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DYNAMIC BUCKLING OF IMPERPECTION-SENSITIVE STRUCTURES 

by 

Bernard Budiansky and John W. Hutchinson 

INTRODUCTION 

Small geometrical imperfections in some structures can be responsible for 

large reductions in their static buckling strengths. As is well known, a thin 

shell is often very imperfection-sensitive in this sense, witn a perfect 

specimen sometimes having a "classical" buckling strength several times higher 

than that of an imperfect one. Many analytical studies have sought to correlat 

reductions in buckling strength with assumed initial imperfections of various 

sizes and shapes. Such studies may eventually rovide the quantitative 

information needed for the establishment of a statistical theory of buckling, 

which would relate the probability of buckling under a given static load to the 

spectrum of imperfections (see Ref. 1). But at the present time, the design of 

shells leans heavily on experiment, and analysis has been mainly useful in 

identifying imperfection-sensitive structures and in establishing, in a 

qualitative way, the degree of thi« sensitivity. 

Analyses have recently been made of the dynamic buckling of shells 

subjected to transient loading histories, wherein Inertial forces must be 

considered (Refs. 2, 3, 4, 5). There is not as yet a scientific consensus 

concerning an appropriate analytical definition of "dynamic buckling", or of 

the dynamic buckling load", but regardless of this, imperfection-sensitivity 

can be expected to be as pertinent to dynamic buckling as to static buckling. 

It would appear, then, that in order to solve the problem of dynamic buckling 

theoretically, we might be faced with the necessity of having to analyze 
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iœperfection-*ensltive structures for a wide variety of imperfections, for each 

different kind of transient loading history that is of interest. 

The purpose of the present paper is to explore the possibility of bypassing 

such repetitious calculations by seeking to relate the dynamic buckling strength 

of a given imperfect structure directly to its static buckling strength. The 

viewpoint adopted as a working hypothesis is that the essential effects of 

imperfections reveal themselves in the extent to which they reduce static 

buckling strengths below their "classical" values, and that perhaps knowledge 

of the static reduction factors might therefore suffice for reasonably accurate 

predictions of dynamic buckling load*, without the need for further details 

concerning the imperfections themsel es. The true static buckling loads needed 

in such a correlation, could, of course, be determined experimentally with much 

less difficulty than dynamic buckling loads. 

In this paper, consideration will be restricted, for the most part, to 

elastic buckling under suddenly applied dead loads that are maintained at a 

constant magnitude. Following a discussion of criteria for dynamic buckling, 

the implications of some simple imperfection-sensitive models will be discussed. 

Next, on the basis of Kolter's theory of post-buckling behavior (Refs. 6, 7), 

general approximate theories of dynamic buckling will be formulated and their 

relations to the simple models will be studied. Finally, as particular examples, 

analyses will be made of the dynamic buckling under suddenly applied axial loads 

of circular cylindrical shells, stiffened by longitudinal stringers, as well as 

unstiffened. 

CRITERIA FOR DYNAMIC BUCKLING 

With respect to a given structure, consider the ensemble of loading 
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histories q(x,t) generated by varying ) in the equation 

q(x,t) - 'qo(x,t) (t > 0) (1) 

where qo(x,t) 13 a particular function of position x ana time c , and X 

<8 a scalar parameter; we now propose to define a critical value of X for 

dynamic buckling. 

Let R(X,t) be a physically significant scalar measure of the response of 

the structure to q(x,t) (e,g. a stress, a deflection, an average deflection, 

etc.); further, define 

[R(X,t)] (2) 

where T is the largest value of t that is of interest. A typical plot of 

R (X,T) vs. X might then look like that shown in Fig. 1. If, as the max 

hypothetleal plot shows, there is indeed a narrow range in X over which R 
max 

rises very steeply, the critical value X^ for dynamic buckling will be defined 

as the value of \ in the middle, more or less, of this range. 

A sharper definition of X^ , independent of T but appropriate for large 

T , may sometimes be possible on the basis of the variation of R (X,*) with 
nmx 

X , which might display a finite discontinuity, as shown in Fig. 2(a). (Such a 

discontinuity is generally not possible in R (X,T) for finite T .) Indeed, 
max 

for some ^idealized structures, R .'X,®) could actually be infinite for all X 
BAX 

greater than some X^ (Fig.2(b;) 

The above definition of X^ for finite T was introduced in Ref. 4 and also 

used in Ref. 5, wherein curves like that in Fig. 1 were found; the finite jump 

of Fig.2(a)was used, essentially, in defining critical impulsive loads in Ref. 8. 

The sharp definitions of X^ implied by Fig. 2 are «»athematically attractive, 

but the general conditions under which R (X,®) could indeed be a discontinuous 
max 

function of X are not known. 
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IMPIICATIONS OF SOME SIMPLE MODELS 

Iinperfection-»en«itivity is exhibited by the three-hinge, rigid-rod column 

shown in Fig. 3 when it is constrained laterally at its central hinge by a 

softening non-linear spring; a similar model was used by Karman, Dunn and Tslen 

(Ref. 9) in their pioneering elucidation of finite deformation effects in shell 

buckling. 

Suppose the spring restoring force F is related to it? shortening x by 

F » KL(ç-ae:2) (3) 

where Ç ■ x/h. , and a > 0 . If the unloaded structure has an Initial displace¬ 

ment x ■ LÇ , then, assuming small rotations (?,? « 1) , static equilibrium 

relates the axial load \ to the add! tional displacement by 

^ (1"XAC)Ç - o£2 - (XAc)f (4) 

where Xr ■ KL/2 . Thu* (7ig.4{A;,)the perfect column, with Ç ■ 0 , can buckle 
V/ 

1 
at the "classical" load > , after which the load drops as Ç increases. With 

I y 0 the structure deflects as soon as load is applied, and, for F, > 0 , 

buckles statically at X a Xg given by the maximum value attained by X as it 

varies with F . 

With z ■ Ç/Ç , Eq. (4) gives 

(l-XAc)z - (ocF)z2 - XAC (5) 

from which it is evident that Xg/X^ depends only on the parameter (aÇ) , and, 

in fact, by setting dX/dz ■ 0 we find that 

(1'xsAc)2 " ^><VV ■ (6> 

For small (aÇ) , ^1-2 ifa? ; the larger a , the more Imperfection- 

sensitive is the structure. 
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Next, consider dynamic equilibrium under a time dependent load \(t) , 

assuming a mass M only at the central hinge; then Eq. (5) changea to 

z* + v'i-X/XçJz - (aP)z2 - \AC (7) 

where the dot denotes differentiation with respect to t/ic/M . For the case of 

a step loading at t “ 0 with initial conditions z ■ £ ■ 0 , the first integral 

of (7) is 

* 

< ! 
:2 : (l-XAc)z2 - ^.nrf)z3 - 2(* Ac)z (8> 

For \ sufficiently small the motion is periodic, with a maximum amplitude 

z that satisfies 
max 

2 * 3 
3 max ma X 

(9) 

and gives a relation between X and z like that shown in Fig. 2b between 
° max 

R(X,®) and X . The critical value of X , namely XD , for which the period 

becomes infinite and beyond which z is infinite is now determined by the 
ma X 

condition dx/dz - 0 ; this, with (9), gives 
max 

^-yv 2 - ~(a?mDAc) UO) 

And now, eliminating a? between (6) and (10) provides the relation we have 

sought as 

" 4 
VXD 

VXS 
(11) 

The variation of Xp/Xg with XgAc is shown by the solid curve in Fig. 5. 

Thus, the lower is Xc/X„ (and hence the more imperfect the structure) the 

smaller a fraction of the actual static buckling load ia the dynamic buckling 

load; but this fraction is always at least 3/4. The most important feature of 

Eq. (11), which we hope can be generalized, is that the imperfection itself does 
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not appear explicitly Note also that as , ^ V > result for 

the case of an imperfect structure approaching perfection is interesting, necauae 

dynamic axial loading of the perfect structure can never initiate any lateral 

motion . 

A repetition of the above analysis for the case of a cubic spring having 

the characteristic 

F - KL(?-ße:3) (y > 0) (12) 

is easily executed. The analogue of Eq. (4) for static equilibrium is 

' MAC)? - pP3 - (X/XCK (13) 

and curves like those in Fig. 4(b) appl^ jtote that now the curve for f* ■ 0 

is synmietrical in Z (with zero sl<^>e at ? - 0 ) and static buckling of the 

imperfect structure is independent of the sign of f . The counterpart of 

Eq. (7) for the dynamic case is 

z + d-XAc)z - (ß?2)z3 - X/Xc (14) 

from which the results 

a-xsAc)3/2 - -p</p|?|msAc) 

and 

(i-xdac>3/2 -^ÆI^IhvV 

(15) 

(16) 

are found. Finally, 

w 
A /Xr'Xn' 3/2 ïl |_Ç_P 

xc->s 
(17) 

which provides the dashed curve in Fig. 5. As seen, the results for (Xn/Xc) 
1/ M 

are not very different for the two models. 

Our intention now is to try to determine whether formulas like (17) and (11) 
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might be applicable to real structures. To this end, we shall exploit the 

general static buckling analysis of Koiter and extend it to dynamic conditions. 

GENERAL ANALYSES 

Koiter's Static Theory 

Field Equations 

A somewhat leas general and slightly modified version of Koiter's theory 

for the static buckling of imperfect elastic structures will be presented briefly. 

Generalized loads, stresses, strains, and displacements will be denoted 

simply by q , o , r , and u , respectively; depending on the structure and the 

theory used in its analysis, each of these symbols could stand for one or more 

functions of position. The functional notation Q^u) will be used to denote a 

homogeneous functional or u of degree i ; similarly, QtJ(u,v) will mean a 

homogeneous functional of degree i in u and J in v . 

T*16 «train-displacement relation will be written 

6 - L1(u) + j L2(u) ( lg) 

and the notation 

e - L^u) 

will be used for the linear part of e . The bilinear operator L^u^) - L^v.u) 

is then defined by the identity 

L2(irbv) - L2(u) + 2L11(u,v) + L^v) 

and has the property L^ii^u) - L2(u) . 

It will be assumed that for q and 9 in equilibrium (in the presence of 

a displacement u ) the principal of virtual work 

" ^11 (q,¿>u) (19) 
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holds for all ftu , where Iu is Internal virtual work, «net ÊX1 Is external 

virtual work; here 6| - 6e + L^u/u) , where fte - L^ftu). Eq. (19) can be 

regarded as a variational equation of equilibrium. Finally, to complete the 

set of field equations, we postulate the linear stress-strain relation 

■ ^(¢) (20) 

and also assume the reciprocal relation 

Ill[Hl(«l),€2] - I11CH1(c2),«1] (21) 

Trivial Solution for the Perfect Structure 

Now suppose the prescribed part of the external loading Is \qo , and that 

wherever loads are not prescribed, there are linear, homogeneous, prescribed 

geometrical conditions on u ; then, for variations 6u that are admissible (in 

the sense that they do not violate these geometrical conditions) the external 

virtual work is just 

XEn(V0u) 5 XBi(6u) 

With the use of the abbreviated notation { , } for In( , ) , the equation of 

equilibrium becomes 

- XB^fiu) - 0 (22) 

for all admissible 5u . 

We now assume that the perfect structure has the "trivial" solution \o 
o ’ 

XCo ; Xu0 f°r stress, strain and displacement, where u^ has the property 

Ln(V6u) " 0 (23) 

for all tu ; then it follows that L2(uq) - 0 , eo « eo , ao - ^(e^ , and the 

equilibrium equation is 

Jxe ,fiel “XB.iftu) - 0 
^ O I (24) 
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Thus, the trivial solution is governed by a linear theory. 

Classical Buckling of the Perfect Structure 

To discover the eigenvalue \ for classical buckling ve set 

U " xru„ + up (25) Co C 

in the field equations, retaining only linear terms in the buckling mode ur . 

Then, by (23), 

' ’ Vo + eC 

where ec s Li(uc) > an<1> with 8c s Hl^ec^ ; 

0 " ^o + 8C 

Also, 

6c - 6e + L11(u(,,6u) 

and the equilibrium equation is 

'.Vo + SC ’ 5t + Lll(uC'Su)} ‘ XB1(6U) ‘ 0 

But, by (24^, and with further linearization, this gives 

xciro ’ Ln(uc-6u)} + {8c ’ * 0 

as the variational statement of the problem for the lowest eigenvalue Xc 

(as well as for the higher ones). Note that (26) Implies 

Xck ' L2(UC)} + {“C > eC. 

(26) 

(27) 

and also that 

, ,(1) (2).) /-(1) .(2)1. 
Iso ' Lll(u <u ’J Is > * J 

.(2) (28) 

We are really assuming something about q^ as well as a perfect structure, 

when we postulate (23); for certain loadings the hypothesis of linear 
behavior before buckling is not tenable. 



-10- 

for any two buckling modes , associated with distinct eigenvalues 

^ and X( } . In what follows, we will first assume a single mode u 
w 

(arbitrary, of course, to within a scalar factor) associated with \ ; later 

multiple buckling modes will be considered. 

Post-buckling Behavior of the Perfect Structure 

When X reaches X^, , the structure can begin to suffer deviations in 

the shape of u^, from its trivial configuration, and, simultaneously, X will 

deviate from X^ • The displacement of the structure in a slightly buckled state 

can always be written 

u - Xu + Çu + w (29) 
O L 

where the buckling mode u^ is now considered normalized in magnitude in a 

definite way, where w is orthogonal to uc in the sense of Eqs. (28), and 

where Ç is a scalar. The stress is then 

a ' ’V+ ç*c + 2 + + I 

and the equilibrium equation (22), simplified by use of (23) and (24), becomes 

Ok - Ln(uc’iu)} + K ’ 6*}] 

+ ?2[{*C ’ Lll(uC’Su)} + 2 {H1(L2(uC)) ’ “'li 

+ I" {Hia2(uc)) ' Lll(uC'8u)} 

+ ko ’ + {HjCI-jW) , ie} 

+ '[{*C ’ ln<w-4u>} + ’ 4e} + - Lll(uc-Ä,,>}j 

+ ... "0 (30) 

where the terms not written explicitly are all non-linear in w . It is useful 

to regard X as a function of Ç , and to assume, tentatively, the asymptotic 
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representation 

»2 »3 ^ V m F: + Ç u^j + ... 

for w , hopefully valid for small ^ . The stress is then 

<r - Xao + ?tc + ?2[s2 + j h1(L2(uc))] + ç3[s3 + hi(L11(uc,u2))1 + ... (31) 

and the equilibrium equation (30) becomes 

'Ok - Ln(uc>6u)}+ k -6e}] 

+ ' 00o ’ Lll^u2'*u^} + {*2 ’ ®e} + k ’ Lll^uc’4u^} + 2 ’ 9e}i 

+ ?30k . LU(U3.6U)} + {*3 - &*} + k ' Lll(u2'iu)} + {H1(LU(uC>u2) ' {e} 

+ {*2 ' Ln(uc'6u)} + 2 {H1^L2(uC^ ' Lii(^c>ftu>}] + “ 0 (32) 

where e2 ■ > *2 " 3 «tc*> where the omitted terms are of 

4 
degree Ç and higher. 

Thje variation 6u ■ u 6Ç gives the scalar equation relating \ to Ç 
Vw 

-Ç<VX)k> > +^f" K 3 L2(UC)} 

+ ^ [2{®c 3 Lll^uc,u2^} + {s2 ' L2^uc^} + 2 {H1^L2^uC^ 3 L2^UC^)J + ••• " 0 
(33) 

where the orthogonality to uc of u2 and u^ has been used, as have Eqs. (21) 

and (27). 

Next, set 6u ■ bu , where ¿u Is orthogonal to uc , In (32), to get 

520k ’ L11(u2'6~>} + {‘2 ’ k + k ’ Lll(uC’i~)} + 2 {H1(L2(uC) ’ k3 

+ ?3[x{ao , Ln(u3,6u)} + ...] + ... - 0 (34) 

X Im X 2> 
Then, since ç _ o " * canc®Xlln8 out Ç *nd letting Ç vanish gives 
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Xct9o • Ln(u2>íu)f + 1 82 ; '} " -{»C ’ L11(UC ’ Str)} ‘ 2 {H1(L2(UC)) < 9*} 

(35) 

the solution of which for u_ (orthogonal to u ) can then be used to 
Im C 

3 
evaluate the coefficient of Ç in (33). To obtain more terms in (33) would 

require solving equations analogous to (35) for u^ , u^ , and so on. 

Behavior of the Imperfect Structure 

Now suppose that the structure has a small initial, stress-free, displacement 

u ■ fiiç in the shape of the classical buckling mode, and then undergoes an 

additional displacement u when the external loading is applied. The strain- 

displacement relation (18) must be changed to 

C - L^(u+G) + y (u+u) - L^(u) - I (u) 

- Lj(u) + J L2(u) + fLu(u,uc) (36) 

The variational equation of equilibrium (22) still holds, but now 

Sf - 6e + Lj^(u,fiu) + ÇL11(uc,ôu) (37) 

We can still represent u in the form (29), and then regard \ as a function 

of Ç and Ç ; an appropriate representation for w is now 

2 3 
w ■ p u0 + u. + ... 

2 3 

+ + ^u2i + • • • 1 

+ ^“12 +ç2“22 + ---1 

+ ••• (38) 

The expression (31) for ey is augmented by terms involving products of Ç and 

Ç , of order fÇ and higher; similarly, the term 

. Lu(Viu)} 
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together with others of order and higher are added to the variational 

equation (32). Then the extra terms in (33) are 

^\]no , L2(uc)j + 0(^) (39) 

lim 
while those added to (34) are Just OÍÇÇ) . Note that ^ _ q X(?,Ç) “ 0 f°r 

all ? 0 , but that • Hence, letting Ç -• 0 in the 

2 
modified version of (34), canceling out ? , and then letting Ç -* 0 reveals 

that u2 is the same as in the case of the perfect structure. 

Following Kolter, we now limit ourselves to a first approximation for the 

influence of on X by neglecting all terms 0(ÇÇ) , adding only (39) to the 

equilibrium equation (33). The result thej implied for X(^,?l) still displays 

the above mentioned non-uniform limiting behavior for vanishing ^ and Ç , and 

will therefore constitute a uniformly valid approximation for small Ç and ^ . 

If, in (33), jsç , L2(u^)| ^ 0 , it follows (with the use of (27)) that 

for sufficiently small Ç , 

:2 {8C ' W) 
Ç(l-X/Xc) + y 

Í*c ' ecJ 
X, 

(40) 

which is entirely analogous to Eq. (4) for the simple model with a quadratic 

spring. On the other hand, if jsc , L2^uc^} " ^ ’ the e<luati-on 

^(1-X/X, 
, , ^{»c > L11(uC'u2>} + {*2 ■ L2(uC)} + I < L2(uC)}] 

:>- 

(41) 

which is essentially Eq. (13) for the cubic spring model, is found to hold for 

small enough Ç . The structure represented by Eq. (40) is always imperfection- 

sensitive (for one sign or the other of Ç ); the "cubic" structure of Eq. (41) 
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3 * 
is imperfection-sensitive only if the coefficient of Ç is negative. 

Multiple Buckling Modes 

If corresponding to there are several simultaneousy linearly 

Independent buckling modes u^^ , u^^ , ..., the displacement during loading 

is written u ■ Xu + Y Ç + w where, for convenience, the modes are made 
o z_ n L 

orthogonal to each other, and w is orthogonal to all of them. With the 

initial imperfection 

u 
S (n) 

C 

and with the retention only of terms up to order > simultaneous equations 

for the Çn's analogous to Eq. (40)sre readily found to be 

?n<1-xAc){‘cn) ’ ec 
(n) { 9 (10) 

'm8C Lll( 1 ’ “C 

(n), 

+ ¿í.(0> 
2 I C - L2( 

(m) 
fA > L. ç 

Xc 

,(n) (n) 

' ec (42) 

This quadratic approximation, Independent of v , will be adequate for the 

example of the circular cylinder under axial compression, but it can, of course, 

be improved; indeed, if all the quadratic terms should vanish, a better 

approximation becomes essential. 

Ihe outline of some of Kolter*s results has now been completed. It may 

be mentioned that Kolter*8 derivations lean on the principle of stationary 

potential energy; we have preferred to write variational equations directly by 

way of the principal of virtual work. We turn next to the introduction of 

* 
Note that |s^ , e^J is twice the strain energy of linear 

theory -- and hence positive; it follows from Eq (27) that 

is positive when Xc > 0 . 

elasticity 

{•°o ’ l2(uc>: 
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Inertial loads. 

Dynamic Theory 

Inertial Loads 

In order to Incorporate dynamic effects into the general static field 

equations heretofore considered it suffices to include inertia loading in 

the external virtual work Eu of Eq. (19). This loading can be written as 

the linear functional of acceleration 

■\2 
q - -M (2-|) (A3) 

1 1 òt 

and then the variational equation of equilibrium (22) becomes 

{s , 6c} + En[Mi(^~f) , * \B. (6u) ■ 0 (44) 
òt 

where er , u , and \ are now time-dependent. The operators and M1 are 

assumed to obey the reciprocal relation 

Ell^Va) ; " Ell^Ml(b) » (45) 

In the present analysis we will set 

VV '0 <A6> 

or, in words, the inertia loads associated with the "trivial" displacements 

will be neglected. (We are therefore explicitly ignoring the kind of dynamic 

effects studied by Goodier and Mclvor (Ref. 10) wherein breathing oscillations 

of a laterally compressed ring transfer their energy to bending motion.) Turning, 

now, imoediately to consideration of the imperfect structure, with initial 

displacement fuc as before, we can still assert that the additional displacement 

is given by (29) in the case of a unique classical buckling mode u We 

consider next the "quadratic" and "cubic" structures separately. 
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Quadratic Structure 

We note that the static analysis of the imperfect quadratic structure was 

tantamount to letting w vanish in the equilibrium equation (30), dropping the 

3 
term in ? , adding the imperfection term (39), and then letting Ôu ■ u fil' ; 

doing this again, but including the extra term 

<;â)EníV“c> -4u at 

in the equilib-1 ijth equation gives 

(47) 

o 

(48) 

which, by appropriate changes of variable, is exactly reducible to Eq. (7) for 

the simple "quadratic" model. Consequently, the implicatior*of the study of the 

simple model for suddenly applied loads, in particular Eq. (11) relating XD , 

Xg , and Xc , appear applicable to structures for which {sc , L2^UC^} ^ 0 ‘ 

This is subject, of course, to the qualification implied by the assumption (46) 

that the characteristic time associated with the establishment of the displacement 

>vuo is very small compared with that required for the growth of the additional 

contribution ?u to the total displacement u . 

Cubic Structure 

The result (41) for the cubic structure would follow from the variational 

equation (30), augmented by the imperfection term (39), by execution of the 

steps (a) let w - , where u2 is the solution of (34), dropping all terms 

of order higher than y and y? ; (b) take fiu w u 6y , Utting X •• X 111. th* 
i c 

Note that the term 

dt 
2 E11l 

rM,(u ) 6u] is dropped on the basis of the 

assumption (46). 
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resultíng equation, and dropping terms of order higher than y and Ç ; (c) 

finally, take 5u » " No« we add 

Ell[72 M1(uc) f H M1(u2) > iu] 
dt1“ A ~ dt’ 

to (30) and repeat these steps, getting 

Idt 2^11^1^27 ' U2" + I 2 jEH^Ml^uC^ ' U2 
' * d t - 

2,\ 

+ (y~? )^ctff0 > L2(u2^l + 1*2 'V1"0 

.2 

~f snrMi(uc) - “c5 + 
\dt / 

h2 Lx 
\dt2 j 

EnrMl(u2) , u( 

(49) 

^-H'c ' ecl +r lHl<L2(uC) ' W 

+ Y"[2i3C ’ + {‘2 ’ w}1 ■ !: {*c ’ ecl <50) 
Ví 

To facilitate study of the»» equations, we will assume that the buckling mode 

uc is also a natural vibration mode of the unloaded structure. The variational 

equation for a natural vibration mode of frequency œ is 

j* , fie j « jn^u) , ftuj 

r i 
for admissible fiu , Consequently, since js^, , e^j ■ 0 , it follows that 

ElirMl(uC) ^ U2^ “ E11^1 ^u2'* ' UC? " 0 • 

Noting that the frequency to of the mode u is given by 
V-* C 

O), 
t 
s . e 

C ’ ÇJ 

E11^1(UC) ’ uc] 

let t » u)ct in (49) and (30), and let - |/Ç , z2 - y/*¿ , to get 

(31) 
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z*2 + r|(z2~zi^ " 0 

+ (1-X/Xc)z1 -^[2^2 - rzjp - \A( 

(52) 

(53) 

where 

k ■ - [{*C ’ L11( u2,uc)} + {.2 , L2(un)]^ p. 
6 6 c ’ c 

VJHjÍLjÍu,,) , L2(uc) 

2i*. Ln,'u2>uc)} + h > W) 

Vl^o_' L2^U2^’ + {*2 ’ *2! 

OL), 
C^llC^l(u2> < u2- 

‘nd ()*!;<)• 

Note that the static result (41) is recovered from (52) and (53) when the 

tine dependent terms are dropped, and that the structure is imperfection-sensitive 

only if k > 0 and r < 1 . The parameter ri can be written 

^ - 0“\r/\)(—)2 
L œc (54) 

-2 
where cu is the Rayleigh quotient for free vibrations obtained from u„ 

W 
( ®2 j ® 2 ^ 

B11^M1^U2^ j U2^ 

and X is the Rayleigh quotient for classical buckling 

(55) 

X ■ 
•2 , e2 

9o ’ L2(u2) 
(56) 

It is certain that ^ ^ Rsylfeigh's principle , but there is no general 

In fact, since u2 is orthogonal to uc in the sense of Eq. (27), X is 

larger than the second eigenvalue of the classical buckling problem. 
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rule for the ordering of co_ and <L , because <x> ia not necessarily the lowest 
c ^ 

natural frequency. 

2 
For r very large, (52) implies 22 " Z1 ' the U8e °f in gives 

Eq. (14) for the simple model, with ß identified as k(l-r) , and then the 

result (17) and the dashed curve or Fig. (5) apply. In order to study the 

implications of (52) and {53'' for finite n these equations were solved 

numerically for various combinations of r] , r and k for the case of a 

suddenly applied load with initial conditions " z2 " ^ ' TyP*-ca* 

responses found for and z^ are shown in Fig. 6, which shows how closely 

the dynamic buckling parameter (evidently associated with a response pattern 

like that of Fig. 2(b)) can be estimated. Fig. (7) shows how XD/XS thus found 

varies with \C/X (as given by Eq (16)) for several values of n and r . 

The lower r , the greater is the imperfection sensitivity, and the closer do 

the results tend to approximate thoce for the simple model (ri ■ *) Note that 

the predictions of the simple model are, in all cases, conservative. 

Multiple Buckling Modes 

With the simplification 

O»*-,) (57) 

which holds rigorously if each classical buckling node also a 

vibration mode, the coupled dynamical equations that correspond to the static 

Eqs. (42) are 

(“ 
U) 

1 
(n) 

+ (i-x/xr)e 
L n 

+ 

cr (m) F s' 
m C 

(ml 
c 

(X/XJ* L n 
(58) 
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where 

O) 
(n) EirMl( C ^ ' UC 

"TF > ec 
(n)\ 

j 

Simultaneous solutions of these equations for various ^ would 
n 

XD , which could then be compared with the X that is implied by the 
O 

of the static equations (42). 

lead to 

solution 

..¿AMPLES : CYLINDR' CAL SHELLS UNDER AXIAL COMPRESSION 

Narrow Panels between Longitudinal Stiffeners 

On the basis of his general theory Koiter has studied (Ref. 11) the 

influence of initial imperfections on the static buckling under axial compression 

of a long, thin cylindrical cylinder ',Fig. 8(a)) subdivided into narrow panels 

by stiffeners that remain straight but offer no resistance to twisting. Let us 

identify the load parameter X with the average compressive stress; the classical 

buckling stress is associated with a repeating pattern of square buckles between 

the stiffeners, and in terms of the "narrowness" parameter 

is given by 

2ir 
[12(1- F)]1/4 

(Rh) 
1/2 (59) 

4j¿D 

b2h 
aV) (60) 

3 2 
where D - Eh /12(l-v ) , E is Young's modulus and v is Poisson's ratio. The 

parameter 0 must not exceed unity for the panel to be considered narrow; for 

all 0 > 1 , \c remains equal to the critical value for an unstiffened cylinder. 

Koiter shows that the narrow panels constitute a structure of the cubic type, 

and that there is imper feet ion-sensitivity only for 0 > .64 . Combinations of 
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h/R and opening angles 0 m b/R between stiffeners for which the panel is both 

"narrow" and imperfection-sensitive are shown by the shaded region in Fig. 8(b). 

We wish now to check some of the simplifying assumptions made in the last 

section in the course of establishing the probable conservatism of the predictions 

for dynamic buckling obtained from the simple cubic model. We note first that, 

as assumed, the classical buckling mode is Indeed a natural mode of vibration if 

inertial loads in the longitudinal and circumferential directions are neglected; 

in shallow shell theory this simplification is Justified for sufficiently low 

frequencies. Next, to estimate how quickly the "trivial" stress state would be 

established relative to the time it would take for the buckling deformations to 

develop, we Introduce the parameter 5 defined as the ratio of the time for an 

axial stress wave to traverse a buckle (of length b ) to the quarter-period of 

the natural mode just mentioned. Assuming the one-dimensional wave speed i/Ê7p , 

this ratio is found to be 

6. (61) 

[3(1-v2)]1/A 

Loci of constant values of 6 are given by the dotted lines in Fig. 8(b); the 

small values that occur tend to discount the possibility of serious error 

incurred by the assumption fi ■ 0 that was, effectively, made in the general 

dynamic analysis. 

It may be of Interest to estimate, next, how conservative might be the 

dynamic buckling loads given by Eq. (17) for the simple model. On the basis of 

Kolter1 s detailed calculations, we find that the parameters r and ri (see 

Eqs. (52) and (53)) vary with 0 as shown in Figs. 9(a) and 9(b); the curves for 

n are for various values of the ratio of stiffener mass to skin mass. Although 
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heavier stiffeners tend to lower x) and hence (see Fig. 7) tend to raise the 

dynanic buckling strength, the results are not very sensitive to stiffener mass. 

All told, the curves of Fig. 7 indicate that, for most of the ranges .5 < r < 1 

and 2 < T| < 4 that appear appropriate for imperfection-sensitive narrow panels, 

the predictions of the simple model (r| ■ ®) are not unduly conservative. 

Unstiffened Cylinder 

The unstlffened cylinder under axial compression has a multiplicity of 

buckling modes associated with the classical critical compressive stress 

\ 
C 

(62) 

«diere 

p* - 12(1-v2)A2 (63) 
o h 

and the influence (notoriously great) of Imperfections on the buckling strength 

has been studied by Kolter (Refs. 6, 7) on the basis of his general theory. A 

self-contained analysis, aimed at the evaluation and study of the dynamical 

equations ¢58), will be given here. 

In a Donnélè-type nonlinear theory for circular cylindrical shells 

dAí - hS[F,W] - \ 

R dx 
(64) 

tS - - S[w wl + ” — 2 aLW'WJ + r (65) 

. -r hi Ò2a 02b , ò2a 02b 
where S[a,bJ s —- —- + —- —- 

òx òy òy òx 

ò2a ò2b 2 and «diere W is the radial 
óxoy oxoy 

displacement, F is the Airy stress function, x and y are axial and 

circumferential coordinates, respectively. With reference to the operator L, 

of the general theory (see Eq. (18)), note that the non-linear contributions to 
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the normal and shear membrane strains c and y Äre õaT" 'xy 2 dx hë2, 
f and respectively. The classical buckling equations are obtained 

by letting 

\ry 
F - - -¼— + f 

and then linearizing Kqs. (64) and (65) with respect to f and w to get 

Dv W + hX 
à2» h à2f 

Cdx2 Ràx2 

-IO 
Ràx2 

★ 
It Is then easily found that the lowest eigenvalue , given by Eq. (62) , 

corresponds to the modes 

+1 
(px+ny) 

W - e (66) 

-[$ 

(px+ny) 
+1 

(67) 

where p and n are related by 

2 2 
P - PQP + « "0 (68) 

For Donnell's theory to be applicable, the wavs number n should be large, but 

the special case n ■ 0 , p a p^ Is also acceptable. He will limit ourselves 

to consideration only of the simultaneous occurrence of this axlsymaetrlc mode 

and the one with square buckles corresponding to n ■ po/2 , p ■ p^/2 ; thus we 

can use ^ and ^ ‘ (58) as the coefficients of the modes 

This assumes that the cylinder Is long and that there are no degrading 
effects associated with the ends. 
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:(1) . 

h C08 

P X o 

and 

Dp P X o o 
~ coa —r— 
R R 

,<2) 

:(2) 

pox P0y 

h 8in 2R~ C08 IT 

Dpo PoX Poy 
R *ln 2R COS 2R 

respectively, and then Eqs. (58) may be written 

_jl_ £ii + u-xA h +_i_rifV.u) , 
[a)(l>12 dt2 + U Xnc,!l + f (1) ^ e(l)l l_2 Çll*C ' S 

^ C C J 

* «.vW" ■ * í-í‘> . yíu>}> 
. ,=<{.“>, . 1 {.<». 

1 d\ . 1 
(2),2 .2 + (I'X/XC)?2 + í (2) (2) 

[œv^r dt4 [ 2 - L2(uC2>)} 

* V, <(••?’ ■ i-,,«"“1 •"?’>} * {•“ • h»?’»}! 

- UAC)Ç2 

Now, by Eq. (27) 

í.a) ,(in 
le ' C J -lck - 

(69) 

(70) 

where Oq is determined by F ■ . £_ . ; so 

2*R 

-d) JD 
1*0 ' ec hXC J dy I dx 

2nE‘ih' 

wnere ¿ » R is the cylinder length. Similarly 

í (2) (2)1 «rthf 
l€C , C J 4R 
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Further 

2«R l 

h J <iy J «ix 

0 0 

ò2fí2> à«íl) àw<2> 

òy 

C 
17 

c 
òx 

ò2fí2> ÒW^L) ÒW c c c 
1x57 

(2) 
C 

7y 

and 

|/37I^í ^ 

2kR I 

{■c1* - l2(uc2>)} ■ h / r dx 
o o 

r^2^0 H2)\i 
dx ày 

• - ; V3U-^> ^ 

Finallyí with circumferential and axial Inertias neglected, the use of 

Eq. (51) gives the vibration frequencies 

and 

associated with the two buckling modes. And so, with the variable change 

T ■ œ(2)t , Eqs. (69) and (70) become 

(ÇjA) + (l-X/XçJÇj - (||)?2 - (X/X^ij (71) 

?2 + [1 - X/Xc - - (X/XC)Ç2 (72) 

I 2~ 
where c ■ f3(l-v ) . 

If " 0 > ^ 0 (i.e. only axlsyosnetric imperfections assumed) static 

buckling of the cylinder occurs by a bifurcation process in which ^ regains zero 
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vhlle ^ varies with \ as 

until the coefficient 

vanishes; this gives 

XAC ?1 

hm i - \/\, 

of Ç2 in Eq. (72) -- which is homogeneous in ^ -- 

for the static compressive buckling stress the equation 

(1-X/XC) ■ £2 ?i](XgAc) 

which was found by Kolter in Ref. 7. On the other hand, if " 0 , f2 ^ ^ ^ 

simultaneous solution of (71) and (72) gives, statically, 

(l-XAc)2e2 - c2Ç2 - (XAc)(1-XAc)Ç2 

which implica that \ « X must satisfy^ 
MAX 2> 

^-VV2-^ (74) 

In the presence of both and f2 , maximization of X leads to 

o-VV m (Xg/Xc) 

1 - Vxc 

9/3 cl 

It fPs^C^ 
(75) 

In order to see how the dynamic buckling load varies with XgA^ the 

dynamical equations (71), (72) were solved numerically for various imperfection 

ratios Ç,/Ç0 and the results for Xn/X_ together with the corresponding roots 

(Xg/Xc) Eq* (75) were used to plot Xp/Xg against Xg/Xc in Fig. (10). 

The curves indicate that Xp/Xg is lowered more by the non-axisymmetric 

In Ref. 7, this result is shown to hold, with ^ replaced by | > 

under much less restrictive assumptions on the choice of ron-axlsymmetrlcal 
buckling modes. 

An analogous, buw different, result was given by Kolter in Ref. 12 for another 
type of non-axisymmetric tfliperfeetion which led to a bifurcation type of 
buckling Instead of the attainment of a "smooth" maximum in the variation of 
X with Ç as found here. 
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coBponent of the imperfection than by the axisymmetric one (although the reverse 

is true for \„/\r ) and the lowest values of \n/Xc are found for ■ 0 . A 

good A^roxlpHtion to this caae can be found analytically by dropping Ç^/4 in 

Eq. ¢71) to get 

+ ri-X/Xcl^ ' [-64(1-X/X )]^2 " (X/Xc)F; 

the solution of which provides 

<iv'c)2 "K/f112'V" (76) 

Combining (74) and (76) gives 

f2 (XD/XS) (77) 

from which the lowest curve in Fig. 10 is obtained. 

It may be mentioned, finally, that the ratio of the time it takes an axial 

compressiva stress wave to travfel a half-wave-length of a buckle to its stress- 

free quarter-vibration-period has the small value 

2 Â A - 
CJ(l-v2)]1/4 

for all of the buckling modes. 

CONCLUDING REMARKS 

The three simple equations (11), (17) and (77) that have been uncovered 

in this paper are all closely approximated, conservatively, by the formula 

7 + 3(XC/XJ 

x A«, ■ 
D S 10 (78) 
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for the ratio of dynamic to static buckling strength in the case of a suddenly 

applied load that is then maintained at a constant value. In the absence of a 

more detailed analysis, this formula -- or the still more comfortable one 

Xp " *7Xg "" is suggested as a basis for design. 

It is very tempting, next, to study the implication of the simple models 

for other types of dynamic loading histories. Thus, for example, the simple 

quadratic model will buckle under an Impulsive loading \ " lA(t) at the value 

where u) is the stress-free natural frequency. Can formulas like this be applied 

reliably to structures in general? Which natural frequency to should be used? 

The situation appears more uncertain than in the case of step-function loading, 

but seems well worth exploratiori. 
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