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tion of the design and construction of the physical model is

given. The related theory is briefly summarized and used in
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constitutive equations are presented. Experimental results

are given for the model loaded in a mode which may be called

pure bending.
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INTRODUCTION

At the end of the nineteenth century L. Boltzmann questioned

the universal validity of the principle of the symmetry of the

3stress tensor as related to an elastic continuum El]. Also,

about that time Kelvin and Voigt for various reasons considered

the same question. As is now well-known, the Cosserat brothers

then actually developed a theory of elasticity generalized to

include tho notion of couple stresses and the corresponding

asymmetry of the stress tensor [2]. Although these latter two

were civil engineers or maybe because of the fact they did not

exploit the idea appirently considering that there were no

practical applications. In any event, the fact is that there

was a considerable lapse of interest until the last decade or

so when a rather strong resurgence occurred. One reason for

this is the rapidly growing knowledge of solid state physics.

For example it was inevitable that interest in dislocation

theory would lead to a reinvestigation of the sufficiency of

the classical theory of elasticity. Evidence of such a trend

is exemplified by the investigations of Kroner who introduced

the concept of couple stress in his studies of the deformation

of metals [3].

Apparently the notable elastician, R. D. Mindlin, also

saw the need for greater generality in the formulation of the

Numbers in brackets designate references at end of paper.
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theory of elasticity for he has published several papers on

the subject [4, 5, 6). His formulations are well presented

for the purpose of applications, but so far he has not adduced

definitive physical cases which demonstrate the existence of

couple stress effects in real materials. In addition to the

fairly extensive studies by Mindlin, there have been other

theoretical investigations by Truesdell and Ericksen [7) as

well as by Toupin [8]. In 1962 Schaefer published a paper [9)

containing an analysis of deformation related to couple stresses*

As noted by him, the delicate question in the theory arises in

the introduction of the constitutive equations. In his analy-

sis he assumes a particular type which is more or less convinc-

ing. One of the present writers was influenced in his thinking

on the matter mainly by questions that may arise in connection

with the nature of general strain fields. Specifically he

was interested in the study of strain made by Leroux in 1911

[10). It now seems somewhat odd that the older elasticians

concentrated their thinking on the concepts of lineal strain

and shear strain. When they finally introduced the connection

of the strains to the stresses the constitutive equations nat-

urally turned out to be the generalized Hooke's law which re-

presented a linear relation between normal and shearing stress

with lineal and shearing strain respectively. Leroux concen-

trated his attention on the gradients of ,ie displacement

field in a much more general manner than was the custom in his

time.
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in the present paper consideration is given to vhe impli-

tcation of linear constitutive equations which postulate the

existence of couple stresses related to the change of curvature

of line elements, caused by straining an isotropic elastic

solid. For simplicity and clarity in the development, the

study is restricted to the case of plane strain. Furthermore,

rather than seek out at the present time material which may

show effects of couple stresses, it was considered more in-

structive to devise a mechanical model of a material to which

the theory may apply. The specific method and results are pre-

sented in the paper.

EQUATIONS OF EQUILIBRIUM

Using the notation of Timoshenko, the 3-dimensional equa-

tions of equilibrium are those given by the Cosserat brothers

[2]. They may be written:
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__ +__Z + ME - 0

ax ay 3z

+ + =

ax ay 3z

aT xz + DTy + aaz _0(i

ax ay 9z y z

3q~ xx +qy aq zx
+ + + t - T =0

ax ay az

ax ay 3z xy x

and

3q xz aq aq z

ax ay az Y Y

The first three equations are those usually given for the

forces at a point in a continuum. The last three equations

are those for moments at a point and they arise because of the

postulated existence of couples at the point. It is this

assumption, of course, which introduces the non-symmetric

nature of the shearing stresses Tij
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The present investigation of the meaningfulness of the

theory in terms of a physical model is limited to the two-

dimensional case. Therefore the complete set of field equa-

tions defining the problem will be limited accordingly.

Hence the equations of equilibrium may be written simply as:

"Ix + a'- Y= 0

ax ay

aT Xy+aao
+ 0 (2)

ax ay

+qx--- + + ' - :y 0

ax y xY YX

STRAINS, CURVATURES, AND COMPATIBILITY

The strains and curvatures in terms of the displacements

u, v may be written:

X au ...av 1 . av + u)
ax ayy Y 2 ax ay

and (3)

awz awz
- , kyz a

ax ay

W is the rotation about the z-axis which is here assumed to

be the axis parallel to the length o. the long prism usually
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assumed in plane strain theory.

In the classical plane strain theory there is only one

compatibility equation which is not satisfied identically.

In the present case the situation is somewhat more complicated

and results in the following equations of condition which are

readily verifiable.

E 2xx 2 cxy
ay ax axay

kxz ac ac xx

ax ay

and (4)

kyz ax y
a ak

ak x_k
Note: - =

ay ax

CONSTITUTIVE EQUATIONS

The material substance studied in the present investigation

is assumed to have a somewhat more complicated set of consti-

tutive equations than the customary Hooke's law. They are

written as follows:
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_(1 + v) [I - x - voy]
E

C (1 + v) [-vOx + (1 - V)ay]
EXy

xy (2 xY T yx

2G f

and (5)

k -z qxz
2C

1
k Yz 2 Iyz

2C y

The first three relations are the usual Hooke's law written

now to allow for the non-equality of xy and *yx Th2

remaining two relations relate the couple stresses qx qy

x yz

The three independent constants of elasticity are E , G ,

and C . The usual relation of classical elasticity holds for

E , G , v as follows:

G E (6)
1 + V

Note that G is written twice as large as usual. The v is

the usual Poisson's ratio.
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PURE BENDING

Following the lead of Schaefer [9), the loading in Fig. 1

designcted by (b) and (c) defines a case which may be appro-

priately referred to as "pure bending". Note that it differs

from pure bending in classical elasticity by the addition of

uniformly distributed point couples. As a consequence it turns

out that all sections parallel to the loaded ends are stressed

in the same manner. If one applies only the loading given by

Fig. 1 (b) the sections parallel to the loaded ends will be

stressed differently from those ends and probably in a compli-

cated manner.

Using the theory of pure bending as now defined, it will

be relatively easy to solve the equations of equilibrium and

determine the displacements in terms of the elastic constants

E , G , and C . For convenience in performing the experiments,

the actual loading was obtained by simply adding a uniform

tensile stress at the ends as shown in Fig. 1 (a). The solution

for the equations of equilibrium may be easily verified to be:

qxz = q = constant

qyz = 0

X 2C1 - 2 (a - y) (7)

a 0

y

and
= =0

Txy Tyx
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Integrating the strain equations in terms of the displace-

ments u, v (3), the displacements are:

U= - yx + qax
2C 2C

V _2_+_cv - v y _x 2 _ y (8)
1 - v 4C 4C 2(1 - v) C

_Z 1 (av 1u) -a x
z 2 ax ay 2C

It should be noted that the solution requires that the

boundary loads must be applied so that the magnitude of the

distributed couple stress is in constant ratio to the normal

stress a at any given point.

Now if the displacements are measured on an experimental

model loaded in the manner here assumed, the elastic constants

can be calculated from Eq. (8).

EXPERIMENTAL MODEL

A mechanical model was devised as an analogue to a 3-constant

isotropic elastic solid. In order to emphasize the influence

of the couple stresses the model was fabricated out of what may

be called "molecular" or cell-like sub-units. For the purpose,

rigid solid blocks of aluminum fastened together with thin flat

strips of steel were used. Each cellular unit then is composed
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of four cubes fastened by the steel strips. Alternately, each

unit might be thought of as a single cube with four strips

extending from four of its faces. A sketch of the model is

shown in Fig. 2 and a photograph of the model fastened in

place in the loading apparatus is shown in Fig. 3. The steel

strips with cross section 0.5" by 0.016" were cemented to the

one inch aluminum cubes with epoxy resin. Obviously the model

is not a point-wise homogeneous continuum as assumed in the

theory. However, if the overall size is large compared to the

dimensions of the cellular iinit, the model may statistically

approximate a homogeneous continuous material. Also, since

the flat steel binding strips are all of the same dimensions

and since the displacements occur only in planes parallel to

the center plane, the model was considered to be approximately

isotropic. In order to construct a three-dimensional model

which is approximately isotropic, the flat steel strips could

be replaced by round rods which extend one each from each of

the six faces of a cube,

EXPERIMENTAL APPARATUS FOR

DETERMINATION OF ELASTIC CONSTANTS

In order to deform the model as required by the previously

developed theory of pure bending, a special apparatus was

developed. It was constructed so that the required tensile

loads and couples might be readily applied at two opposite

sides of the model as shown in Fig. 3.
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As can be seen, the model is placed in a horizontal posi-

tion and rests lightly on a number of ball bearings located

under the cubes in order to support its weight. A small round

drill rod also supports the model along its axis of symmetry

with respect to the loaded sides.

The loading device consists simply of dead weights which

hang down from light steel wires which pass over small friction-

less pulleys and then attach to the model at predetermined

points. The wires which apply the tensile loads to the model

are fashioned in a smooth loop arrangement which reduces un-

desired constraints on the boundary. Thuj each carried initial

loads of three pounds.

The couples were applied at each cube in a given boundary

by means of parallel wires which pull in opposite directions.

Special fittings used for the purpose are shown in Fig. 4.

By means of these fittings the magnitude of the couples could

be varied either by changing the moment arm or by changing the

intensity of the force or by both.

The displacement measurements essential for the determina-

tion of the elastic constants were made with the aid of special-

ly adapted gages. The gages consisted of aluminum foil strips

0.03" thick by 0.5" wide stretched positively between two pre-

determined points on the model. The elongation of the strips

and hence the relative displacements between the two end points

were determined with aid of electrical resistance strain gages
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cemented to the foil. Standard circuitry was used for the

measurements. In every case, two such foils were placed one

on each side of the model and parallel to the model. The

average of these two gages provided a reliable measure of the

required displacement.

DETERMINATION OF ELASTIC CONSTANTS

With the experimental .apparatus which was developed, two

types of experiments were performed in order to determine the

three elastic constants or moduli. The constants are the

usual Young's modulus E , the shear modulus G , and the

curvature change type modulus C . The latter modulus, of

course, is the orne related to the couple stresses.

The modulus E is obtained by means of the familiar ten-

sion experiment and no more need be mentioned here about it.

The Poisson type constant v was very close to zero for the

particular model used. The results of this experiment may be

briefly summarized as follows:

V10

E' h x 10- 6 = 0.182 lb./in.

where

E '= EEl E 2
1-v

E
i+V

as previously mentioned.
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The method of determination of the constant C is novel

and so will be described somewhat at length.

Eq. (8) shows that if the displacement u and couple

stress q are known at a point on the boundary, then C can

be calculated. However, it is clear that Eq. (7) must be

simultaneously satisfied; that is for the same q and the

applied ax  at the point the same value of C must be ob-

tained. E' was obtained in the tension experiment and its

value is known. Consequently, Eq. (7) and Eq. (8) must be

solved simultaneously. This can be done graphically as shown

in Fig. 5. The qh is plotted as function of displacement

of a point A for a given applied stress aD (aD is the

magnitude of the linearly distributed boundary tension at a

point D ). For example, the straight line given for the

parameter aDh equal to 16.85 pounds per inch is obtained

by first loading the model with a stress distribution x

whose value at point D is aD a Then keeping the ax stresses

fixed, the couples qh were increased gradually from zero

and the corresponding changes in displacements at A were

measured so that data for the displacement curve was obtained.

Now the displacement u at a point such as A , called u*,

can be calculated from Eqs. (7) and (8) by dividing a by u

and thereby eliminating q/C . The value of a applied at A

E' and the value of x are then substituted in the resulting

equation for u . We may erect a vertical straight line in
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Fig. 5 at the abscissa given by the value u* which was com-

* puted. The intersection of this line with the oblique line

for which the parameter aDb is equal 16.85 pounds per inch

determines the required value of qh . With these data deter-

mined, either Eq. (7) or Eq. (8) can be used to calculate the

value of C .

The same procedure may be followed for different values

of a h In the present investigation this was done for four

distinct values and the corresponding lines plotted. As a con-

sequence, four parallel lines are plotted in Fig. 5 and for

each one a particular point on it is determined by its coordi-

nates u*, qh . All four of these points so determined should

lie on a straight line through the origin as shown.

Instead of measuring the displacement u* at point A

it can obviously be measured at any other point such as B

for example. In such a case the value for ax used in Eq. (7)

must be that which is applied at point B . This was done for

three points on the boundary as a further check of the method

and the results are shown in Fig. 6 as three sets of lines.

Finally the correctness of the experimental results may

be further investigated by examining the distribution of the

displacements along the loaded boundaries for any given load-

ing. Such was done and the results are plotted in Fig. 7.

It is seen that the variation of displacement is practically

linear as required by the theory.
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DISCUSSION

It would seem that experimental models of the type studied

in the present investigation serve the purpose of demonstrating

the role and nature of couple stresses as they conceivably

exist in fully continuous materials. Furthermore, since the

experimental study required for the determination of the

3 constants contains some novel features it appears reasonable

to assert that the present study could serve as a starting

point for further and more elaborate investigation of the

existence of couple stress effects in materials. While the

role of couple stresses in the deformation of materials may be

entirely second order as in the case of most steels say for

example, it is quite possible that the effects could be primary

for many other kinds of materials especially for certain types

of loading. In any event, one cannot logically escape the

present requirement to analyze much more closely the accept-

ability of the classical elasticity for the precise determina-

tion of deformation of any real material.

Finally, it may be said that it is fully realized that

only one type of static experiment has been performed in the

present case in order to calculate the values of the alleged

3 constants of isotropic elasticity. Further experiments

with different kinds of loadings are certainly required. In

fact, one of the present authors plans to perform dynamic

experiments with models of the type used here and see if mode

shapes and frequencies of vibration can be predicted properly.
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