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ABSTRACT

In this report, the general techniques for determining the distributions of
-j

4

products and quotients of random variables are discussed. Some exact and
asymptotic results pertaining-to the distributions of the products and quotients

of certain random variables which generally occur as measurement error are J

also presented together with their applications. An extensive bUbliography is

included at the end of the report.
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I. GENERAL INTRODUCTION

In the applied sciences, problems are frequently encountered con-

cerning reliability analyses, measures of efficiency, biometry indices,

etc., which properly belong in the framework of determining the distri-

butions -of various algebraic combinations of random variables. Many

of the problems associated wi .h this general area, and in particular

with product and quotient forms of these variables, have been extensively

investigated. Craig 121] and others, however, point out that these

investigations have resulted. in surprisingly little useful information

which is generally available to the engineer, research scientist, etc.

The scope of such problems is surprisingly broad and investigations into

methods of analysis date as far back as to K. Pearson [97] , 1910. As a

cc'l]ective entity, the literature concerning product and quotient forms

of random variables is widely scattered and, unfortunately, is devoted

almost exclusively to investigations utilizing very specialized quad-

rature methods. As a result, no publication has appeared which presents

- a general theory, methods of application, and useful tabular results per-

taining to a variety of product and quotient forms of random variables.

Scattered and incomplete tables concerning exact distribution

percentage points, approximating distributions, and other applied topics

are available. To the engineer unschooled in the rudiments of random

variable teckiniqueo, these are often meaningless and force him to use

1) In the body of this report, numbers in brackets, [ ], refer to the
bibliography.
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less desirable deterministic methods or even porhaps to make unwarranted

assumptions so that the tabular resultis might be used.

The aim of this monograph is to present a useful expository manu-

script on certain frequently occurring product and quotient forms of

random variables which will present a general theory, bring together

and discuss known results, and reference pertinent tabular results so as

to provide a useful tool to the engineer or research scientist.

In this respect, the monograph is devoted to the following topics:

1) Examples of applied problems involving products and quotients. To

demonstrate a wide range of applications to engineering problems, a

number of varied examples are discussed, mainly from the viewpoint of

recognizing and properly posing the problems in this general area.

2) General theoretical models for determining product and quotient

distributions. The general techniques for determining the distributions

of products and quotients of random variables are presented. This pre-

sentation treats the independent and dependent cases of continuous

variables.

3) Exact results pertaining to products and quotients of random variables

which generally occur as measurement error. Considerable attention is

devoted to the quotient distributions; normal/normal, rectangular/normal,

triangular/normal; to the product distribution, normal x normal, rectan-

gular x normal, triangular x normal; and to certain discrete distri-
S~1

butions of the form - .

2
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4) Limiting distributions, approximations and asymptotic results. The

general variable Z x 'r i Y is &iscussed in respect to

fitting the lognormal approximation to Z, along with other topics.

5) 3haracterizing properties of statistical distributions. Problems

of the type: "If X 1/X2 = Y and Y follows a general F distribution, are

and X2 necessarily chi-square variables?" are treated.

6) An annotated bibliography. Products and quotients of random

variables assume many different representations. Not only is one

interested in ratios and products of random variables described by

specific frequency functions, but also in functional forms of variances,

ranges, proportionn, etc.

The bibliography presented herein is very comprehensive in respect

tc articles pertaining to the theory of the distrt.bution of random

variables described by probability density functions. The remaining .-

entries in the bibliography represent a small representative sample

of the vast number of published articles pertaining to other forms of

products and quotients.

The notation used herein conforms for the most part to what is

believed to be a standard format in statistical literature, The symbols

denoting random variables will be X, Y, Z and the values of the variates,

IA



"x, y, z. Frequency or probability density functions, p.d.fo's will \ \

be dencted by small letters f(x), g(y), . • , and the respective

cimulative distribution functions, c.d.f.'s, by F(x), G(y), . . , . .

A random variable obeyin6 a certain probability density function, say

the Gaussian or normal probability law, will be denoted as the( or, 2

Here )g and o.2 respectively denote the expected value and the variance

of the normal random variable. 'p.

r C:
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II. ENGINEERING APPLICATIONS INVOLVING
QUOTIENTS OR PRODUCTS OF RANDOM VARIABLFS

The examples discussed in this chapter serve to emphasize the

broad range of product and quotient formo arising in engineering

applica•tions of statistical '-stribution theory.

2.1 Cyclic Firing Rate of the T-160 (20 mm) Cannon in Korean Combat 2

The need for establishing the reliability and functional suitability

of weapons under combat conditions is apparent. The following account

describes a preliminary model for a statistical analysis which was used

to determine the combat suitability of the then newly manufactured

T-160 gun installed on jet fighter aircraft during a period in the

Korean conflict.

It was desired to establish the cyclic gun firing rate the T-160

achieved during combat by assessing sight reticle and scope camera

film exposed during missions and from questionnaires filled out by

pilots and armament technicians detailing the number of rounds expended

on each sortie from belt counts. The data were used to obtain a prob-

abilistic estimate of the typical cyclic rate of the T-160 for the

Korean combat test.

The parameters r and 9 defined below refer to sortie averages. If

r = average cyclic gun rate per sortie in rounds/sec/gun,

r = average camera speed per sortie in frames/se/.,

2)
George W. Morgcnthaler, "Cyclic Rate of the T-160 iu Korean Combat,"
Combat Film Analyais Newsletters, Institute of Air 'Neapons Resenrch,
University of Chicago, 1954.
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then

(No. of guns firing) r- (No. of rounds expended). (2-1)

There are, of course. certain errors in the input data for formu.La

(2-1). The fi.'ing frame count may be in error because of the difficulty

inherent in di-tinguiuhing a firing frame from a nonfiring frame,

particularly with poor quality film, The nominal camera speed

(Q = 32 fr/sec.) is subject to a factory setting error, in addition to

4 errors induced by mechanical wear, inaintenance irregularities, and to

errors arising from vnriations in temperature and the camera circuit

S~voltage.

Test firings indicated that the average cyclic rate, r, on a sortie
Sis a function of total time of fire, the number of bursts, the quality

of the gun, etc. Beihg a function of random variables, r is a random

variable and thus would generate a distribution over a large number of

sorties. The expected value, E(r), is representative of the sortie.

cyclic rates experienced in Korea.

In the treatment of this problem, r was treated as a product of the

II
aependent random variables 9 and r/O and E(r) was defined by the relation-

ship:

E(r) E 0o E(0) E + ev )(2-2)

where:

,@r =coefficient of correlation between 9 and r

64
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V(9) variance of @, and

V variance ofN

In this case, the moments of the distribution of r =()
r ®

were first obtained by making the assumption that 9 and - were

normally distributed. This assumption was supported by experimental

data. It was found that 1164 < E(r) < 1266 rds./min. with a prob-

ability of .90. This estimate was surprisingly low iin comparison

with the T-160 designed cyclic rate of 1500 rds/min. It is apparent that

with the percentage )oints of the distribution of r = (Q) (•) , one

could examine the prob bility of an E(r) such as was attained. This

very low probability would cause one to search for a plausible ex-

planation.

In this case, it was discovered that since the T-160 is a gas-

operating, automatic weapon consisting of barrel and a rotating drum

with five chambers, then the inertia of the drum would play an important

role. At the outset, the inertia of the drum is overcome rather slowly and,

hence, the gun does not have a cyclic rate but rather an average cyclic

rate depending upon the duration of the burst of fire.

Computation of the expected T-160 cyclic rate for Korean type

combat based on the Korean T-160 burst length later proved that values

of E(r) -: 1200 rds./min. were to be expected.

:2 .2 Selection of a Space "Workhorse" Booster.

Many experts agree that all long range space explorations to be

7
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S
attempted in the intermediate future will best be initiated from an

earth or parking orbit. In this respect, the success of such space

missions will then greatly depend upon the successful completion of a

vrery important logistics operation. This operation will involve the

transportation of all necessary equipment and supplies into the earth

orbit and the assembly of it there.

The selection of a suitable "workhorse" booster for this phase of

the project represents only one of the myriad of complex decisions

facing the project planners. But, since this decision must be made

years ahead of most others and will involve great expenditures of

money, manpower, and time, it perhaps represents the most important

present day space industry problem.

Let us assume that, at the present time, the choice of a workhorse

booster is restricted to typical systems such as the Nova, Saturn 0-5,

and the Titan III systems. The concepts of these boosters differ con-

siderably;and any operational boosters forthcoming from the e projects

will most assuredly differ in respect to payload capacity, costs,

velocities, reliability, date of assembly of the first operational booster,

etc. Thus the problem of an "optimal" selection of one booster system for

the transportation job must be based on a very realistic evaluation model.

One meaningful index for an evaluation model of this type is the

"dollar" cost per pound of equipment placed in orbit. This index would

be obtained, of course, by dividing the total system cost, Csystem' by

"the payload weight placed in orbit, W payload' or

A"
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I= Wsse (2-3)

A closer investigation of C system and W payload reveals that these

compunents are functions of variable components. For example, total

system costs include both research and development costs and operational

costs - estimates of which are highly uncertain. Uncertainties in R & D

cost estimates intervene in the form of unanticipated differences in

estimated costs of component parts and in increased expenditures caused

by modifications in the design to meet new or revised performance

specifications. Operational costs are highly susceptible to the failure

rates of the component parts and, more generally, to the level of

"sophistication" in the supporting logistics system.

The weight and space of payload placed in orbit are fundtionally de-

pendent upon various characteristics of the missile such as Specific

Impulse, Isp, the weight-to-stage weight ratio, • 1' and other aero-

dynamic characteristics, A.

It becomes apparent from these considerations that equation (2-3)

represents a complex random variable and would be better represented by

Cost +0C
CsR&D Operational1 (s,•' 2''v (2-4)

Additionally, each component of Csystem and Wpayload is random in

respect to measurement or estimate error. For instance, experimental

data collected from operational booster oystems to date show that the

Isp of an "average" missile of the system varies from the parameter value

the designer had intended.

9



Without the knowledge of how to combine the functional forms of

the components of I, only a point estimate of I will be possible. On

this basis, the choice of a booster system would be greatly influenced

by the relative differences in the point estimates of I for these systems.

On the other hand, the c.d.f.'s of I, F(I), for each booster may be ob-

tained with a knowledge of random variable techniques. Assume, for

illustrative purposes, that the c.d.f.'s of Figure 1 are realistic.

Several additional, equally good, criteria for the selection of a

booster system may be considered when the information of Figure 1 Is

available. For example, a system might be selected on the basis of:

1) the system expected to become operational soonest and for which I

is greater than some specified level with probability b 50%, say, or

2) the system for which I is largest at a certain prescribed level of prob-

ability., or 3) the system for which the maximum cost estimate is a

minimum, etc.

More important , all of these criteria may be evaluated simultaneously

with the aid of estimates of the respective c.d.f.'s. Such an analysis

is certain to provide much more valuable insight into the problem of

selecting an appropriate booster system.

2.-3 Replenishment of a Life Support 8ystem.

With the advent of long-duration manned space flights, estimating

the changes that will occur in the quantities Df certain substances p

in the desired ecological system has become more complex.

10
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Ideally, a mathematical model for general system analysis of an •,

ecological system for .lung-duration flights will provide for:

1) A formulation of the control problem from which optimal

control functions car )e determined;

2) A preliminary dcoign for the ecological system in respect

to system stability and control considerations;

3) A method for determining the time required to restore the I\.

system to a suitable balance in the case of a mishap and

the time required initially to put the system into

operation; and j

4) The determination of resupply requirements.

One aspect of a preliminary model 3 designed to include the above

considerations has resulted in the requirement for evaluating a product

of random variables. It may be stated in the following manner:

Consider the amount of oxygen in a cabin atmosphere. The amount

is affected by leakage, crew consumption, and resupply from a storage

capacity. Let:

X(t) = amount of oxygen (in moles) in the cabin atmosphere at

time t,

L = proportion of rate of loss of oxygen due to leakage from

the cabin atmosphere per time period,

Davis, Henry and Novosad, R. S., "Control, Replenishment, and
Stability of Life Support Systems," Journal of Spacecraft and
SRocket1, Amer. Inst. of A. and A., January 1964.-



Y= rate of increase in oxygen content in the cabin

atmosphere from storage per time period, and ' ¼

K rate of decrease in the oxygen content in the cabin

atmosphere due to crew consumption per time period.

The estimated amount of oxygen at time t is

X(t) exp (-Lt) exp (Lt) (Y1 " K) dt + X(O) (2-5)

0

where Vr,

X(O) denotes the initial condition.

In this study, W , exp (Lt) and Z =Y - K) represent random

variables which are functions of time. A knowledge of combining random

Variables in product forms is required for solving this problem.

2.4 Stochastic Differential Equations with Product Coefficients.

In the space industry, stochastic differential equations whose co-

efficients are functional forms of products and quotients of random

variables frequently play important roles. They appear in investigations

of control theory problems, in analyses of stresses and material per-

formances, and in estimations of' the effects of hypervelocity impact.

Most frequently, the designer or engineer treats this type of

equation as n deterministic model by using moments of the distribution as

the constant coefficients in order to obtain a solution. If bounds are

13
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required for a particular solution, digital computer simulation of the

effects of small perturbations in the coefficients usually affords a

convenient method of analysis.

In the field of missile trajectory analysis, both very complicated

models, such as a complete design optimization analysis, and very

simple models, such as the path of motion in a plane of a point particle,

are needed. The latter prc:- analytic solutions in closed form from

which valuable insight regar( . trajectories can be obtained. They

also furnish simple trajectory patterns that nre of great value for

problems involving the simultaneous optimization of design and tra-

Jectory. The more complicated models make it possible to take into

account many effects that must of necessity be omitted from the simpler

models and also provide a good framework for analyzing the complete

system of simple models.

One of the simpler design models is that of electrical circuitry analysis.

Such situations arise frequently in electrical circuits where the current

flowing in one circuit is influenced by the current flowing in another

through direct interconnection or through a mutual inductance. The

differential equations for the currents are obtained by considering the

potential drops across various elements of the circuit. This leads to

the following pair of simultaneous equations:
dl M dR 11 + Ll1d- + 12 = B cos 4 t,

dI 2  1 dI1
R2 2 + L2 -dt + f 12 dt + M dt- ,

14I



where the coefficients refer to stondard circuitry notation. In the

above form we have diffoerntial-integral equations. By substituting

the definition of the current, I andrearnigdmweoti

dt rarnigtrs eoti

Ql+ MQ 2  Eo coswt
( 1dt 2 1/td

(M 2) Q 1 + (d2 d t2 +R Q2~ =0'

The usual method of analysis of this model consists of using the

expected value5 of the parameters to determine a solution. The ex-

pected values are obtained by measuring the parametera, such as

resistance, etc. These parameter values permit a unique aolution to

the model.

As the parameter values obtained in this manner are subject to ex-

perimental or measurement error, a far more realistic model is obtained

by considering the parameters as random variables. A "family of

solutions" is generated by considering the density functions of the

coefficients of the above set of equations. This family of solutions

will allow many additional questions to be answered concerning the prob-

ability density function of the "solution".

2.5 Measurement or Radiation by Electronic Counters.

Proportional, Geiger, and scintillation counters are often used to '

detect X and 'd radiation, as well as otbher charged particles such as

15V



electrons and c4 particles. Design of these counters and their

associated circuits depends to some extent on what is to be detected.

V A device common to all counters is a scaler. This electronic device

counts pulses produced by the counter. Once the number of pulses over

a measured period of time iv known, the average counting rate is ob-

tained by simple division. If the rate of pulses is too high for a

mechanical device, it is necessary to scale down the pulses by a known

factor before feeding them to a mechanical counter. There are two kinds

of scalers 4 : the binary scaler in which the scaler factor is some power

of 2, and the decade scaler in which the scaling factor is some power

of 10.

A typical binary scaler has several scaling factors ranging from

0 -L4
2 to 2 . The scaling circuit is made up of a number of identical

"sLages" connected in series, the number of stages being equal to n,

where 2 n is the desired scaling factor, Each stage is composed of a

number of vacuum tubes, capacitors, and resistors, connected so that

only one pulse of current is transmitted for every two pulses received,

Since the output of one stage is connected to the input of another, this

division by two is repeated as many times as there are stages. The out-

register one count for every pulse transmitted to it by the last stage.

SThusif N pulses from a counter are passed through a circuit of n stages,

Cullity, B. D., Elements of X-Ray Diffraction, Addison-'Wesley
Publishing Company, Reading, Massachusetts, 1956.

16
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only N/2 n will register on the mechanical counter.

Because arrival of X-ray quanta in the counter is raindom in time,

the accuracy of a counting rate measurement is governed by the laws of

probability. Two counts of the same X-ray beam for identical periods

of time will not be precisely the same because of the random spacing

between pulses, even though the counter and scaler are functioning per-

fectly. Clearly, the accuracy of a rate measurement of this kind improves

as the time of counting is prolonged. It is therefore; important to know

how long to count in order to attain a specified degree of accuracy.

This problem is complicated when additional background causrps contami-

nation in the counting process. This unavoidable background is due to

cosmic rays and may be augmented, particularly in soue laboratories, by

nearby radioactive materiRls.

Suppose we want to estimate the diffraction background in the presence

of a fairly large unavoidable background. Let N be the number of pulses !

counted in a given time from a radiation source; let Nb be the number

counted in the same time with the radiation source removed. The Nb

Scounts are due to unavoidable background and (N-Nb) to the diffractable

background bei measured. The relative probable error in (N-Nb) is67 ýt+ b b

E N.N N-N percent.

Since N and Nb are random variables, the desirability of obtaining

Lhe density function of the above quotient form of a random variable is

appa rent.

r\.. \", • "•J,•',i~ £ • \'X,••',".'':k.v •'V,.•l •l" •'•'••-'N •"•-,'." V''.* ;•-• ", - ,%" "*\•".



2.6 The Pert Model.I

Project schedules of many kinds may be schematically presented as

a network of nodes and connecting arcs. For illustrative purposes, con-

sider the simple project schedule of Figure 2.

PERT Representation of a Simpie Project Network,

Figure 2.

Each arc, a, a', b, ... ,f, in Figure 2 represents an "activity"

which must be accomplished during the project sc~hedule. The length

of each arc denotes the time required to complete each activity. The

nodes, A, At, B,9 F, represent events marking the beginning or

the end of an activity. There are, of course, two special events or

nodes: the ini-cial event, 8, arid the terminal event, F, between which

all project activity is contained.

All s.ctivities which must be accomplished during one phase of the

project and which may be worked on simultaneously are shown in parallel.

18
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In Figure 2, activities a and a' are such events. In addition, the

chain of activities a, b, and e may be worked on concurrently with the

series of activities a', b', d, and e'. Activities which may not begin

before the termination of others, as f in Figure 2, are shown in series.

For fixed activity durations, a very simple algorithm gives the

length of time required for the total project. "PERT" generalizes the

method of approach to recognize uncertainties in activity durations

by considering them as random variables. The usual assumption is

that these durations are described by independent distributions, each

with a finite range. Of critical interest in the PERT analysis is the

distribution of the random variable describing the project's duration.

When the relevant activity durations are known with certainty,

finding the project duration is a trivial matter even for very large

networks. Unfortunately, in many space industry research and develop-

ment projects, the time durations for various activities are known only

with a high degree of uncertainty. For this reason, the PERT system

was created to facilitate network planning.

The basic data required for PERT are the distributions of the

activity durations. The data for these distributions are obtained

from technicians wlo have had some experience with the type of activity

involved. The distribution of the project's duration is a composite

of these activity duration distributions. For all activities appearing

in series, the total activity duration for that series is the sum of

the random variables corresponding to each project activity. All activities

appearing in parallel are treated by determining the distribution of the
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maximum times of the activities. As an example, the simple network

in Figure 2 is treated in the following manner: Events A, Band E

mark the end of project activities a, b,and e. The total project duration

time of these activities is a rindom variable determined from the sum of

the three random variables, a, b, and e. Let U represent this sum so

that.

U =a + b + e.

Activities a', c, d,and e' are performed concurrently with the series

U. Let V represent this sum of random variables so that

V = a' + c + d + e'.

It is easily seen that the total project time required for com-

pletion of this phase of the project is a random variable deter'mined
r,

by the distribution of max [U , V , the maximum of U and V.

As activity f must begin after the complLetion of all other events

in U and V, the total project duration, T, is of the form

T = max(U, V) + f.

Through this formulation, not only the distribution of project

duration may be investigated, but certain other equally important

topics as well. One such topic concerns the establisa:n.,nt of starting

dates for vnrious series of activities. The feasibility of starting the

series of activities, say U and V, on the sanme date may be investigated

by considering the random variable Q = U/V. This idea suggests that

S'hrough examination of such probabilities as

Pr(U/V k) and Pr (kI< U/V !k),

the need for rescheduling U or V may be determined.
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III. GENER•AL THEORETICAL MODELS FOR QUOTIENTS AND

PRODUCTS OF RANDOM VARIABLES

The notion of probability plays an important role in statistical

theory; yet in a chronological sense, an adequate definition of "the

probability of an event" has been subjected to an ensemble of varied
aplproaches. Therefore, a brief mention of the measure-theoretic con-

cept underlying the theorems and definitions presented herein is per-

hap& warranted. The'measure theory approach to probability, popularized

by Cramenr [22] and others, features the embodiment of the fundamental

notion of probability in measure-theoretic ideas through the concept of

*• a theory of sets and the "measure" of a set. The theorems in this

section are presented with the implication that their rigorous formulation

may be established by utilizing certain measure-theoretic concepts.

* 3.1 Cumulative Distribution Functions.

In the univariate case, the cumulative distribution function, c.d.f.,

of a random variable X is defined by the following postulates-

if xI x2 , then F(x,) - F(xl) _,-

2 x1 01 (3-1)

F(-oo) = U, F(+oo) = lin the limit sense, (3-2)

"limit F(b) = F(x). (3-3)
b--- x+

The notation of (3-2) implies that the linit F(x) exists as

x--- (-oo) or (+oo). Since (3-1) defines F(x) as being monotbnic,it

follows that F(x) has at most an enumnerable set of discontinuities and
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that the limits F(x+) and F(x-) exist everywhere. The values of F(x)

at discontinuities are fixed by (3-3). It follows from (3-1) and (3-2)

that F(x) is non-negativeo

The relation between the probability statements about the random

variable X and its c.d.f. is expressed by

Pr(X _ x) = F(x). (3-4)

Two important classes of c.d.f.'s may now be characterized:

i) a discontinuous c.d.f., F(x), characterizes a relation such

that each member xi of an at most enumerable set of points

X1 , x., . . . is associated with a respective probability

Pi - 0, such that Pi = 1, and that the following condition
±

holds;

Pr(X:_ x) = F(x) =ZPJi for xj X. (3-5)

ii) the second important class of o.d.f.'s ia characterized by

the existence of the function f(x) 2 0 such that

F(x) f f( d

-00

Equation (3-6) is referred to as the continuous c.d.f. and f(x)

as the probability density function,p.d.f. ,of random variable X.

0bvioualy then

Pr(xn X -12)x f( 7) d , (327)
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3.1.2 The Bivariate Case: If R denotes a rectangular area in the

(x, y) plane, x 1 - x - x2 , y< y y 2 ,and A 2 Fx, y) denotes the

second difference,

\2 F(x,y) = F(x 2 ,y 2 ) + F(x,1 1y) - F(x 1 ,y 2) - F(x 2 ,y), (3-8)
R

then the joint c.d.f., F(x, y), of random variaxbles X and Y is sub-

jected to the following postulates:

SF(x, y) Rt 0 (3-9)
R

and

F(-oo, y) = F(x, -oo) = 0, F(+oo, +oo) = 1. (3-10)

By allowing xl, Yl - -co in (3-9), we may conclude,using

(3-10),that

F(xI, y2 ) - F(xl, yl) :4 0, if Y2 Y. (3-11)

Similarly,

F(x 2 , yl) F(xl*, y) 2 0, if x2 '1.

From these postulates, it is Zoncluded that F(x, y) is monotonic in

each variable and the limits F(x +, y), F(x, y+) exist everywhere. It

is easily shown that F(x, y) is discontinuous on at most an enumerable

set of lines, x = constant, (similar results for y). Finally,if

x- -co, and yl - -co in (3-9), then F(x, y) _ 0 because of

(3-10), The values of F(x, y) at the discontinuities are fixed by (3-12)

so that
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F(x, ) - F(x +, y) F(x, y +).

Again the connection between the probability statements about

random variables X and Y and their joint c.d.f. is determined by

Pr(X n x, Y _-= y) = F(x, y). (3-13)

In the bivariate case, again the discontinuous and continuous cases

are of particular intereet-

1. The discontinuous case is characterized by the existence of

an at most enumerable set of points (xi, yi)j i = 1, 2, . . .

and associated probabilities Pi such that = 1. So that F(x,y) is

k±

r,(x,Y) =• pj, xj n x1 yj < =i. (3-14)

2. The continuous case implies that there exists f(x,y) j 0

such that

F(x,y) -- J f (, n2 ) d (3-15)
1 2

-o -00

and

Pr(X, Y C R) = f f(x, y) dxdy . (3-16)

5T The mixed case which is treated through application of the Stieltjes
integral will not be covered.
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3 .2 Marginal Distributions.

The marginal distribution of X associaLed with the joint c.d.f.

of random vnriables X and Y is defined by the relation

Pr(X w x) = P(X x, Y +oo) = F(x, +o). (3-17)

Hence F(x, +co) is the univariate c.d.f. of X and is called the

marginal distribution function of X. Similarly F(+o, y) is called

the marginal distribution function of Y.

For the discontihuous joint c.d.f.,

F(x +00) =S• p. , x (3-18)

and for the contihuous case

F(x,+co) f f (l f 2 )d)ld V2 2  fln 1) df41. (3-19)

-00 -0 -00

3.3 Statistical Independence.

If F(x, y) is the joint c.d.f. of X and Y, then F(x) = F(x,+oo)

and F(y) = F(+x, y) as already noted. The random variables X and Y

are said to be statistically independent if and only if

F(x, y) = F(x) F(y) (3-20)

which in turn implies that the following relations hold:

f(x, y) f(x) g(y) for the continuous case (3-21)

and
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P(x x, Y y) = Pr(X = x) Pr(Y y) (3-22)

for the discrete case.

As a result, the following definition may be made:

DefiniLion: The random variables X and Y are stochastically inde-

pendent if and only if f(x, y) = f(x) g(y). If f(x, y) cannot be ex-

pressed identically as the product of the marginal distributions, then

X and Y are not statistically independent.

3 .4 Transformation of Variables.

Change-of-variable integration techniques are used frequently in the

study of algebraic combinations of random variables. In the following

discussion, only the continuous random variable case is treated as the

discrete case is analogous and presents no additional difficulties. At

this point, it may be helpful to present a special problem to emphasize

the ideas involved.

Consider a random variable X described by the p.d.f.,

f(x) = Y2x, 0 -x-2,

= 0, elsewhere.

The random variable X is defined on a set I = 10O- x • 2 1 where

f(x) :-0. Define the random variable Y as an algebraic combination of

X, say Y = X3 , and consider the transformation y =Under this

transformation the set 6 is mapped into the set 3 = 0O. y ;

moreover, the transformation is one-to-one. The one-to-one corres-

pondence between the points of t and 3 insures that for every event
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0 < a -b , the event a - Y: b will occur when and only when -'

the event 4 af CX < 4V b occura.

Thus,

Pr(a Y b) =Pr( 4V X ma [b

4V b Y2 x dx.

By changing the variable of integration in the above so that

3 dx 4and 4 V , the following result is obtained: IId 3 y. 213 ,

jrb 
4 dy

Pr(a cY b) f Y/2 (4* Y 77y7

a 
3-.

The p.d.f. of Y is

g(Y) 81

3y

SO, elsewhere.

The change of variable technique in the univariate case ic summarized

by the following theorem:

Theorem 1: Let X be a continuous random variable described by the p.d.f.,

27
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f(x), defined on the set W = a _x •bj and let y = (x) be a

monotonic transformation having a unique inverse x =P (y) so that

under the transformation, the set V maps by one-to-one correspondence

into /Y = ta' - y -. b'} . Further, let ý,'(x) exist; then the p.d.f.

of Y is given by

g(y) = f ( (3-2)

3.4.1 Bivariate Case: The method of finding the p.d.f. of one vari-

able of a continuous type may be extended to a function of n random

variables. Two-variable transformations are considered now as a

special case.

Allow Y, = h(xl, x2 ) and y2 = g(X l' x2 ) to be a one-to-one trans-

formation of random variables X1 and X2 with existing continuous first

partial derivatives. This transformation will map a two-dimensional

set K defined in the (xl, x2 ) plane into a two-dimensional set (3

defined in the (yl' Y2 ) plane. Under these conditions the following

theorem holds:

Theorem 2: Let X and X2 be continuous random variables with joint
p.d.f, f(x l' x2) defined on the two-dimensional set V = a!x lb, cx2_-:d

Let Y, = h(Xl' x2) and Y2 = g(xl x.) be a transformation with a unique

inverse xI h1 -(yl, y2 ) and x2 = g(y, y2) so that the fir•st pcjrtial

derivatives of the inverse functions exist and the set 6 is mapped

under the transformation into 4 = (a'•Yl•b, aY2:d'} id a

one-to-one correspondence. Then the joint p.d.f. of random variables

Y1 and Y2 is
28
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g(y11 2  = x1  (h- (y Iy2),g-C 1 y) (YT , a'c y1 ~' c' S2 d' (3-24)

0 ,eloewhere

whr(h(y ,y 2 ),g-(YY 2 )) 9 h- (yl,y 2 ) a h'(y 1 ,y 2 )

where J (yYl'y 2 ) 
y 1 Y 2

Frequently in the treatment of the two-dimensional case, the randon,

variables X,, X2 are treated as being independent so that fXlX2 ( 0 )

becomes fXl(h-'(ylY 2 )) fX2 (g-l(ylY 2 )). In addition, the transformation

function Y1 is usually set equal to the algebraic combination of in- .4'
terest, say a quotient, so that Y = X1 /X 2 " The random variable Y2 isj

defined as Y2 = X2 " The p.d.f. of Y1 = X1 /X 2 , the quotient of interest,

is then obtained by determining the marginal p.d.f. of Yl" This pro-

ceuare in most caes greatly simplifies the calculations involved in

finding a desired p.d.f.

Theorem 2 is essentially a corollary to a more general theorem

dealing in several variables. This general theorem is summarized by

stating that if a set of transformation functions, yi = u i (xl"'Xn)

i l,...,n, exists with inverse functions, xi M wi(ylY 2 ,... ,yn),and if

the conditions of one-to-one transformations and the existence of first

partial derivative3 hold; then
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gIlV*Iy j10 (w I(Y lt...iyn)jq..w (yll...syn)) ~ (3-25)

where11

w~ ~ I w 
.S

a n

As an exaqiple of the use of (3-24), we shall consider the following

textbook type example: -),.(X 2 + x2 )

Allow: f(x1 lx2 ) x I ex 1 27 dx 1dx 2 and

considor the transformation:

Y = tan

The domain of the transformation is y 1 2. 0' 0 Y2~ 2 It The in-

verse of the transformation io

Xl y00S y

i wi 2
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Thus,

11 ((2 Y2 ) (_Y sin y,2) Y, IYI ;
)a (y1 ,y 2 ) (sin y2 )(y1  cos y2 )

hence, from (3-24), the Joint probability density function of l., Y2}

is
2

1 Y1
f ' = 2- e Yl dyl dy2 "

3.4.2 Transformations Not One-to-One: Let f(xlx 2 1 • . • , x ) be the

n-dimensional p.d.f. of continuous random variables X1 , X2 , . . . , X

Under the transformation y, u 1, x2 " X n)

Y2 = U2 (XlV x2 , ." " x ), " " " , y = un(xl' x2 , n . " X Xn), the

n-dimensional space ;K where f(x 1 , x2 , . . . , x) > 0 is mapped into

4in the (y11 Y2  y " " , y) space. Under transformations which are

not one-to-one, each point of V will correspond to one point in,* k

but to certain points in there will correspond more than one point

in ' . The difficulty presented by this circumstance is diminished in

the following manner.

If +he set • may be represented as a union of r mutually exclusive

sets ý1' 'd " , V so that the transformation y, y2 y .' " y
1' 2'2r

defines a one-to-one transformation of each subset i into,. Then

the groups,

X2 U 21 (YU ' Y2' Yn)' (i 1, (3-26)

Xn = ni (Yl Y2"

31

.12l



represent r groups of n inverse functions. If the first partial

derivatives exist and are continuous sand if

Ji = • '---l •ui .auli

S3 •Y 2  • Yn
~Umj

'2i u2i U 21

Y , Y2 n , (i 1,2, . . . , r),

Sni C Uni u ni

are not identically zero, the change-of-variable technique may be

applied to the union of the r mutually exclusive subsets of Y. The

n-dimensional p.d.f. of random variables YIV Y2 . . . , Yn is then
ni

given by

r- g(YI'y2l ... Yn)il pJil fx,...g (Ulit(Yl,...,yn),...$U ni (yl, ... yn)).(3-27)

The marginal p.d.f. of any one Y, say Y1, becomes

f= 00. Ofg(y2 " " yn) dY2 . . dyn

A frequently used example will serve to illustrate this result. Let X

follow a normal. p.d.f. with parameters (pi = 0, 1 = 1) . Consider the

32
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random variable Y X2 . The transformation y = x2 maps the set

16 00-Z x .m<oo0 into 49 {0y -Coo . This transformation

is not one-to-one, however, as to each point y / 0 in there corre -

spond two points, namely - ý and , in the set •.

The set on which f(x) : 0 may be represented as the union of

two mutually exclusive sets,

00 - --oxC 0J and 0 {0 c oc~

This is accomplished by observing that in the case of a continuous

random variable, the Pr(X = b) = 0; we may define the p.d.f. of X at

any point b, or for that matter any set of points oe with measure zero,

i.e., the property that Pr(X C a) = 0, without affecting the distri-

bution of X. Accordingly, two mutually exclusive sets, 19l and ;K29

are obtained by defining the normal p.d.f. ac

f~)= 1 -2 x 2

f(x)e 2 -" C x C0, 0 0Cx C° Cos

=0, x= 0

The function y = x2 now defines a one-to-one transformation which

maps each 16 and 2into 0 •y -• oo}. Tne two inverse functions

of y = x 2 arex= - and x = y so thatJl = and

J2 = /2Vy. Using (3-27), we have the well known chi-square distribution

with one degree of freedom,
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1 2 1 72

-y 0 e 00 -- e

The fundamental theorems involving the algebraic product, quotient,

sum, andthe difference of random variables X1 and X2 may now be stated.

Thense theorems are a consequence of (3-24) and (3-27). (See footnote 8, p. 42.)

Theorem 3: The random variables product Y1 "= X, X2 will be distrib-

uted as

P(:YJ) = f X19 ,x2 ' y2 , Y2 dy 2 1 (3-28)X2 12

= O, elsewhere

provided the random variables X and X are distributed in accordance
1 2

with the joint p.d.f. f xlX2(x1 , x2 ) which has been defined on the

set '6 so that th, transformation y] = U1 (xl, x2 ) and Y2 = u2 (xl' x2 )

maps the setK' into the seta in a one-to-one correspondence.

A very important result pertaining to the product distribution

of two independent normally distributed variables may be obtained by using

Theorem 3. Assume X I is N(0, e-12 and X2 is N(O, 922 and defined so

that Pr(X2  0) = 0. The set 00 - . 00 1 -00 -x 2  0, 0 -x 2 -•c x._

is mapped into the set a 0 = -0Yl< o; -_o y 2 -O, 0 y2 : CI)

in a one-to-one correspondence vnder the transformation yl =xl x2 ' Y2 x2"

C
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By Theorem 3, the p.d.f. of the product Y1 = X1 X2 is

Since P(yl) is an even function in Y21 P•(y,) may be written as {

2 227r0-6 f 2 11 2 d 2 d 2
San e f t y 2

,¢•y• .1J ___ y'

The following substitution simplifies the above expression. Let

2 6'Y2..•_

then P(y becomes

=Yyl 1 + du. I

1 22 5' o u
1202

t 6Hence, substituting u = e yI may be written as

Watson, G. N., Theory of Bessel Functions, Cambridge University
Press, Cambridge, 1922, p. 101.
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I~lI / t e-t\d Il

(- -- e + e o -- cosht

yl)= I e jo 2 dt 1 a v9'2 dt

2, "'1 .{o 2l'. -D ~00

- 0-- , (3-29)
'T Ir, Ir.'r. 2

where Ko(,) is a modified Bessel function of the second kind of zero order.

This result is well known and is discussed in considerable detail
in Chapter IV. A tabulation of Ko(-) is presented in [141] and [142]

i3

Theorem 4: The random variable quotient Y 1 -= X,/X2 will be distributed as

,O(yl) f fXl2 (yl Y2' Y2) I Y2 1 dY2 (3-39)

provided that the random variables X and X2 are distributed in accord-

ance with the joint p.d.f., f X1 (Xl1 x2) which is defined on the

set ý6 so that the transformation y, = ul(x1, x2 )? Y2 = u2 (xl, x2 ) maps

the set K into the set 0 in a one-to-one correspondence.

Theorewa 4 may be used to derive the p.d.f. of the ratio of two

correlated chi variates.7. Consider a bivariate normal p.d.f., in

Several properties of the bivariate chi p.d.f., have been extensively
investigated by P. R. Krishnaiah, et al. [69]i, [70] . N. L. Johnson
[62] and D. J. Finney [34] present certain of the many important
applications of this statistic.
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random variables X and X2 with parameters ( =x = o, C
21 x2 X

2 CC, e )" S. Bose (12) has shown that the statistics

U o-1  V a-2
I= and a 2

n 2 n

* where:

rn+l ri+l

TJ :[• (xij 2 )2/ . V] (x2j - x 2/ 22

[J-1 -j=lij i

are jointly distributed in what is known as the central bivariate correlated chi

distribution. P. Krishnaiah, et al. (70] , beginning with Bose's

expression, have shown that the joint p.d.f. of U and V is

2~~v 4n) 2f/2 i (ri/2)+ ~2i (U V) n+2i-l ep[_(U2+V2 )/2 (1- 2)]

i=0 r (n/2) i {2 r2e r[(n/2)+i] 2n/i}2

By Theorem 4, the marginal p.d.f. of Y= U/V, under the transformation

Yi = U/V, Y2 = V' may be derived from (3-31).

Thus

f(y0,y2)i=4(1- ?2)n/22 (Lpn2- (y2)n+2i-I

i=O r (n/2) ili 2 (n/2)+i 1[(n/2)+i] (1I-

exp -((YIY2 + y2 2)/2(.- 22) y21

37
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iM

The marginal p.d.f. of Y satisfies

4(1- 2) 10 [/2 + e)21 yn,-2i-I

(Y 1 ) [ (1-2 (11/73+ 2

1n/2 2 n/)4[n) 1

00c (3-31)

y22(n+2i-)ý) exp [- y2
2 (y1

2+1)/2(l- e2 )] dy2 . U

0 t,2
With the substitution of Y= 2 the integral expression in (3-31)

reduces to the Gamma function,

0n211ear djr = k+lj

2ak+i

0

Since k =n+2i-l1is a positive integer, then r(k+l) kI. These

substitutions simplify (3-31) so that f(yl) may be expressed as in

r 1, 69,

S2(1-q 2n2 go r + 21 rtl r+2i-1
f~y1 ) 2(- _________

'- 7(n/2)+i] ii (y 2 + )n+21

N
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Theorem 5: If random variable X is stochastically distributed in

accordance with the p.d.f. f(x) and Y in accordance with the p.d.f.

g(y), then the random variable sum S = X + Y will be distributed in

accordance• with

f (s)dx = 1, where k(s) = J f(s-y) g(y) dy. (3-32)

-Go -00

The well known fact that the sum of two normally distributed random

variables is also normally distributed is shown by using Theorem 5. Let

X = N( r 2) and Y = N( 0y, '2). The random variable S = X - Y is
x y y

distributed in accordance with (3-32) by Theorem 5. Thus

2 2

OD ox y

g(s) e C dx. (3-33)

12C

It follows with some manipulation that

S2)2-
Sg(s) = - dx(-4

where: mf ,ax 4 (Y- ) U 2 *2 2 2

whre * ,x-xy X x
= ... . .Y x y2 2 2 2'"0x + 6 + +0

x y

m* =Fx Fy, o"* = •2 ~ 2I
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The expression in the braces in (3-34) is equal to 1 by the properties

of the normal distribution. Therefore, it follows that g(s) is normally

distributed with parameters = AX +)A, and X 2 + e 2 2

Theorem 6: If random variable X is distributed in accordance with

the p. d. f. f(x) and Y in accordance with the p. d. f. g(y) and if X and Y

are statistically independent, then the random variable difference

W = X-Y is distributed as

f R(w)dw 1- ,

-00

where

001
R(W)= f(w+y •g(y)dy.

In Theorems 3-6, the fact that X and X2 are assumed to be

statistically independent allows a convenient integral expression for

each algebraic combination of X and X to be obtained. The difficulties

are compounded when this assumption is improper. In this case, one is

faced with the necessity of obtaining a holomorphic expression for the

joint density function of the two random variables.

This difficulty may be illustrated by considering the following ox-
= 02 2•

ample: Let random variable X= N( •px =pl, a = ) and

2 2X = N(,x =a2 : 0 ) be stochastically dependent. This de-

pendence is characterizied by the coefficient of correlation, • . The

4o
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joint p.d.f. of Xl, X2 may be expressed as

1•- r2(l2 L ) 2(1.p .. ..J
Suppose the p.d.f. of the random variable quotient Y= XI/X2"

where Pr(X2 = 0) = 0, is desired. We may utilize the methods of

Section 3.2.4 by defining the transformation,

yl= x1 /x 2

Y2 "x 2 .

The IJl =y., and by Theorem 2, the joint p.d.f. of (yl,y2) is

f•(yl'y IY2 l exp 1 (l 2 • '•
'"2 2Cr~

2  ( 1 P2 Y2  -'2 + _• (3-3.5)

SBy integrating (3-35) with respect to Y2' the marginal p.d.f. of the K

random variable Y = X /X is obtained. After much detail, the following

cumbersome result is obtained;
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1 6( 6 ;l (- 2 2•1. pp 2l (-l
-•- ( l exp 2) 2•T +1_ -6

e 2  22 1-2

(62 yl2 2y lr 6r 4- \ 21F 2 2

I2
(PA'-~Yi P2) A' ~ 1d'2- P2 Y~$( )'2 1'2)

+ exp -Y2 -= 0 ,.~ ~6 j

61 l r;- - '2' + yl d2E u2 djl - )i1 'r2)

61c2 (l-e 2)(T2 2 y1'2 - 2 e ,Tj r + c r.2 (336j 4z u du, .1

0

where the integral function is the error integral.

This example serves to illustrate that although in theory the

change-of-variable integration techniques are always applicable; they

often result in very unwieldy integration problems. In the next chapter,

then, some of the more frequently occurring forms of products and quo-

tients of random variables Nill be investigated. Ways and

methods of obtaining the desired marginal distributions which avoid

certain integration difficulties will be investigated.

88heorems.3-6 are widely known and are frequently quoted
in statistical literature. No one person is credited with
their derivation. However, Huntington [60] presents a
geometric proof for each of these theorems in his paper.
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IV- PRODUCT AND QUOTIENT FORMS OF MEASUREMEN4T 'ERROR.

4.1 Measurement Error

Physicol And economic limitations, the ever present constraints in

any industrial environment, often require that the formulation of an

estimate of a ratio or of a product of two quantities be based on

individual measurements of the two components. It Is commoh, for ex-

ample, to determine the proportion of a reactant which has reacted in a

chemical process by measuring the residue after the process has com-

pleted, or to estimate the efficiency of a rocket engine by determining

the ratio of fuel energy input to thrust output. Estimates of efficiency,

velccity, and proportions are examples of indices which are necessarily

ratios. Product forms frequently arise in essessing the probability of

a successful event, such as the launching of a missil'e, which depends

on the successful operation of several independent component subevents.

As is frequently the case, further complications arise when the

individual measurement of each component of the pv'oduct or ratio is sub-

ject to error. This error most often is due either to what in reality

are true random fluctuations in the measurable quantity or to instrument

error caused by the inherent limitations of an imperfect measuring device.

These two sources of error are often treated alike statistically and are

called measurement error. When the two quantities are subject to measure-

ment error, their product or quotient is distributed about its expected

value. In the following, two examples are presented which demonstrate

two commonly occurring situations which require the use of approximate

methods to establish the precision of an estimate of measurement error.

_ I'
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Whenever economically feasible, the distribution of error of each com-

ponent quantity may be determined from repeated experimentation. On other

occasions, repeated trials are impossible or undesirable; whereupon,the
precision of a specific trial must be established by theoretical arguments.

Th1i requirement is frequently necessary in the acceptance trials of certain

types of heavy industr:rial machinery such as steam boilers, petroleum pro-

cesaing equipment, blast furnaces, genert•ors, large rocket engines,

etc. Such trials are lengthy and expensive processes which usually require

that an estimate of theefficiency of the equipment be made from a single

trial operation. It is necessary from the point of establiuhing confidence

limits to obtain the probability density function of the estimate of

efficiency. Approximate methods, such as the assumption of normality,must

suffice for this purpose since more desirablo exact methods are clearly un-

attainable.

The second situation involves instrument error. Measurements taken

. with several different measuring devices, all of a specific type, generally

are different. Repeated measurement taken with any one of these instru-

ments is physically possible, yet is often pointless; the instrument has

been manufactured to certain tolerances and is incapable of recording with

a greater or lesser degree of precision on any successive trial. Other

measuring devices will record with the same degree of precision on any

specified trial but in most cases slight differences will be noted in tie,

expected values and dispersion of measurements taken with the individual

instruments. The experimenter will. usually have at his disposal only one

or two measurement instruments of a specified type; thus he will be unable4U4
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to conduct a large number of experiments with which to calibrate his own

equipment. As a result, the tolerance associated with a measurement

accomplished with a "typical" measuring instrument is best considered as

being random in nature ard should be treated from a statistical point of

view.

In nmany industrial applicationa, the errors of measurement are con-

sidered to be described by one of three p.d.f.'s: the rectangular, the

triangular,or the normal density function.

Instrument error is often approximated by the rectangular p.d.f.

Certain measurements such as length, time,and weight are usually recorded

in terms of deviations from some preselected value, X'. These deviations

y (xi- .') are assumed to be in an interval S a y .-!bJ so that all

deviations are equally likely. It is implied that the deviation between

the true value of the measurement and the preselected value is equally

likely to be anywhere in thE. interval S. A measurement which has been

rounded off from a wore precise measurement is an example of an estimate

which is subject to rectangular error.

The triangular p.d.f. describes measurement error resulting from

summing or taking the difference of two readings which are subject to

rectangular measurement error.

The p.d.f. describing sampling error and the distribution of the ex-

pected value of a sample of rmeasurements is often taken to be normal or

Gaussian. Product and quotient forms of these three common p.d.f.'s de-

scribing measurement el-ror will be discussed in the following sections.

These three r.v.'s will be denoted in an obvious notation as R, T, and N

hereafter.
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4.2 The Normal Density Function.

S!:2.1 The Product of Two Normally Distributed Random Variables: A wide

variety of interesting approaches and techniques has been applied to

the problem of finding thu 1p.d.f. of a product of n normally distrib-

uted random variables. In fact, as a collective group, these investi-

gations represent a rather extensive study. An interest in this problem,

as indicated by published articles, first became apparent in the early

1930's, with the bulk of important derivations occurring only a few

years later.

In certain cases, the quadrature method used in treating the ex-

ample under Theorem 3, may be used to derive an expression for

Y= N1 N2 , the product of two normally distributed random variables.

These special cases involve the dependent and independent cases of N1

and N2 described by the normal p.d.f.'s with parameters N(O, 1) or

N(O, C2) and N(O, -2). These four results are enumerated in Table I

Appendix A.

The dependent and independent cases of Y1 = N1 N2 in which N 2, N2

are normally distributed with arbitrary means (A .d 0) and variances

do not readily lend themselves to the ordinary integral methodsand as

a result have undergone extensive investigation.

A chronological history of the important results in the study of

this problem is outlined in order to suggest certain "difficulties" in

the applicationrs of these results.

In 1932, Wishart and Bartlett [133] considered the problem of
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determining the p.d.f. of the product (N1 N2 The problem was posed in

the following framework.

Let X and X2 be two normally distributed random variables,
12

N (0, d2)N (0, a`), which satisfy Lhe joint p.d.f.,

X 1 1 (x 2 XlX 2$'X 11X 2) = 7  exp 2 k~e 2  + -s)?(4i
2 IY c ir,-e ( -1 2 % I)

The characteristic function of the product X1 X2 is by definition

E le it X 1 X 2 ] or

00 -00 tx

OX (t)r 1  e -i XIX (x.,,x.) dx, dx 2

= 1-2 i 1 (r2 d t + (11 2) 2 2 5 2 t(4-2)

The generating function of the semi-invariants of y IXZX 2  is

K -142 log ~1-it orj d2 (f 4.) -YýV log 1-1t Crj 02( 9  1)}

9The semi-invariants were so named by Thiele and were later called
cumulants by Fisher. if the logarithn. of the characteristic function
(an in (i1-2)) , a funct.-on of t, is expanded in a power series of (it)
whi-ýh converges for some range of t containing the origin as an interior
point, the somi-invariants k are the coefficients of

(it)V/v iin the expansion. A simple relation exists between the k (yj)

and the moments of Y the first two being k[ : Va [
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The semi-.invariainta of yp, kv(y~ are the coefficients of (itV/vI

in the power series expansion of K. Thus

The moments of the product Y1 may be investigated through the appli-.

cation of (4-3).

In the case of a sum of independent products taken from the joint

p.d.f. 5(Xl, x2, denoted by = (1) + y (2)+ ... -(n), this

relation,
-/• KZ nK,

• holds;o that from (4-3), the semi-invariants of may be obtained

from

k (_ (-J V VaV 1(e + 1)V + 1)-

The relation of (t) to f( Z ) satisfies

(t) 1-2,v= f e a( 1 ) t + (1-e 2  12 T.

By inverting this characteristic function, it follows that

27r 1 t + (12) al2 22 t 2 1}n d(
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When n = 1, then l= y, so that f( 2 ) dZ = O(yl)dyl and (4-4)

becomes

n y_ OD n 1 W(-) e • o ei

f dw (4-5)•(2l 7- f (1+wlg

after these substitutions are made,

(l-e2 j6• t -- i-w, (1 6-a1 y_: z 9

From the theory of the complex variable, it is clear that the

contour may be deformed into a real axis as ! 1 thus (4-5) may

be written as

2 12n yj 00( I- 2) " ' e ~ ' co Yl

(Yl) (l+w2Yl dw

fo o
0

itY 2 2 e • (n--) y2() (2 1 n
- WT 32g2n-lIrp(7n) •(n-l (Yl , -oo y-= Yl•"c (4-6)

where KlA(nl)(Yl) is a modified Bessel function of the second kind

of [h(n-l)] order. Fox - = 0-= 0 1 and r = 0 the p.d.f. of j reduces
x 1.

to

K(y (ly.) , y, • 0 (4-7)
1 ir 0 .1.

Wiohart and Bartlett's method may be used to show that Z, the product

of iwo normal variables where Z = X is described by

1 62
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JW(z) 7r K :o (z)

which possesses a singularity atz= Oi rstP.. u

Shortly after the publication of this result, P. T. Yuan i134]

demonstrated that if Xi and X2 are independently and lognormally distrib-

uted, the product Z =(X I- a)(X 2- b), where a rind b are the upper
(lower) limits of the range of X1 and X ia distributed as (4-7).

The analysis of C. C. Craig r201, [21] , following in 1936, i3 per-

hups the most notable concerning the product of two normally distributed

raridowi variables. Craig considered the bivariate normal p.d.f. with

pA:,-xeters (, Ix 2, C-1l 6- and coefficient of correlation, e ) ..."2x 2

By Theorem 2, this joint normal p.d.f., under the transformation

W X x1 x 2 , Yl Y21 may be written as

2 C 2

(2 T-21-p0 9

1 22p•2(w' Y2)-?l'lX • y 2 1

- x

In an effort to generalize this result, Craig introduced

Xl_2I lux2 U2
V1 x and V2 •l •,the reciprocals of the

coefficients of variation, and considered the transformation I= 1 2 .
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x = . The marginal p.d.f. of yI, under this transformation, may be

expressed as the difference of two integrals. Thus,

i n w h i c h v 1 2 - 2 v I 2 + v 2 2 ,0

= 2

+e T(l- ) ( __ ( +
27 = 21~1 e - 2(lP 2 ) ( X 2- +

0

1_ 1 V22 l X x

and I2 (Yt) is the integral of the same function defined on the interval

(-0o, 0),

In an effort to simplify any numerical calculation, Craig reformulated

(4-9) as an infinite series. The infinite series expansion is derived

from the joint p.d.f. of variables U and Z , where

x U and Y- = 2• a iT2 •i •( -ec)

Under this transformation, Equation (4-8) becomes

51
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2 02 2
vI - 2evIv 2 +v 2  _ ] 0Q2 2

12 2(z) -exp + 2 2 f___"

e I v 21- e vU+V2 vl u 49

V1 2  
2 V 44

The term exp 1 '2 u + 2 U _.w _- } may be expanded in a

U

Laurent series in powers of u for all u, u p 0. This expansion is

simplified to some extent by substituting

v 2 =R and V 2 - v2 .R
- 2 112 2 R r

In the expansion, the coefficient of u r - 1, is ; -, R 0 )

in which rk .), the confluent hypergeometric function of order r, :151

R R1 R 2 z (R]3. R 2 Z) 2 (R 1 R 2 Z) 3

r (12 z) =1+ rRz + (r+2)(2) - + (3)

r+2- 21 (r7Y+~Y3)

(k)
with (r+k) = (r+k)(r+k-1) . . . (r+l)

By this expansion, the p.d.f. of Z = X1 X2 / 2 '(1-e2) may be

expanded in an infinite series involving confluent hypergeometric functions

These functions are discusaed in detail in Whitaker, E. T., and

G. N. Watson, A Course in Modern Analysis, Cambridge University Press,

Cambridge, 19597
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and powers of z, vl,and v2 . This series is

ta(z) = exp v 2- 2ev 1V2 +V22 + (RlR2 z) K(z)+ (4-1o)7r 2(i_) Ez.z0  
12 0

Z2

+(R1
2 +R2

2 ) W•(R 2z)KI(Z)+(RI 4 +R24 ) z E,. (RR 2 z)K 2 (z) +

+ ( 6(RlR2 z) K()16 +R 6 ) 'R2+.6

where: Ki(z) = the Bessel function of the second kind of the i0 order
and with argument z, and

z) z) (2 ) in which
R1 ý2

1I order)is the Bessel function of the first kind of the

JW order.

When v= v2 = _,the p.d.f. of Z = X1 X2 / 0 - is the simple Bessel

fUnction result expressed by (4-7).

Craig's results have unfortunately proved to be of little use com-

putationally for it may be shown that' for large v1 and v2 the series

expansion (4-9) converges very slowly; in fact for v1 and v2 as small

as 2, the expansion is unwieldy. Yet after this publication, many in-

vestigators consider the problem to be "solved" although the convergence

problem exists. Others have been critical of this "solution", even
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Craig himself who in 1942 , [21] , stated that even though his result

is a mathematical solution to the problem, it falls far short of what

is required for numerical computation.

Using Craig's formula for the cumulant generating function,

J.B.S. Haldane in 1942 presented the momenta (about the mean and the

origin) and the cumulants of various products and powers of normally

distributed rondom variables. He considered the correlated and un-

correlated cases of these statistics: a) the cube of a normal variable,

b) an arbitrary power of a normal variate,and c) the product of n normal

variates. These expressions are rnther cumbersome however and their

application in an Applied problem requiring an extensive amount of numerical

computation would be severely limited. This fact combined with the

realizatiorn that Craig'a series is subject to restrictive conditions

prompted others to examine this product more from the viewpoint of establishing

its anaJytical properties. For instance, B. Epstein [31] and I. Kotlarski [68]

independently showed that the Mellin transform is a very useful analytical

tool in examining the integral equation

J(Yl) fx 1 (Yl/Y2) gX 2 ( 2 ) d y2

Their investigat2.on are closely related to problems of the nature of

those discussed in Chapter VI.
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In 1947, L. Aroian t2) took up the problem of convergence in

Craig's series expansion. Using Craig's notation, he showed that a.

v1 and v2 " oo, the p.d.f. of Y1 approaches the normal p.d.f. In

addition, he demonstrated that the Type III function and the

Gram-Charlier type A series afford excellent approximations to

the distribution of Y1 when 0.

Using the properties of the moment generating function of the

P(yj), it is posc-ible to show that = 1= V1 V2 + and

2 2.
the standard deviation is 1 V 2 + V 2 +2e V V + 1 + e 2

Aroian proved the following statements in the form of theorems:

1) The p.d.f. of Y1 approaches the normal p.d.f., with mean yl

and variance ca2 as V1 and V2 --- co( or -oo) in any manneryl

whatsoever, provided -1 + E -4 • 1, > .

2) The p.d.f. of yl approachea the normal p.d.f. with mean y,

and variance 0- 2 if V oo, V -oo, provided

1E I-O, p >-v0

and

3) The p.d.f. of yl approaches N(ior2 ) if V1 remains constant and
1 y

V2-- oo, -1 + E - R It 0; or if V1 remains constant

and V2-----co for -1 R < I -) e e- 0.

Aroian demoristrated the close approximations to P(vi) by
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the Type III function and the Gram-Charlier type A series by numerically

integrating Craig's expression (4-8) for the special case:V1 = 0,

V2 = 10, and e = 0. A brief tabular comparison is presented in him

article.

In Table X. , Appendix A, the numerical integration of Craig's

11
formula (4-8) for a few special cases is presented . These are:

(1) V1 = V2 = e = 0, (2) V1 = V2 =V, =0 and (3) V1 =1(0),

V =0(l), 0.

4.A.2 The Quotient of Normally Distributed Random Variables: The

first investigations of the properties of the p.d.f. of a quotient of

two normally distributed random variables were directed toward

characterizing the quotient's properties in terms of the properties of

the component variables.

K. Pearson's study [97) in 1910 of an opsonic index formed by

the quotient of two normally distributed random variables represents

the first published investigation of this problem. He succeeded in

obtaining the first four moments of Y1 = XI/X 2 in terms of the moments

of X and X . Unfortunately, he found that they were "practically

unworkable if X1 and X2 are correlated as we should have to find the

third and fourth order product moments".

Later, C. C. Craig (203 , (1929), developed this approach by

TIF
A number of other cases are to be included in a forthcoming research
report to be released ly the Applied Mathematics Research Laboratory,
Aerospace Research Laboratories.
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derivingthe moments of YI in terms of the semi-invariants of the com-

ponents. Craig demonstrated the advantages of using the semi-invariants

(as opposed to the moments) by constructing the moments of Y1 in the

case of correlated X1 and X2 with relatively little difficulty. ?re

resulting expressions are cumbersome by present day standards and ase

difficult to apply.

In this time period, the hypothesis that Y1 must be near-normally

distributed given that the components X1 and X2 are distributed

normally was strongly supported. Investigations of Merrill [86] in

1928 ard by Geary [38) , 1930, were instrumental in disproving this

conjecture. Merrill's investigation, by graphical approximation,

showed that when the correlation between X and X2 is high and the

coefficients of variation Gxi = I i = 1, 2, are large, there is
i )xi

a considerable deviation from the normal p~d.f. Geary established

*•" this result on a more rigorous foundation by formulating what is now

a widely known approximatioh. He conridered the problem as formulated

in this manner:

Let X and X2 be two jointly distributed normal random variables

with the p.d.f.,

g~lxexp xfrl){2 a Jxi) 2(l2 2 r 1 eIp

(4-1
wbhere: P.i A Ai 2 = = drl,• ' 62 = and is the coefficient of
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correlation.

When the expected values )l1 = •2 = 0, the g(xl, x2) reduces to

l'2 21xc e Ap 1 ( q2 2 e 1x2+2( 2
xx 1 22( ;(-

gl,2• = r 1r C2 21R- xI (r (rX2 C12

Consider the random variable YI, where

Yl= 2 (4-13)

a + x1

and a and b are constants; then the function

t ay - b (4-14)

.1 2 yl2 _ 2 R r r yl + v2

is approximately normally distributed with expected value t = 0 and standard

deviation 1 = 1, provided that (a + x2 ) is unlikely to assume negative

values. Geary shows that this latter condition is satisfied if

(a 2 3 (1l), i.e., the coefficient of variation of (a + xI)!S .
13

Geary's and herrill's results gave definite proof that the

hypothesis of the "normally distributed index" was incorrect in many

cases and have lead to the problem termed '-characterizing properties of

a p.d.f." which is discussed in Chapter VI.

It is advantageous at this poiht to demonsLrate that the integral

methods discussed in Chapter III may be used to obtain an expression for

the p.d.f. of Y1 in order to lay further groundwork for discussing

other known results.
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In the independent case, the joint p.d.f. of X and X2 is of the form

g(x1, x2  - f 1 (X1 ) f 2 (x 2 ). (4-15)

When considering the random variable Y XI/X 2, it is necessary to use

the methods described in Section 3.4.2 in order to define a one-to-one

transformation. By specially defining Pr(X2 = 0) = 0, the inverse

functions x = y1 /Y 2 and x 2 = Y2 map the set

-00= 1 -io 1 x4 oo; -ca x 2 . O, 0 < x 2 e- co into the uet

OD- {- Y y1 '4 O•; -00 Y2 0 O, 0 e Y2 e 00j where the joint p.d~f.

6(Y1' y2 )> 0. The IJI ='y2 1 and the marginal p.d.f. of Y1 is, by

equation (2-27),

g(y) =lim jfo Y2 1 2 2 1 2

J (4-16)

f 20+2i exp 12 Yl2 Y2 epdy 2 .

c-2 o+oj 2% •2 2

C

Equation (4-16) is directly integrable, provided the limits exist, so

that

g(yl) 12 Yl y 0. (4-17)

2 1
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The more complicated result, u, ',u2 ý 0 of g(yl) may also be ob-

tained by applying the methods of Section 3.4.2. This result was first

shown by Fieller [33] and Baker [4] in 1932.12 It is

1 '1i~ '2 2~y 2 1~ 2( RPý 22
g~l r(,2 YJ 2 exp{ 2 -2 +r

2 - 21 ' C r2 +j)0y 1 2 52)

' { Y y2 - 2 T c + r2 ,0 Y1
2_' ýy ' ' + 12) 312

f ~ a ( 2 ) ( C5,2  2 1 -j~ a ) U, ~

Se u du (4-18)

0

We see that ifpl =0U2 0, g(y 1 ) reduces to Equation (4-17);and

under the conditionsp, = O, 0 • 0, g(y 2 ) reduces to

g~y) 2- 'r 0. (4-19)

1 r(062 Y 1
2 _2ý6 2 d y1 + 5 2

The calculation of values of the c.d.f. of yl is accomplished merely by

12) This result is generally attributed to E. C. Fieller.
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the use of a set of tables of arc-tangent in these two oases.

Fieller's paper Is mainly devoted to obtaining, by quadrature, an

expression which will simplify the numerical calculations asoociated

with equation (4-18). His rather complicated quadrature method,

formulated in terms of existing tabulated functions of the bivariate WR

normal density function, was derived under the following hypothesis.

.Consider the ratio y 1 = Xl/X2 where random variables X2 and X2

are described by the joint p.d.f, of equation (4-i1). The points

(Xl, x2 ) corresponding to a given value of y1 lie on the line

X 1 = x2l ' (4-20)

Thus, the probability that an arbitrary element of g(xl,x 2 ) will I
have an index { Iv 1 - y I v2 1 is equal to the volume of the portion of

g(x 1 , x2 ) which lies above the area swept out in the (xl, x2 ) plane

by the line x 1 = Yl x2 as it revolves from

XI = VI x 2

to

Taking v= -0o, this probability is the probability that yl 4v 2

and is calculated from

fV = g(x 1 1x2 ) dx 1 dx 2 + g(xlx 2 ) dxI dx 2 " (4-21)

0 -00 -00 v2 x2
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When g(xI , x2 ) is of the fo-m (4-1l) and each variable is expressed

13
in terms of deviations from its respective mean, V Ma7 be written as

,v2 1 [ - 2r~ 2  1 dx dx2 ex (- ra 2 2 2I 12 2
2 Mr0- 1 2(1-r d' ) r "ir[ a+b

(4-22)

where a and b are two portions of the (xI , x2 ) plane indicated in

Figure 3. The boundaries of the a and b portions are the lines

x2 + x 2 u0 ,

xl + x = Y1 (x2 + x 2 )

If the transformations x. = a< and x. - Yl x2 = are made, the

portions e andfi of the ( 9(,7 ) plane which correspond to a and b

in Figure 3 are bounded by the lines

;+ x2  0,
S÷ • - z i = 0.

This area is shown in Figure 4.

Therefore if this change of variable is performed, V becomes

V 1f- 2  e 2 do(d7 (4-23)

2here X 2 i 2r (d)(Y+ yo ( )+

131n this derivation r denotes the coefficient of correlation.
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Figure 3. Geometrical Presentation of Bounded Areas

(Non-Transformed Case).
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+\2 0

Figure 4. Geometrical Presentation of The Bounded

Area in the Transformed Case.
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2I

which is identically 1-2 + !L -

-2 2 2

From this identity, these results are apparent:

2 2) 2 2 2)/,ý
W 1 2C (1-r2)/( -j2 2ryi ,d2d+y12 cr.)

2

2 2) = 2 -r2 (4-24)

e•_ (r e_- y d)/ 0 2 (1-r2)

By squaring the last equation of(4-24) and multiplying the result by

the first two equations, we obtain these results:

e2 (r e - yl )2/ (d• 2 2 r y j 1• dr + y12 o2), (4-25)

so that
. 2)- (2 / (62 . 2 r y1 o o• y2 0_2), (4-26)

dk~d~~(4-27)

S_(2 2 rl %+y 2 a
(C2 - 2 r (4-28)

1 12ry1dj2 y 1  OG2)

and

(4-29)
m

If we write X l
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an Y 2 X 1 'Yl '2
andc • = - = 2 ry

1 2

the quadrants A and B of the (X , Y) plane that correspond to the

portions a and b of the ( Xl, x Y) plane have at P common corner the

point (-h, -k) where

h x2,

(4-30)

1 - yl x2
1(0 1 2 2 2 0 2

From equation (4-23), V becomes

v , Ir. {2_- ?xp)-.1 (X2 -2 XY + £) dX dT (4-31)

Thus the probability of obtaining an index for whicl•l V is given

by

c- 1 -ov- + oc *xp { 1 (X 2 e xY + Y dX dY.

h k -h -k 2,l,-21e(-2

Equation (4-25) provides two values of e. The appropriate value is

chosen by noting that as yl w •, the point

66

"" V ?0 ~JIJ IN Y' ýy T'J~ i. -i IN



VI
(h ,k) - * 1

2 2

so that the positive square root makes (l-V) - 0 as is desired.

Extensive tables are found in [140] for which the value of the

integral.,

Z(ý) dXdY ex( X( 22?xY) Y2 NxMY

(4-33)

h k h k

is calculated for small increments of -1, -I el. For non-

positive h and k, the following relations hold:

(1) Z() dMY =1 e 1h dY - MdXdYIff ffr
-h k kh k

(2) ffz< MY= f 1 -h X2 dX ff z(-t) dxdY

h-k h - h k

and

(3) f Z dXdY =1... f e dX-J f - e dY + f fZ(ý)dxMYp

-h -k h k Nrh k
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Probabilities of interest may be calculated with the aid of these

relations and the appropriate values of p, h, k, Xand Y.

lith the publication of Fieller's quadrature method, many agreed that the

problem of the quotient of two normally distributed random variables

was essentially solved. In later papers, emphasis was turned to the

study of the general. mathematical properties of the random variable

quotient. Two such notable papers appearing in the late 1940's were W

published by Curtiss (24] and Gurland [481 . Curtiss approached the

study of the properties of the quotient from an analysis of the

application of the Lebesque-Stieltjos integral.

Gurland formulated the c.d.f. of the ratio of two linear combinations

of correlated normal random variables. He presents two theorems for

this distribution:

Theorem 1: (for positive denominator). Let XI, X2 , . . . , Xn have a

nnjoint c.d.f., F~*x 1 , Y2 " " " , n) with the corresponding characteristic •

function A , t 2 , . . . , t ). Let G(x) be the c.d.f. of the linear

combination, (a1 X1 + a2 X2 +. an ) / (b 1  x1 + • • b Xn),

where a1 , a2 , • . • a, bI, . . , bn are real numbers.

If P b4 Xj ! 0 0 then

F t(al1-bl Xl),...,t(a n-b xn)

G(x) + G(x-O) 1 - Ai (434)~ dt.
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Theorem 2: (for positive or negative demoninator). Let G(x) be the

c.d.f. of the ratio of linear combinations (of Theorem 1). If

n
P b i x =0 0 then

- -- ) 1 + G[-)t(al1-blx l)J.'"9t(a n-bn tn )j +

S ~I) if t~-)=1--• . . . .... . . (4-35)
t(a )b t Xfl''"t(a _b

t a

where: /9(+(t 1 ,t2 ,...,tn) fJ..j'ei(t1 x1,....,t x) d F(xVx2 , ....x)

Eb kxk >°

and

•ý (- t,,,.,o l= 2 '*.. f a i ~ "' t n x n )d ,x ,...,=o,. ,
b bn Xke 0 {

4.3 The Rectangular Density Function

A random variable, X, defined on a finite interval. { a : x !b b

(a, b finite real numbers),is said to obey the uniform or rectangular

p.d.f. if over the finite interval ' , the probability of A, a sub-

interval of r , is given by

p rlength of AP length of[ A a subset of Y , 0-36)

0 , otherwise.
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Thus the c.d.f. of the rectangular probability law, by this definition, is

0, x -•a,

F(x) 

1

X-a

ba a_ x _b, (4-37)

1, b~x.

If we differentiate (4-3 7 ), we find the p.d.f. of the rectangular error

function to be

1
Sb-a (4-38)

0 0, elsewhere.

4.3.1. The Product of Two Identically Distributed Rectangular Variables:

The product of two identically distributed rectongular variables, say

Yl ý RI R2, is easily found by quadrature utilizing the methods of

sections 3.4.1. and 3.4.2. Four distinct cases arise in solving for

the p.d.f. of y1 = R1 R2 ' where R is a rectangular variable defined on

la - x - b I. The distinct cases may be enumerated as: Case (1)

Y= R1 R2' R defined on interval * so that 0 a - b, Case (2) R de-

fined on interval • so that a -c 0 - b, Ib I =-I a I, Case (3) R da-

fined on interval • so that a - 0 - b, jai Ib i and Case (Li) R

defined on interval X so that a -b - 0. The p.d.f.'s of yl for

each of these four cases are presented in Table II, Appendix A. The

distribution of the product of any number of identically distributed
rectangular variables can easily be obtained from Kendall's [146

derivation o' the p.d.f. of the geometric mean of samples from a

rectangular distribution.

4.3.2,, The Quotient of Two Identically Distributed Rectangular Variables:

The quotient of two identically distributed rectangular variables is
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also easily found uaing the methods of Sections 3.4.1 and 3.4.2. The

same distinct cases depending upon the interval of definition as in

4.3. 1 arise in the problem. The p.d.f.'s of these four cases are pre-

sented in Table III, Appendix A.

4.4 The Triangular DeneitX Function.

The sum or the difference of two identically distributed rectangular r.v.'s

defined ona-- I xa : b I is triangularly distributed. The p.d.f.

of T is

x-2 a)2  2 a < x ._ b+a
(b-a)

f')2 b- b+a < x _2 bX (4-39)

0 , elsewhere.

4.4.1 The Product of Two Identically Distributed Triangular Variables:

Slightly more cumbersome expressions result from applying the methods

of Chapter 1IIto finding the p.d.f. of YI=TIT2  and YI=TI/T 2 . This

difficulty is due primarily to the fact that the p.d.f. of the tri-

angular variable is defined by two branches as in (4-39). In deriving

the p.d.f. of T1 T2 , one must determine which combination of branches

of T and T2 must be considered for each of the various mutually ex-

clusive partitions of the set defined under the transformation. The

condition is best illustrated by considering the problem of deriving

this p.d.f. when T is defined on an arbitrary positive interval. Under

the transformation Y, = T, T2  xl x2 , Y2 = x2 2 the set
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12 x 2b, 2a - *2 - 2b Iis mapped into the set graphically

illustrated 3.n Figure 5. Here, the notation g, g' and h ,h' denote the

respective branches of f(x 1 ) and f(x 2 ) which apply to the partitions of [3

The p.d.f. of YIis derived by integrating over y2 the product combiniationsj

as indicated in Figure 5 over the partitions A, B, C, D, and E of ý3

Two important special cases have been derived. (Table IV, Appendix A).

These are the cases in which T is defined ovar a positive interval [a0, 2

and t.-,e interva.l [P-, 21

4.4.2 The Quotient of Tiwo identically Distribut~d Trianrular Variables:

The p.u.f.'. of two special. cases for T defined on 1~ 0, 2 n -,2

have been derived and are presented in Table V9 Appendix A.

4.5 The Product and Qýuotient of "Mixed Components".

The product and quotient forms of the three measurement error

variable~s under consideration which have not yet been treated are

R N ,T N , R/N and T/N. There is no requirement to inve~.;-tigate the

reciprocal formu of these quotients sinoce Crame~r 1221 has insured

that the p.d.f. of the reciprocal of a quotient is immediately evident

upon derivation of the p.cI.f. of the quotient.

The four forms above lead to rather cumbermome expressions in re-

spect to numerical calculations. A more convenient method of analysis 1
in the cases of the 'juationt is demonstrated.
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(4ab,2b) 12 -b+a (4b'2,2b)
2b

b+& l2a - I

2a (k 2,) gki I: I =y/2b

4a 2a(b+a) kab (b+a) 2b(bý4) 4b'

Figure 5~Geometric Represen~tation of the Region/~
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4.5.1.1 The Product of a Rectangular and a Normally Distributed Variable:

Certain cases of this random variable product may be formulated in terms

of the tabulated exponential integral. As An example, consider

SI RN-- X1 X2  where X1 is rectangularly distributed on tO_•xl II 1

and X2 is normally distributed with parameters N(O, 1) and defined

such that Pr(X2 = 0) = 0. Defining the transformation, yl = x. "2,

Y2 = x2 , the p.d.f. of Y1 isby Section 3.4.2, Chapter. III,

f y2
f 00 e -e Y2 dy2 < Y 00

2 22

Thus, with the substitutio, " y-22 1 ?(yl) satisfies

1 C

==

which, in turn, may be expressed nis a function of the tabulated

exponenutial integral after the substitution

S• , I74
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Thus,
0o

9P(yi) v i dvY e3'" 4-o

2 ý77 2 2V

All product forms of Y1 = RN , where N is taken as N(O, 1), may be

expressed as a function of the tabulated exponential integral. An extenaive

table of this integral is presented in reference [143.

Other product forms in which N is N(,p d 0, a 2d 0) are not ex-

pressible an simple functions of this integral.

4.5.1.2 The Product of a Triingular and a Normally Distributed Variable:

As was the case in the preceding section, only the product cases of

Y1 = TN in which N is taken N(O, 1) are easily attainable by the

quadrature methods. One of the less complicated examples is the case

of Y1 = TN= X1 X2 where T is defined on to x 1 •_2 j and N is N(O, 1).

The p.d.f. of X1 is,

g(X ) N I, 0 - x 1 !! 1_ ,

f(X ) = T
g'(xI) = 2-x 1 , 1 x 1 2.

The p.d.f. of X2 is defined such that

1 -h• x22

(h(x2 ) = 1 e 2 -00 x2  0 , 0 Q x2 < 01

f(x 2 )

(=0, x2 =0.

The regions of definition under the transformation yl = X2' Y2 x2 are

shown in Figure 6.
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g(xi) .h(x 2) \!

9x

Y Y

S~Figure 6. Geometric Interpretation of the Area of

Definition under the Transformation
l=Xl x2 Y2=x2
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The p.d.f. of YIis expressed as

2 d)V22 Y112  Y,2 Yy 2 2_0 eY-c'
f2d2+f (2- (2- Y)dy -00y 0

Yi2 2GoOy 2 co
IF yl -' yy 1 i, Y y] 20(2- "7) e Y2 dY2 +f~ e d-j

Y 1/2

In the above, 3P(yl) reduces to an expression involving functions of

the error functions and of the exponential integral so that

2 1 21 Y 2 OD 21
9( 1  e~ -e j+ ý [ile~ dy 2  f e 4 Y2

(4-41)

2

Yl-V

+f-dv, 00-xCy 1 ~o 00

oll t~other cases of Y n which N(O, 1) may be reduced to combinations

of tesespeialfuntion. Tble oftheexponential integral and the

error functions are pentdin references [1431 [1lL4]41 and [1115]
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4.5.2.1 The Quotient of a Rectangular and a Normally Distributed Variable:

A rectangular variable, say X , defined on I a ! x 0 b w may be re-

defined on the interval [0, 1) through the use of the transformation,

X isX(b-a) + a0
where X is rectangularly distributed on [0, i] • The original rectangular

variable may also be redefined on the interval (-l, 1) by the trans-

formation

Xo) = x"O&,+

where,.6= half-range of the interval [a, b] and = mean of the

interval [a, b)

The distribution of Y = R/N is greatly sImplified by using one

of the above transformations. In the special case of Y = R/A = Xl/X2

"where R is defined on ýO•X.0- X 1 1 or (l- 1 4-Xl !--I and N is taken

to be N(O, 1) where Pr(X2 = 0) 0, the p.d.f. of y1 is simply,

2y 12

([i-. 2y 1
2 -, TOheY1 4c. (4_40)

In the more general cases, R may be distributed as any of the four

caseq enumerated in Section 4.3, and N taken to be N(Ci, o"2). The

respective p.d.f.'s of y1 in these four cases are shown in Table VII,

Appendix A. It is apparent that these expressions are rather awkward

and difficult for numerical computations.

Broadbent has contributed a general method with which to in-

vestiLate a ratio in which the numerator is a rectangularly distributed
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random variable and the denominator is unspecified but possesses certain

general properties. The c.d.f. of Y = R/N may be obtained in terms

of tabulated integrals by treating this special case by Broadbent's

method of analysis.

Any arbitrary random variable quotient of independent components

whose numerator is rectangularly distributed may be written in the

following "standardized" form:

where:

Sis rectangularly distributed on [-1, 1]

Sis the expected value of the original R variable,

/4 is the half-range of the original R variable,

is normally distributed with parameters (0, 1),

andp and 6- are the parameters of the original N variable.

The hypothesis is only slightly restricted by requiring that

0•oo,./' =& where 0 - o<. l, 1, O, £ w here 0O o.

)U.since Yj (•- (1 + ,.6) )/(1 +$b# ), (4-44)

the standardized quotient yl may be considered, where

•I! yl = ( ) =x1 (4-45)

In (4-45), X1 is rectangularly distributed on (1 o&, 1 + o() and

X2 is normally distributed with mean 1 and variance &. In this
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special case, X2 is described by a probability density function2

f(x2) = F(x ) existing almost everywhere and a c.d.f. F(x z

2 dx 2 evrweeada£J 2I=Ewhich has an inverse, say G(z), which is defined, non-zero,and finite

for almost all z. This condition allows the preclusion of probability

measure at points (x 2 = 0) and (x 2 = 0O

The function z is independent of X and is rectangularly distrib-

uted on (0,1), a property of all c.d.f.'s. The joint p.d.f. of z

and • is by theorem 2, Chapter III,

P(z, x1) 1 2-/dz dx .

In order to obtain the joint p.d.f. of z ond x1 , note that for any z,

dx = G(z)Idyl and yl is bounded by

((1 - &)/G(z), (I + oL)/G(z)), if z >C,

((l + &)/G(z), (1 - &L)/G(z)), if z z C,

where F(O) = C , E not necessarily small.

Therefore, z and y1 have the joint p.d.f.,

9(z, yl) G 1 IG(z)I dz dy,

over the region shown in Figure 7,
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I --( =(-l a( )/G(z )

I 1

I ---

0-Z

Q2 - -I

=(I- o4)/G(z)

= + a(-)/G(z)

Figure 7. Geometric Interpretation of the
Region of Definition of 50(z, yl).
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The Pr(O' y1 :!5. for (QI> 0), Ls giveu by the integral of this

function over the region A bounded by yi QR, z = 1 and yl (1 -c0/G(z)

minus the integral over tho region S by yl = QI' z = 1 and

Yl = (1 + o()/G(z), s8:, that

Pr(O -< yl e Q1 ) "d dyl f 0 ( z)I dx dy. (-4 -4d6)
f f 2-~ 2G~

After integration of this repeated '.ntegral in respect to yI, the first

integral may be expressed as

1I

1 f EQG(z) - (1 - o4) Z.(4-47)

2 != ./ i( C 1

If we change the variable to aend write

g( f a +'

the result is the p.d.f. of the standardized form of X2 . Now let

X U M- -Q

and

Y = (1 + 0-'IY)/( Q1).

The integral (4-47) becomes

¢--xSJ3. g(X T J f (-X) g(f) df.

In this special case where random variable X is normally dietributed,
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SJn g(X) - In(x) is the Hermitian probability integral of order n

tabulated in the BritishAssociationt ables, 2nd ed. (1946)12

The second integral of (4-46) is obtained in the same manner and is

denoted by J, g(Y). Since Pr(yI L_ 0) = Pr(x2 0 ) 4 Pr(x = 0o) =C

as previously noted, the c.d.f. of yl is, for Q1 > 0,

F(y 1 ) = Pr(y, !_ Q1) =C + 2 1  (X) Jl g(Y) " (4-48)

It follows that from (4-48), the

Pr(y';1 Q1) = * [ + J 1 g(Y " + J, g(X} -C. (4-49)

The forms (4-48) and (4-49) are useful when C is small for the

calculation of percentage points at the tails of the distribution of

Y since as Q -- b 0 and X, Y --. •, both J, g(X) and J. g(Y)-- 0 -

the former more slowly than the latter. For small QI' Jl g(Y) is small

in comparison with J1 g(X) in the case of normally distributed x2 . In

this case the lower percentage points of y are ( ) times those of

When C is not small, the Pr(yI • Q2), (Q2 e 0), must be considered. 4

The integrals over the region in Figure 7 bounded by Yl = 2z = z

Yl (1 + e()/G(z) and y = Q.. z = C and yl = (1 - oO/G(z) may be

_A detailed account of these integrals is also given by Fisher

(B. A. Tables, 1931).
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expressed as

Pr(Yl14 2) = 0 (-Y) g( t)d• k (-xlg( k)af

=Y =X

where:

Y (= + C- Q2 )/( W 0Q2 ), x (1 - $0-6Y.

4.5.2.2. The Quotient of a Triangular and a Normal Variable: As shown

in Section 4.2, the sum (or difference) of two independent rectangular

variables distributed on the same interval is triangularly distributed.

Considerable difficulty is encountered in deriving the respective

p.d.f.'s of Y1 = TIN. This difficulty is attributable to the fact that

the p.d.f. of T is defined in two branches as Equation (4-39). The re-

sulting p.d.f.'s are functions of the error function. In the simplest

case, i.e. T is triangularly distributed on [0, 2] and N is taken to be

N(O, 1),the p.d.f. of Y1 is expressible as the difference of two

tabulated error functions. So that

Y l " 2 2 -0 2

e dy2  f ehY2 y0 0-)9y7) =l-y - e d-2 ]y 2 O. (",.-50)

Usng[/y 1  l/y 1

Using Broadbent's method of analysis, an expression convenient

for numerical computation may be derived.

Consider the sum (or difference) of two independently distributed
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rectangular random variAbles defined on [a, b] with the same half-

range .O Allow the sumn (or difference4 of their means to be de-
noted as * The ratio T/N may be written in a similar forw to that

of (4-43) oil

Yj + ~At/49 + C r

(Conditions being such that Y > 0, =4 where 0 < 2a4 1, ,u :P 0,

u " where 0 < X < oo). The variable )? is distributed on

C-2, 23 and r is independent of I and satisfies those conditions

outlined in the preceding section.

The standardized quotient is

y ( ) Yj= a
-2

V In this case, I has the p.d.f.

( -1 * .2o- x
X I + -

AX 4 Of-,2 for (U -2ocQ-x 1•S.1)

41' 2 for (1 . x 1_ + 2ocV )

The joint p.d.f. of z = F(x 2 ) and y is
p2

G(Z) $Y! G(Z) - 1 + 2e( } dz dy//4oC2, ((1 - 2& )/G(a)) 4y 1 4l/G(z))
(4-5i)

2G(Z) + i 2o - y1 G(Z)j dz dy 1/1, 2C, ((l/G(z) z-y 1 4- (1 + 2o/- )/G(z)),

when. z >E and corresponding expressions when z -eE over the

region shown in Figure 8.
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l Y1 (l-2Q()/GWz

I y1 =1/G(z)

Y .1

I If
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III
The Pr(O ISy Q1)9 ( > O),is the integral of the first

element over the region A bounded by Y, = z 1 and yl = (1-2o4)/G(z)

minus the integral of the difference of the two elements bounded by

Y= z 1 and y1  i/G(z), minus the integral of the second

element over the region bounded by yl QI' z = 1 and y= (l+2o@)/0(z).

The first of these integrals is

IQ -2 [ a 2Q, G(z) (1-2*C ) + (1-2cý. dz (4 ,-52)

z = F 1 -2 ce) /Q]

The integral is simplified by changing the variable of integration

to and writing

U= (i- 2c&- Q1)/( PQi).

The integral (4-52) becomes k

Thus, if
L U )2 ,.

V (l-Ql)/( /q), and W (14-2o_ -Q,)/( LQI3, the full expression

for Pr(y1 'c Q )in
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Pr(y, iý +) (2c- 2 J2 9((J) -2 J2 g(V) + J2"()ý (4-53) 7
It may be concluded klso that

Pr(y > Q) V, (r g( 1 F 2 +i(V I
+ ~ ~ ~ 6 (4-54)

) 2 .. . 2 -

Equations (4-53) and (4-54) have similar computational advantages as

noted for (4-48) and (4-49).

xr
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V. LIMITING DISTRIBUTIONS, APPROXIMATIOFPS ANI) ASYMPTO(YIC RESULTJS

5.1 Introduction

A frequently encountered problem in the missile and 6pace industry

may be described as follows:

A complex mechanism (say, a missile) contains many

individual and, to some extent, independently operating

subsystems. Such structures iinclude airborne subsystems

such as payload, guidance, electrical, hydraulic, flight

control, pressurization and airframe as well as ground

support subsystems, i.e., a ground power, facilities and

propelle.nt subsystem.

Frequently, component dataare available pertaining to failure rates

of each of these subsystems. Thesn data are used to estimoate the overall

system failure rate. Of interest then is the statistical statement

which may be made concerning overall system failure probability.

This classical problem in reliability analysis has received con-

siderable attention; however, most attempts, in practice, end in oneU

of two methods of analysis. There may be a decision to use tha ex-

ponential failure probability density function to estimate the foilure

probability of each subsystem. As an alternative, the use of a digital

computer is made to simulate operation of the overall system and thus

gain, through repetition, a confidence statement of the ovurall system 1XI

failure probability. The use of the exponential density function V
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features the highly important property of forming a complex product

simply by summing the exponents of the variables representing com-

ponent failure rates.

In general, problems concerning the establishment of a reliability

estimate for various equipment or events may be regarded as an investi-

gation of the properties of a random variable formed from the product of

several components. Problems of this type may be investigated by

studying the distribution of Y which may be expressed in the general

form

T xi x . (5-1)
i=l j=n+l

As seen in Chapter IV, Geary [381 produced an approximation for

Y I N 1 N2where N represents the normal density function. Fieller [32)

shows exact percentages of N. IN,. Craig a 20n) d Aroian [2 have studied
and tabulated results of N1 N2 2 In addition, Broadbent (14] , [15] studied

measures of efficiency which are of the form R/N and T/N where R and

T represent the Rectangular and Triangular distributions. Certain

linear combinatiorsof random variables in quotient form have been

examined such as Gurland's [48] investigation of

K 1(a X1 + a2 X2 + ... + ann Xn)/(bI X1 + b2 X2 +...+ bn Xn)

where the Joint density function f(xl, x2 , . . . xn) is known. All

of these results are of a specific nature and are not generally applicable

9o

~iAN



to investigating distributions of the type (5-1).

Several approximations to distributions of random variables of this

type (5-1) have been investigated. One of these will Dow be described.

5.2 Lognormal Approximations.

Consider a measure Y1 of the form (5-1) in which each component is

subject to rectangular or normally distributed measurement error with

known half-range or coefficient of variation. In many applications,

the distributions of the sampling or measurement errors are known to be

one of these two forms, and their standard deviations or half-ranges

can usually be found by simple investigation. In other applications,

the distribution of these errors can only be estimated and then per-

haps the roughest approximations should be used only as bounds for

experimental error.

It is impossible to list exhaustively all possible combinations

of errors to consider in (5-].). In the event of a large number of

errors being combined, the asymptotic distribution may be used with

confidence [Cramer [2211. It is in the intermediate cases that ap-

proximations must be criliically considered. The choice of a suitable

family of approximating distributions,however, will always be

rather subjective. In this respect, the consideration of an

approximation is directed towards finding a "working, first-order

approximation". Several authors, i.e., Shellard [115J , Finney [35),

Gaddum,and Johnson, have investigated the use of lognormal approximations

to (5-1) as an alternative to attempting to find its exact distribution

using the methods of Section 3 .4. They have shown that the p.d.f. of
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Y1 (5-1) tends to the lognormal as a o- under very general

conditions.

The most widely used lognormal approximation to (5-1) is a variate ' "

z such that log(z- ) is normally distributed with mean A and variance

2 2
Cr2. Here, for simplicity, only the methoda of selecting p and a`

are consideredg • being considered as equal to zero. The notation

011, .6 . . . ,0& denotes the coefficient of variation or the

quotient of the half-range and the mean of a rectangular variable for

each of the variates x 1 , x 2 ,2 . a. , xn. Thus Y1 = R/N,

(o0 1 = 0.33, &e2 = 0.10), denotes the quotient of a rectangular variate.

whose mean is three times its half-range and an independent normial

variate whose coefficient of variation is 10%. The variate z is

necessarily positive although Y1 may have negative values. When

0e41, o6, . . . , are small positive values, the approximation by this

lognormal distribution may be satisfactory, since the probability attached

to the possibility of negative values is exceedingly small.

There are two methods of fitting the loguormal approximation. The

first method of choosing/A and d-2 is to calculate the moments of

log yl and to setp and i.2 equal to the first and second corrected

moments. This method, termed the method of fitting by moments to log yI,

was first detailed by Finney [341 (1941). An alternate method is to

choose the lognormal approximation whose mean and variance are equal

to the mean and variance of y,. This method generally termed, the

method of fitting by moments to yI, differs from that of the first ".
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method but the difference is seen to disappear as ri increases. The

possibility of two methods raises the question of which method should be

used.

Let a lognormal p.d.f. have mean m and variance v2 and lot the p.d.f.

of the logarithm of the variate from the lognormal have mean u and

variance e- It is easily shown that

Sm =exp (P + a-2/2),

v exp 1(2 A + 4-2) jexp ( V*2) - }(5-2)

2.2
U= log m - Y2 log (1 + v A )I
2 2

-= log ( + v2/m2).

The fitting to log y1 requires that we select the mean and variance of
log y, and set ) and o 2 equal to them. The k% point of this fit is

exp(oa + pt cr), where the probability that a standardized normal variable

is less than pt is t/lO0.

The fit to yl requires that the mean and variance of Yl be found

and set equal to m and v2 . The k% point of this fit is

(m exp [Pt jlog (1 + t 2 ) ) 1 + t2) (5-3)

where: t = s/m, the coefficient of variation of yl.

The k% points of (5-3) are tabulated in Table VIII, Appendix A. The

appropriate points are found by: (1) determining the expected value and

coefficient of variation of y,, (2) entering the table with the appropriate

t, and (3) multiplying the value in the table by m.
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In order to find the moments of y or of log y1, expressions are derived for

the moments of various positive and negative powers of the normally

and rectangularly distributed variables. These variables may be ex-

pressed as x = p(l + c~w) where o~and w are as previously defined.

In the case of normally distributed w, the moments of log(l + otw)

are more easily derived from the truncated distribution,

exp w- 21 dwl t(l-• C / 27 y > - - 4)- ...

which has the property,

Pr(l + a<w -0 ) = ( , ( 10 iO 1 0 when 0 . o( 0.15).

For all practical purposes, (5-4) is indistinguishable from the

normal p.d.f. with the above restrictions.

The moment-geierating function of 105(1 + Zw) is E [(1 + Ocw)itl

and may be written as ,A

22
(Jl+it o(w + • it(it-l)oL2 w +...)exp(-Y w2)dw + K (5-5)

where IKI_ € /(l-E).

Broadbent [14] has discussed this integral and its convergence

and has shown that it leads to the cumulants of log (1 + oýw). He

has also shown that the cumulants of log (1 + o•w) when w is rec-

tangularly distributed may be obtained and that a similar analysis leads
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to the expected values of various powers of (l + o~w) for both cases

of w. wiors and E [log(l + wrow. These exoressons fo

for r + ~ 1, ± 2, and + 4 are shown in Table iX, Appendix A.

Before considering a complicated case for the lognormal approxi-

m~ation, it is worthwhile to consider the very simple independent case

~ N1  (I + atW) wee
of Y (1 w) re represent the normal p.d.f. The m

coeff'icidats of variation, a/Iand l of the numerator and denominator

are taken as 100 *Zl, and 100 &ý2 respectively.

Using Table IX, these results are obtained:

[E J E [N 1] M h. (1) (1 + 84 + + 3 0.)2,

2] 2.1E[L1(1 a]2
E [ I] E IN [1 N 2 ( 1+ 2 (1+3 6ý2 15 0ý2 ~~

Ej l ] 2 -+ 44. + 0( + 3 ..

El~i 1=v2] 
+

Similarlyfr te m51]had lof deived olo l e ban these mmns

roaul95

2 4 2~
E 109 Y, ' M + oe, (Ya Qý + 042

V [lg'] 2 2 5 4
*' +I l+ + O



The first two moments of the loguormal fitted to log yl' using these
O2

values of )u and u, are:2

Mean =i +0 2  + )L 4 + 4+..

2 12 2 2
Variance = (2 + O/22 + Q, o64 + 3 e•2 0(-22 + 5 a.24+..

These estimates agree with m and v2 to O(61 2 o•22), and to higher

orders when o&I = °2' thus the differen-e in the two fits is small when

oi and o(2 are small. In fact, for this case, there is complete agree-

ment in the first three significant digits at the 1%, 5% and the 95% points

between the two methods of fitting and the exact points computed by

Craig's methods (4-8). The difference between exact points and the

two methods of lognormal Approximation may be shown to be ! + .002

at the 1%, 5%, 95% and 99% points in the cases of R /R RN, and NI/N2.

We now return to the problem of setting limits to

Yl =(X1 x 2 " " "j)/(X J+l . . . xm)

If the number of component variates is larger than two, the log-

normal approximation nill give satisfactory results when the coefficients

of variation of the components are small and do not vary greatly. It

is ,therefore, a suitable approximation for general use.

To calculate the first two moments of yl, it is necessary to knowea

the coefficient of variation or quotient of half-range and mean, of each
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component, and then to combine the values given in Table IX. The

percentage points are then given in Table VIII. Finally, these

points are to be multiplied by

'41 ,U2 ••••l +••• 'Un)'

where i= xi.

As an example, consider

Yl = RN NIN2/NN

,and *1- = .01, 0ý2 = .02, 073 '0.o5' cý-4 '0.1-5, 0ý5 0.00.5 andI

-- 006 = 0o 5.

Using Tables VIII and IX, we find the mean and coeffioient of

variation of Y to be 1.00026 and 2.57%. The 1% and 99% points of

Y are 0.937 and 1.063.
1
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VI. CHARACTERIZING PROPERTIES OF STATISTICAL DISTRIBUTIONS

6.1 Introdluction. II
If X and X2 are independent and Y1 X1 + X 2 is known to obey

a normal p.d.f., it is well known (Cramer [22) ) that X and X must

each be normally distributed. This suggests the general problem of

determining when the p.d.f, of an algebraic combination of random

variables uniquely determines the respective p.d.f.'s of the component

random variables. Investigations of this type have led to a class of

statistical problems formally termed "characterizing properties of

statistical distributions."

An important phase of this problem is that of determining the

properties of observations from their estimated p.d.f. when it is known

that the samples are in reality either a product or a quotient of

random 7ariables.

6.2 Three Important Problems.

By Theorem 3, ChapterIII, the p.d.f. of a random variable quotient

Y, where X, and are arbitrary independent random variables,

is given in its most general form as

SP(Yl) f Y 2) () Y2 dy. , (6-1)

Swhere the transformation yl = xj/X21 Y2 =- '2 is itmplied and f~l x

and g2() ar e the respec tive independent p. d. f'a of XI and X2
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Several important problems may be formulated regarding (6-1);

three of which will now be briefly conrvidered.

The first and most straight-forward is that of determining P(yl) when

the functional forms of f( ) aad g( ) are known. This prob-..

lem simply reduces to the integration of (6-1). ,

The second problem which marny cons:.der as being the "classical"

characterization problem may be formulated as follows:

Let X and X2 be two independent and identically distributed

random variables having a common p.d.f., f(x). Let the quotient

Y X1/X2 be distributed insome known p.d.f., P(yi). Is it possible

to obtain a characterization of f(x) by the propertit:s of the quotient

p.d.f?

In this case, Equation (6-1) may be written as

-00 f'(y1  Y2) f2 jy2f dy2  (6-2)

where only the form of P(yl) is known. Among the questions wlhich

naturally arise are: (1) how many independient volutiors of f(" )

satisfy the linear integral equption (6-2) for a given function of

(yl )?, and (2) if more than one, is it possible to deduce the

general properties of the class of -.1 f(x) satiafyirg (6-2)?

Several investigAtors have dealt with a Cauchy form for Ayl).

When X and X are independently and normally distributea random K V.

variables with parameters (0, 1) or kO, 42), it is well known that
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Y1 = 1 /X2 is Cauchy distributed symmetrically about Yl 0. It has

been conjectured that this is a unique property of the normal p.d.f.;

a hypothesis which implies the existence of only one solution of f(x),

namely, f(x) = N(O, d 2), which satisfies the linear inatgral equation,

f'y2)f( Y2I dy2, (C a constant), (6-3)

-00

_,Laha [75], [(6], steck'[ll7] and Mauldon [B Iall have subsequently

proved this conjecture to be. false bj exhibiting several non-normal

solutions. Goodspeed [40] has shown in fact that an infinity of

solutions to (6-3) exists.

Laha ý6] has shown that if X and X2 are independently and

identically distributed random variables having a Qommon o.d.f.

F(x) such that the quotient YfXI/X2 follows the Cauchy Law distrib-

uted syr:imetrically about zero, then F(x) has these general properties:

i) F(x) is symmetric about the origin x = 0;

ii) F(x) is absolutely continuous and has a continuous p.d.f.

:() -F,(x) >0 , ; •*

iii) the rwtdom variable X has an unbounded range;

iv) the p.d.f. f(x) satisfies the linear integral equation

_-+2YlJ' f(yl y2) f(y2).y2 dy2 , 6-7

0
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which holds for all y1, where C' is a constant. (Here again the I.
transformation, y1 = xl/x2 , Y2 2  X2 is implied).

It is now apparent that an answer to the question of the number of

;3 f(x)'s satisfying the equation (6-4) is the equivalent of completely

enumerating all solutions to this integral equation. This problem is

very difficult and still remains to be solved.

Mauldou [85) has studied similar problems showing in particular

that: (1) the ratio of' two independently and identically distributed

*chi-square variables is not the only quotient distributed according to

the general F-distribution,

~"(a~b) ykb-

= ,Or~~ y (0 -ey .4 oD a, bO> ) (6-5)

and (2) that we cannot assert that fVx) is normal even when a sample

of xi, i =1, .. ,n observations is taken from the same p.d.f.

diatribut-ad symmetrically about zero such that the cample statistic

t = x ~ is distriýbuted as Student's t-distribution (_X, a

dencting the. usual sampling statistics.)

The third protlem is a generalU case of the preceding problem and

* involves solvi.ng the integral equation

001

~(y) fX,(Yl Y2) gX (Y2 ) IY2 1 d 2 (6)

when oi~e of the two c~mbinations of functions, f x *) or

1s(yl) g ) is known.
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In certain sampling studies, it is conceivable that collected

data yi,(i = 1, . • • , n),will be of a ratio forn, say yi = X1/X2i/

and at the same time estimates of the respective p.d.f.'s of the ratio

y, and of one of the components, say Xl( can be made with a high

degree of certainty. In these cases, it is reasonable to question

whether or not the general properties of X2 may be ascertained.

A simple method of bbtaining an estimate of the p.d.f. of X2 is

to consider the ratio X2 = X1 /Y1  using the estimated p.d.f. of the

respective components. However, the p.d.f.(g1x x2 )) may reprebent

only one of several possible solutions. In this case only from the J.

complete enumeration of all solutions satisfying equation (6-6) will 3t

N be possible to deduce the general properties of gX2(e ).
2
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APPENDIX A

STATISTICAL TABLES
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TABLE Viil

Standardized Lognormal Percentage Points

Given the mean m and standard deviation , lett = 100 s/na. The per-
centage point of the lognormal distribution with this mean and standard
deviation is the entry in the table, multiplied by m.

Lower 1% points (k = 1)
S0.0 . 0.3 0.04 0.5 o.6 o. 0.8 .9 A

1.0000 9977 9954 9930 9907 9884 9861 9838 9815 9792 -23 RI
1 0.9770 9747 9724 9701 9679 9656 9633 9611 9588 9566 -23 N
2 0.9544 9521 9499 9477 9454 9432 9410 9388 9366 9 3 44 -221
3 0.9322 9300 9278 9256 9233 9213 9169 9148 9148 9126 -22
4 0.9105 9083 9061 9040 9019 8997 8976 8955 8933 8912 -215 0.8892 8870 8849 8828 8807 8787 8766 8745 8724 8702 -21

6 0.8633 9662 864i 8621 8600 8580 8559 8539 8519 8498 -.20
7 0.8478 0458 8418 8418 8398 8378 83.57 8338 8318 8298 -20
8 0.8278 8358 8238 8219 8199 8179 8160 8140 8121 8101 -20.
9 0.8082 8062 8o43 8024 8004 1985 7966 7947 7928 7909 -19

o0.!'890 7871 7852 7833 7814 7795 7776 7758 7739 7720 -19 (4

11 0.7702 7683 7665 7646 7628 7609 7591 7572 7554 7536 -18
12 0.7518 7500 7481 7462 7445 7427 7409 7391 7374 7356 -18
13 0.7338 7320 7302 7285 7267 7249 7232 7214 7197 7179 -17
14 0.7162 7144 7127 7110 7093 7075 7058 7041 7024 7007 -17
15 c.69ool - - - - - - - -C.6 0 -. .. ... -

Lower 5% points (k = 5)
t 0.0 0.1 0-2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 A
0 1.0000 9983 9967 9951 9934 9918 9902 9885 9860 9853 -16
1 o.9$36 9820 9804 9788 9771 9755 9739 9723 9707 9691 -16
2 0.9675 9658 9642 9626 9610 9594 9578 9562 9546 9530 -16
3 0.9514 9498 9482 9467 9451 9435 9419 9403 9388 9372 -16
4 0.9356 9340 0324 9309 9293 9278 9262 9246 9231 9215 -16
5 0.9200 9184 9168 9153 9137 9122 9106 9091 9075 9060 -15
6 0.9045 9029 9014 8999 8983 8968 8953 8937 8922 8907 -15
7 0.8892 8877 8862 8846 8831 8816 8801 8786 9771 8756 -15
8 o.8741 8726 a711 8696 8681 8666 8651 8636 8622 8607 -15
9 0.9592 8577 8462 8.548 8533 8518 8503 8489 8474 8460 -15
10 0.8445 8430 8415 8401 8386 8372 8357 8343 8328 8314 -15
11 0.8299 8235 d271 8256 8242 8228 8213 8199 8185 8170 -14
12 0.8156 8142 8128 8113 8099 8o85 8071 80.57 8o43 8029 .-14
13 0.8015 8001 7987 7973 7959 7045 7931 7917 7903 7889 -14
14 0.7875 7861 7848 7834 7820 7806 7793 7779 7765 7753. -14
15 0.7738 - - - - - - - - -

*tee chapter V
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Upper 1% points(k 99)

- 0.0 0.1 0.2 0.3 044 0.5 0.6 0.7 0.8 0.9 A i

a0 1.00 0023 o047 0070 o094 0117 o14i 0i64 188W 0211 +23

1 1.0235 0259 o282 0306 0330 0354 0378 o402 o0426 0450 +24
2 1.0474 0498 0522 0547 0571 0595 0620 0644 0669 0693 +24
3 1.0718 0•43 0767 0792 0817 o841 0866 0891 0916 0941 +25 d

4 1.0966 0991 1.016 1041 1067 .LU92 1117? 1142 11L68 1193 +25
5 1.1219 1244 1279 1.296 1321 1.347 1372 1398 1424 1450 +26 .•

6 1.1476 1502 1528 1554 1580 1606 1632 1659 1685 1711 +26
7 1.1738 1764 1790 1817 1843 1870 1896 1923 1950 19774 +27
8 1.2004 2030 2057 2084 2111 2138 2165 2193 2220 2247 +27
9 1.2274 2302 2329 2356 2384 2411 2439 2466 2494 2522 +28
10 1.2549 2577 2605 2633 2661 2689 2716 2745 2773 2801 +28

- 11 1.2829 2857 2885 2914 2942 2970 2999 3027 3056 3084 +28
12 1.3113 31.41' 3170 3199 3228 3257 3285 3314 3343 3372 +29

13 1.3402 3431 3460 3489 3518 3547 3577 3606 3636 3665 +29
14 1.3695 3724 3753 37851 3813 3843 3872 3902 3932 3962 +30

001619 - - - -, - - __

Upper 5% points (k -95)

t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 A
-- ,o 0 .00 016 0033 0049 0066 0083 0099 0115 0132 0149 +17

1 1.00165 0182 0198 0215 0232 0249 2065 0282 0299 0316 +17
6, .1 2 1.0332 0349 0366 0383 0400 0417 0433 0450 0467 0484 +17

3 1.0501 0518 0535 0552 0569 0586 0603 0620 0637 0654 +x7
4 1.0671 0688 0705 0723 0740 0757 0774 0791 0809 0826 +17
- 1.0843 0860 0878 0895 0912. 0930 0947 0964 0982 0999 +17

6 1.1017 1034 1051 1069 1086 1104 1121 1139 ±±56 1174 +17
?--.' 7 1.1191 1209 1226 1244 1262 1279 1297 1315 1334 1350 +18
8 1.1368 1385 1403 1421 1439 1456 1474 1.492 1510 1528 +18
9 1.1545 1563 1581 1599 1617 1635 1653 3.671 1689 1.707 +18
10 1.1725 1742 1760 1779 1.797 1815 1833 1651 1869 1887 +18

11 1-1905 1923 1941 1959 1978 1996 2014 2032 2050 2069 +18 .*' ,

12 1.2087 2104 2123 2142 2160 2178 2196 P215 223 222 +38

13 1.2270 2288 2307 2325 2343 2362 2380 2399 2417 .436 +18
14 1.2454 2472 2491 2510 2528 2547 2565 2584 2602 2621 +19

15 1.2639 - - - - - - - -
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TABLE IX

Expected Values of (.+ow)r For VRrioua r.
(See chapter' 5.)

- w is distributed normally w is distributed reQ-

r with mean zero and variance tangularly in the inter-
one val (-1, 1)

E~ + r -W1815-4/1.28-........ 14~/24 - d -/2

2 l+O2 l+CK 2 /3

2_ 4 .2 4
4 1+6PC.. +3cc' 1+2o( + 0(/5

S_1ý 1+0L+ 2/8 + 1050e 4 /128 / . 218 + 7c4 /128 +

-1 I +*/2 + 3o4 + ..... 2+ (2/3 + 0/5 +

-2 1+ "4 4 15)0 0 + . . .1 
C - c 2

-4 1+1Oo2+ 2105L4 + .+l00L 2/3 + 70L4+

E log(l0 Cw)r' ( 12/2 + 30L4/4 + "r(0(2/6 + o4/20 +

V log(l+o4W)r r2 (4 2+ 504 /2 + r2) r2((2 /3 + 7°04/45 +

113
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TABLE X

1. Tables of the cumulative distribution funct.- n of the random

variable ---- whre X are normally distributed.

The p.d.f. of Z is f(z) I (z) - T Wz) in which

2 2
I 6(Z 2(1-2

"exp (x2 + -)+-- - 1 (vx-e + V-2(-) x 2 2e i

and 12 (z) is the same integral defined on the interval (-oo, 0).

2. Values of f(z), the probability density function, andF (z), the cumulative

disttibution function of z for various values of vI • ,l V 2 = x

x x0

and the coefficient of correlation e

*see section 4.2, chapter IV

I114

,• ,I



TABLE X. a

Case 1: 0, v 0, v = 0,C. The p.d.f. of f(z) in symmetricallyI

distributed aibout the singularity point z =0 with !j(z) 0, a- 1

In t&1i5 case 1'(z) 1 (-z)

Zf(Z F( Z)
-. 0 .00001 .00001

4 .0 0o4 .00003X90

2 .0 -00005 .01231
-.0 .00055 .00325

-3.6 .00557 .00509
-3.2 .oo8-8 .0079E

2.a4 .0225 o01943
- 2.0 .03625 .03090
- 1.8 .04645 o05914

-1.6 .05983 .04969
- 1.4 .07?56 .063,36
- 1.2 .10138 .o8l14
- 10. .15493 .11890
- 0.8 154996 .15180

- 097 .21025 -15508
- M, .24749 .17790
- 0.5 .29425 .20491
- o.4 .35477 .23721

-0.3 .43887 .27656
-0.2 .55790 .32585
-0.1 .77256 .45242

0 +06 1500_



TABLiI X b

Came 2: e=0, V, (1*o)(0), v 2 = (1.0). The p.d.f., f(z) is

symmetrically distributed about the singularity 
poinit z =0 with

E~z) 0 ad w V-. £in this case F(z)

zf(z) F( Z)I-12.0 .00001 .00001
-11.10 .00002 .00002

-10.0 .00005 CW04~
- 9.0 .00012 .00013
- 8n.00029 .00034

- 7.2 .00o58 .0o069
- 6.4 .oou18 .00139
- 5.6 .00239 .00282

- 4.8 L00 ;,5 005766
- 4.0 '.00981o16

- 3.6 .U1397 o01642

- 3.2 .01992 .02319

- 2.8 026.03287
- 2.4 .04078 o0k672

- 2.0 .05873 .06662

- 1.8 .07069 .07949
- 1.6 .08533 .09509

- 1.4 -1034o .11397

- 1.2 .12595 .13690
- 1.0 .1L5460 .16496
- 0.9 .17195 .18129

- o.8 .19193 .19948
-0.7 .21519 .21984
-0.6 .24270 .24273
-0.5 .27593 .26866

- 0.4 .31-736 .29833

0.3 .37159 .33278
0.20 .50000-738

-0.1 .58215 .42535
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TABLE I c

Case 3: ( 0 0, vI = 2 Y. The p.d.f., f(z),ha8 parameters E(z) =0.25
and 6 = - and possesses a singularity at z = 0.z 2

Zf(z) F(z)

-9.6 .00001 .00001
-8.8 .00002 .00002
-8.o .oooo4 .0000 5
-7.2 .00010 .00010
-6.4 .00023 .00026
-5.6 .00054 .00061
-4.8 .00128 .00112
-4.o .00311 .oo288
-3.6 .00488 .oo448
-3.2 .00769 .00699
-2.8 .01221 .01097
-2.4 o01954 .01732
"-2.0 .03165 .02756
-1.6 .05213 •05560

2 .08809 .10436
-0.8 .15568 .16520
-0.4 030423 .24302
-0.2 .47388 .32084
-0.1 .64994 .37703
-0.0 w .50000
0.1 .68106 .50855
0.2 .51947 .56858
0.4 •36322 .65685
0.8 .21768 •77030 

-

1,2 .14230 .85791
1.6 .o9621 o89273
2.0 o04589 .92520
2.4 .06614 .94760
2• 8 .04589 .96318
3.2 .02241 •97407
3.6 .01571 .98177
4.o .o01103 .98712
4.8 .00545 .99371
5.6 .00269 .99697

1 6.4 •00133 .99858
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APPENDIX B - ANNOTATED BIBLIOGRAPHY

The components of a quotient or product of a random variable

assume many different representations. Not only is one interested

in ratios and products of random variables described by a specific

frequency function, but also of these functional forms of variances,

ranges, proportions, various forms of Mills' ratio, correlation co-

efficients, etc.

The following bibliography is believed to be very comprehensive

in respect to articles pertaining to the distribution theory of

products and quotients of random variables. However only a small

sample of articles pertaining to other subjects as those mentioned.

above are given.

An index is presented in which listings appear by headings

classifying many of the various combinational forms of quotients

and products.
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Index

1. Distribution Theory of Products and Quotients, Transformations ,and
Approximations.

2, 3, 8, 12, 14, 15, 16, 19, 20, 21, 22, 24, 27, 30, 31, 33, 35, 37,
38, 40, 111, 42, 48, 50, 51, 55, 60, 63, 65, 66, 68, 69, 70, 73, 75,
76, 77, 78, 81, 82, 83, 85, 86, 89, 93, 97, 107, 109, 111, 112, 114,

115, 116, 117, 118, 120, 125, 126, 129, 131, 133, 134.

II. Extreme Values, Extremal Quotiezits and Maximum-Minimum Ratios,

36, 45, 46, 47, 56, 64, 90, 91, 124.

III. Products and Quotients of Various Parameters of a Probability
Density Function (Ranges, Median, Standard Deviations, etc.),

4, 5, 23, 26, 53-, 54, 61, 79, 80, 92, 98, 99, 100, 102, 104, 105,
io6, 108, 113, 122, 123, 132.

IV. Variances and Covariances.

34, 43, 44, 52, 57, 58, 62, 67, 103, 121, 127, 128, 130

V. t Distributions.

6, 17, 71, 74, 111, 119

VI. F Distributions.

1, 9, 28, 49, 96

VII. Ratioaand Products-Quadratic Forms and Linear Functions.

10, 25, 39, 59, 94, 95, 110

VIII. Mills' Ratio,

7, 13, 18, 88, 101

IX. Applications.

11, 29, 32

X. Correlation and Regression Forms.

72, 84, 87
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Annotated Bibliographz

1. Aroian, L. A., "A Study of R. A. Fisher's Z Distribution and the

Related F Distribution," Annals of Math. Stat. Vol. 12, 1941.

The purpose of this paper is to discuss the semi-invariants of the Z

distribution and to fin useful approximations for them. The distri-

bution of Z Y2 1oC, where s (i 1, 2),are sample estimates ofs2

variances iis well known;
Y-nI 1/T,2 nlz
2'1 f2 e

(DZ n 2 e 1dz.

n, (n , n) (2 F e2  + n 2)

The author shows that as n1 and n2 approach infinity in any manner the

distribution of Z approaches normality.

2. Aroian, L. A., "The Probability Function of a Product of Two
Normally Distribution Variables," Annals of Math. Stat. Vol. 18, 1947.

Let X and X2 follow a normal bivariate probability function with

means X and X2 ,standard deviations and ' and correlation co-

efficient r . Also, let = / and • X2 /o. Craig [21]
X 22X2

found the probnbility function of Z = X1 X2/ 61 r2 in closed form as

the difference of two integrals. Craig, for the purposes of numerical

computation, expanded this result in an infinite series involving powers

of Z, to' ,2 and Bessel functions of a certain type. Difficulty arises,

for large and •2' in the convergence of this expansion. Aroian

demonstrates that Z may be approximated by the Gram-Charlier series

and the Type III function and presents the percentage points of F(t) for

the special case V1 = 1, V2  10 and r = 0.
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3. Aroian, L.A., Tables and Percentage Points of the Distribution
Function of a Product, Hughes Aircraft Company, California, 1957.

Let X and X2 be normal uncorrelated variables with means m and

m2 and variances cl and o,, respectively, and let = m /ri. The

author finds: (1) The 100 oc<percentage points of the distribution of

Z = X X/0-o-2 are tabulated for different values of U = 1,2); (2)

The cumulative distribution of Z is also tabulated.

4. Baker, G. A., Distribution of the Means Divided by the Standard
Deviations in Samples From Nonhomogeneous Populations , Annals of
Math. Stat. Vol. 3, .1.932.

It is the purpose of this paper to discuss the distribution of the

means of samples(of size two) measured as the mean of the population

* which have been divided by the standard deviations of the samples.

Experimental results for samples of four from normal populations are

presented.

5. Baker, G. A., Distribution of the Ratio of Sample Range to
Sample Standard Deviation for Normal and Combinations of
Normal Distributions," Annals of Math. Stat. Vol. 17, 1946.

This note summarizes, in tabular form, some of the numerical results

obtained in previous studies of the distribution of sample ranges in

terms of the standard deviation of the sampled population for homogeneous

populations.

b. Banerjee, S, K., A Lower Bound to the Probability of Student's
Ratio, Sankhya, Vol. 18, 1957.

Samples of size n are drawn from a population having mean m, and

2nd and 4th cumulants k2 and k4 respectively. Starting with Tchebycheff's

XUlemma that if a variate X has mean m and variance a-, then

4
P(X !i m-k2 ) ! k

o+ k
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F2

whatever k may be, the behavior of Student's ratio is considered from

.,V

the viewpoint of estimating the confidence interval. In particular, a

lower bound to the probability oT the event ; + t--- >M> -t-- is i

calculated to be 1, where B 2  2.-3

n (t 2 -i) 2  n-l

A table is given for t 3 and several values of B2 and n.

7o Barrow, D. T., and Cohen, A. C. Jr., "On Some Functions Involving
Mills' Ratio," Annals of Math. Stat., Vol. 25, 1954.

In this note, it is proved that for all finite values of h,

( Mh l-h(Z-h)(h) ý =-- ,=2
m (Z-h) K

is monotonic increasing so that 2 ml2 
- m2 0 and 1 _ O(h) • 2. The

function Z is the recipiocal of Mills' ratio and m and m2 are the first

and second moments of a singly truncated normal population about a point

of truncation. The function C(h) frequently arises in connection with

maximum likelihood estimates of population parameters from singly trun-

cated normsl samples.

8. Bartlett, N., "The Distribution of Second Order Moment Statistics

in the Normal System," Proc. Camb. Phil. Soc., Vol. 28, 1932.

Let x be a normally distributed variable and the distribution is

written as

d- (~~_Y9 )¾ X /kKSdp= (21k e 2 dx

where k2 is the semi-invariant of order 2. The moment generating
22

function of the distribution of x2 is developed. From this ,the generating

function of the semi-invarients (kr) of x2 is developed.
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9. Barton, D. E., David, F. N., and O'Neill, A., Some Properties of the
Lognrithm of the Non-Central F , I3iometrika, Vol. 47, J960.

Given two independent variables: 6 2 di!;tributed as a non-central

chi square variable with fl degrees of freedom and non-central parameter I
and X distributed as a central chi square variable with f 2 degrees

of freedom, the non-central F is defined is

(21
F

T transformation of F and the possibiiity of a normal approx-

amation to the transformation are discussed here.

10. Basu, D. On the Dependence of Linear Functions of Independent

Chance Variables," Bull. Inter. Stat. Inst., Vol. 33, 1953.

Relying on the assumption that the random variables XI,X 2 , .... ,X

are independently distributed and possess finite moments of all order, 1J r

the author proves the following: If there exist two linear functions
n n

= a x and b x" with ajb / O and rand

j=l ji J, JJ
ave stochastically independent, then each x. is normally distributed.

11. Bliss, C. I., The Calculation of Dosagre-Mortality Data, Annals
of Applied Biology, Vol. 22, 1935.

Very detailed applications of experimental data to the problem

of estimating the quotient of two quantities subject to e'perimental error

are given. 1 ,1

12. Boýie, S., On the Diutributiori Of the Ratio of Variances of Two
_amplea Drawn From a Given Normnl Bivariate Correlated Population,
Stinkhya, Vol. 2, 1935.

A formula for the p.d.f. of the bivariate chi distribution is given

ThiL formula is corrected by Kriohnniah, et. al. [70. 'l'ae
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distribution of Z = U/V, the ratio of two correlated chi variates is

given.

13. Boyd, A. V., "Bounds for Mills' Ratio for the Type III Distribution,"
Annals of Math. Stat., Vol. 29, 1958.

Des Raj [101] and Cohen have shown that in estimating the parameters

of the truncated Type III populations, it is necessary to calculate for

several values of x, the Mills' ratio of the ordinate of the standardized

Type III curve at x to the area under the curve from x to co. For large

values of x, existing tables are inadequate. The object of this note is

to establish lower and upper bounds for this ratio.

14. Broadbent, S. R., "Lognormal Approximations to Products and Quotients,"
Biometrika, Vol. 143, 1956.

!•,4 The problem considered is to obtain bounds of limits upon combinations

of random variables (random in the sense of' measurement error) in a product

or quotient form. The general form is considered to be

q= (x1 x 2 . . .X)/(Xnl x . . Xr ) ,I :n r.

A summary of the known exact results is first given. The lognormal

distribution which is asymptotically exact is shown to give useful

approximations when fitted by moments to the combination above. Tables

are given which make its application relatively simple.

15. Broadbent, S. R., "The Quotient of a Rectangular or Triangular and
3 General Variate," Biometrika, Vol. 41, 1954.

See Chapter IV of this report.
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16. Buehler, R. J., "Confidence Intervals for the Product of 'NTo Binomial
Parameters," Journal of the American Stat. Assoc., Vol. 52, 1957.

The author generalizes the important practical problem, of obtaining

confidence limits on products of binomial parametet's. The anLalysi:O' is

s pecializod to omall probobili.ties of failure and moderate salmple sizes.

The results are restricted to the two-parameter case and no efforts are

reported on the general case of the product of n par:ameters. The use

of inequalities forms the basis of this analysis.

17. Chung, Kai-Lai, "The Approximate Distribution of Student's Distri-
bution," Annals of Math. Stat., Vol. 17, 1946.

The asymptotic expansion of the distribution of certain statistics

in a series of powers n~•÷ with a remainder term gives an estimate of the

accuracy of the normal approximation to that distribution. H. Crameor

first obtained the asymptotic expansion of the mean and P. L. Hsu ob-

tained that of the variance. In this paper, themethods of Cramer-Hsu

are applied to Student's statistic. The important results are that if

certain conditions are met by the population distribution, an asymptotic

expansion may be obtained for this statistic.

18. Cohen, A. C. See Barrow [73

19. Craig, C. C., "The Frequency Function of X/Y," Annals of Math.,
Vol. 30, 1929.

At this time (1929) only Pearson [97 ) had studied y/x for known

distributions. Pearson investigated the problem by attempting to find

expres:3ions for the moments of y/x in terms of the known characteristics

of the joint distribution function F(x, y),such as the coefficients of

variation, etc. Craig extends his work by obtaining expressions for the
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semi-invariaints. Very tedious and cumbersome matho•iatica] expressions

arise which hinder application. (See Chapter IV)

20. Craig, C. C., "On the Frequency Function of XY," Annals of Math.SSItat., Vol. ?, 1936.

The p.d.f. of a product of Ll pair of normally distributed random

variables is discussed under the following conditions: Let X and X2

follow a joint normal bivariate p d.f. with mean x1 ' ;2' standtArd

deviationacj , o- respectively,and correlation coefficient ý. Let

v 1~ x1 /-j and V 2 . Craig finds the p.d.f. of z

in closed form as the difference of two integrals. (See Section 4.2)

"21. Craig, C. C., "On the Frequency Distribution of the Quotient and
the Product of Two Statistical Variables," American Math. Monthly,
Vol. 49, 1942.

This work is divided into three sections: 1) the author discusses the

relatively simple methods of finding the quotient y/x in which both

x and y are distributed in a bivariate normal distribution, 2) a treat-

ment of the distribution XY is given and, 3) a discussion of the quo-

tient = m3/m3/2 where m2 and m3 are the second and third central

moments calculated from a sample of N observations is given.

22. Cramefr, H., Mathematical Methods of Statistics, Princeton University
Press, 1957.
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23. CreAsy, M. A., "Limits of the Ratio of Means," Journal of the RoyalStat. Soo., (Series B), Vol. 10, 1954.

Limits for the ratio of the means of two normal p.d.f.'s are ob-

tained by a method which is analogous to that used in finding fiducial

limits for the difference of two means with possibly unequal variances,

(the Fisher-Behrens problem).

24. Curtiss, J. H., "On the Distribution of the Quotient of Two Chance
Variables," Annals of Math. Stat., Vol. 12, 1941.

A rigorous treatment of methods of finding the distribution of the

ratio Z = X1/X2 for ýnown distributions of X1 and X2 is given. Particular

attention is paid to existence proofs in the presentation of tho variable

transformation method of finding the distribution of Z in terms of the

joint density function of (xl, x2 ). Four important formulae concerning

the transformation of variables method of finding F(Z) are given.

25. Darmois, G., "Sur Une Propriete Caract6ristique de la Loi de

Probabilitý de Laplace," C. R. Acad. Science, Paris, Vol.239, 1951.

A remarkable characterization of the normal p.d.f. is that if x

and x2 are two independent chance varlables such that two linear functions

ax 1 *f bx2 (ab / 0) and cxI + dx2 (od / 0) are distributed independently,

then both X and X2 are normally distributed. This theorem has been

proved without any assumption about the existence of moments by the

author using earlier results of Gnedenko and Kac [63 J

26. David, H. A., Hartley,H.O. and Pearson, K., "The Distribution of the
Ratio, in a Single Normal Sample, of Range to Standard Deviation,"
Biometrika, Vol. 41, 1954.

The author presents certain percehtage points of the ratio of samples

of n observations from an underlying normal population. The ratio con-
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cerned is a) range, w, of a sample of n obiervatUons to b) the standard

deviation, a, where both w and s are calculated from the same sample

of n observationa. The method of analysis uses the moments of the distri-

bution of w/s.

27. Davidq F. N., "Reciprocal Bernoulli and Poisson Variables," Anais
de Faculdade de Ciencios do Porto, Vol. 37, 1953.

Tables of the p.d.f, of w� (•)Where x is a non-zero random

variable described by the positive Bernoulli and Poisson frequency

functions are presented.

28. David, F. N. See Barton [9J

29. DeGroot, M. H., "Some Aspects of the Use of 'Sequential' Probability
Ratio Testa'' Journal of the American Stat. Assoc., Vol 53, 1958.

This paper investigates the use of Wald's sequential probability

ratio test as to the circumstances of applying the test when

there is no known population variance. The behavior of the test when an

erroneous value is taken for the value of the variance is investigated in

two applica'.ions. Additionally, the use of the test is discussed for

applications in which the variance can be reatricted to a giver

finite interval.

30. Doob, J. L., "Limiting Distributions of Certain Statistics3," Annals
Of Math Stat., Vol. 6, 1935.

A rigorous treatment of some of the fundamental concepts of frequency

distributions is first presented. This presentation provides a foundation

for the treatment of the derivation of a limiting distribution. Many

fundamental lemmas dealing with the concepts of a limiting distribution

are derived.
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31. Epstein, Benjamin, Some Applications of the Mellin Transformation
in St~atistics'v' Annals of Math. Stat. ,Vol. 19, 1948-

It is well known tha. the Fourier transform is a useful analytic

tool for studying the distribution of the sum of independent random

variables. It is the purpose of this paper to siudy the Mellin Trans-

form in relation to products of independent random variables (-f the form

?1= ?l 12' where 1, is defined on positive intervals. In this paper

Epstein uses the Mellin transform to obtain n = NIN2 as a Bessel function.
o12

32. Fieller, E. C., The Biological Standardization of Insulin,
Journal of the Royal Stat. Soc., (Series B), Vol. 7, 1940.

"* Results involving quotients of random variables and the p.d.f. of

an index are used in an application of a biological assay of insulin.
I,

33. Fieller, E. C., The Distribution of an Index of a Normal Bivariate

Population, Biometrika, Vol. 20, 1932.

This is a notable paper concerning the ratio of two normally distrib-

uted random variables. By quadrature, Fieller presents a solution to

the p.d.f. of Y1 = N1 /N 2 for the general case. The normal case is expressible

in terms of the bivariate normal p.d.f.

34. Finney, D.J., "The Distribution of the Ratio of Estimates of Two
Variances in a Sample From a Normal Eivariate Population,"
Biometrika, Vol. 30, 1938.

Finney shows the p.d.f. of the ratio Z =U/V of two correlated chi variates.

From this result, he obtains the c.d.f. of Z and discusses certain pertinent

applications.
,,'

35. Finney, D. J., On th, Distribution of a Variate Whose Logarithm is
Normally Distributed, Journal of the Royal Stat, Soc., (B), Vol. 7, 1940.

The problem considered here is to detormine efficient estimates of

both the mean and the variance of a given population from the sufficient
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stvttistics for the normal distribution of the transformed data where the

logarithm of the observed values is taken as the transformation (the

distribution of the logs is known Lo be normal).

The estimates for the mean and variance are given in terms of an

infinite series (actually a Dessel function) wiTh , 'w convergence ex-V

cept for small valuev of parameters involved ,and these are modified for

better arithmetic computation.

The efficiency of estimations without considering the above type

transformation it also discussed.

36. Fisher, P. A., and Tippett, L., "Limiting Forms of the Frequency
Diotribution of the Smallest and Largest Number in a Sample,"
Proceedinrs of the Cumb. Phil. Soc., Vol 24, 192?.

Conutanto for obtaining the first four moments of the distribution

of the )argest member of a sample from a normal population for samples

up to 1000 are given. Possiole limiting forms of such distributions in

general, are diszussed. Many tabular and graphic illustrations are

presented.

37. Furstenberg, H., and Kesten, H., "Products of Random Matrices,"
Annals of Math. Stat., Vol. 31, 1960.

R. Bellman, "Limit Theorems for Non-Commutative Operations," Duke

Math. Journal, 1954, considers this problem: Let X1 , X2 , 21 , ... , form

a stationary stochastic process with values in the set of k x k matrices.

.n 1 n n-1 and
He investigated the asymptotic behavior ofy . . .] and

showed that if the Xn are independent, then the lim nIE {log(ny1)iJ}

exists, (i, j refers to the i j- entry of the matrixý Bellman conjectured

that n-)i, j - E Ilog (Y) i, Jl ) is asymptotically norr.lly

distributed. This paper adds more evidence that Bellman's conjecture is correct.
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38. Geary, R. C., "The Frequency Distributicn of the Quotient of Two Normal

Variables," Journal of the Royal Stat. Soc., Vol. 93, 1930.

Geary supplies an approximation of q = x/y which is widely ubed. He

shows that for X and Y normally distributed with respective means X and

and Q defined as x/y,the statistic

Z = (q-Q)/(-l2 q2 , oe- 2 Q )

is approximately normally distributed where o<(i = 1, 2) represents

x and .

x y

39. Geisser, S., "The Distribution of the Ratio of Certain Quadratic

Forms in Time Series," Annals of Math. Stat., Vol. 28, 1957.

In testing hypotheses that successive members of a series of ob-

servations are serially correlated,a number of statistics have been

proposed. Durbin and Watson gave exact distributions for some of these

when slightly modified. This paper extends this work for a non-null case

of two of these modified statistics and gives a simple expression for the

moments of another.

40. Goodspeed, F. M. , ''The Relation Between Functions Satisfying A
Certain Integral Equation and the General Watson Transform"
Canadian Journal of Math., Vol. 2, 1950.

Goodspeed investigates the integral equation

f o1

discussed in Chapter VI. In particular, a class of functions F(x)

satisfying the equation in sought.
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41. Gordon, R. D., "The Estimation of a Quotient When the Denominator

Is Normally Distributed," Annals of Math. Stat., Vol. 12, 1941.

Thi5 investigation is devoted to obtaining an estimate of the means

of componentsi of ratio values obtained in a time series. The time

series is of the form x/y. Of corresponding interest in the time

series are mean values x and y, (true value, b/a). The search is for

an estimate of (b/a) which has the property that it may be numerically

integrated. Gordon defines a function Y(x) so that

El -, -rxl Ey -E yx b b/a.

"The function derived by the author is a function of Mills' ratio.

42. Grab, E. L., "Tables of the Expected Value of 1/X for Positive

Bernoulli and Poisson Variables," Journal of the American Stat.

Asj Vol.. 49, 1954.

Tables of the probability function of a- E , where X is a

noli-zero random variable described by the positive Bernoulli and Poisson

frequency functions,are presented. Methods of solutions are presented

which are more efficient than the factorial series method first pre-

sented by Stephen[lld in 1945.

43. Greenwood, J. A., and Greville, T., "On the Probability of Attaining
a Given Standard Deviation Ratio in an Infinite Series of Trials,"
Annals of Math. Stat., Vol. 10, 1938.

Investigations are directed toward finding the probability that the

ratio of the deviation from the expected number of successes in a

Binomial experiment of n trials, (xn - np),to the standard deviation

a (recomputed after each trial) will exceed some positive number k.

The authors prove that if tn , then for some n the probability

t n k is unity.
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44. Greville, T. See Greenwood (43]

45. Gumbel, E. J. See Keeney [64] .

46. Gumbel, E. J., "The Geometric Range for Distributions of Cauchy's
Type," Annals of Math. Stat., Vol. 21, 1950.

The author considers the distribution of the reciprocal of the

geometric range of large samples drawn from population characterized

by the Cauchy (or nearly Cauchy) distribution. Brief tables and

graphs of the probability functions are presented.

47. Gumbel, E. J., and Herbach, L. H., The Exact Distribution of the
Extremal Quotient," Annals of Math. Stat., Vol. 22, 1951.

A method of obtaining the exact distribution of the quotient ,

of the extreme values found in a sample of n L 2 observations taken

from the same distribution is presented. This is an extension of the

author's first published work (1950) dealing with the asymptotic distri-

bution of the extremal quotient. The authors, in this paper, consider

the Laplace, Exponential, Gamma, Normal and Cauchy distributions as

components of the quotient and present brief graphs of the prob-

ability function as3ociated with the sample size n.

48. Gurland, J., "Inversion Formulae for the Distribution of Ratios,"

Annals of Math. Stat., Vol. 19, 1948.

Gurlsid gives theorems and proofs that the distribution function

G(x) of (a 1 x1 + a2 x2 + . a + ax n)/(b1 x1 + b2 x2 + • • + bn xn)

is obtainable if the characteristic function of the joint density

function (x 1 , x2 , . . . , Xn) is known. He also presents inversion

.4 formulae for G(x) and shows the density function of G(x). Certain other

ratios of quadratic forms are investigated.
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49. Hack, H. R. B., "An Empirical Investigation into the Distribution
of the F-Ratio in Samples from Two Non-Normal Populations,"
Biometrika, Vol. 45, 1958.

Experimental data obtained from an agricultural experiment are

used to estimate the distribution of the F-ratio selected from two

highly skewed populations.

50. Hagi8, P. See Krishnaiah [70

51. Haldane, J. B. S., "Moments of the Distribution of Powers and

Products of Normal Variates," Biometrika, Vol. 32, 1942.

Various distributions are found, the derivations of which are

greatly detailed. They are: (1) the distribution of a cube of a

normal (0, 1) variable, (2) the Seneral case of the distribution of any

power of a normal variable, (3) the distribution of the product of n

independent normal variables, (4) the special case of the product of

3 normal independent random variables, (5) the product of two

correlated normal variables, and (6) the Galton-Macalister distribution.

52. Hart, B. I., and VomNeumann, J., "Tabulation of the Probability of
the Ratio of the Mean Square Successive Difference to the Variance,"
Annals of Math. Stat., Vol. 13, 1942.

VonNeumann determined the distribution of a 2 , the ratio of the

mean square successive difference to the variance estimate, for odd

values of sample size n. In this paper, the probability function

developed is evaluated for other values (specific) of n. The evaluation

methods are dependent upon the Incomplete Beta functions.

53. Hartley, H. 0., and Ross, A., "Unbiased Ratio Estimators," Nature,
Vol. 174, 1954. p

Ratio estimation used in sample surveys to estimate the population

mean of a variate y with the help of the known population mean X of
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some correlated variable X suffer from the defect that they are biased

estimators and by amounts for which ohly approximate formulae are offered.

Confined here to simple random samples of n pairs Yi, xi from a

population of N pairs, various ratio estimators of Y can be formed such

as y = X • , y = Xr where y, x, r are arithmetic means of samples of
x

Yi
Yit xi and -, respectively. To get exact formulas for the biases one

i

obtains E(y) - Coy , x , E(Y) - coy ,x which give

bounds on the biases: Ibias in y 1 ! y/x C bias in E -
xy

These have previuusly been attained for large sample approximation.

54. Hartley, H. 0. See David, H. A. [26) .

55. Haviland, E. K., "On the Distribution Function of the Reciprocal
of a Function and of a Function Reduced Mod. 1," American Journal
of Math., Vol. 63, 1941.

Proofs are presented which show that under suitable conditions, the

functiunsl/x( t) and x(t) possess asymptotic distribution functions if

x(t) does. x(t) is a measur.-.. real function defined for every t.

This asymptotic distribution function is expressed in terms of the

distribution function of x(t) for certain specified cases.

56. Herbach, L. H., See Gumbel, [47•

57. Hess, J. See Kish [67]

58. Hirshfeld, H. 0., "The Distribution of the Ratio of Covariance
Estimates in Two Samples Drawn from Normal Livariate Populations,"
Biometrika, Vol. 29, 1937.

The question of testing whether there is a difference between

correlation in two normal populations is considered. The distribution
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of the ratio of covariance estimates is found and a detailed discussion

of the appropriateness of its use in this test in presented. The

development of the distribution requires frequent use of the incomplete

Beta function. Some agricultural experiments are detailed.

59. Hogg, R. V., "On Ratios of Certain Algebraic Forms," Annals of Math.
Stat., Vol. 22, 1951. •

Necossary and sufficient conditions for the stochastic independence

of the ratio of two random variables and its denominator are given

and this result is applied to special linear forms. More specifically

let x, y be one dimensional random variables with joint density function

g(x, y). Let P(y t 0) = 0 and assume the moment generating function

M( u, t) = E [exp (ux+ ty)J exi6ts for -T u, t <T, T>0 ; then in

order that y and r = x be stochastically independent, it is necessary
y

and sufficient that Bk M(0, t) k 1 k=0,,2,...u uk 0 uk a tk

Zk M(0,o)
Stk

60. Huntington, E. V., "Frequency Distributions of Products and Quotients,"

Annals of Math. Stat., Vol. 10, 1939.

Proofs of four well known theorems are presented. These theorems re-

sult in a mathematical formulation for obtaining the distribution of a

sum, product, quotient and difference of two random variables. As an

example, a geometric proof is given to show that the distribution of the

quotient Z x/y is given by
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00 00

Q(Z) =J J f~iz, y) g(y) y dy

-00 0

*where x and Y,(f(y) 7 0), are independently distributed random variables.

61. James, G. S., "On the Accuracy of Weighted Means and Ratios ,

Biometrika, Vol. 43, 1956.

x 1 * f* are k quantities derived from observations which are U

independent and normally distributed about the same mean ).A but withX

different variance 1 2, 2 c2 The

are known but estimates a ' are used. A confidence limit for isu is

2

of xi and let zdenote 1/( A (rj. Allow w = v :w nd:z=Zzi. it

on the ratio of vw The desired result is then to find a function

7( 9 i.., :s such that

Pr[IP 1 4 P(w)] P.

This function is fou.nd and tabulated for the case k =2.

A 62. Johnson, N. L., "Some Notes on the Investigation of Heterogeometry
in Interactions," Trabajoe De Estadistica, Vol- 13, 1962.

In this paper certain important distribution theory of use in

the Analydls-of-Variance model for analysis of interactions is developed.
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63. Kac, M., "On a Characterization of the Normal Distribution," 7
American Journal of Math., Vol. 61, 1939.

A simple characterization of the normal distribution is presented.

The characterization is based on an invariant priaciple and admits a

physi-.al interpretation.

64. Keeney, R. D., and Gumbe], E. J., "The Extremal quotient," Annals
of Math. Stat., Vol. 21, 1950,9

After defining the extremalquotient as the ratio of the largest to

the absolute value of the smallest observation iA a sample, the

authors investigate the analytical properties of symmetrical, continuous

and unlimited distributions through a ratio defined as a ratio of two

non-negative variates with identical distributions. Among the im-

portant resulfs is the fact that the logarithm of the extremalquotiont

is symmetrically distributed. Asymptotic distributions of the extremal

quotients from the Cauchyand Exponential distributions are exhibited.

65. Keeten, H. See Furstenberg [37]

66. King, E. P. See Lukacs [821

67. Kish, L., and Hess, I., "'On Variances of Ratios and Their Differences
in Multi-Stage Sampling," Journal of the American Stet. Assoc.,
Vol. 54, 1959.

The aim of this presentation is to discuss the computation for the

variances for the estimators r = x/y and (r - r') where the random

variables y and x are sample totals for two variables obtained from a

multi-stage design. The variate x often represents the sample size which

represents the simplest case of r. This and several other cases are con-

sadered. Seveval useful computational forms are presented for

var(r-r') var (r) + var (r') - 2 Coy (r,r').
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68. Kotlarski, I ., On Random Variables Whose Quotient Follows the
Cauchy Law, Colloquium Mathematioum, Vol. 7, 1960.

The question of describing a class * of random variables possessing

the property that the ratio of any two independent random variables from

the class having the same frequency function follows the Cauchy distribution

is considered. A method is given for constructing an arbitrary number

of randow variables belonging to f along with the necessary and sufficient

conditions for belonging to) . Mellin transforms are used throughout

the analysis. It is shown that the random variables whose frequency

functions are determined by the Mellin transforms which are solutions

to the functional equation h(z) h(-z) ( R e (z),1)
Cos z

in the class of Mellin transforms of symmetrical random variables belong

to tk:e class

69. Krishnaiah, P. R., P. Hagis, and L. Steinberg, The Bivariate Chi
Distribution, Technical Report #3, Applied Math. Dept. Remington

Rand Univac, Philadelphia, 1961.

70. Krishnaiah, P. R., Hagis,P., and Steinberg, L, A Note on the
Bivariate Chi Distribution, SIAM Review, Vol. 5, 1963.

Several properties of the bivariate chi p.d.f. are discussed with

some mention of possible applications. Moments of the joint p~d.f. are

presented and the distributions of the sum of IJ and V and the ratio

Z U/V are shown.
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71. Kruskal, W., "The Monotonicityof the Ratio of Two Non-Central t

Density Functions," Annals of Math. Stat., Vol. 25, 1954.

The ratio of two different non-central t density functions with

the same number of degrees of freedom is shown to be strictly monotone

with sense depending on the relative values of the two non-central

constants. The author also cites several statistical applications in

which the ratio of two non-central t density functions arise.

72. Kuh, E., and Mayer, J., "Correlation and Regression Estimates When
the Data are Ratios," Econometrica, Vol. 23, 1955.

The authors examine the influence of rutio transformations on

correlation and regression estimates. After a discussion of the

"spurious" ratio correlation problem, necessary and sufficient conditions

are deduced for the correlation between two series with a oommon

denominator to equal the partial correlation between numerator series

with the deflating variable's influence held constant. It is shown that

condibions must be fulfilled to obtain the beat linear unbiased least

squares estimates when the data are in ratio form.

73. Kullback, S., "The Distribution Laws of the Difference and Quotient
of Random Variables Independently Distributed in Pearson Type III
Laws," Annals of Math. Stat., Vol. 7, 1936.

The distribution of the difference u =x-y where

fx a xXP-1 0-Y q-l 10 _ 00 4t
f<y) for o y

is first found. The distribution function of the quotient w = x/y is

investigated through the utilization of the transformation w = eu where I

u = log x - log y. The distribution function P(u) is found and with

appropriate substitution the solution of the distribution function of the

quotient is found.
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74. Iderman, J., "The Distribution of Student's Ratio for Samples of
Two Items Drawn from Non-Normal Universes," Annals of Math. Stat.,
Vol. 10, 1939.

The formal expression for the distribution of student's t is

"derived from samples of two drawn from any population having a con-

tinuous frequency function. A geometric method similar to that used

by Rider is used.

75. Laha, R. G., "An Example of a Non-Normal Distribution where the
Quotient Follows the Cauchy Law," Proceedings of the National
Academy of Science, Vol. 44, 1958.

For x, y, independently and identically distributed random variables,

(the density function of x being f(x) -n o -o x o

l.-X

it is shown that the ratio x/y follows a Cauchy distribution thus

proving untrue a previously well known conjecture that this was a unique

property of normal variates.

76. Laha, R. G., "On the Laws of Cauchy and Gauss," Annals of Math.
Stat., Vol. 30, L959.

It is well known that x/y follows the Cauchy distribution when x:

and y are normal (0, o-2 ). The question arises, "is it possible to

obtain a characterization of the normal distribution by this property

of the quotient?". Laha constructs a class of functions which have the

property that their ratios are Cauchy distributed but the components

are non-normal. He alao presents and proves several important lemmas

concerning aharActeriz•n•g distributions.

77. Laha, R. G., "On a Class of Distribution Functions where the Quotient
Follows the Cauchy, Law," Transactions of the American Math.Soc.,
Vol. 93, 1959.

The author again concerns himself with the distribution of the ratio II
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of identically distributed random variables with a commor. distribution

function FWx. If the ratio follows the Cauchy law, is F(x) necessarily

normal? Laha constructs a different class of functions in this article.

78. Loe've, II., t"Fundamental Limit Theorems on Probability Theory," Annals

of Math. Stat.., Vol- 21, 1950.

The fundamental limit theorems on probability theory are classified

into two groups. One group deals with the problems of limit laws of

sequenoes of sums of random variablea, the other deals with the problem

of limits of random variables in the sonse of almost sure convergence*

This article is a detailed development of t~he significant results in

each class as they were cbhronoiogi'a.liy achieved.

79. Link, P. F., "The Sampling Distribution of the Ratio of Two Ranges
From Independent Samples," Annals of Math. Stat.4 Vol. 21, 1950.

Investigation of the joint sampling distribution of the ratio of

ranges, w 2/w2, where w. (x n - x I)/4 , are made for certain. specified

distributions. Taibles of values of Prob (w 1 /W2 !• R) are presented. The

underlying distributions considered are 1) Rectangular Distribution,

2) e~x, and 3) Normal Distribution.

K' ~8o. Link, R. F., "A Correction To: The Sampling Distribution of the
Ratio of Two Ranges From Independent Samples," Annals of Math. Stat.,
Vol. 23, 1952.

A correction showing that the probabilities computed in the reference

4 ~above are correct only when R~ ]i . is shown. P. R. Hider ("The Distri-

bution or the Quotients of Ranges in Samples from a Rectangular Population,"

Journal. American Stat. Assoc., Vc~l. 45, 1951) gives the correct density

function for R ý!1.
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81. Lukacs, E., and Szdfz, 0., "Certain Fourier Transforms of Distri-
butions," Canadian Journal of Mathematics, Vol. 3, 1951.

The question of when a given function can be the characteristic

function of a probability diaLribution is considered for a restricted

class of functions; namely, functions which are reciprocals of poly-

nomials, with the view in mind of deriving conditions which are easy to

apply. The following necessary conditions are derived:

If the reciprocal of a polynomial without multiple roots is a

characteristic function, then the following two conditions are satisfied:

(1) The polynomial has no real roots. Its roots are either all on

the imaginary axis or in pairs + b + i a symmetric with regard to

this axis.

(2) If b + i a (a, b real; a / 0, b ý 0) is a root of the poly-

nomial then it has at least one root i & such that sgn aL = sgn a

and a•-I 1- a I•

The assumption concerning multiple roots is used in deriving (2).

82. Lukacs, E., and King, E. P., "A Property of the Normal Distribution,"
Annals of Math. Stat., Vol. 25, 1954.

The authors prove the theorem under Basu [i0] imposing slightly less

restricted conditions. Their conditions require only that the random

variables x1, x2 , . . . , x may or may not be identically Jistributed

and possess finite moments of order n.

83. Manin, H. B., and Whitney, D. R., "na Teat of Whether One Variable_

is Larger than the Other," Annals of Math. Stat., Vol. 18, 1947.

Let x and y be two random vairiablet with continuous cumulative distri-

bution functions F and G. A statistic u depending upon the relative ranks
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of the x's and y's is proposed in this paper for testing the hypcthesis

F = G. The conditions under which f(u) is developed are stated and uses

of the test of hypothesis are given.

84. Mayer, J. See Kuh [72]

85. Mauldon, J. G., "Characterizing Properties of S'atistical Dictri-
butiona,"Journal of Math, Oxford, Vol. 7, 1956.

distribution of a sampling statistic determine that of the population

are discussed. A representative problem is described as follows:

Consider X and Y to be iddependently distributed variates stich

that r = X/Y has the general F distribution,

r(a+b) V bd-

F(a)F(b) l+v)a dv v bo a, b 0

Is it still true that X and Y need not he chi-square variates?.

86. Merrill, A. S., "Frequency Distribution of an Index when Both Com-
ponents V llow the Normal Law," Biometrika, Vol. 20, 1928.

One of the earliest papers to investigate the deviation of

error in the normal distribution approximation Ior the ratio of two

random variables. In this paper, the author investigates the ratio of

the form (y + y)/(x + x) and through graphic means, demonstrates that

when correlation is high between x and y and the coefficients of

variation large, there is a considerable deviation from normality.

87. Mickey, M. R., "Some Finite Population Unbiased Ratio and Re-
gression Estimators," Journal of the American Stat. Assoc., Vol. 54,
1959•

A class of ratio and regression type estimators is given such that
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the estimators are unbiased for random sampling, without replacement,

from a finite population. Non-negative, unbiased estimntors of

population variance are provided for a subclass of these. Similar re-

sults are given for the case of the generalized procedures of sampling

without replacement. Efficiency is compared with comparable sample

selection and estimation methods for this case.

88. Mills, J. P., "Table of the Ratio: Area of Bounding Ordinate for
any Portion of the Normal Curve," Biometrika, Vol. 18, 1926.

The tabular values for .00 4 x t 10.00 (in increments of .01) of

R x = e ) 2 e-6 .2 dx

x

and a discussion of its derivation and many possible uses are presented.

89. Moore, P. G., "Transformations to Normality Using Fractional Powers

of the Variable," Journal of the American Stat. Assoc., Vol.52, 1951.

An e.xmination of the properties of a certain class of trans-

formations is made under the assumption that they are designed to

transform the variate X into some form of the normal distribution. The

class of transformations is that of

r 1 0 r < 1 aad non-negative X

Some consideration is given to a Type III variate X, in respect to the

use of (X - &r where o< is also a random variable and is distributed

uniformly on the interval [Co, 1]

90. Murty, V. N., "The Distribution of the Quotient of Maximum Values
in Samples From a Rectangular Distribution," Journal of the
American Stat. Assoc., Vol. 50, 1955.

When there is a priori knowledge that two samples have been drawn

from rectangular populationswith the same lower bounds, the hypothesis
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that both samples have been drawn from the same population can be

tested by means of the quotient of maximum values. The distribution

of this statistic is derived, and its properties studied. Explicit

expressions for the power function of the test are given, and a

table of 5% values of the quotient is presented for sample sizes up

tu ten.

91. Nair, K. R., "The Distribution of the Extreme Deviate from a
Sample Mean and Its Standardized Form," Biometrika, Vol.35, 19 48.

Denote xv, . . . , xn as a random samnle of n observations drawn

from any statistical universe so that the observations are ranked in

aacenatng order of magnitude. The author first sunmmarizes the efforts

of other studies of the distribution of xr In this paper attention

is concentrated on McKay's method of solution [Rioetriýa, Vol.27,

p. 466] . It is shown that the distribution of u (x -xl/ cr),

(termed the McKay statistic), can be found in a more direct uay than

that utilized by McKay. The distribution of u is reduced to certaia

integrals termed G-functions. Tabular values of f(u) are presented.

92. Newman , D., "'The Distribution of the Range in Samples From a
Normal Population in Terms of an Independent Estimate of the
Standard Deviation," Biometrika, Vol. 31, 1939.

The author makes use of the results obtained by K. Pearson in

computing probability levels for w/0t, where w = the sample range and

(r = population variance,to determine appropriate corresponding levels

of w/e where s is the independent estimate of o based on the sample.

The distribution of q = w/s is obtained and factors to convert

E(q) to E(w/0 ) are presented.
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93. Nicholson, C., "A Geometric Analysis of the Frequency Distribution

of the Ratio Between Two Variables," Biometrika, Vol.32, 1941.

An interpretation of the geometry of the distribution of (Y+T)/(X+X)

where X, Y are normal (0, (r, -) and independent is presented. The
x Y

case of dependency is given some consideration.

94. Noether, G. E., "Two Confidence Intervals for the Ratio of Two
Probabilities and Some Measures of Effectiveness," Journal of the
American Stat. Assoc., Vol.52, 1957.

The problem of comparing a success rate of hypothetical experi-

mental method with that of a standard method is attached using the

statistic

P=P 2 Pp P2 1
1 - P1

where Pi, i = 1, 2, represent the success ratio of the old and new

methods, respectively. This is a departure from the usually method of

finding a confidence limit on the difference A= P2 - P1. The re-

lative advantages and disadvantages are discussed.

95. Olkin, I., "Multivariate Ratio Estimation for Finite Populations,"
Biometrika, Vol. 45, 1958.

This paper is concerned with the extension of ratio estimation to

the case where multi-auxillary variables are used to increast precision.

The following model in5 presented:

Population YI' " " a , Yn unknown
X1l. . . . , Xln; i / 0 known, R l

X ,. .. tXPn, Xp / 0 kýnown, Rp= P Xl

p

and the (p+l)x (p+l) covariance matrix is known.
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The proposed estimator of is OY i r X + + w r X where

w = (wl, W.., w), Ewi= 1 is a weighting function and ri =P~ i

As is the result from the unzdvariate case, * is shown to be

biased in general but consistent. The Hartly-Ross estimator is

generalized to yield an unbiased estimator of Y.

A large sample approximation is given for the mean, variance and

-2mean square error (to 0(n )) and the optimum choice of the weighting

function (ao as to minimize the variance of y) is discussed.

96. O'Neill, A. See Barton [91 •

97. Pearson, K., "On the Constants of Index Distributions," Biometrika,
Vol. 7, 1910.

The frequency distribution of R = X/Y is investigated by calculating

the distribution of R = ZX when Z = I/Y. The known properties of X and

Y distributions are used to develop expressions for the moments of

R = X/Y. Pearson applies this method to obtain a distribution of an

Opsonic index. The coefficients of variation, means, and standard

deviations of the raw data are known.

%98. Pearson, E. S. See David, H. A. [26]

99. Pillai, K. C. S., and Ramachandran, K. V., "On the Distribution
of the Ratio of the itJ Observation in an Ordered Sample from a
Normal Population to an Independent Estimate of the Standard
Deviation," Annals of Math. Stat., Vol. 25, 1954.

The distribution of an observation, xi, in an ordered sample of

size n from a normal population with zero mean and unit standard

deviation is developed as a series of Gamma functions. This distri-

bution, in turn, is utilized to find the disLribution of qi= (xi/s)
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where s is an independent estimate of the standard deviation with v

degree of freedom. In a similar manner, the distribution of the
"lstudentized" maximum mntlulus un IXn/Sl is obtained. Uses of these

statistics are investigated.

100. Pothoff, R. F. See Roy [113] .

101. Des Raj, "On Mill's Ratio for Type III Populations," Annals of
Math. stat., Vol. 24, 1953.

Several authors have studied the Mills' ratio, i.e., the ratio

of the area of the standardized normal curve from x to co and the

ordinate at x. The objective of this note is to establish the mono-

tonic character of, and to obtain lower and upper bounds for, the

ratio of the ordinate of the standardized Type III curve at x and the

area of the curve from x to co.

102. Ramachandran, K. V , See Pillai, [99]

103. Reiter, S., "Estimates of Bounded Relative Error for the Ratio of
Variances of Normal Distributions," Jourial of the American Stat.
Assoc., Vol. 51. 1956.

A mothod of comparing the variability of two competing industrial

processes is investigated. In this paper, the process whose variability

is in question behaves like a normally distributed random variable with
m 2

2 representing the variance of the first process and m2 that of the

1 ~~r 22h t o h
second. The ratio 22is investigated not through the normal

F distribution, but through methods of obtaining a bounded relative

error, a minimax estimate as suggested by Girshick in Theory of Games

and Statistical Decision, Wiley and Sons, 1954.
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104. Rider, P. R., "The Distribution of the quotient of Ranges in
Samples From a Rectangular Distribution," Journal of the American
Stat. Assoc., Vol. 22, 1951.

The distribution of the quotient of the ranges of two independent

random samples from a continuous rectangular distribution is investi-

gated. The distribution is shown to be independent of the population

range. Uses of the distribution are discussed. The special case of

equal sample sizes is investigated and four brief tables of probabilistic

values are presented.

105. Rider, P. R., "The Distribution of the Product of Ranges in
Samples From a Rectangular Population," Journal of the American
Stat. Assoc., Vol. 48, 1953.

A general formula is given for the product of the ranges of two

independent samples from a rectangular population. The formula does

not apply to cases where the sample sizes are the same or if they differ

by unity. Special considtration has been given to these two cases.

106. Rider, P. R., "The Distribution of the Product of Maximum Values
in Samples from a Rectangular Distribution," Journal of the
American Stat. Assoc., Vol. 50, 1955.

This note is to supplement the article by Murty[ 901 by deriving

the distribution of the product of maximum values in random samples

from a rectangular p.d.f. The case of the product of K maximum

values of samples of equal sizes is also considered.

107. Rider, P. R., "Generalized Cauchy Distributions," Annals of Inst.

Stat. Math., Vol. 9, 1958.

This paper compares the asymptotic variance of medians in samples

of size n from any distribution (which is continuous and possesses a con-

tinuous first derivative in the vicinity of the median) with exact
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variances from distributions of the following type:

f(x) = C 1 + [ k-] k)

where: C = k r(h)

2F r( h-i

It is seen that for appropriate values of k and h, f(x) becomes the

Cauchy and Student-Fisher distributions.

108. Rider, P. R., "Variance of the Median of Samples from A Cauchy
Distribution," Journal of the American Stat. Assoc., Vol.55, 1960.

The exact values of the variances of the medians of small samples

from a Cauchy distribution are given. The tqbular values have been

computed from the integral expression representIng the frequency

function of the median of a sample of[2 K + I observations. Values of

k considered are integer values up to 15.

109. Rider, P. R., "Expected Values and Standard Deviations of theReciprocal of a Variable from a Decapitated Negative Binomial

Distribution," Journal of the American Stat. Assoc., Vol. 57,
1962.

Tables are given of values for the expected value of l/x, hrx

and the standard deviaLion of r/x where x follows the negative bi-

nomial distribution whose zero class is deleted. A recurrence relation

is established using the form
Oo

E(k) x f(x)

closed form of E (the expected value of l/x) is obtained and

results are computed LA.•rJcally.
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110. Rietz, 11. L., "On Certain Properties of Frequency Distributions
Obtained by a Linear Fractional Transformation on the Vakiaten
of a Given Distribution," Annals of Math. Stat., Vol. 2, 1931.

Certain properties are examined of the distribution of the variates

u= (e xi + f)/(g xi + h) obtained by a linear fractional transformation

of the x's where e, f, g,and h are real numbers so selected that

u = (e x + f)/(g x + h)

is continuous -1 : x _5 1.

This investigation results in observing the properties of the differential.
e i du he - fg

equation dx (gx+h) 2

111. Rietz, H. L. "On the Frequency Distribution of Certain Ratios,"
Annals of Math. Stat., Vol. 7, 1936.

A general resume of the published articles of the early investi-

gations of ratios is presented. In addition, a geometrical description

of the distribution of the ratio t = y/x for several cases in which

x, y are taken to be uniformly distributed over certain simple geometric

shapes is presented. The author considers four cases, the simplest

being that in which x and y are uniforfly distributed over the offset-.

rectangular plane.

112. Rietz, H. L., "On the Distribution of the Student Ratio for Small
Smaples From Certain Non-Normal Populations," Annals of Math. Stat.,
Vol. 10, 1939.

The author investigates the behavior of student's ratio when ob-

servations are taken from certain non-.normal distributions. Measures

of efficiency are given as the effects of departure from normality are

described through regression techniques applied to the original d, ta,
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1!13. Ross, A. See Hartley (53)

114. Roy, S. N., and Pothoff, R. F., "Confidence Bounds on Vector
Analogues of the Ratio of Means and the Ratio of Variances for
Two Correlated Normal Variates and Some Associated Tests," Annalsof Math. Stat., Vol. 29, 19.58. -

In this paper confidence bounds are obtained on the ratio of

variances of a (possibly) correlated bivariate normal population,

and then by generalization, on a set of parametric functions of a

correlated p + p variate normal population and on the ratio of means

of these two populations.

115. Scheffe, 11., "On the Ratio of the Variances of Two Normal.Populations," Ann.

of Math. Stat., Vol. 13, 1942.

This paper presents a concise and rigorous presentation of the

methods of testing whether two variances may be considered equal when

estimated from samples from a normal population. The presentation details

the significant tests and confidence interval methods based on the

F distribution and on Naytan's various criteria,

116. Shellard, G. D., "On Estimating the Product of Several Random
Variables," Journal of the American Stat. Assoc., Vol. 47, 1952.

Through the applications of the central limit theorem and logarithmic

transformations, the author finds a suitable approximation to the follow-

ing problem: Let x ± 1, . . . , n,be random variables with mutually

independent distributions and let X = xi. What is the probability

that X lies between A and B, i.e., Pr {A ! X t B } ? An investigation

of the error introduced in a few simple cases is investigated.
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117. Steak, G. P., "A Uniquone~a Property Not Enjoyed by the Normall

Difstribution," Annals of Math. Stat., Vol. 29, 19598.

Counter-examples are construct~ed showing that a ratio following

a Cauchy distribution does not necest~arily have normally distributed

componentu. The author uses Fourier transfoi-mo of specially defined

functions to construct hin counter-examples.

118. Steinberg, L. See Krishnaiah [69] , [70]

119. Stephan, F. F., "The Expected Value and Variance of the Reciprocal

ana Other Negative Powers of a Positive Bernoulli Variate," Annals
of Math. Stat., Vol. 16, 1945.

J, Moments of the positive Bernoulli distribution,

p(x) ( p pX qfln*x / (-q n)

where x, n are integers, I - x -_n

are round through the application of factorial series. Other distri-

butions such as the positive H{ypergeometrio and Poisson, are considered.

120. "Student", "The Probable Error of the Mean," B191et~r~ikA, Vol. 6, 19'

The classic paper ia divided into nine sections, the most note-

worthy tire those showing;

1. The derivation of the frequency diotributiori of the standard

deviations of sample3 drawn from a normal. population, and

II. that the mean and standard deviation of a uiample are

independent.

121. Sza~sz, 0. See Lukacs [81)
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122. Thompson, W. A., "The Ratio of Variances in a Variance Components
Model," Annals of Math. Stat., Vol. 26, 1955.

This discussion concerns X , the ratio of two variances which

arise in "mixed" incomplete block designs. A class of invariant

statistics for a test involving this ratio is developed as well as the

joint distributions of this statistic. The test is used for the

hypothesis X 0 vs. X> 1

123. Thompson, W. R., "On a Criterion for the Rejection of Observations
and the Distributionof the Ratio of Deviation to Sample Standard
Deviation, " Annals of Math. Stat., Vol. 6, 1935.

The distribution of r where s is the sample standard deviationa

and S is the deviation of an arbitrary observation of the sample from

the sample mean is developed. This distribution is discussed in re-

lation to its use in the criterion for rejecting certain elements from

a sample.

124. Thompson, G. W., "Bounds for the Ratio of Range to Standard

Deviation," Biometrika, Vol. 42, 1955.

This work supplements the work of David, Hartley,and Pearson on

the distribution of the ratio of the range w to the standard deviation

a. Bounds are shown to exist for w/s for all populations with non-zero

variance and percentage points are given for samples of three from a

normal population. It is also evidenced that the bounds are distri-

bution free.

125. Tippett, L. See Fisher (36)
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126. Tukey, J., and Wilks, S. S., "Approximation of the Distribution
of the Product of Beta Variables by a Single Beta Variable,"
Annals of Math. Stat., Vol. 17, 1946.

Certain maximum likelihood ratio test criteria have been shown to

be distributed as a product of k-l independent Beta variables. The

purpose of this note is to consider a method of finding a fractional

power of this test criterion which is approximately distributed according

to the incomplete Beta dIstribution function
r,(p+q) -l

dF(u) = upl( 1 -u)q-I du

and to find appropriate p and q.

127. VanUven, M. J., "Adjustment of a Ratio," Annals of Eugenics, Vol.9,
1939,

Given n pairs of observations xl, yI, " " " Xn Yn where Xk, Yk

are assumed to have the same weight k and all observations are

mutually independent the different ratios 'Lk - adjusted to be

"best" value -. Taking x, y as rectangular coordinates this means to N1
find the straight line through the origin that fits the points

PK(Xk, yk) best. In this paper the probability disLributions of

6ertain quantities involved in the adjustment are investigated assuming

that the true errors involved in the observations are normally distri-

buted.

128. Von Neumann, J., "Distribution of the Ratio of the Mean Square
Successive Difference to the Variance," Annals of Math. Stat.,
Vol. 12, 1941.

Let xl, . , X. be variables representing n successive obser- -

vations in a population which obeys the normal distribution law. Define

the mean and standard deviation estimates in the usual way and let the
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mean square successive difference P be

2 n -1 2

2 The distribution of &2 and, in particular, its moments are studied here.

*129. Von Neumann, J. See Hart (52]

130. Whitney, D. R. See Mann [83]

2-31. Wilks, S. S., "Certain Generalizations in the Analysis of Variance,"
Part 4 of "Moments and Distribution of the Ratio of Independent
Generalized Variances," Biometrika, Vol. 24, 1932.

The moments and distribution of the ratio of independent gerý!ralized

variances for samples from a multivariate normal population are determined.

The generalized sample variance is defined as the determinant l aijl

N

where a a _(X.- x(x N) (i, j = 1, . ., n), whenwhr ij = i aj = o .i.i. ,

j=l

a sample of N items from a ri-variate normal population is taken.
N

-X= ' X is the sample mean of the iW variate,[X,, the value

of the i% variate Xi for the _ individual. The generalized population

variance A is defined to be X =16-i O-% PiJI where a- is the

standard deviation in the population of the i% variate and (Pij) is the

matrix of population correlations.

132. Wilk8, S. S., See Tukey [1251 .
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133, Williams, J. D., "Moments of the Ratio of the Mean Square Successive
Difference to the Meon Square Difference in Samples from a Normal
Universe," Annals of Math. Stat., Vol. 12, 1941.

Cunsider a sample of n items, xl, x2 , . . . ', Xnfrom a normal I
2population with zecro nean andvariance 6- 2 the variates arranged in --

temporal order. The moments of the ratio S 2 to •2 are derived when

(n-1) $S = ( J.X 1)2

j=l

and

S-2 (xj - 2

j=l

134. Wishart, J., and Bartlett, M., "The Distribution of Second Order

Moment Statistics in the Normal System," Proc. Camb. Phil. Soc.,
Vol. 28, 1932.

Let x be a normally distributed variable and the distribution is

written as

Sk2)-• Yx2/k2

dp = (27(k 2  e k 2 dx

where k2 is the semi-invariont of order 2. Tke moment generating

function of the distribution of x2 is developed. From this the

generating function of the semi-invariants (k ) of x is dcveloped.
r

135. yuan, P. T., "On the Logarithmic Frequency Distribution and the
Semi-L.ogarithmic Frequency Surface," Annals of Math. Stat., Vol.4,i l1933.
The logarithmic frequency function
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V. 1is investigated.

Various methods of determining the parameters of this frequency

function have been proposed by different authors. This paper utilizes

the method of moments and presents tables facilitating the computation

of constants by this method.
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Functions, National Bureau of Standards, Vol. 50, Applied Math.
Series, 1956.
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1951.
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