areas of further study relating to the 

satellite navigation problem In particular and to Ignal 

theory In general are suggested in this chapter. Some of 

these areas have been considered briefly in the course of 

the research project, but results were not sufficiently 

complete for inclusion in the dissertation. 

Satellite Navigation 

The existing versions of OPT and L-3 ought to be com¬ 

bined into a single program including steps corresponding 

to the sample calculations described in Chapter 4. Concur¬ 

rently, the processor designed by OPT ought to be Improved 

by whitening the representation error. This can be done 
2 i 2 _i- 

by replacing o|m with C ¿ &nd W with C W. 

Equation (137) then reduces to 

Variance of ( ^ ) = (W ç'1«)"1! Ç'h Ç"iw (W Ç^W)- 

Mwc^w)'1 (138) 

An equivalent approach which avoids additional complexity 
2 i 

is to leave d|m alone and replace (w W)~ w with 

(w ç^wj-iw Ç"1. 

A complete Monte Carlo simulation of the processor 

should be programmed to test the effect of interactions 

of the various sources of error. Provision should be 

included for non-polar orbits of small ellipticity. 
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descending passes, several hundred data points, epoch at 

an arbitrary Instant on the sampling time scale, parallel 

testing of Methods 1 and 2, replacement of "bad" data 

points, and larger ensembles of signal and noise vectors 

than used In the preliminary feasibility tests described 

In this dissertation. 

The change from polar to non-polar orbits has no effect 

on Dim IA and, thus, no effect on the complexity of the 

processor. Preliminary study of the effect of non-zero 

ellipticlty € indicates that Dim |A would have wo be 

increased from 7 to 15 to account for the signal components 

proportional to € . However, it seems reasonable to 

predict that a factor analysis of {|S>} would show that 

the effective dimensionality required for |B would be 

only 4 or 5. There is no reason to expect increases of 

more than 1 or 2 in Dim ¡M due to non-zero € . 

A study of the proper number of iterations of the 

processor operation ought to be made. This number will 

depend on the a priori estimate of (9 . My prediction is 

that the proper number of iterations is one for all but 

very small values of 0 . 

The processor design can be further improved by using 

the measured M S|R) to obtain an improved epoch measure¬ 

ment. It seems reasonable to expect that an appropriate 

addition to |M would be an element matched to signal 
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differences corresponding to small changes in epoch, i.e., 

an element obtained from 

d lR) 

by orthonormalization. 

Techniques appropriate for compensation of navigator 

motion (with respect to the planet) should be developed 

and analyzed. Preliminary studies indicate that such 

compensation steps can be included in the proposed 

processor and that the bulk of the additional computation 

required can be done between sampling intervals. The only 

significant increase in complexity appears to be the 

necessity of recording relative motion of the navigator 

at each sampling instant. 

In the proposed processor, the accumulation step 

precedes the projection from ~0 onto )77 (e.g.* 

Dim XD = 601, Dim )/1 = 5). Consideration should be 

given to a design based on the opposite sequence of these 

operations. Intuition suggests that the effect of noise 

would be reduced by projecting and then accumulating, but 

rough preliminary calculations indicate that this is not 

always true. The reversed-sequence design would require 

that |M be designed to fit rather than 

The tracking subsystem should be studied with a view 

to the use of the tensor product approach to signal 
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procesaIng. One benefit which would result from the use 

of a modified version of the representation section of 

the processor at each tracking station would be a reduction 

in the amount of information sent to the central tracking 

computer by a factor of more than 100. The main objective 

of a study of this possibility would be to determine 

whether the savings provided by the reduction in commun¬ 

ications would justify the additional cost of signal 

processing at the tracking sites. 

.Signal Theory 

Modulation systems inv Ive time-domain multiplication 

and might be profitably treated in tensor product terms. An 

operation un a modulated signal would then be regarded as 

the tensor product of an operator ( n the modulating signal 

and an operator on the carrier. Radar ambiguity functions 

may be another fruitful application of tensor product con¬ 

cepts as is suggested by the product-basis representation 

of these functi;ns (áussman 1962). 

Vector space concepts and ad hoc bases efficiently 

represent systems modeled classically by sets of ordinary 

differential equations, and tensr product concepts extend 

the approach to systems presently described by sets of 

partial differential equations. Processing of generalized 

space-time signals as in arrays of antennas, hydrophones or 

seismometers are natural areas for further application of 

tensor product spaces. 



APPENDIX 

The notation and nomenclature proposed for general 

use in signal theory is summarized in the first section 

of the Appendix. The second section contains some details 

of the various computer programs which were written to 

evaluate the proposed satellite navigation signal processor. 

Design values, time-domain representatives of typical 

signals, typical errors of various types and other results 

obtained from the computer experiments have been selected 

and presented in the third section of the Appendix. The 

particular symbols used in Chapter 4 are listed in 

Appendix 

Complete output listings of FORTRAN code and results 

f execution are available in The Johns Hopkins University 

Library for all of the programs used in the preparation of 

this dissertation (Ross 1964), however, reference to these 

listings is net necessary for an understanding or evalu¬ 

ation of the design approach. A copy of each of these 

pr grams in both PDRTRAN and binary form is also available 

on punched cards at the Computation Center rf The Johns 

Hopkins University. 



A - 1 SIGNAL THEORY NOTATION 

The three most important objectives of the notation 

and nomenclature developed for use in signal theory are: 

(1) Patterns, signals and operators ought to be 

clearly and conveniently distinguished. 

(2) A representative ought to be clearly and 

conveniently distinguished from the entity which it 

represents. 

(3) The notation should admit the convenient use of 

several bases in the same problem without leading to 

confusi n among different representatives of the same 

entity. 

The first objective Is satisfied by means of the 

Dirac bra, ket and vertical bar. Representatives are 

indicated by omitting the bar or bars from the corre¬ 

sponding symbol for the entity being represented. All 

remaining requirements are met through the appropriate use 

of common type fonts, as shown In Table (. The similarity 

of the first two rows of Table 7 emphasizes the fact that 

the mathematical structure chosen here as corresponding to 

the physical system is an abstract linear vector space 

(and Its dual). Table 7 shows that the notation extends 

conveniently to include the classical models of infinite 

dimensionality. The notation shown for infinite discrete 

time bases may also be used for finite time bases of large 
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dimensionalIty. 

Greek capitals which differ from Roman letters are 

used to denote sets, for example, the field 0 over 

which our vector spaces are constructed. The latter are 

denoted by turning the field symbol on its side, one way 

f r the signal space and the opposite way for the pattern 

space. Subspaces of will be indicated by script 

capitals. For example, |f^ € £2 c )o, ß eß1- = o 

and & g-*- = |0>. 

Table 7 Basic Scheme of the Notation 

Physical entity |h| <o| 

Abstract model F> |h| <o| 

R
e
p
r
1t
i
v
e
 Continuous frequency basis 

Continuous time basis 

Discrete time basis 

Finite-dimensional basis 

F> 

f> 

i> 

H 

h 

h 

H 

<0 

<8 

(s 

<2 

Scalars 
t. 

, ß y iï, . . .y CO 

Standard notation is employed in the dissertation for 

scalars, functions, sets and relations. For the sake of 

completeness, the basic mathematical notation is 

summarized in Table 8. Most of the basic formulas in 

Chapter 2 and 3 continue to apply if the field is complex, 

as might be convenient in problems involving amplitude- 
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Table 8 Basic Mathematical Notation 

A 

< 

< 

<P0 
/ 

Pr 

Tr 

JL 
y* 

û 
{} 
foj] 
Dg H 

equals 

approximates 

= , by definition 

Is less than 

Is not greater than 

addition 

subtraction 

€ belongs to 

cz Is Included In 

ci Is properly included in 

union over 1 of 

intersection over 1 of 

square root ( + ) of 

Dim dimensionality of 

product of <t> and 0 
division 

conjugate of 

ellipsis 

probability of 

trace of 

orthogonal to 

estimate of 0 

? y 
sum over i of 

product over i of 

Cl£> implies 

if and only if 

Ejjl expectation over 1 of 

Det determinant of 

¿¡n i if i=j, o if i*j 

p time derivative of p 
set of elements listed or defined within the brackets 

matrix of m rows and n columns of elements 

matrix formed by zeroing non-diagonal elements of H 
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and/or phase-modulated sinusoidal carriers. However, in 

the application study of Chapter 4, Q is the field of 

real numbers. 

The letters 1, J, k will normally be reserved for 

indices and n, m, N for maximum indices. Indices over the 

natural numbers will be indicated by the ellipsis and the 

absence of a maximum index. 

A fairly complete set of examples of the use of the 

notation, including the extension to tensor product spaces, 

is presented in Table 9, Note that <S> may be included or 

omitted in the symbol for the matrix f)®(g since it may 

be regarded either as the Kronecker product of P) and 

(G or as the ordinary matrix product of F) and (G . 

Similar remarks apply to the operator |f)(g| . In 

Table 9 and Figure 36, XD and P are finite-dimensional 

vector spaces over a field Q ; CX and T are the 

duals of XD and P . 

Matrices in which every element is equal to one are 

useful in representing d-c components (constant in time) 

of signals and in calculating ensemble means and covari¬ 

ances. Such matrices may be written conveniently in one 

of the forms: l), (I, l)<I or 

The mixed symbols for bases are |B in XD and d| 

in CX are important and useful. They are defined by 



Table 9 

Abstract Entitles 

Examples of the Use of the Notation 

---—. ..Representatives 
signal vector In iO 

pattern vector In C! 

linear operators on "), or on O' 

Inverse of !h| 

operator multiplication 

match of |f), (g ¡, ¡Hj 

identity operator 

null vector, pattens, operator 

direct sum of jp) InOand |a) in P 

direct sum of g| in CX and (x| in 

tensor product of ¡f) and |a) 

tensor product of |p) and jp) 

tensor product of (G| and (i| 

tensor product of |H| and |K¡ 

product of |p) and <^G | 

linear functional (g| evaluated at 

norm of |p), (p| or jp| 

If) 

(g 

II , |h 

¡h'1 I 

IlIhI 

|H| 

I1! 

|0)* (0|, |o| 

!f) ® Ia) 

(G| (x! 

|F) ?) ¡a) 
2 
Ip) 

(g I <S> (x 

|H| |K| 

lF><Gl I F)(G 
F) <OiF> = 0x(G P) 

= 4 = ¡Fl¡ 

F) 

<G 

L, H 

H'1 

L H 

(I , G), H 

1 

2 * g>2 

p) ^ ¿) 

<Q $ t 
e) ® 4) 
2, 
P) 

(g ® 

R ® K 

column, or nxl matrix 

row, or Ixn matrix 

nxn matrices 

Inverse of Tf 

matrix multiplication 

adjoint of P),(G,H 

unit matrix = 

null column, row, matrix 
oo 

Kronecker sum of p) and a) 

Kronecker sum of (g and (x 

Kronecker product of p) and A) 

Kronecker product of F) and F) 

Kronecker product of ^G and (X 

Kronecker product of H and K 

product of F) and (0 

product of row '0 and column F^ 

norm of P), (F or P 
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scalar magnitude 

-O 
signal vector 5 scalars 

c/ 
P 

a) -/Je* 

scalar 

o< j 

F H o G 

(g!hIf)« 

= IV 

multiplier generat r transducer sifter 

|A>- 

z) = |l|a) 

eperat r times signal 

A> 

Z)= L A) 

— 

matrix times c lumn 

|F>- 

1°)' 

A |r) = |f) + |g) 
-f- ————O 

signal adder 

g)=/T 

column adder 

F>- 

|g)—o 
|r) = |f> © |a) 
—o 

direct sum 
f signals 

, s JOoTI = lF) w ¡Q^ |g)—o (?)-t> 

tensor product 
of signals 

G 

F)—=(^V^ R) = f)0G) 

0 

Krcnecker sum 
of columns 

F)«G) 

Kronecker product 
of c lumns 

V> 
B ~C> 

signal 

generation 

Figure 36 

■o 

signal 
filtration 

B 

signal 
measurement 

Notation for System Diagrams 
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If D| is the dual of ¡B, then |Bö) = |l | and D|a = I. 

If OÍ and XD are inner-product spaces, we frequently 

confine our attention to bases which are orthonormal with 

respect to the inner product and then d| = EÍ | , B | B = I . 

The general section on signal theory notation and 

nomenclature is closed with the set of examples of system 

diagram notation shown in Figure 36. Extensions of our 

notation suitable for use with continuous time and 

frequency bases and tying in closely with the classical 

approach have been developed and are described in the 

literature (Lai i960, Huggins I963). For example, 

idealized impulse generators symbolized by the ket and 

samplers symbolized by the bra are useful for system 

analysis purposes. These idealized elements are 

represented in the time domain by the Dirac delta function. 

A - 2 COMPUTER PROGRAMS 

Brief descriptions of the programs developed in this 

project along with majcr subroutines are presented in 

Appendix 2. The names of these programs are: EPOCH, 

BASIS, RANGE, TRY, OPT and L-S. The dissertation is based 

on results of EPOCH, OPT and L-S. The features of BASIS 
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and FLANGE are effectively included in OPT, and TRY is 

based on a processor design inferior to that used in OPT. 

All programs were ‘Titten in FORTRAN and all runs used 

one of the IBM 709^ computers at the Applied Physics 

Laboratory of The Johns H pkins University except one on 

the 709 at the IBM Washington Systems Center. OPT, the 

largest of the set, consists of 997 FORTRAN statements and 

comments and requires O.OJ hr to execute (for N = 24) and 

O.08 hr to compile on the 709^• 

EPOCH 

The purpose of the EPOCH program is the preparation of 

tables of the several Important quantities involved In the 

satellite navigation problem. Epochal values of range, 

range-square and their second derivatives are tabulated 

along with the altitude of the satellite above the hori¬ 

zontal plane at eacn end of the pass. These values are 

found for each of 208 navigator positions given in geodetic 

coordinates ( A , cÿ) and Inertial coordinates (<*, $)• 

The latter serve as inaependent variables In all programs. 

The 208 positions are defined by all combinations of 

o< = 0,5,...,75 and C? --30,..., -5,0,5. ., 30 degrees. 

Input data to EPOCH consists of pg/ pp, (J3/Cd^ and ; 

the output consists of tabulations of 8 quantities as 

functions of (of,0) plus a listing of basic assumptions, 

input data, etc . 
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The purpose of the BASIS program is the study of the 

complete 7-dimensional basis |A of range-square signals. 

The program represents |A on [P, normalizes |a, and 

finds the Oram matrix of the normalized basis. Inspection 

of this Gram matrix shows that a 3-dimensional sub-basis 

|b is effectively complete. The program continues by 

calculating D|P and D|A in both normalized and unmod¬ 

ified forms. Finally, the basis |b is tested by finding 

the errors involved in projecting a typical ensemble (|s)} 

of 25 range-square signals onto The 25 signals 

correspond to 25 navigator positions: ©< = 0, 15, 30, 45, 

60 and (9 = 10, -5, 0, 5, 10 degrees. 

In all of the program executions, N = 24 and Dim |P 

= 49 rather than 6OI as in the proposed system. This 

reduction in dimensionality does not affect the validity 

of the feasibility tests of the proposed processor. The 

reduction was made to avoid unnecessary computer time. 

The particular choice of 49 was based on the number of 

lines which can be conveniently tabulated on each page of 

printout and on the fact that 49 is a perfect square. The 

choice here of 49 data points and 3/ p p = 1.1 permits 

rough comparison with results given in the literature 

(Q&W i960) based on 47 data points and (pa “pp) = 

nautical miles. 
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The purpose of the RANGE program is to explore the 

effective dimensionality of a typical ensemble ||r)} of 

25 range signals. The program represents the ensemble on 

is subtiicted from r> . The resulting 

to a typical { t|s|R)} . The covar- 

|t. Then l) p0 is 

columns correspond to a 

lance iratrix C of this ensemble and its eigenvalues are 

found. Results of this program indicated that a basis for 

the measurement of ^)} would probably not require more 

than 5 dimensions. 

The RANGE program is included in OPT in a modified 

form where considerations other than least-squares 

approximation are used in selecting the first two elements 

of |m. The third element is designed to fit the mean of 

the residuals of {|H>} after the components on the 

first two elements of |M are removed. The eigenvector 

technique is then applied to the residual covariance after 

the components on the first three elements are removed. In 

both RANGE and the corresponding subprogram of OPT, the 

basis |M is tested by finding the errors in using it to 

represent 

The tensor product approach to the design of the 

satellite navigation signal processor ought to be valid 

for a wide variety of choices of measurement basis |M. 
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The purpose of the program TRY was to test the feasibility 

of a processor design for an arbitrary choice of |M, in 

particular, the basis obtained by orthonormalizlng 

over 49 instants in the interval -NT^T^NT. Several 

runs were made with different choices for the exponents. 

The basis defined by k = 0, 1, 2, 4, 6 gave best results 

of the bases tested. Development of TRY was dropped as 

soon as OPT was debugged. To obtain a version of TRY 

comparable to the present form of OPT, the simplest 

approach would be to rewrite the section of OPT in which 

IM is designed. 

OPT 

The purpose of the OPT program is to design and test 

a processor with the measurement basis |M chosen so as to 

improve one or more aspects of performance. The outline 

of OPT Is fs follows. 

1. 

3* 

4. 

5. 

6. 

Read 8 parameters from data card and initialize. 

Execute subprogram BASIS. 

Construct typical {lR)} 25 cases. 

Design 5-dimensional basis M, find 

and errors. 

t2 / Design D|M, (F and typical pQ corrections. 

Find typical {m|r// and outputs of d|M. 
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7. Design typical representation corrections. 

8. Find typical representation section outputs and 

errors. 

9. Print results of zero-error case for typical 

ensemble. 

10. Design B|s|t. 

11. Construct test ensemble {|H>} by replacing 10 

typical cases with near-worst cases. Modify 

corrections and standards accordingly. 

12. Repeat steps 6, 8, 9 for test ensemble with 

(MjIr) multiplied by 0.999, 1.000, 1.001. 

13. Construct noise ensemble of (2N+1)-columns. 

14. Premultiply each noise column by M|S|t. 

15. Find effect of nolee on (50. 

16. Clear 25 arrays for covariance matrices of 

representation error due to noise. 

17. Add each noise column to each M|r) in the test 

ensemble. Repeat steps 6, 8, 9 and accumulate 

covariances. 

18. Complete the computation of the covariance 

matrices. 

19. Reduce Dim |M from 5 to 4 by dropping |m^) 

and repeat steps 17j 18. 
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20. Replace teat ensemble with typical ensemble and 

restore |M^) to |M. 

21. Repeat steps 3» 6, 8, 9 for epoch error on <X 

scale of -.005, .000, .005, .010. 

All results described above are printed with the exception 

that printing of the representation output and error due to 

noise la limited to the first 5 noise samples. The number 

of noise samples is controlled by the parameter N3AMP on 

the data card. This parameter also controls the design of 

|m2) . If NSAMP is odd, t|m2) Is linear In l'; If even, 

(Mg) is optimized for the measurement f small fc • 

The eight parameters in the data card are: N, 

Ps/P p, ^/^p' DLAT' DL0N' 3IGMA and N3AMP* The 

spacing of the navigator positions used in defining the 

typical and test ensembles Is controlled by DLAT and DLON. 

The rms noise on each range-rate coordinate Is controlled 

by SIGMA. 

L-S 

The purpose of the program L-S Is to calculate matrices 

which can be used to transform representation error into 

corresponding navigation error for two possible designs of 

the navigation section. We restrict attention In this 

dissertation to the simpler design in which the measured 

oC is taken as the estimated ©< and Q is the least- 

squares estimate of (9 based on the measurement of the 
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column D |s) . Considering only the matrices associated 

with he simpler design, the scalars and matrices computed 

by L-S are: \ , <f>, po, , dÿ/ÔQ , Òfa/ÒQ, 

àox/òQ , dQ/òuv [dex^dô], [ât^/ = w, 

ww, (ww)"1, [à^/àcr], [a^/ao-l, [òp/aer], 
TN X 1 ^ ” oj 
[&p0/ • Thea® are printed for each of the 25 

positions corresponding to the test ensemble in OFT. Also, 

Det W W is printed for of = 0, 15, 30, 45, 60 and 0 = -0.20, 

...,-0.02, 0.00, 0.02,..., 0.20 degrees. 

Input to L-S consists of the first 5 parameters on the 

same data card used with OPT. In addition, the matrix DjA 

and the 5 coluams of d|m associated with are required 

from OPT. At present, the latter is accomplished by 

program statements copied from results of OPT. To avoid 

this nuisance and for other reasons, OPT and L-S ought to 

be combined into a single program. An even better arrange¬ 

ment would be to divide OPT Into several subroutines which 

would then be controlled along with L-S by a simple 

executive program. 

Subroutines 

OPT is the only one of the programs which uses any 

subroutines not included in the FORTRAN System. Three 

computational subroutines obtained from the program library 

of The Johns Hopkins University for use with OPT are: 

EIGEN (7.02.01), RNV (8.03.04) and S (7.01.04). 
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BIQBN finds eigenvalues and eigeneolunins of a real 

synsetrlc matrix using Givens' method. The subroutine* Is a 

modification of SHAKE routine 664, EIGEN was checked by 

comparing the sum of the eigenvalues with the trace and by 

noting that the basis |M designed with the aid of EIGEN 

fits {|r)} quite well. 

HNV is a pseudo-random number generator based on 

summations of 48 consecutive terms of a Fibonacci sequence. 

The distribution of the numbers generated by RNV is approx- 

imately normal with zero mean and unit variance. The mean 

and variance of the noise coordinates generated as well as 

the correlation between adjacent noise coordinates was 

checked in OPT. The sample mean, standard deviation and 

correlation of adjacent pseudorandom numbers were found to 

be 0.0127, 0.994 and O.OO76 for the sample of II76 numbers 

generated for an ensemble of 24 noise columns of 49 

elements each. RNV was written by K. R. Wander at the 

Applied Physics Laboratory. 

The subroutine S provides for many of the common 

matrix operations but it was used in OPT for inversion only. 

The Grout method with modifications by Wilkinson is used in 

S to calculate the inverse B of a given matrix A. The 

inverse given by S was improved in OPT by 3 iterations of 

the algorithm 
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A - 3 SAMPLES OF COMPUTED RESULTS 

Presented here are selected results produced by some of the 

programs described in Appendix 2. Table 10 is an excerpt from 

EPOCH, Tables 11 and 13 from L-S, and the remainder of 

Appendix 3 is from OPT with |m2) optimized for the measurement 

of small O . Many of the tables are photographically copied from 

the computer printouts. Floating point results are given in the 

standard FORTRAN form, e. g. , -0. 139698E-08 means 

(-0. 139698)( 10“®}. Magnitudes of various quantities are generally 

accurate to at least 6 significant digits; values of various errors 

and corrections are of considerably less accuracy, of course. 

Table 10 %(<* 9@) 

o< 
0 

10 
15 
20 
25 
Î0 
35 
40 
45 
50 
55 
60 

e 5 
10 

0.482 108H-03 
0.482597E+03 
0.483067C+03 
0.483504E+03 
0.4838931:+03 
0.48422 3E +03 
0.484484t+03 
0.484668L+03 
0.484769E+03 
0.484783E+03 
0*48471it+03 
0.484553E+03 
0.4843l6E:+03 

0.483958E+03 
0.483941E+03 
0.483891E+03 
0.4838 L0E + 03 
0.483 7 COE +0 3 
0.483565E+03 
0.483408E + 0 3 
0.483234E+03 
0.483049E+03 
0.482858E+03 
0.482667E+03 
0.482482E+03 
0.482308E+03 

0.482108E+03 
0.481613E+03 
0.481129E+03 
0.4B0670E+03 
0.480249E+03 
0.479879E+03 
0.4795 71E+03 
0.479334E +03 
0.479177E+03 
0.479102E+03 
0.479113E+03 
0.479210E+03 
0.479389E+03 

0.476573E+03 
0.475643E+03 
0.4 74820E+03 
0.474126E+03 
0.473583E+03 
0.47 320 7t+0 3 
0.47 3008E + 03 
0.472993t+03 
0.4 73162C + Q3 
0.473513E+03 
0•474036E+03 
0.474715E+03 
0.475531E+03 

All angles tabulated in Appendix 3 are given in degrees. 



Table 11 ty/èGj for Ois 30° 

e j = 1 j=2 . .tl..... 

-2.0 -1.50 -.00264 -.0135 

-0. 5 -5.97 -.0421 -.350 

0.0 -.000631 -9.59 -89.7 

5.0 .602 -.000423 -.00846 
. 

10. 0 1 .302 -.000105 -.00324 

Table 12 Correlation Between 

J 
1 2 3 

i 1 

2 

3 

4 

5 

6 

7 

1.000000 

0.000000 

0.000000 

0.000000 

1.007675 

0.ocoooo 

1. 007640 

0.000000 

1.000000 

0.000000 

0.999992 

0.000000 

1.000000 

0.000000 

0.000000 

0.000000 

1.000000 

0.000000 

-0.010317 

0.000000 

-0.010270 
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e 
-0.16 

-0.14 

-0.12 

-0.10 

-0.08 

-0.06 

-0.04 

-0.02 

0. 
0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

Table 

<* 

0.0 

0.381100L-0? 

0.2018^36-02 

0.2144506-02 

0.148980E-C? 

0 .9541416-03 

0.51/5156-03 

0.239S26E-03 

0.6137176-04 

0.1853716-05 

0.6137176-04 

0.2399266-0 3 

0.5375156-03 

0.9541416-03 

0.1489806-02 

0.2144506-02 

0.2918236-02 

0.3811006-0? 

13 Det W W 

15. 0 

0.3581726-02 

0.? 749676-02 

0. 202 86 76-02 

0.1418726-02 

0.9197966-03 

0.5318996-03 

0.25502 16-03 

C.8915256-04 

0.3428656-04 

0.9041566-04 

0.25 75306-03 

0.5356246-03 

0.9246886-01 

0.1424726-02 

0.2035706-02 

0.2757636-0? 

0.3590506-02 

for Near-Overhead Passes 

30. 0 

0.2965 17E-0? 

0.2298106-U2 

0.1719976-0? 

0.1230996-02 

0.8 111 396-0 3 

0.5204031-03 

0.2987756-03 

0.1662436-0 1 

0. 1227966-03 

0.1684226-03 

0. 3031 1 36-03 

0.5268556-03 

C.8396386-03 

0.124145L-02 

0.1732296-02 

0.2312116-02 

0.2980986-02 

45. 0 

0.2130086-0? 

0. 1686746-02 

0.1 102706-0? 

0.9779666-03 

0.7125196-03 

0.5063556-03 

0.3594646-03 

0.2718386-03 

0.2434676-03 

0.2 743446 -03 

0.3644(16-03 

0.5138086-03 

0. 7223786-93 

0.9901616-03 

0.1317156-02 

0.1 70335C-U2 

0.2143736-02 

60. 0 

0.1301346-02 

0.1080646-02 

0.8895296-03 

U.7279936-03 

0.5960336-03 

0.493644L-03 

0.4208236-03 

0.3775666-03 

0.3638686-03 

0.379727C-O3 

0.4251396-03 

0.5001006-03 

0.6046076-03 

0.7386576-03 

0.9022456-03 

0.1095376-02 

0.1318036-02 



19;.' 

-1 * 

- I H 

-1 r 
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- 1 
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5 

4 
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14 

l 1 

12 
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15 
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10 

24 

2 1 

22 
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Tabl e IS 1 ypi cal f |s) } 

ALPHA 

0. 
0. 
0. 
0. 
0. 

15.0 
15.0 
15.0 
15.0 
15.0 

iO.O 
30.0 
30.0 
30.0 
30.0 

<»5.0 
45.0 
45.0 
45.0 
•'5.0 

60.0 
60.0 
60.0 
60.0 
60.0 

THETA 
« • • • • 

ERROR ENERGY ERROR/SIGNAL 

-10.00 0. 
-5.00 0. 

0. 0. 
5.00 0. 

10.00 0. 

-10.00 0. 
-5.GO 0. 

0. 0. 
5.00 0. 

10.00 0. 

I30385E-0/ 
y313? 3E-08 
884756E-08 
838190E-08 
9313231-08 

558 794E-08 
558794E-08 
9313231-08 
l30385t-07 
111759E-0/ 

0.69459/E-07 
Û.I 3038 7E-06 
0.191569E-06 
0.117349E-06 
0.496141E-07 

0.316171E-07 
C.HC0436E-07 
0.201727E-06 
0.188433E-06 
0.644 83<» E-0 7 

10.00 
-5.00 

0. 
5.00 

10.00 

0. 
0.651926E-0H 
0.884756E-08 
0.130 385E-07 
0. Ill 759E-0 t 

0. 
0.1U0465E-06 
0.191866E-06 
0.2C4013E-06 
0. 796882E-U 7 

-10.00 
-5.00 

0. 
5.00 

10.00 

0.7<t505ttE-0R 
O.lll759E-07 
O.lll759E-07 
O.130385E-07 
0.130Í85E-07 

0.704436E-07 
0.191687E-06 
0.242 747E-06 
0.22 7550F-Ü6 
0.127978L-06 

-10.00 
-5.00 

0. 
5.00 

10.00 

0.55B794E-08 
0.931323E-08 
0. IC7102E-O7 
0.107102E-0 7 
0.931 323L- -08 

0.769412E-07 
0.i79054E-06 
0.2 3 3008E-06 
0.208986E-06 
0.13228HE-06 

Represented on |b 

CtlflRO 1 NATES 

0.435562 
0.183936 
0.099838 
0.183936 
0.435562 

0.415295 
0.178540 
0.099839 
0.178079 
0.411637 

0.355375 
0.163253 
0.099838 
0.162610 
0.350245 

0.271266 
0.142160 
0.099837 
0.141664 
0.2672 75 

0.185819 
0.120988 
0.099836 
0.120772 
0.1840 7 1 

0.000236 
0.000119 
0.000000 

-0.000119 
-0.000236 

0.000187 
0.000077 

- 0.OOOu 34 
-0.000145 
-0.000254 

0.000120 
0.000030 

-0.000059 
-0.000148 
-0.000236 

0.000051 
-0.000009 
-0.000069 
-0.000128 
-0.000186 

O.OOOüOl 
-0.000030 
-0.000059 
-0.000089 
-0.000118 

0.161545 
0. 163422 
0.164049 
0.163422 
0.161545 

0.162609 
0.163894 
0.164000 
0.162937 
0. 160720 

0. Î63634 
0. 164228 
0. 16386 j 
0.162568 
0.16034 5 

0. 164345 
0.164332 
0. 163682 
0. 162412 
0.160521 

0.164542 
0.164177 
0.163499 
0.16251? 
0.161207 
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Table 16 

194 

-24 
-23 
-22 
-21 
-20 
-19 
-18 
-17 
-16 
-15 
-14 
-13 
-12 
-11 
-10 

-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

J 

1 2 3 4 5 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

. 142857 

. T12857 

.142857 

.142857 

. 142857 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

.142857 

. 142857 

. 142857 

.142857 

. 142857 

. 142857 

. 142857 

.142857 

.142857 

.142857 

.142857 

.142857 

. 142857 

.142857 

. 142857 

.142857 

.142857 

. 142857 

. 142857 

. 142857 

.142857 

. 142857 

. 142^57 

.142857 

. 142857 

. 142857 

. 142857 

.142857 

-. 191698 
-, 175114 
-. 158232 
-.141048 
-. 123565 
-. 105785 
-.087711 
-.069352 
-.050720 
-.031835 
-.012726 
.006565 
.025979 
.045434 
.064817 
.083975 
.102709 
.120758 
.137794 
.153435 
.167223 
. 178674 
.187305 
.192693 
.194532 
.192675 
.187158 
. 178188 
. 166104 
. 151318 
. 134269 
. 115369 
.095002 
.073481 
.051061 
.027947 
.0Ü4295 

-.019776 
-. 044179 
-.068848 
-.093736 

118809 
-.144042 
-. 169419 
-. 194929 
-.220563 
-.246316 
-, 272187 
-.298172 

.446069 

.383726 

.324762 

.269364 

.217726 

.170058 

.126585 

.087536 
. 053151 
.023670 

-.000685 
-.019706 
-.033237 
-. 041186 
-. 043577 
-.040575 
-.032555 
-. 020148 
-. 004316 
.013724 
.032346 
.049736 
.064011 
.073456 
.076788 
.073361 
.063259 
.047248 
.026605 
.002866 

-. 022397 
-. 047788 
-. 072081 
-. 094402 
-. 114130 
-. 130879 
-. 144460 
-. 154821 
-. 162023 
-. 166193 
-. 167508 
-. 166167 
-. 162385 
-.156381 
-. 148365 
-.138545 
-. 127117 
-.114264 
-. 100156 

. 091705 

. 031918 
-. 021887 
-. 069393 
-. 1 10290 
-. 144291 
-. 171134 
-. 190606 
-.202551 
-.206902 
-. 203688 
-. 193076 
-. 175405 
-.151190 
-. 121200 
-. 086437 
-. 048170 
-.007939 
.032529 
.071270 
.106354 
. 135887 
. 158221 
.172114 
.176805 
. 172165 
.158651 
. 137305 
. 109629 
.077460 
.042831 
.007810 

-. 025657 
-. 055781 
-. 081024 
-. 100129 
-. 112098 
-. 116187 
-. 111892 
-.098899 
-. 077051 
-. 046331 
-. 006829 
.041291 
.097806 
.162441 
. 234911 
. 314885 
. 102050 

.287598 

. 142559 

.026313 
-. 061622 
-.122170 
-. 156738 
-. 167316 
-. 156257 
-. 126916 
-. 083150 
-. 029500 
.028883 
.086108 
.136447 
.174135 
.194144 
. 192521 
.167813 
. 120953 
.056390 

-. 018686 
-.094180 
-.158823 
- 202600 
-.218029 
-.202536 
-.158894 
-. 094294 
-. 019034 
.055745 
. 120047 
. 166301 
.190261 
. 191091 
. 170115 
. 131396 
.079811 
.021163 

-. 038713 
-.094038 
-. 139664 
-. 171076 
-. 184253 
-. 176083 
-. 144014 
-. 086153 
-. 001133 

. 112102 

.253974 
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Table 17 Typical (|r)} Represented on jM 

ALPHA THETA ERkCK fcNCKGY CíIÜRÜINATlS 

0. 
0. 
0. 
0. 
0. 

- 10.00 0. bC6639h-06 1.703796 
-5.00 0.^23517E-06 1.2ÖJ65L 
0. 0.208616É-06 1.101464 
5.00 0.31?924t-06 1.2^3651 

10.00 0.506639E-06 1.703796 

-0.201131 
-0.266d56 
-0.310345 
-0.2667 7H 
-0.201001 

0.042735 0.007036 
0.062231 Ü.OÜC83J - 
0.056435 -0.007119 
0.052635 0.000600 
0.043401 0.006657 

15.0 -10.CO 
15.0 -5.00 
15.0 0. 
15.0 5.00 
15.0 10.00 

0.5C6539E-06 
0•312924E-06 
0.2 384 19E-06 
0.2831221-06 
0.4470 35E-06 

1.675414 
1.273645 
1.101372 
1.271092 
1.667396 

-0.205 716 
-0.269613 
-0.310266 
-0.263512 
-0.204188 

0.043592 0.006809 
0.052644 0.000441 
0.056489 -0.007150 
0.052843 0.000261 
0.043935 0.006425 

30.0 -10.00 
30.0 -5.00 
30.0 0. 
30.0 5.00 
30.0 10.00 

0.536442E-06 
0.193715E-06 
0.208616E-06 
0.283122L-06 
0•44 7035E-Û6 

1.585261 
1.243011 
1.101116 
1.238808 
1.572447 

-0.218267 
-0.276517 
-0.3100 76 
-0.274608 
-0.215537 

0.045720 0.006019 
0.053491 -0.000626 
0.056510 -U.007160 
0.053484 -Ü.000725 
0.045723 0.005692 

45.0 -10.00 
45.0 -5.00 
45.0 0. 
45.0 5.00 
45.0 10.00 

0.387430E-06 
0.238419E-06 
0.238419E-06 
0.1937 16E-06 
0•29002 3t-06 

1.447286 
1.198535 
1.100769 
1.194048 
1.434428 

-0.239177 
-0.286529 
-0.309 125 
-0.284228 
-0.235659 

0.048921 0.004225 
0.054560 -0.002336 
0.056491 -0.007148 
0.054398 -0.002336 
0.048638 0.004030 

60.0 -10.00 
60.0 -5.00 
60.0 0. 
60.0 5.00 
60.0 10.00 

0.208616E-06 
0.193715E-06 
0.193715E-06 
0. 19 3715E-06 
0.2533208-06 

1.289279 
1.151257 
1.100419 
1.147718 
1.280187 

-0.267484 
-0.297569 
-0.309381 
-0.295459 
-0.263916 

0.052585 0.000755 
0.055554 -0.004447 
0.056438 -0.007117 
0.055334 -0.00437G 
0.052164 0.000751 

0.000282 
0.000269 
0.000246 
0.000244 
0.000322 

0.000240 
0.000266 
0.000249 
0.000242 
0.000280 

0.000106 
0.000249 
0.000251 
0.000231 
0.000143 

0.000104 
0.000185 
0.000250 
0.000175 
•0.000073 

•0.000257 
•0.000038 
0.000247 

•0.000041 
■0.000240 
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-2 3 
-22 
-21 
-20 

-19 
-18 
-17 
-16 
-15 
-H 
-13 
-12 
-11 
-10 

-9 
-8 
-7 

-5 
-4 

-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
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Table 18 I|sJm [{^>1^)] 

J 
I 

0. 

-. 142857 
-. 28 57 14 

-. 42857 1 

-.571429 
-. 7 14286 

-. 857 143 
-1.000000 
-1. 142857 
-1.285714 
-1.428571 

-1.571429 
-1.714286 
-1.857143 
-2.OÜOOOO 
-2.142857 
-2.285714 
-2.428571 
-2.571428 
-2.714286 
-2.857143 
-3.000000 
-3.142857 
-3.285714 
-3.42857 1 
3.428571 
3.285714 
3. 142857 
3.000000 

2.857143 
2.714286 
2.571428 
2.428571 
2.285714 
2.142857 
2.000000 

1.857143 
1.714286 

1.571429 
1.428571 
1.285714 
1.142857 
1.000000 

.857143 

.714286 

.571429 

.428571 

.285714 

. 142857 

2 

0. 

, 191698 
. 366813 
.525044 

.666093 

.789658 

.895443 
,983154 

1.052505 

1. 103225 
1.135060 

1.147786 
1.141221 
1. 1 15242 
1.069808 

1.004991 
.921016 
.818307 

.697549 

.559755 

.406320 

.239097 

.060423 
-.126881 
-. 319575 
-. 514108 

-.706783 
-. 893941 

-1.072129 

-1.238233 
-1. 389551 
-1.523820 

-1.639189 
-1.734191 
-1.807671 

-1.858733 
-1. 886680 
-1.890975 

-1.871199 
-1.827020 
-1.758172 
-1.664437 
-1.545628 
-1.401586 
-1.232166 
-1.037238 
-.816675 
-.570358 
-. 298172 

_3_ 

0. 

-.446069 
-. 829795 

-1. 154557 
-1.423921 
- 1.64 1646 
-1.811704 

-1.938289 
-2.025826 
-2.078977 
-2. 102647 
-2. 10 1962 
-2.082256 

-2.049019 
-2.007833 
-1.964256 
-1.923681 

-1.891126 
-1.870978 
- 1.866662 
-1.880386 
-1.912732 
-1.962467 
-2.026478 
-2.099934 
-2. 176722 
-2.¿50083 
-2. 3 1 3342 
-2, 360590 
-2. 387195 
-2. 390061 
-2.367665 
-2. 319877 

-2.¿47796 
-2. 15 3 39 3 
-2.0 39262 
-1.908382 
-1.763924 
-1.609102 
- 1.447080 
-1.¿80887 

-1 . 1 1 3 379 
-.947213 
-.784828 
-. 628447 

-.480082 
-. 34 15 37 
-.214420 
-. 100156 

4 

0. 
-.091705 

-. 12 3623 
-. 101735 

-. 0 32 342 
.077948 

.¿22239 

.393373 

.583980 

.786531 

.993433 
l.197121 
1. 390197 
1.565601 
1. 7 16791 

1.837991 
1.924428 
1.972598 
1.980537 
1.948008 

1.876739 
l.770384 
1.634498 
l.476276 
1. 304162 
1. 127 356 

.955191 

.796540 

.659235 

.649607 

.472147 

.429316 

.421505 

.447162 

.502943 

.5839o7 

.684096 

.796194 

.912381 
l.024274 
1.123172 
1.200223 
1.246554 
1.253384 
1.21209 3 
1. 114287 
.951846 
.716935 
.402050 

5 

0. 

-.287598 
-.430157 
-. 456470 
-. 394848 

-. 27 2678 
-. 1 15940 
.051377 

.207633 
. 334550 
.417700 
.447200 
. 41.8 317 

. 332209 

. 195762 

.021 ó27 
1725 17 
365038 
532851 
65 3804 
7 10194 

-. 691508 
597328 
438505 

-.235905 
017876 

. 184660 

. 343554 

. 4 3 7848 

.456882 

.401136 

.¿81090 

. 1 14788 

0 7 547 3 
-. 2 6 6 5 6 4 

-.436679 
-.568075 
-.647886 

669050 
-.630336 

536299 
396635 

225559 
04 1 306 

. 1 34776 

.278790 

.364943 

.366076 

.253974 
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Table 19 Projection Matrix (Transposed) 

(1, D 
(2.2) 

(3.3) 
(4.4) 
(5.5) 
(1,2) 

(1.3) 
(1.4) 
(1.5) 
(2.3) 
(2.4) 
(2, 5) 
(3.4) 
(3.5) 
(4.5) 

.204082 

.122961 
-. 061154 
.093107 
. 181090 
.313861 

-. 074591 
023998 

-. 003900 
.086673 
.265782 
.034457 
.118534 

-. 153735 
-. 213569 

.000000 

.057689 
-. 101395 
.044573 

-.001192 
-.037318 
-. 191437 
.108826 

-.011436 
.195292 

-. 129750 
.010498 

-. 014802 
-. 015599 
.002724 

.000000 

.079178 

.258883 

.108317 

.022441 
-.306344 
.072804 
.023423 
.003807 

-. 084597 
-. 259417 
-. 033631 
-. 115695 

.150053 

. 208454 

Table 20 Residual Covariances of { lR)> 

After Step 4 After Step 5 
Trace £. . 2374E-4 . 4990E-7 

Spectrum C 1 
2 

3-29 
30-35 
36-49 

. 2369E-4 

. 9252E-7 

. 4626E-7 

. 0000 

. 0000 

. 497SE-7 

. 4975E-7 

. 4975E-7 

.497 5E-7 

. 0000 
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Table ZI { ^ - (f Ml r) } = jí0 Corrections 

—A 

-lOjO -5.0 -2.0 -0.5 0.0 5.0 10.0 
w o~ 

15. 0 
30. 0 
45. 0 
60. 0 

-1.52 2.09 2.40 5.44 5.76 2.46 -0.91 
-0.70 1.96 2.62 5.53 5.82 2.33 -0.18 

1.31 1. 52 3.1 1 5.60 5.82 1.81 1.69 
3. 16 1.06 3.85 5.64 5.78 1,24 3.41 
2.31 1.67 4.68 5.65 5.72 L.67 2.51 

Table 22 (Representation Corrections)( 10 ) 

e 
-10.0 -5.0 -2.0 -0.5 0.0 5.0 10.0 

o
 •
 

o
 

5 Ö.Ö9 0.07 0.11 0.19 0.06 0.09 0.11 
-2.99 -0.54 -0.07 -3.07 -0.05 0.28 2.25 
0.12 0.02 -0.08 -0.14 0.00 0.02 0.10 

15.0 
0.10 0.07 0.10 0.19 0.06 0.07 0.13 

-2. 35 -0.36 -0.05 -0.07 -0.05 0.36 2.33 
0.09 0.04 -0.09 -0.15 0.01 0.02 0.06 

30.0 
0.2Í 0.01 0.11 0.19 0.06 0.04 0.20 

-1.40 -0.17 -0.04 -0.06 -0.06 0.30 1.80 
0. 01 0.07 -0.10 -0.15 0.01 0.06 -0.01 

45.0 
0.19 -0.02 0.15 0.19 0.06 -0.01 0.20 

-0.60 -0.04 -0.04 -0.06 -0.06 0.16 0.97 
-0.04 0.10 -0. 10 -0.16 0.01 0.10 -0.06 

60.0 
0.07 -0.04 0.16 0.19 0.06 -0.04 0.07 

-0.13 -0.01 -0.06 -0.06 -0.05 0.04 0.28 
0.02 0.11 -0.13 -0.14 0.01 0.11 0.01 
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Table ¿i Noise Fin sem ble Added to { }r^} 

<jr . (i.9iü)(io-6) 

Noise 
Sample 
Number 

1 
2 
3 

Coordinates of Representatives on 

-0.196298E-0S -0.294657E-04 
-0.108524E-05 0•652689E-05 
-0.246607E-05 -0.28 7/09E-05 

4 
5 
6 
7 
8 
9 

10 
1 L 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

0.152509E-05 
0.14326 7E-06 

-0.16061 7E-06 
-0.619749E-06 

0.295572E-05 
0.669392E-06 
0.3600 76E-05 

-0.5 3408tE-06 
-0.314572E-Q6 
-0.18171CE-05 
-0.201 147E-05 
-0.357292E-06 
0.5 13854E-06 
0.189271E-05 

-0.966944E-06 
-0. I 2490 IE-05 
0.237136E-05 
0.543476E-06 
0 . l l 755 3E-06 
0.815399E-06 
0.246 1 15E-05 

-0.426705H-04 
0.1 702661:-04 

-0.4698290-04 
0.159202E-04 

-0.35469 7E-04 
-0. l68376r-04 
0.352536E-04 

-0.32951 1H-04 
-0. 1203 38t-04 

0.209616E-05 
-0.258962E-04 
-0.67 8662 C-05 
-0.156108C-04 
-0.1 75 368E-Ü5 

0.8999651--05 
-0.131466E-06 
-0.336492E-04 
-0.180185E--04 
0.14l54lE-04 
0.1 784 7 3E-04 

-0.612046r;- 05 

Jm_ 
0.235789b-04 

-0.181 i19E-04 
0.9526B9E-05 
0.2264 76E-04 

-0.8B769 IE-05 
0.213 192E-04 
0.844869t-05 

-0.6154 36E-Ü 7 
0.156758E-04 

-0.2 79584E-04 
0.333570E-04 

-0.129923E-04 
0.30229ÜL-05 
0.8 16 322 E-05 
0. 100261E-05 

-0.976265E-05 
-0.116081E-04 
-0.205822E-Û4 

0.6030 3 811-06 
-0.281831E-05 

0.961832E-05 
-0.21771 IE-04 

0•2 24 500t-06 
0.262 16 7E-05 

0.2 25 334E-04 
0.1 15 753E-04 
0.309399E-04 

-0.746967E-05 
-0.750996E-05 

0.89077 3E-05 
-0•7 74859E —05 
-0.461622E-04 
-0.218192E-04 
-0.531685E-04 

0. 116007b-04 
0.601890E-05 
0.336502E-04 
0.316291E-04 
0.618940L-05 

-0.643693E-05 
-0.180641E-04 

0.668657E-06 
0.135127b-04 

-0.i31709E-04 
-0.23 3029E-05 
-0.6106981-05 
-0•225459E-04 
-0.213881E-04 

-0.2014 i2E-05 
-0.IÜ8642E-04 
-0.219 368E-04 

0.390579E-05 
-0.724232Ë-05 
0.96 3294E-05 

-0.10105UE-04 
0.312730E-04 
0.307908E-05 
0.169061E-04 
0.216132E-05 
0.23 3 323E-05 

-0.166540Ë-04 
-0.248318E-05 
-0.115186E-04 
0.1 102 75E-04 
0.598219E-05 

-0.72 i796E-05 
-0.299493E-05 

0.242849E-04 
-0.667813E—05 
0.1 11009E-04 

-0.709941E-05 
0.153198E-04 
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Table ¿4 Analyses of Representation Error (xlO6) Table ¿5 Effect of Noise on D-C Restoration 

Source of Error 

X 
¢ 9 

Noise 
Sample 1 

D-C 
(mi|r) 

Restoration 
0.1% High 

29. 88 
-4. 03 

29. 97 
-2. 53 

30. 00 
-2. 03 

30. 16 
2. 97 

30. 13 
7.97 

30. 00 
-2. 00 

30. 00 
-0. 50 

30. 00 
0. 00 

30. 00 
5. 00 

30. 00 
10. 00 

0. 1 
-1.7 
32. 0 

-2. 0 
-1.7 

31. 1 

-2. 1 
-1.7 
31. I 

14. 1 
-1.8 
36. 5 

86. 0 
-2. 2 
49. 6 

359. 1 
0. 0 

154. 5 

338. 7 
0. 0 

154. 2 

337. 3 
0. 0 

154. 1 

468. 7 
-0. 1 

154. 2 

851.4 
-0. 2 

154. 5 

Noise Sample 
-Í- 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Er^or in 
—-.203 

-. 097 
. 141 

-. 017 
. 148 

-. 044 
. 080 
. 060 

-. 274 
. 079 
. 243 

-. 254 
. 268 

-. 094 
. 018 
. 324 
. 216 

-. 152 
. 237 

-. 228 
-. 023 

. 111 

. 014 
-. 273 

In Tables 24 and 25, RMS noise on each range-rate coordinate = (1.91)(10-^). 

2
0

0
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Table 26 Covariance Matrices of Representation 
Error(xlo6) over Ensemble of 24 Noise Vectors ex = 30° 

Initial 

Operation 

-2.0 
425.62 4.21 -25.4? 

4.21 33.84 -24.71 
-25.47 -24,71 333,35 

-0.3 
355.^^3 4.62 -48.52 

4.62 33.08 -23.71 
-48.52 -23.71 315.50 

0.0 
351.29 4.05 -49.82 

4.65 33.02 -23.65 
-49.82 -23.65 3l4.24 

5.0 
1088.91 168.73 

-0.01 37.69 -30.11 
168.73 -30.11 435.18 

10.0 -3^35 51.79 -48152 
1739.15 -48.52 835.95 

-2.0 
43.10 1.24 -2.28 
1.24 128.53 13.77 

-2.28 13.77 95.93 

-0.5 
4Ü77Õ TT24 -2.2? 
1.24 125.63 13.41 

-2.29 13.41 94.11 

0.0 
““ 40.53 1723 -2.28 

1.23 125.40 13.38 
-2.28 13.38 93.98 

5.0 
56.18 1723 -2.¾ 
1.23 143.10 15.44 

-2.33 15.44 104.86 

10.0 
103.46 1745 -3.63 

1.45 196.54 21.62 
-3.63 21.62 133.79 

Subsequent 

Iteration 
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A - SYMBOL^ USED IN CHAPTER POUR 

In Appendix 4, the vari us special assignments cf sym- 

b Is used in Chapter 4 and in the computer programs are 

presented. Time measured from the origin (north-b und 

equat, rial crossing) is symbolized by t. Time measured from 

the epoch (t = 7^) is symbolized by In the c mputer 

programs, ¿íSgt and are used in place of t and T. 

Note that the subscript zero refers to the epoch. Angles 

are tabulated in degrees throughout the dissertât! n. 

Range of satellite from navigator is symbolized by . 

The symbol o~ is used for p2 and also f( r rms noise. 

Table 27 Parameters of the Navigation Problem 

Symbol Meaning 
.I.I.[WH—11 TBL. 

Unit 

Pp 

CU 
3 

X 

X 

<x 

6 
¿i 

Planet radius 

Satellite radius 

Planet angular velocity of rotation 

Satellite angular velocity f revolution 

Navigat r latitude 

Original navigat r longitude east of orbit 

Interval fr m equat rial crossing t epoch 

Satellite latitude at epoch, uJ& r 

Epochal navigator longitude east of orbit 

Distance eastward from orbital plane 

Distance northward from equator 

Sampling interval 

m 

m 

rad/sec 

rad/sec 

rad 

rad 

sec 

rad 

rad 

m 

m 

sec 
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Table 28 Bases of the Satellite Navigation Problem 

Subspace Dimensionality Basis Description 

D 

>1 

c: 

P 

a 
Î0 

yn 

a 
/3 

£ 
t 

7ñ 

p 
C 

? 

¿N+1=601 

m = 5 

2N+ 1 

m 

(ZN+l)2 

2N+ 1 

2 m 

(2N+ 1)(N+1) 

m(m+1)/2 

7 

3 

3 

m{m+1)/ 2 

2N+1 

1 

1 

ll 

M 

Ml 

li® |l 

P 

2 
t_ 

2 
M 

la 

(ë 

d| 

Q| 

Ë1 

H 
<^1 

Finite time basis 

Measurement basis for (|r)} 

Dual of Jt 

Dual of |M 

{1^) ® h)] 

{b) ® b)) 
lid «¡M T ensor square of ¡M 

Tensor square of |jt, 
symmetrized 

Tensor square of |m, 
symmetrized 

Complete basis (not 
orthonormal) forijS/r 
Effectively complete 
sub-basis of IA 
Dual of ¡B 

EXial of 

Dual of 

Basis for d-c signals 

Dual of |m 

All of the bases are orthonormal except for |a and those bases 
derived from . The bases in Î0 are defined on the interval of 
duration 2NT centered on the epoch. 



Tablt* ¿9 Signals, Operators and Matrices of the 
Satellite Navigation Problem 

'Syrnbol 

19 

19 

|m m|r) 

l>9 

l¿> 

w 

d|s) ^ [¢-^ 

[*i] 

p|s) = s) 

í|r) = i) 

T|r) = r) 

m|r) 

M|S|R) 

& 

m|s|i 
2 2. 

|b d|m m| 

d|m 

í ) í m e n s i o na 1 i t y D e s «.r i p tion 

¿Nt1 001 

i 

rn ■= 5 

(¿Nt 1){N+ 1) 

¿N4 1 

n g e ~ s q ua re s i g n a 1 

Range signal 

Projection of |s) onto S 

F5r ojee tion of lR> onto 7?l 

T e ns o r s qua r e of lR> 

’e -rate sien;: 

(ZNt l)x(2Nt 1 ) Accumulator ( outward from epoch) 

7 Representative of |s) on |a 

Representative of |b d|s) on |B 3 

4 

2N+ 1 

2N+ 1 

2N+1 

rn 

rn 

m -1 

m X(2N+1 ) 

Output of representation section 

<*4 = ^ =¾ 
Representative of |s) on |P 

Representative of ¡R^ on [t_ 

Representative of (r^ on Jt^ 

Representative of Im Mj R^ on |m 

Representative of |s|r) on |m 

Row which operates on m|r) or M|s|r) 
to yield ^ approximately 
Representative of |s| on |m and T| 

2 /- 
3 X m(m+ 1)/2 Projector cascade, 10A“*3* 

3xm(m+l)/2 Representative of projector cascade 

Z 
on |fi and Q) 
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