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FOREWORD

This monograph was prepared by James D, Donahue, Electronics
and Mathematics Laboratory, The Martin Company, Denver, Colorado,
on Contract AF33(615)-1023 for the Aerospace Research Laboratories,
Office of Aerospace Research, United States Air Force. The research
reported herein was accomplished on Task 7071-01, '""Mathematical
Techniques of Aeromechanics' of Project 7071, "Research in Mathemati-
cal Statistics & Probability'' under the supervision of Dr. P,R, Krishnaiah
of the Applied Mathematics Research Laboratory, ARL. This report covers
work conducted during the period September 1963-March 1964,

The author wishes to express his sincere appreciation for the valuable
assistance rendered by Dr, S. Birnbaum, Dr. R.S. Novosad, and Dr, G, W,

Morgenthaler, Manager of the Electronics and Mathematics Laboratory, in

compiling this monograph. He is also grateful to Dr. P, R. Rider for his H:
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suggestions on exposition.
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ABSTRACT

In this report, the general techniques for determining the distributions of
products and quotients of random variables are discussed. Some exact and
asymptotic results pertaining to fhe distributions of the products and quotients
of certain random variables which generally occur as measurement error are

also presented together with their applications, An extensive bibliography is

included at the end of the report.
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I, GENERAL INTRODUCTION

In the applied sciences, problems are frequently encountered con-
cerning reliability analyses, measures of efficiency, biometry indices,
etc., which properly belong in the framework of determining the distri-
butions of various algebralc combinations of random variables., Many
of the problems associated wiih this general aream, and in particular
with product and quotient forms of these variables, have been extensively
investigated. Crailg [21]1 and others, however, point out that these
investigations have resulted.in surprisingly little useful information
which is generally available to the engineer, research scientist, etc.
The scope of such problems is surprisingly broad and investigations into
methods of analysis date as far back as to K. Pearson [97] s, 1910. As a
collective entity, the literature concerning product and quotient forms
of random variables is widely scattered and, unfortunately, is devoted
almost exclusively to investigations utilizing very specilalized quad-
rature methods, As a result, no publication has appeared which presents
a general theory, methods of application, and useful tabular results per=-
taining to a variety of product and quotient forms of random variables.

Scattered and incomplete tubles concerning exact distribution
percentage polnts, approximating distributions, and other applied topics
are available, To the engineer unschoolad in the rudiments of random

variable technigues, these are often meaningless ~and force him to use

1YIn the body of this report, numbers in brackets, [ ]. refer to the

bibliography.
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j*f less desirnble deterministic methods or even psrhaps to make unwarranted
Eg. assumptions 80 that the tabular results might be used.

R0

3} The aim of this monograph is to present a useful expository manu-

3

M)

- script on certain frequently occurring product and quotient forms of

Egﬁ random variables which will present a general theory, bring together

'ﬁg and discuss known results, and reference pertinent tabular results so as
Lf

4!& to provide a useful tool to the engineer or research scientist,

{“g In this respect, the monograph is devoted to the following topics:
Liﬁ 1) Examples of applied problems involving products and quotients., To
)

‘&# demonstrate a wide range of applications to engineering problems, a

;%i number of varied examples are discussed, mainly from the viewpoint of
%ﬁl recognizing and properly posing the problems in this general area.

X

':5 2) General theoretical models for determining product and guotient

i#& distributions. The general techniques for determining the distributions
A

AN

Qb of products and quotients of random variables are presented, This pre-
Y

-ﬁg sentation treats the independeat and dependent cases of continuous

;35 variables,.

0
aiﬁ 3) Exact results pertaining to products and quotients of random variables
Tt

N

L which generally occur as measurement error. Considerable attention is

devoted to the quotient distributioms; normal/normal, rectangular/normal,

triangular/normal; to the product distribution, normal x normal, rectan-

ok S B

gular x normal, triangular x normal; and to certain discrete distri-

=%
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butions of the form % .

I eave s R VR
T
£ e .

= -
-

s
s
=

o

o
o,

.'-‘..—::‘~

| P

e 3] -’-‘( F‘)}u’\'% riﬁ‘\‘/.{ _C y { '.-.~”~ _,{.-':-;\.-.“ v_). %, ~ LR
AR ___é; -“Q " _.'§““ 2 .:Q‘l } f.ﬂ\ U{,‘f_ﬂ(}z%r ded. o, " P z " f,.% §}§J$

e Vet A St Al Y ‘1

- B - A et il maiie i) il Ll N -s ) wing

‘~.

R
A



R '-'
Ty
kL
o
. ¥

\q NS

L) Iimiting distributions, approximations and asymptotic results. The

n 8
general variable Z = 1 Xi II Yj is discussed in respect to
i=1 J=n+l

fitting the lognormal approximation to %, along with other topics.,

5) Jsharacterizing properties of statistical distributions. Problems

of the type: "If xl/x2 = Y and ¥ follows a general F distribution, are

xl and x2 necessarily chi-square varlables?" are treated,

6) An annotated bibliography. Products and quotients of randonm

variables assume many different representations. Not only is one
interested in ratios and products of random variables described by
spacific frequency functions, but also in functional forms of variances,
ranges, proportions, etc,

The bibliography presented herein is very comprehensive in respect
tc articles pertaining to the theory of the distribution of random
variagbles deacribed by probability censity functions. The remaining
entries in the bibliography represent a small representative sample
of the vast number of published articles pertaining to other forms of
products and quotients.

The notation used herein conforms for the most part to what is
believed to be a standard format in statistical literature, The symbols

denoting random variables will be X, ¥, 2 and the values of the variates,

3
. .\.- E 3 tCRrL e LM | Y "‘-\ WO "\“ Ny ‘\\j‘ \M, *:L\n\ g.
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X, ¥y 2+ Frequency or probability density functions, p.d.f.'s will

be dencted by small letters f£(x), g(y)y « » + » and the respective

SEE

=

cumulative distribution functions, c.d.f.'s, by F(x), G(y)y o o oy

A randem varicble obeying a certain probability density function, say
the Gaussian or normal probability law, will be denoted as N( m, ).
Here pu and 0‘2 respectively denote the expected value and the variance

of the normal random variable.
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II., [ENGINEERING APPLICATIONS INVOLVING
QUOTIENTS OR PRODUCTS OF RANDOM VARIABLES

The examples discussed in this chapter serve to emphasize the
broad range of product and quotient forms arising in engineering
applications of statistical .(lstribution theory.

2.1 Cyclic Firing Rate of the T-160 (20 mm) Cannon in Korean Combat2

The need for establishing the reliability and functional suitability
of weapons under combat conditions is apparent. The following account
describes a preliminary model for a gtatistical analysis which was used
to determine the combat suitability of the then newly manufactured
T-160 gun installed on jet fighter aircraft during a period in the
Korean conflict.,

It was desired to establish the cyclic gun firing rate the T-160
achieved during combat by assessing sight reticle and scope camera
film cxposed during missions and from questionnaires filled out by
pilots and armament technicians detailing the number of rounds expended
on each sortie from belt counts. The data were used to obtain a prob-

abilistic estimate of the typical cyclic rate of the T-160 for the
Korean combat test.

The parameters r and © defined below refer to sortie averages. If

average cyclic gun rate per sortie in rounds/sec/gun,

H

averaje camera speed per sortie in frames/sec,

George W. Morgenthaler, "Cyclic Rate of the T-160 iu Korean Combat,"
Combat Film Analysis Newsletters, Institute of Air Neapons Resenrch,
University of Chicago, 195h.
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o then
.
QR (Mo. of guns firing) = Ne. i;ing frameax-z (No. of rounds expended). (2-1)
W
T”z There are, of course. certain errors in the input data for formula
" (2-1). The fi 'ing frame count may be in error because of the difficulty
}3«§§ inherent in distinguishing a firing frame from a nonfiring frame,
e
f\ﬁ particularly with poor guality film. The nominal cumera speed
- (8 = 32 fr/sec) is subjeoct to a factory setting error, in addition to
R)
iy errors induced by mechanical wear, waintenance irregularities, and to

; 7fﬁ errors arising from variations in temperature and the camera circuit

41" N

. voliage.

f ;{T Test firings indicuted that the average cyclic rate, r, on a sortie

. &Y
g is a function of total time of fire, the number of bursts, the quality
N

}i" of the gun, etc. Beinhg a function of random varilables, r is a random
' {ij variable and thus would generate a distribution over a large number of
N1
L
_,sj sorties. The expected value, E(r), is representative of the sortie
A
" cyclic rates experienced in Korea,

S }t- In the treutment of this problem, r was treated as a product of the

-

"é dependent random variables © and r/© and E(r) was defined by the relation- i
'|'.. A
he ship: N

L i
R B(r) =E (0ex) =K E (=] + e ORISR (2-2) =
. 3 3 6 b

' / 0. £ T
, £ i
wheres o
eres ?'{'
L
¢ r = coefficient of correlation between O and g ’
o,
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[
ﬁ V(9) = variance of ©, and
¥
- I . varic r
N v (9) = variance of 5 *
,§
o In this case, the moments of the distribution of r = (8) (%)
e 4y
. were first obtained by making the assumption that © and g were
BELL N
) normally distributed. This ussumption was supported by experimental
W
"4% data. It was found that 1164 < E(r) < 1266 rds./min, with a prob-
)
D,
. ability of .90. This estimate was surprisingly low in comparison
',s with the T-160 designed cyclic rate of 1500 rds/min. It is apparent that
"a“
-'ﬁ with the percentage points of the distribution of r = (0) (E) y one
i
L could examine the prob-bility of an E(r) such as was attained., This
,"a very low probability would cause one to search for a plausible ex-
©
s planation,
‘|
'ﬁ In this case, it was discovered that since the T-160 is a gas-
'; operating, autematic weapon consisting of barrel and a rotating drum
L: with five chambers, then the inertia of the drum would play an important
o
E role. At the outset, the inertia of the drum is overcome rather slowly and,

hence, the gun does not have a cyclic rate but rather an average cyclic

Y

rate depending upon the duration of the burst of fire,

L Yo

Computation ot the expected T-160 cyclic rate for Korean type

combat based on the Korean T-160 burst length later proved thet values

-

ot

of E(r) ¥ 1200 rds./min. were to be expected.

2 .2 Selection of a Space "Workhorse' Booster.,

; Many experts agree that all long range space explorations to be

140D O RN oy S S O R MR R T AR A




attempted in tho intermediaote future will best be initiated from an

Nt
)
?&i earth or parklng orblt. 1In this respect, the success of such space
<
u
g&; missions will then grestly depend upon the successful completion of a
'
A%

very importunt logigtics operation. This operation will dnvolve the

transportation of all necessary equipment and supplies into the earth

%ﬁ; orbit and the assembly of it there.

A The selection of a suitable "workhorse" booster for this phase of
?vq the project represents only one of the myriad of complex decisions

A a facing *he project planners. But, since this decision must be made

years ahead of most others and will involve great expenditures of
money, manpower, and time, it perhaps represents the most important
Vool

;ft present. day space industry problem.

b Let us assume that, at the present time, the choice of a workhorse

S 4

booster is restricted to typlcal systems such as the Nova, Saturn C-5,

_{

| e D ek Y T
St

e )

g
X

and the Titan LII systems. The concepts of these boosters differ con-

,?4 siderably;and any operational boosters forthcoming from the e projects

iﬁg will most assuredly differ in respect to payload capacity, costs,

i3.~~ velocities, reliability, date of assembly of the first operational booster,
!gh-k etc. Thus the problem of an "optimal' selection of one hooster system for
gﬁﬁé the transportation job must be based on a very realistic evaluation mudel.
éég; One meaningful index for an evaluation model of this type is the

ﬁqs "dollar" cost per pound of equlipment placed in orbit. This index would
;ﬁﬁg be obtained, of course, by dividing the total system cost, Csystem' by
:%%‘ the payload weight placed in orbit, wpayload' or

e b S e B e N e s B T L 4 5 L sl s g
e b R T R D R R D D R
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2 cs stem
M I= =t (2-3)
piyload

A closer investigation of C and

W reveals that these
sys tem payload

compunents are functions of variable components, For example, total
system costs include both research and davelopment costs and operational

costs - estimates of which are highly uncertain. Uncertaintiesin R & D

¥
1,
R cost egtimates intervene in the form of unanticipated differences in
fﬁ- estimated costs of component parts and in increased expenditures caused
A i‘.
{* by modifications in the design to meet new or revised performance
L Yy '
_Rh specifications. Operational costs are highly susceptible to the failure
) rates of the component parts and, more generally, to the level of
_'"f ""sophigtication" in the supporting logistics system.
!

The weight and space of payload placed in orbit are fundtionally de-

s

pendent upon various characteristics of the missile such as Specific

Impulse, Isp, the welght-to-stage welght ratio, %'l’ and other aero-

i

dynamic characteristics,)si‘

N It becomes apparent from these considerations that equation (2-3)
o
’i represents a complex random variable and would be better represented by
A .
‘.¥ 1 COStR&D * COperational (2-4)
- f(Isp, 7\1, 7\2,..., v) * '
».
"'d.'
D! Additionally, each component of C and W is random in
L system payload
D)
.‘y respect to measurement or estimate error. For instance, experimental
.
. data collected from operational booster systems to date show that the
\J
M
' & Isp of an "average'" missile of the system varies from the parameter value
,
()
8 the designer had iutended,
R
[\ 9
[
o

S R U




Without the knowledge of how to combine the functional forms of
the components of I, only a point estimate of I will be possible. On
this basis, the cholce of a booster system would be greatly influenced
by the relative differences in the point estimates of I for these systems.
On the other hand, the c.d.f.'s of I, F(I), for each booster may be ob-
tained with a knowledge of random variable techniques. Assume, for
illustrative purposes, that the c.d.f.'s of Figure 1 are realiastioc,

Several additional, equally good, criteria for the selection of a
booster system may be considered when the information of Figure 1 lis
available, For example, a system might be selected on the basis of:

1) the system expected to become operational soonest and for which I

is greater than some specified level with probability & 50%, say, or

2) the system for which I is largest at a certaln prescribed level of prob-
ability, or 3) the system for which the maximum cost estimate is a
minimum, etc.

More important , all of these criteria may be evaluated simultaneously
with the ald of estimates of the respective c.d.f.'s. Such an analysis
is certain to provide much more valuable insight into the problem of

selecting an appropriate booster system,

2..3 Replenishment of a Life Support System.

With the advent of long-duration manned space flights, eatimating

7 the changes that will occur in the quantities o>f certain substances

ig in the desired ecological system has become more complex.

X 10

'5‘% e e R e e



T

L

-~
o

-
-~

LTS

il
o
o

-

.
S

e

‘--
K
-
s

-

- I
.
PP

X

o

0 1 L UG D S D S N O A D4 4D DO DU g 002080

Probability (%)

100

90 ¢

8o |

70 |

60 }

507

Lo

30

20

10 ¢

150

160 170 180 190 200 210 230 335 350 550

/W = ($/1b,)

csystem payload

The Cumulative Probabitity Distributiocns, F(I), of the
Three Booster Systems.

Figure 1,

11




Ideally, a mathematical model for general gystem anulysis of an

ecological system for lung-duration flights will provide for:

1) A formulation of the control problem from which optimal
contrel functions cur Ye determined;

2) A preliminary design for the ecological system in respect
to system stability and control considerations;

3) A method for determining the time required to resiore the
system to a sultable balance in the case of a mishap and
the time required initially to put the system into
operation; and

4) The determination of resupply requirements.

One aspect of a preliminary model3

designed to imoclude the above

considerations has resulted in the requirement for evaluating a product

of random variables. It may be stated in the following manner:
Conglider the amount of oxygen in a cabin atmosphere., The amount

is affected by leakage, crew consumption, and resupply from a storage

capacity., Let!

A

i'i't'i';{:
e ¢
X(t) = amount of oxygen (in moles) in the cabin atmosphere at 3‘:::'::3'?-2'
time t, ﬁ#’ (

|@',|

'll A

L = proportion of rate of loss of oxygen due to leakage from R

Wiha

the cabin atmosphere per time period,

3) Davis, Henry and Novosad, R. S., "Control, Replenishment, and

Stability of Life Support Systems,'" Journal of Spacecraft and
Rockets, Amer. Inst. of A. and A., January 1964,
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Yl = rate of increase in oxygen content in the ocabin
atmosphere from storage per time period, and
K = rate of deorease in the oxygen content in the c¢abin

atmosphere due to crew consumption per bime period.

The estimated amount of oxygen at time t is

! ]

/ exp (Lt) (Yl - K) dt + X(0)} , (2-5)
0

X(t) = exp (-Lt)

=

TE e

T

»

where

T

vl

\,\Ijgé
f

:4.
X
¥

X(0) denotes the initial condition.

In this study, W = exp (Lt) and Z = (Yl - K) represent random
variables which are functions of time. A knowledge of combining randonm

variables in product forms is required for solving this problemn,

2.4 Stochastic Differential Equations with Product Coefficients.

In the space industry, stochastic differential equations whose co=

efficients are functional forms of products and quotients of random

\

variables frequently play importeant roles. They appear in investigations

-“H—

of control theory problems, in analyses of stresses and material perw

* Aol w & Lo

w
—

formances, and in estimatlons of the effects of hyperveloclty impact.

Must frequently. the designer or engineer treats this type of

equation as o deterministic model by using moments of the distribution as

the constant coefficients in order to aobtain a solution, If bounds are

1w
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required for a particuluar solution, digital computer simulation of the
effects of small perturbations in the coefficients usually affords a
convenient method of analyasis.

In the field of missile trajectory analysis, both very complicated
models, such as a complete design optimization analysis, and very
simple models, such as the path of motion in a plane of a point particle,
are needed., The latter prc. « onalytic solutions in closed form from
which valuable insight regar.  trajectories cau be obtained. They
also furnish simple trajectory patterns that are of grest value for
problems involving the simultaneous optiminstion of design and tra-
jectory. The more complicated models make it possible to take anto
account many effects that must of necessity be omitted from the simpler
models and alsc provide a good framework for analyzing the complete
system of simple models.
One of the simpler design models is that of electrical circultry analysis.
Such situations arise frequently in electrical circuits where the current
flowing in one circuit is influenced by the current flowing in another
through direct interconnection or through a mutual inductance. The
differential equationa for the currents are obtained by considering the
potential drops across various elements of the circuit. This leads to

the following poir of slmultaneous equations:

a, M al,
R L vly got g =Ecos e,
al ax
2 1 1
RZIZ+L2—&E+CJ’I2CH:+M -a‘;t"—O,
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where the coefficients refer to stsndard circultry notation. In the
above form we have differcntial-integral equations. By substituting

the definition of the current, I = a9 , and rearranging terms, we obtain

dt
2 bl
d d d
L, == + R, = Q, + M = R, = E coswt,
1 dta 1l dt 1 dta 2 0
2 2
d d a 1
M) At \eErtR mte @, =0

The usual method of analysis of thils model consists of using the
expected vulues of the parameters to determine a2 solution. The ex-
pected values sre obtained by measuring the parameters, such as
resistance, etc, These purameter values permit a unique solution %o
the model.

As the parameter values obtained in this manner are subject to ex-
perimental or measurement error, a far more realistic model is obtained
by considering the parameters as random variables. A '"family of
solutions'" is generated by considering the density functions of the
coefficients of the above set of equations. This family of solutions
vill allow many additional questions to be answered conoerning the prob-

abllity density function of the '"solution'f.

2.5 Measurement of Radiation by Electronic Counters.

Proportional, Geiger, and scintillation counters sre often used to

detect X and ¥ radiation, as well as other charged narticles such ag
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electrons and ol particles., Design of these counters and their
asgoclated circuits depends to some extent on what is to be detected.
A device common to all counters is a scaler. This electronic devioce
counts pulses produced by the counter. Once the number of pulses over
a measured period of time ie¢ kunown, the average counting rate is ob-
tained by simple division. If the rate of pulses is too high for a
mechanical device, it is necessary to scule down the pulses by a known
factor before feeding them to a mechanlcal counter. There are two kinds
of fs.calerrsl+ : the binary scaler in which the gcaler factor is some power
of 2, and the decade scaler i1in which the scaling factor is some power
of 10.
A typicel binary scaler has several scaling factors ranging from
: 20 to 214. The scaling circuit is made up of a number of identical
"stages! connected in series, the number of stages belng equal to n,
where 2™ is the desired scaling factor, Each stage is composed of a
number of vacuum tubes, capacitors, and resistors, connected so that
only one pulse of current is transmitted for every two pulses received,
Since the output of one stnge is connected to the input of another, this
division by two la repeated as many times as there are stages. The out-
put of the last stapge is connected to a mechanical counter that will
register one count for every pulse transmitited to it by the last stage.

Thus,if N pulses from a counter are passed through a circuit of n stages,

o

F v o

R Aty R,
e atxlala

" Cullity, B. D., Elements of X-Ray Diffraction, Addison-VWesley

Publishing Company, Reading, Massachusetts, 1956.
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XL
o
o—‘ ‘
%9&' only N/2R will regiater on the mechanical counter,
{?'V Becuuse arrival of X-ray quanta in the counter is random in vime,
‘,!’ Y |
:;.; the accuracy of a counbting rate measurement is governed by the laws of
algld
Y
Q) probubility. Two counts of the same X-ray beam for identical periods
f?? of time will not be precisely the same because of the random specing
!"
ﬂg between pulses, even though the counter and scaler are tunctioning perw
'ﬁ¢
Wl fectly. Clearly, the accuracy of a rate measurement of this kind improves
i{% as the time of counting is prolonged. It is therefors important to know
D
: & how long to count in order to attain a specified degree of accuracy.
ﬁ(' This problem is complicated when additional background causes contami-
(L) nation in the counting process. This unavoldable bsokground is due to
x)
:% cosmic rays and may be augmented, particularly in some laboratories, by
o
pYi nearby radioactive materinals.
.i: Suppose we want to estimate the diffraciion background in the presence
- & !
_twj of a fairly large unavoidable background. Let N be the number of pulses
A
'{g counted in a glven time from a radiation source; let Nb be the number
,.“} counted in the same time with the radiation source removed. The Nb
LN
: i counts are due to unavoidable background and (N—Nb) to the diffractable
I
)
.ﬁ@ background bein;; messured., The relative probable error in (N-Nb) is
e 67 o[ N+N
- E = ~—gem———— percent,
E\i N-Nb N Nb
:%i Since N and N, are random variableas, the desirability of obtaining
R,
L. the density fuaction of the above quotient form of a random variable is
::'ﬁ appatrent,
b
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L0
}nﬁ&[ 2.6 The Pert Model.
;RE Project schedules of many kinds may be schematically precented as
oA
:’1 a network of nodes and connecting arcs. For illustrative purposes, con-
Ht
KT |
R gider the almple project schedule of Figure 2.
L "
L%ﬁ
B

W
™
' B
-y
. -
. L'v'|
I
'u'
'¥ PERT Representation of a Simpie Project Network,
'\
%&: Figure 2,
1
' §;; Each arc, a, a’y by « « « 4 £, in Figure 2 represents an "activity!
fﬂiq which must be accomplished during the project schedule, The length
¥
.
)
%ﬁ of each arc denotes the time required to complete each activity. The
[} ra]
© b
T‘bﬁ nodes, A, A'y By + s+ « 4 F, represent events marking the beginning or
' gﬁ the end of an activity. There are, of course, two special evenis or
{
_?f nodes: the inic¢ial event, S, and the terminal e¢vent, F, between which
< Oy
{ § all project activity 1s contained,
- '\ -
m All sctivities which must be accomplished during one phaase »f the
. f.,‘-i \
. qi. project and which may be worked on simultaneously are shown in parullel. !
& |
)
W
Y .
Y "
'_."’Q..| 18
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In Figure 2, activities a and a' are such events. Ln addition, the
chain of activities a, b, and e may be worked on concurrently with the
series of activities a', b', d, and ¢'. Activities which may not begin
before the termination of others, as f in Figure 2, are shown in series.
For fixed activity durations, a very simple algorithm gives the
length of time required for the total project. "PERT" generalizes the
method of approach to recognize uncertainties in activity durations
by considering them as random variables. The usual assumption is
that these durations are desnribed by independent distributions, each
with a finite range. Of critical interest in the PERT analysis is the
distribution of the random variable describing the project's duration,
When the relevant activity durations are known with certainty,
finding the project duration is a trivial matter even for wery large
networks. Unfortunately, in many space industry research and develop-
ment projects, the time durations for various activities are known only
with a high degree of uncertainty. For this reason, the PERT system
was created to facilitate network plamnning.
The basic data reguired for FPERT are the distributions of the
activity durations. '"The data for these distributions are obtained
from technicians wio have had some experience with the type of activity
involved. Thre distribution of the project's duration is a compogita
of these activity duration distributions. For all activities appearing

in series, the total activity duration for that series is the sum of

the random variables corresponding to each project activity. All activities

appeuring in parallel are treated by determining the distribution of the
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maximum times of the activities. As an example, the simple network

in Figure 2 is treated in the following manner: Events A, B,and E

mark the end of project activities a, b ,and e. The total project duration

=

s 7 %—’

time of these activities is a random variable determined from the sum of

.

Cox

e the three random variables, a, b, and e. Let U represent this sum so ]
[\

- g

) ;
Qfg: thar )
Mo X

" = . 7

.Hﬁhﬂ U=za+b+e éﬂ

Activities a', ¢, d,and e' are performed concurrently with the series

"W,
3:? U« Let V represent this sum of random variables so that
ML V=a'"+c+d+e',
Zﬁjﬁz_ It is easily seen that the total project time required for com~
'53: pletion of this phase of the project is a random variable determined
' by the distribution of max [U, v] , the maximum of U and V.
_23 As activity f must begin after the completion of all other events
e
- in U and V, the total project duration, T, is of the form
[
o T = max(U, V) + f.
o
i vy Through this formulation, not only the distribution of project
'% duration may be investigated, but certain other equally important
T >

topics as well. One such topic concerns the establis! msnt of gtarting

dates for various series of activities. The feasibility of starting the
series of activities, say U and V, on the same date may be investigated
by conasildering the random variable Q = U/V. This idea suggests that

chrough examination of such probavilities as

Pr(U/V >k) and Pr (k'< U/V €k),
the need for rescheduling U or V may be determined.
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 1$‘ IIT. GENERAL THEORETICAL MODELS FOR QUOTIENTS AND
PRODUCTS OF RANDOM VARIABLES

;-r-_ - -'4' L T
Pt

The notion of probability plays an important role in statistical

theory; yet in a chronological sense, an adequate definition of "the

probability of an event" has been subjected to an ensemble of varied

b,
. ” approaches. Therefore, a brief mention of the measure-theoretic con-
.. cept underlying the theorems and definitions presented herein is per-
g éﬁ. haps warranted. The measure theory approach to probability, popularized
. %a by Cramér [22.] and others, features the embodiment of the fundamental
f | notion of probability in measure-theoretic ideas through the concept of
; %; a theory of sets and the "measure" of a set. The theorems in this
§§ section are prescnted with the implication that their rigorous formulation
b may be established by utilizing certain measure-theoretic concepts.,
;nﬁ? 5.1 Cumulative Distribution Functions.
 £ In the univariate case, the cumulative distribution function, c.d.f.,

of a raudom variable X is defined by the following postulates:

:'6t : - _
:;a I x) < x5, then F(x,) - F(x,) 2.0, (3-1)
AN
. F(-00) = U, F(+w) = 1,in the limit sense, (3-2)
LA
" 4 limit  F(b) = F(x) . (3-3)
g bt x +
}k The notation of (3-2) implies that the linmit F(x) exists as
- &
. x— (-00) or (+o0), Since (3-1) defines F(x) as being monotémic it
)
0
' % follows that F(x) has at most an enumerable set of discontinuities and
o4
i
‘0:q 21
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that the limits F(x+) and F(x-) exist everywhere. The values of F(x)
at discontinuities are fixed by (3-3)., It follows from (3-1) and (3-2)
that F(x) is non-negative.

The relation between the probability statements about the random

variable X and its c.d.f. 1s expressed by
Pr(X = x) = F(x). (3-4)
Two important classes of o.d.f,'s may now be characterized:

i) a discontinuous c.d.f., F(x), characterizes a relatior such
that each member X, of an at most enumerable set of points

Xpy Xyy v o o is associated with a respective probability

p; =0, such that ); p; =1, and that the following condition

holds:

Pr(X< x) = F(x) .—.ij, for X% X (3~5)
J

ii) the second important class of ¢.d.f.'s 1s characterized by

the existence of the function f(x) 2 O such that

X

F(x) =/f( n)dn . (3-6)

~00
Equation (3-6) is referred to as the continuous c.d.f. and fix)
as the probability density function,p.d.f.,of random variable X.

Obviously then

o)
Prix, = X =x,) =f B nydn . (3~7)

X
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%.1.2 The Bivariate Cage: If R denotes a rectangular area in the

(x. y) plane, X X S Xy Yy <Y <y2 ,and A122 F(x, y) denotes the

second difference,

) + F(x ) - F(x

L\2F<x'y) = F(xg’ya

7 lvya) - F(xz,yl), (3-8)

1Yy

then the joint c.d.f., F(x, y), of random variables X and Y is sub=-

Jjected to the following postulates:
and
F(-~00, y) = F(x, ~00) = 0, F(+00, +0) = 1, (3=10)

By allowing x,, y; = -0 in (3-9), we may conclude,using

(3-10) ,that -

Flxyy ¥5) - F(x, y;) 2 0, if y, =y, - (3-11)
Similarly,

From these postulates, it is concluded that F(x, y) is monotonic in
each variable and the limits F(x +, y), F(x, y+) exist everywhere. It
is easily shown that F(x, y) is discontinuous onat most an enumerable
sct of lines, x = constant, (similar results for y). Finally if
Xy =—> -, and ¥y > -c0 in (3-9), then F(x, y) = O because of
(3-10). The values of F(x, y) at the discontinuities are fixed by (3-12)

s0 that
2%
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F(x, y) = F{x +, y) = P(x, y +). (3-12)

Again the connection between the probability statements about

random variables X and Y and their joint c.d.f. is determined by
Pr(X=x, Y=y) = F(x, y). (3-13)

In tlie bivariate case, again the discontinuous and continuous cases

are of particular intereet?

1. The discontinuous case is characterized by the existence of
an at most enumerable set of points (xi, yi), 1=1,24 .4,

and associated probabilities p, such that :E:pi = 1., So that F(x,y) is
i

T(x,y) =Z Py XS Xy Yy=v. (3-14)
J

2. The continuous case implies that there exists f(x,y) =0

such that
X .y
F(x,y) =// f(ﬂl.ﬂa)dn dn (3-15)
12
-0 =00
and
Pr(X, Y €R) =[ [f(x. y) dxdy . (3-16)
R

5)

The mixed case which is treated through application of the Stieltjes
integral will not be covered,

2k
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e
u::: 3 .2 Marginal Distributions.
§ :’i‘; The marginal distribution of X associated with the Joint c.d.f.
.
gg of random variables X and Y is defined by the relation
‘..Q‘
i Pr(X « x) = P(X<x, ¥ < +00) = F(x, +00). (3=-17)
"
fv‘d Hence F(x, +00) is the univariate c.d.f., of X and is called the
»'ql
13
,J marginal distribution function of X, Similarly F(+co, y) is called
i
' the marginal distribution function of Y.
.“." .
;:' For the discontihuous joint c.d.f,.,
;,'.e
K
W | -
- F(x so0) = E Py Xy < X, (3-18)
.,:,v J
-""
thy
ezg and for the contihuous case
.
. X 0O x
) - - 3
-;:f:: F(x,+00) ~/ / £, N an, dn, _/ £,00 ) an,. (3-19)
0
°$ -00 ~00 -0
w
%.,3 Statlstical Independence.
. N
’% If F(x, y) is the joint c.d.f. of X and Y, then F(x) = F(x,+00)
o
ﬁ}i‘g and F(y) = F(+m, y) as already noted. The random variables X and Y
N
-0 are said to be statistically independent if and only if
g F(x, y) = F(x) F(y) (3-20)
]
N
{
'l.“ which in turn implies that the following relations hold:
) ;g’l'( £f(x, y) = £(x) g(y) for the continuous case (3-21)
“ 'ﬁ.
and
N
i
f 25 !
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¥
W P(X =x, Y=y) = Pr(X = x) Pe(Y = y) (3~22) <
- .
Q for the discrete case. W R
0 YY)
f.gs As a result, the following definition may be made: )$
B o
ﬁr Definitlon: The random varisbles X and ¥ are stochastically inde- .
W P
Y
, ? pendent if and only if £(x, y) = £(x) gly). If f(x, y) cannot be ex- Ll
8
)
ﬁ. pressed identically as the product of the marginal distributions, then
.l
. X and Y are not statistically independent.
D
f
[/
4
' &. 3 4 Transformation of Variables.
a Change-of-variable integration techniques are used frequently in the
-8
o study of algebraic combinations of random variables. Imn the following
Q'.
:ﬁ discussion, only the continuous random variable case is treated as the
. 4%
: : discrete case 1s analogous and presents no additional difficulties, At
LR \
; this point, it may be helpful to present a special problem to emphasize
N
"W‘ the ideas involved.
.
f
-:% Consider a random variable X described by the p.d.f.,
- 4
) £(x) = %x, O=<x =<2,
=
0
-;. = 0, elsewhere,
‘::
The random variable X is defined on a set ¥ = {O< x <2} where

f(x) =0, Define the random variable Y as an algebraic combination of

| s

i

X, say Y = %E XB,and consider the transformatiom y = %K xj. Under this

transformation the set ¥ is mapped into the set 8= {0=y«< % b

moreover, the transformation is one-to-one. The one-to-one corres-

4 i )
" ié": I
LY pondence between the points of ¥ and B insures that for every event 5{&

26
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Theorem 1l: Let X be a continuous random variable deacribed by the p.d.f.,

O=aed <é y the event a « Y=< b  will occur when and anly when
5 3
the event l&\/ a =X l&\} b  occurs.

Thus,

3 3
Pr(a = ¥ < b) = Pr( U\ a = x < by b)

e xdx .

W
5

By changing the variable of integration in the above so that

3
x=4y y and &= . 4 , the following result is obtained:
¥
3y 2/3
b 3
Pr(a « Y « b) =f ye(u\,’_y_) (#73> dy
A y
b g
= A dy .
L

The p.d.f., of Y is

g(y)

i
:
o
A
<
A
Ocf 1=

0, elgewherae,

[H

The change of variable technique in the univariate case iz gummarized

by the following theorem:

27
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'SSE; £(x), defined on the set ¥ = {a =x=b} and let y= #(x) be a
:‘:i‘.‘l";o monotonic transformation having a unique inverse x = p—l(y) so that
i;$§ under the transformation, the set ¥ maps by one-to-one correspondence
R into # = f{a'=y=b'}. Further, let p'(x) exist; then the p.d.f.

of Y is given by

S 1

% "~ J. . - .
---!S:f;:‘ gly) = £, (¥ M) \%; o (y) I , {a' <= ¥ :sb'}. (3-23)
At:'ti" '

BURNS

o - 2.4,1 Bivariate Case: The method of finding the p.d.f. of one vari-

..':I N

ﬂséb' able of a continuous type may be extended to a function of n random

e,

:35& variables. Two=-variable transformations are consldered now as a

special case,

;%&3 Allow y, = h(xl, xa) and y, = g(xl, xa) to be a nne-to-one trans-
'fiag formation of random variables X, and X, with existing continuous first
%;a‘ partial derivatives. This transformation will mop a two-dimensional

:aaﬁ' set ¥ defined in the (xl, x2) plane into a two-dimensional met /&

[
-
|- J

KX

defined in the (y,, y,) plane., Under these conditions the following
1 Y2

- N

theorem holds:

s
: "’i _eu'g

Theorem 2: Let X1 and X2 be continuous random varisbles with joint

pedsfe f(xl, x2) defined on the two-dimensional set ¥ = {af_-xlfb, cxux,=d} .

Let y, = h(xl, x2) and y, = g(xl, X,) be a transformation with a unique
. - o1 . I
inverse x, = h (yl, ya) and ¥, = g (yl, y2) go that the first partial

derivatives of the inverse functions exist and the set & 1is mapped

under the transformation into @ = {a'=< = b', ¢'€y,=d'} in a
[34

-

X

one-to-one correspondence, Then the joint p.d.f, of random variables

Xy

ol
. J

-
-

“

.‘-%:-.---

Yl and Y2 is

(o

28

--
>
Sy S NN

-

.

M2

o
5

S B R R B e R O B A TR B

-




720
.
\

s

e

-..k-,«.. )

- e

ST

e

- - Sy
'Aa‘:f)b_.- -, C R

ol .

- T
-

-~

o

{

.
B T

=

LI I,

Ta

T4

-1 -1
8lypayy) = Ty (W7(yy)es " (yrpayy)) 10, ia'fylsb', c'=y,=d'}, G-
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0,elzewhere

Ii]

- - - -1
ANy 53,0 18 g1 ,)) 90y y,) 3 RNy )
where J = = | —————C ————n S

=1 -
28 (ypw,) dg 1(yl,y2>
9 Y1 9 Yo

Frequently in the treatment of the two-dimensional case, the randon,

variables Xl. X2 are treated as being independent so that fx ()
1’72
becomes f (h_l(y WYo))e £ (g'l(y v¥5)). In addition, the transformation
Xl 1'Ja x2 1'v2

function Y1 is usuolly set equal to the algebraic combination of in-

terest, say a quotient, so that Yl = xl/xz. The random variable Y2 is

defined as Y2 = XZ. The p.d.f., of Y1 = xl/xa, the quotient of interest,
is then obtained by determining the marginal p.d.f. of Y. This pro-
celure in most caies greatly simplifies the calculations involved in
finding a desired p.d.f.

Theorem 2 is essentially a corollary to a more general theorem
dealing in several varianbles, This general theorem is summarized by

stating that if a set of transformetion functions, yi = ui(xl’°"'xn)'

i = 1yee4yn, exists with inverse functions, X, = wi(yl,yz,....yn),and if

the conditions of one-to-one transformations and the existence of first

partial derivatives hold; then
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g(yl’onn’yn) £ IJI [ﬂ (wl(yl.u.,yn),u..Wn(yl,....yn))] (3“25)

where
5 = 3'1 awl L Bw.l
3:{1 3y2 Byn
av Bwn ;
ayl ayn alq

As an example of the use of (3-24%), we shall congsider the following

textbook type example? 2 2
yp P -}‘e(xl + X, )

--;L-e dx. dx

Allow: f(xl.x2) dxldx2 = 3% 4%, and

considir the transformation:

¥y © X" +x

1

-1 X2
y2=tﬂn ;l'-‘

The domain of the ftransformation is ¥ >0, O = ¥s <27 . 'The in-

verse of the transformation is

»
1

159 %8,

Xy = ¥y sin Yo
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Thus,
| [ (xl’“a) (ros ya)(-yl sin ya) . ) =
. - = 1 = 1
| 9 (yphy,) (sin y,)(y, cos y,)

hence, from (3-24), the joint probability density function of{yl, Y,}
is

-t y.2
£( ) 5 $! d
Yvp) =z e ¥y 0¥y 9y,

3 4,2 Transformations Not One-to~One: Let f(xl,xa, . ey xn) be the

n-dimensional p.d.f. of continuous random variables X.,, X

l’ 2’ e ¢ a an

Under the transformation Yo = ul(xl, Xor o 0 oy xn),
y2 = uekxl' x21 v s s gy xn)| e o s g yn = un(xl| x2| - e e 9 xn)| the
n~dimensional space ¥ where f(xl, Xae o o oy xn) > 0 is mapped into

/@ in the (yl, Yor v 0 v yn) space. Under transformations which are

not one-to~one, each point of ¥ will correspond to one point in,& ’
but to certain points in /9 there will correspond more than one point
in ¥ . The difficulty presented by this circumstance is diminished in
the following manner,

If the set ¥ may be represented as a union of r mutually exclusive

sets &. ' Bé, o« ooy U; s0 that the transformation yl, Yor » v 0 0 ¥,

detines a one-to-one transformation of each subset 3; inh:/?. Then

the groups,
xl = uli (ylt y2' v e oy yn)'

= uai (yly ya1 LI yn), (i = l, 2’ " & o 9 1‘), (3“26)

n
1

n = “ni (yl’ yav I yn)'
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represent r groups of n inverse functions. If the first partial

derivatives exist and are continuous,and if

5 = du, Ay, Bugy
3 yl o ya o yn
Quy, By, 3 uyy
] ¥y d ¥, 3 Y, , (1 =1,2y v « « 4 1),
¢ uni 9 uni ° uni
L 41 J Y2 9 Yn

are not identically zero, the change-of-variable technique may be
applied to the union of the r mutually exclusive subsets of ¥. The

n-dimensional p.d.f. of random variables Ty Yoo ooy Yn 15 then

2
given by

r
) = ‘o ces veew ) . -
By g0 e e oYy 2: Wab i onx B Oaree vty (e iy Do (3-27)
=1

The marginal p.d.f. of any one Y, say X , becomes

li

w an
81(31) = f‘ . 'f E(ye' L | yn) dy2 « e o dyn -
-0 -0

A frequently used example will serve to illustrate this result. Let X

2
follow a normal p.d.f. with parameters Lp = 0, O = l) + Consider the




random variable Y = xa. The transformation y = x'?' maps the set

¥ =i-oo<x <oo} into & = {Ogy--:oo}. This tranaformation

is not one-to-one, however, as to each point y # 0 in /J there corre -~

spond two pointa, namely - \)y and ‘} y in the get ¥ .

The set ¥ on which f(x) > O may be represented as the union of

two mutually exclusive sets,

‘61= {-oo-:x-co} and ’Jaz{o-:x-too} .

This is accomplished by observing that in the case of a continuocus
random variable, the Pr(X = b) = O; we may define the p.d,f. of X at
any point b, or for that matter any set of points o< with measure zero,
i.e., the property that Pr(X € o) = O, without affecting the distri-
bution of X. Accordingly, two mutually exclusive sets, Xl and 82,

are obtained by defining the normal p.d.f. ac

1 -¥e x2

e y "0« X <0, 0 =<x «o00,
.\/—27f
O. x =0,

£(x)

n

u

The function y = x2 now deflnes a one-to-one transformation which

maps each Xl and 3’2 into ﬂ = { 0 <y = oo}. Tne two inverse functions

c)fy=x2arex=- Vy end x=¢y 50 thatJl=-)2/Vy

J2 = 22/ y. Using (3-27), we have the well known chl-square distribution

il withone degree of freedom,
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0
3%
)
! 1 1 % ] 1 -2
4 . p;(y) = |~ e—— e + —i':- —_—e ’wo
2 ‘} v 27 2‘/ y J 2m
2N |
-I‘:‘
&:-:'
' 1 g1 "F
= ¥y e « O=y=<o0 .
. " 2R
o The fundamental theorems involving the algebraic product, quotient,
,':",' sum, andthe difference of random variables Xl and X2 may now be stated.
'_;.'; These theorems are a consequence of (3-24) and (3-27).(See tootnote 8, p. 42.)
Theorem 5: The random variables product Yl = Xl x2 will be distrib-
uted as
'q';' L
I (y) = /fx_ xS 1) |5] e (3-28)
» Johod 2
k
" = O,elsewhere
i
?of' provided the random variables xl and X2 are distributed in accordance
G
5 |
:" with the joint p.d.f. £ (x., x,) which has been defined on the
X)X, 1 T2
"l‘li X o o P = . =
:31 set ¥ so that the transformation Ve ul(xl, xa) and y, ua(xl, xa)
"1
‘..yl"; maps the set ¥ into the set 4 in a one-to-one correspondence.
'
"
. A very important result pertaining to the preduct distribution
"y
.‘ of two independent normally districuted variables may be obtained by using
.
;"' Theorem 3. Assume X 1 is N(O, 0‘12) and X2 is N(O, 052) and defined so
that Pr()(2 = 0) = 0. The set ¥ =i-oo < X, = 00§ =00 =X, =0, 0 ~=x2<oo}
E:g is mapped into the set I@ = {—oo =y, < W} 0= y2< 0, 0= Y, < cb}
. '.' o
:::: in a one-to-one correspondence under the transformation yl = xl xz, y2 = x2.
N
S
4‘” ‘
"Ai 3t W)
N 4
% 0

P R
v, W 00 L‘in&! n‘ 4 . ‘ L.tg:g':ﬁ':ﬁ':g‘::"&:':!iks' t.{::f g




By Theorem 3, the p.d.f. of the product Yl = Xl Xa is

¥,2 Y
W(yl) =f 1 exp { - 21 5 + 22 dy2 .
3 e™ di o"é |y2i y2 0.1 °:2

Since Q(yl) is an even function in y,, {ﬂ(yl) may be written as

¥y y 2
Rt 3 1 + 2
Yy o0 2 o 2 o2
- Ply,) = —L e V2 9 2 1 4

s Yore o y 2’

:‘:‘? 172 © 2
-.;v'.i':u‘

:'0.:' The following substitution simplifies the above expression. Let
i~

2
: 2 %
. J; u = = s
‘e %21 2

1','{ then P(yl) becomes

o - —=— dyyld vy

. ® 2 o o, u

o Py,) = —t f = du.
Y 1

: e 2 cr'l °'é g u

Hence, substituting u = et, V(yl) may be written a56

h 1 ©) Watson, G. N., Theory of Bessel Functions, Cambridge University
:' X Press, Cambridge, 1922, p. L3l
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) R Y

- -
- o

o
X

X X

or

e
-

A - Y
o0 -lll (et+et) (s —‘llcosht
#(y)) = 1 f e 1% 2 dt = —t f A% at
21‘—6‘165 ~00 21“”165 -Q0
el
s —E—x, (_L. v ¥, A0, (3-29)
o, o 9 %

where Ko(') is a modified Bessel function of the second kind of zero order.

This result is well known and is disocussed in congiderable detail

in Chapter IV. A tabulation of Ko(') is presented in [141] and [142] .

Theorem 4: The random variable guotient Yl = 1(1/)(2 will be distributed as

P(yy) = f fxl,xa (3) ¥50 350 151 6y, (3~39)

provided that the random variables X_L and x2 are distributed in accord-

(xl, xa) which is defined on the

ance with the joint p.d.f., fx X

1 %2
set ¥ so0 that the transtormation ¥y = ul(xl. xz), s = uz(xl, xe) maps
the set ¥ into the set B in a one-to-one correspondence.

Theorea 4 may be used to derive the p.d.f. of the ratio of two

correlated chi -variates-7. Consider a bivariate normal p.d.f., in

7) Several properties nof the bivariate chi p.d.f., have_been extensively
investigated by P. R. Krishnaiah, et al. [69] ' [70] « N. L, Johnson
[62] and D. J. Finney [34] present cevtain of the many important

applications of this statistic.
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randow variables X, and X, with parameters (Mx =p. =0, @ =0

]
. 1 %2 1 1
6; = 65, e )« S. Bose [12] has shown that the statistics
2
B-?—-{Lands—--v_i‘;a_
17 n 2 n
vhere:
n+l re n+l %

-2, .2 - 2
U:Z (xgy =2/ a7 V=Z(x2j"‘2)/°3_ '
-1 jizl

are jointly distributed in what is known as the central bivariate correlated chi
distribution. P. Krishnaiah, et al. [70)] , beginning with Bose's

expression, have shown that the joint p.d.f. of U and V is

® F[(n/2)+i] Sy vy 231 oy [-(U2+V2)/2 (1- 92)]

£(U,V) = b (1- @22 ' |
iz0 I (n/2)i! {2(n/2)+1 F[(n/2)+i] (1- ?2)n/.2+i}2

By Theorem 4, the marginal p.d.f. of Yl = U/V, under the transformation
¥y = u/v, ¥, = V, may be derived from (3-31).
Thus

)n+21—1

0 24 n+2i~1
©yyyy) = 4= V2 rlovaa]e® Gy Ehy,
B i{=0 I (n/2) i!{ 2(n/2)+i I'[(n/2)+i] (1~ Q;-’)(!'I/E)O-i }2

cexp Gy, 0%+ 20 - 0] (1,0

N

?

%
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The maryinal p.d.f. of Yl satisfies

2
u( - ) ( ) 21 n+2i-1
My = - e E : (o« 5] & v,

. { (n/amr[( ) 1] o p )G/27+i} R

co (3-31)

0

With the substitution of r = yaa. the integral expression in (3-31)

reduces to the Gamma function,

0
k+1
%[!n+21-1 e-at P = EE‘T&% .

2a

Since k ={n+2i-1l}is a positive integer, then [ (k+l) = k!, Tiese
subgtitutions simplify (3-31) so that f(yl) may be expressed as in

[12,69],

2(1_ rl Bn+21)] QZi ylm-ai-l

(y,) = .
f Yy Z r\ [(“/2)+i] 11 (yla N l)n+2i

1=0




lheorem 5: If random varisble X is stochastically distributed in

accordance with the p.d.f. f£(x) and Y in accordance with the p.d.f.

g(y), then the random variable sum S = X + Y wiil be distributed in

accordance with

Q@

®©
f ¥(s)dx = 1, where ¥(s8) = / f(s-~y) g(y) dy.

~Q0 =00

(3-32)

The well known fact that the sum of two normaliy distributed random

variables is also normally distributed is shown by using Theorem 5.

X = N( I d;tz) and ¥ = N( Py d‘yz). The random variable S = X + Y 1s

distributed in accordance with (3-22) by Theorem 5. Thus

2 2
X - A 8~X- M
a(2m) o ()
les) X y
g(s) = 1 f e e dx.
QMW e o
172 —oo
It follows with some manipulation that
* % 2 * 2
J-m X~m
Jz(d‘“) @ -yz(o*‘ )
8(5) = _"J""—T- e . 1 « e
‘/amr "2'1(0*
-0
2 2 2
where: m* = Mx % * (y-ﬁl) %% o2 = _.G:’E.._Lo‘
L] )
0‘2 + 0‘2 0‘2 + 0"2
X y X y
L] LR 2 2
mr o= ou +,uy, o = o+ d; .
39

Let

(3~33)

} dx (3-34)
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e
.o The expression in the braces in (3-34) is equul to 1 by the properties
e
.?‘" of the normal distribution. Therefore, it follows that g(s) is normally
. 2 2 2
Y0 = =
.e:! distributed with parameters Py =Ry +,uy and 02" + o‘} = O
E/
;5.3 Theorem 6: If random variable X is distributed in accordance with
LN
§1§§ the p. 4. f, f(x) and Y in accordance with the p. d. f. gly), and if X and Y
\
}535
-:' are shtatistically independent,then the random variable difference
Ly
. W = X-Y is distributed as
A
N
g oo
::c f R(w)dw = 1,
1.'("
ol =00
v
I where
ll] Q0
AT
A0 R(w) = f flw+y)g(yldy.
R S
P
;shs In Theorems %~6, the fact that X, and X, are assumed to be
et
[}
&53 statistically independent allows a convenient integral expression for
20
il each algebraic combination of Xl and X2 to be obtained, The difficulties
'd?: are compounded when this assumption is improper. In this case, one is
e ]
{

faced with the necesslty of obtaining a holomorphic expression for the

£S
Y

A58

joint density function of the two random variables,

This difficulty may be illustrated by considering the followlng ox~
» 3 — . 2 2
ample! Let random variable Xl = N()%c"Pl’ o = o3 ) and

2 2 .
x2 = N(/an = fyy OO7 = 03 ) be stochastically dependent. This de-

pendence is characterizied by the coefficient of correlation, e The
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Joint p.d.f. of xl. x2 may be expressed as

2 2
) 1 1 h S AT\ W A Xy
$lxg ) = mexp ) 2(1-¢%) ("1 )_a(,( YA AN :

2 [

Suppose the p.d.f. of the random variable quotient Yl = xl/x ’

where Pr(X2 = 0) = 0, is desired., We may utilize the methods of

Section 3.2.4 by defining the transformation,
N =% /%p,
yz = xac

The |J| = |y,| and by Theorem 2, the joint p.d.f. of (yl,ya) is
[

1 Yy Yp =My

[¥5|
exp 5
21‘0’ 0‘2" 2 2(1-p) q

F(ylyya) =

¥, ¥, - p ¥, =M ¥y - A
~2p [A2) [ 22} L2 22 [l (55
2 % %

By integrating (3-35) with respect to y,, the marginal p.d.f. of the

random variable Yl = Xl/x2 is obtained. After much detail, the following

cumbersome result is obtained;
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LA
B0
) ; , 5
ki [ B 4
i ] 6% i s 1 R L Lo S
- }'ﬂ(yl) =¥ 53 0‘2 exp{ - ( 2) 5 + 5 |1
" ("é yp s2enq% v % ) ell-p)\% 9% %
BT
!
B
i (u, -~y ;u)2 o, (e p oo~ ¢ )y, o (e pyo = pi0y)
. + exp ye/“;tla 1@ M To™ Mo O Y95 R Ma%m o
vy - 2 2 2 2 2, /2 °
Y - . . -
) (0 7, w20y G + )| K n® 2ew G %)
K
;ﬂf
S
o
3
B - - -
" oy (o 1y & = iy 6) + 3y Blen, oy -y %)
E& (1 2y(g? v.2 - > 242
" 6 o {(1-e° Ny y," -2 ¥y o & + 077} (3-36)
':.:. ¢ e_}/z u du,
,“'i'.
'::‘,:": 0
4'|l
[
235 where the integral function is the error integral.
wh
, This example serves to illustrate that although in theory the
W
;?: change-of-variable integration techniques are always applicablej they
)
»gﬁ often result in very unwie ldy integration problems, In the next chapter,
W
, . then, some of the more frequently occurring forms of products and quo-
\'"I
j_:"' tients of random variables will be investigated. Ways and
N
ﬂ\ﬁ methods of obtaining the desired marginal distributions which avoid
t
B certain integration difficulties will be investigated.
&
18

8Theorems‘3—b are widely known and are frequently quoted
ey in statistical literature. No one person is credited with
their derivation. However, Huntington [60] presents a
geometric proof for each of these theorems in his paper.
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IV. PRODUCT AND QUOTIENT FORMS OF MEASUREMENT ERROR.

4.1 Meagurement Error

Physical und economic limitations, the ever present constrainta in
any industrial environment, often require that the formulution of an
aestimate of a ratio or of a product of two quantities be based on
individual measurements of the two components, It is commoh, for ex-
ample, to determine the proportion of a reactant whioch has reacted in a
chemical process by measuring the residue after the process has com-
pleted, or to estimate the efficiency of a rocket engine by determining
the ratio of fuel energy input to thrust output. BEstimates of efficiency,
velocity, and proportions are examples of indioces which are necescarily
ratios. Product forms frequently arise in assessing the probability of
a successful event, such as the launching of a missile, which depends
on the successful operation of several independent component subevents.

As 1s frequently the case, further complicsmtionsarise when the
individual measurement of each component of the product or ratio is sub-
ject to error. This error most often is due either to what in reality
are true random fluctuations in the measurable quantity or to insirument
error caused by the Jnherent limitations of an imperfect measuring device.
These two sources of error are often treated alike statistically and are
called measurement error. When the two quantities are subject to measure-
ment error, their product or quotient is distributed about its expected
value, In the following, two examples are presented which demonstrate
two commonly occurring situations which require the use of approximate

methods to establish the precision of an estimate of measurement error.

b3
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Whenever economically feasible, the distribution of error of each com-
ponent quantity may be determined from repeated experimentation. On nther
occasiona, repeated trials are impossible or undesirablej whereupon ,the
precision of a specific trial must be established by theoretical arguments.
This requirement is frequently necessary in the acceptance trials of zertain
tvpes of heavy industrial machinery such as steam bollers, petrcleum pro-
cesaing equipment, blast furnaces, generators, large rocket enginos,
etc, Such trlals are lengthy and expensive processes which usuvally require
that an estimate of theefficiency of the eguipment be made from a single
trial operation. It dis necessary from the point of establluhing confildence
limits to obtain the probability density function of the estimate of
efficiency. Approximate methods, such as the sssumption of normality,must
suffice for this purpose since more desirablo exact methods are oclearly un-
attainable,

The second situation involves instrument error, Measurements taken
with several different measuring devices, all of a specific type, generally
are different. Repeated measurement taken with any one of these instru-
ments is physically possible, yet is often pointless; the instrument has
been manufactured to certain tolerances and is incapable of recording with
a greater or lesser degree of precision on any successive trial. Other
measuring devices will record with the same degree of precision on any
specified trial but in most cases slight differences will be noted in the
expected valuee and dispersion of measurements taken with the individual
instruments. The experimenter will usually have at his disposal only one

or two measurement instruments of a specified type; thus he will be unable

iy
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to conduct a large number of experiments with which to calibrate his own

{1 equipment. As a rosult, the tolerance aszuociated with a measurement

,ﬁﬁ accomglished with a "typical'" measuring instrument is best considered as
'%% heing random in nature ard ahould be treated from a statistical point of
;ﬁ: view,

%% In many industrial applications, the errors of measurement are con-
;g sidered to be described by one of three p.d.f.'s: the rectangular, the
Té% triangular or the normal density tunction.

Instrument error is often approximated by the rectangular p.d.f.

3

;q Certain measurements such as length, time,and weight are usually recorded
533 in terms of deviations from some preselected value, X'. These deviations
‘ ¥ o= (xy- «') are assumed to be in an interval § = {ax y = b} so that all
,;ﬁ deviations are equally likely. It is implied that the deviation between
;iﬁ the true value of the measurement snd the preselected value is equally

- 8%

;j' likely to be anywhere in the interval S. A measurement which has been

-?ﬁ rounded off from a more precice measurement is an example of an estimate
éé' which is aubject to rectangular error.

The triangular p.d.f. describes measurement error resulting from

-
n

"R P

summing or taking the difference of two readings which are subject to

rectangular measurement error.

T -
-

‘-

The p.d.f. describing sosmpling error and the distribution of the ex-

pected value of a sample of neasurements is often taken to be normal or

a 4.r<_': ; j ¥ —'

Gaugsian., Product and quotient forms of these three common p.d.f.'s de-

-1

scribing measurement error will be discussed in the following sections.
These three r,v.'s will be denoted in an obvious notation as R, T, and N

hereafter,
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4,2 The Normal Density Function.

4.2.1 The Product of Two Normally Distributed Random Variables: A wide

variety of aintevesting approaches and techniques has been applied to
the problem of finding the p.d.f. of a product of n normally distrib-
uted random variables. In fact, as a collective group, these investi-

gations repregent a rather extensive study. An interest in this problenm,
as indicated by published articles, Ffirst became apparent in the early
19%0's, with the bulk of important derivationa occurring only a few
years later.

In certain cases, the quadrature method used i1in treating the ex-
ample under Theorem 3, may be uzsed to derive an expression for
Y1 = &1 N2, the product of two normally distributed random variables.
These speclal cuses involve the dependent and independent cases of Nl

and N, described by the normal p.d.f.'s with parameters N(O, 1) or

n
N(O, oi‘) and N(O, 052). These four results are enumerated in Table I

Appendix A.

- The dependent and independent cases of Yl = Nl N2 in which Nl' N2
R
'%%g are normally distributed with arbitrary means (4 # 0) and variances

D

)

'ﬁﬁ#' do not readily lend themselves to the ordinary integral methods,and as
L "‘*.

;1. a result have undergone extensive inveatigation,

R

0 C.(
‘%ﬁ&' A chronological history of the important results in the study of
-t 'i

h&ﬁ this problem is outlined in order to suggest certain "difficulties" in
r?u'lh

- the applizations of these results.

\[ Wit

é In 1932, Wishart and Bartlett [133] considered the problem of
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3 3 determining the p.d.f. of the product (N1 Nz). The problem was posed in
.l .! .
' the following framework.

Let ){1 and X, be two normally distributed random variabies,
o

N.L(O' o‘la). NE(O‘ 052), which satisfy Lhe joint p.d.f.,

2
X 2 p XX, X
ﬂxl,x2)= 1 -—exp (- 1 5 ( é - crlaf) + 22) (4=-1)
2may my o L 2(1-0%) \ o3 1% o
The characteristic function of the product Xl X2 is by definition
L
_':::( E [eit X X2] , or
P I |
. %0 it XX,
e g 172
"
e ]
-~ =00
.l‘
8
i Y
s . 2 e 2.2
s = - - e
:. {1‘319‘5—1"}’3*(19)%"5*‘} (h=2)
¢’
"o
) E‘V" The generating function of the semi-invariants of yllexz i59
1:_ ,“[
He] - ) - 3 - i -
':.: K = =) log {llto'id“e(e—i 1)} %2 log {lltcrlo'z(@ l)}
)
k. o
- 9 The semi-invariants were so named by Thiele and were later called
Yo cumulants by Fisher. LI the logarithn of the characteristic ilunction
o (as in (4-2)) , a function of t, is expanded in a power series of (it)
_ , whi~sh converges for some range of t containing the origin as an interior
‘ - point, the semi-invariants k_are the coefficients of
.
S (it)v/:l! in the expansion., A simple relation existe between the kv(yl)
-t
% o and the moments of Y,; the first two being kl(yl) = E [Yl] ' ka(yl) = Var [Yl.]'
N
* ‘.
)
i 47
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The semi~-invariants of Yo kv(yl), are the coefficients of (it)V/v!

in the power serles expansion of K. Thus

k,(y) = KD oY " o) ¢ (oY) (4-3)

The moments of the product Yl may be investigated through the appli-

cation of (4-3),

In the cave of a sum of independent products taken from the joint

(1, (@ o

psde £, 99(x1, x2), denoted by = 7, FY e by , this

relation,

Kz = nk,

]

holdsisa that from (4-3), the semi-invariants of (%) may be obtained

from

The relation of ‘t"z (t) to £f( £ ) satisfies

i
by (0 = [%l(t)]n - {1-219 o o3 t + (1-7) & :razé} h

|
= M sz az .

-Q0

By inverting this characteristic function, it follows that

éltz
f(Z) = ~/p - — dt. (4-k)
21r 2 et 2 ,2)%n
1 2i ¢ c' R t + (1-9 ) o % t y
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When n = 1, then Q= yy» 80 that £( T )dZ = @(y))dy; and (h-4)

becomes
¥on N
(l-Qa) e €N i+ o eiyl.w
#(y)) = 57 f G M (4-5)

e i1 -uw

after these substitutions are made,
(1-0%) 6= o=t =pi-w, (L-g°) 6 &y, =3
1 %% =€ ' ¢’ % %N .

From the theory of the complex variable, it is clear that the
contour may be deformed into & real axis as |p|< 1} thus (4-5) may

be written as

%an y
) (1- 92) e N o cos y, W
(y = — dw
?’ 1l T f (1+w2)72n
0
n ey
- (l - FE) e e ! 1A(I'l"'l) ( ) ~ (4 6)
SRR | Bon-1y 17+ - ¥y =0 (B

where K%(n—l)(yl) is a modified Bessel function of the second kind

of [%(n-li] order. Foy'n = 0~ = d&_; 1 and r = O the p.d.f. of J, reduces

X
to
Py) = 2K, Uyl y, £ 0. (4-7)
1 | ) 1 ' 1
¥ishart and Bartlett's method may be used to show that Z, the product
be X
of vwo normal variables where Z = ;% ‘' is described by
1 2
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P(z) = 7-15 K (2)

which possesses a singularity at z = Q.

Shortly alter the publication of this result, P, T. Yuan [131}]
demonstrated that if )(l and )(2 are independently and lognormally distrib-
uted, the product 2 = ()(l - a)(}(‘2 - b), where a and b are the upper

(lower) limits of the range of X, and X,, is distributed as (h=-7),

The analysis of C. C. Craig [20], [21] y following in 1936, is per-
hups the most notable concerning the product of two normally distributed
randow variables. Cralg consicdered the bivariate normal p.d.f. with
paramaters (,ux N S o; and coelficient of correlation, e Y.

1 e 1 2
By Theorem 2, this joint normal p.d.f., under the transformation

Wos Xy Xyy ¥y o® Yo may be written as

2
W/ya' })-x
1
P(w, ya) = 5 exp { - 1 5 — L -2p
o \ll-e v | 2(1-p°) \ X,
2
2
w/y2—)‘x1 y2-Px9 p —/'lxa
, A i '
1 2 2

In an effort to generalize this result, Craig introduced

M
A Tra R
vy o= o - E; and  V, = —= = 5~ » the reciprocals of the
1 X 2
1
L% w
cvefficienta of variation, ond considered the tranaformation N F o= " o e

172 172
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vz ) A=

- -
S g e

. o

n

)

!
a

X =

expreased as the difference of two integrals, Thus,

5”(y1) = I,(y)) = I(y )y

in which 2 2
v1 -2p vlv2 + v2 . o yl 0o
I(y,)= - exp
1'Y1 >
27 1-9
0

N

1 1

+ 5 (v1 - @ v2) X + (v2 -0 vl) "

-9

. The marginal p.d.f. of Yyt under this transformation, may be

(h-8)

and Ia(yl) is the integral of the same function defined on the interval

(-w! O)-

In an effort to simplify any numerical calculation, Craig reformulated

(4~9) as an infinite series.

from the joint p.d.f. of variables U and 2, where

5 = u and 5 = - 5 = Ze
\/1'9 l'f’ o d‘a(l-e )

Under this transformation, Equation (/i-§) bhecomes

51
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00 2
Jl-ea va-z‘»v1 v2+1.v22 e 2 =% u2+-z-5)
2(2) = ex - L + - e u .
z a1 &P - 2,2
2(1~p") (1-¢7)
0
v. ~pV Vv, - @V
e |2 8T2 2 2l (4-9)
’ , u u
1-e l-e
v, ~QV v, eV ,
The term exp 1 22 u + 2 21 ﬁ may be expanded in a
1-Q Vi-p

u
Laurent series in powers of u for all u, u £ O. This expansion is

simplified to some extent by substituting

v, = QV vV, =@V,
L Y 2 _R  and “L—=—=Lf=R, .
2 1 2 P
l...e l_e

r
R
. . r-1 L Z
In the expansion, the coefficient of u y P>=1, is5 oy ;»(Rlnz z),

in whichjz:r\° ), the confluent hypergeometric function of order r, 1510

2 3
R, R, 2z (R, R, 2z) (R, R, 2)
Z (Ry Ry 2) = 1+ 1+12 P ‘?2) — %3) toee e,
r (r+2)'¢7 21 (r+3)*77 31

with (r+k)(k) = (r+k) (r+k=1) . « o (r+1) .

By this expansion, the p.d.f. of Z = X, X, / % 6&(1—92) may be

expanded in un infinite series involving confluent hypergeometric functions

10) These functions are discussed in detail in Whitaker, E. T., and
G. N. Watson, A Course in Modern Analysis, Cambridge University Press,
Cambridge, 1953.
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10 and powers of z, vl,and Vo This series is

- 2 2
W _ .2 V. =2 0 ViV 4V Z
R Py N o {_ i 12472 8 } Zo (RyR, 2) K_(2) + (4-10)

Wy 2(1-p° 1-02)°

i" (1-p7) (2-¢7)

'
By (B2 ZLSY (Ron o) K (e hr ) D (RR, 2) K, (2) +
W 1 "2 2!22 1722701 1 72 7 B Ly 12 % T2
:o":

R

g 3

,(,‘ 6 6 ‘%L .

o +(R)R) B (RBy ) Ko(a) + L .

e

- where: Ki(z) = the Bessel function of the second kind of the it order
?h and with argument z, and

.

- VINY

Ay (R, R, z) = —45 — I, (2 ¢/v,v,2) in which

M 1 2?

%&I Ij(' ) is the Bessel function of the first kind of the
M

To b

i j& order.

.9.'|

v..‘

L R

; When Ve =V, = g-othe p.d.f. of 2 = Xl X, / CHICA is the simple Bessel
gL function result expressed by (4~7).

X

A\

:ﬁ Craig's results have unfortunately proved to be of little use com-
LW

ot putationally for it may be shown that for large vy and v, the series
g% expansion (4-9) converges very slowly; in fact for vy and v, as small
]

153 as 2, the expansion is unwieldy. Yet after this publication, many in-
|

- vestigators consider the problem to be "solved" although the convergence
By

bt problem exlists. Others have been critical of this "solution", even

i
o

KN
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Craig himself who in 1942 [21] , stated that even thougn his result
is a mathematical solution to the problem, it falls far short of what
is required for numerdcal computation,

Using Craig's formula for the cumulant generating function,
J.B.S. Haldane in 1942 prescnted the moments (about the mean and the

origin) and the cumulants of various products and powers of normally

distributed rondom variables. He considered the correlated and un-

D correlated cases of these statistics: a) the cube of a normal varinble,
'!‘(Q

O
.ﬁ*ﬁ b) an arbitrary power of a normal variate,and ¢) the preduct of n nornal
|‘. y 9

s .
,k:ﬂ variates. These exprescioas are rather cumbersome however and their

LN |

application in an applied problem requiring an extensive amount of numerical
computation would be severely limited. This fact combined with the

realization that Craig's series is subject to restrictive conditions

prompted others to examine this product more from the viewpoint of establishing

’ v;‘tlv

'%$: its analytical properties, For instance, B. Epstein [31] and I. Kotlarski [68]
t

e

Eﬁ, independently showed that theMellin transform is a very useful analytical

A

D tool in examining the integral equation

:0 (]

""'éo&: 2R /fxl (y,/3) 3x2 by dy, -
N0

N 8

Their investigation are closely related to problems of the rature of

p&ﬁ} those discussed in Chapter VI.
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In 1947, L. Aroian [2)] took up the problem of convergence in
Craig's series expansion. Using Craig's notation, he showed that as

vy and V- 00, the p.d.f. of Yl approaches the normal p.d.f. In

addition, he demonstrated that the Type III function and the

Gram-Charlier type A series afford excellent approximations to

‘the distribution of Yl when Q= O.

Using the properties of the moment generating function of the

ﬁ’(yl). it is possible to show that E [yl] = ;1 = Vl V2 te and

- 2 2 2
the standard deviation is 63’1 = ‘/ Vl + V2 +2 @ V1 V2 +1+e .

Aroian proved the fullowing statements in the form of theorems!
1) The p.d.f. of Y1 approaches the normal p.d.f. with mean .):1
and variaunce a}z as Vl and VZ---—r @ ( or ~o0) in any manner

1
whatsoever, provided -1 + € < o <1, € > 0.

2) The p.d.f. of ¥y approaches the normal p.d.f. with mean ;1
and variance o~ 2 if Vl-—-.- 00, V?--- ~00, provided
1 2
-1 & ¢ <1-€,€>0

and

3) The p.d.f., of Yy approsaches N(yl,ma) if Vl remains constant and
y

Vz——v o0, -1 + E<R =1,€ >0; or if V1 remains congtant

ande-——u--oofor-l‘-*R<l-e y € > 0,

Aroian demorstrated the close approximations to $(v,) by
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the Type III function and the Gram-Charller type A series by numerically
integrating Craig's expression (4-8) for the special caseiV, = 0O,
V2 = 10, and p = O. A brief tabular comparison is presented in his
article,

In Table X. , Appendix A, the numerical integration of Craig's
formula (4~8) for a few speciaml cases is presentedll. These are’

(D V,=V,=p=0, (2)V, =V,=% p=0 and (3)V, =1(0),

4.2.2 The Quotient of Normally Distributed Random Variables: The

first investigations of the properties of the p.d.f. of a quotient of
two normally distributed random variahles were directed toward
characterizing the quotient's propertieas in terms of the properties of
the component variables.

K. Pearson's atudy [97] in 1910 of an opsonic index formed by
the quotlient of two normally distributed random varimbles represents
the first published investigation of this problem. He suoceeded in
obtaining the first four moments of Yl = xl/x2 in terms of the moments
of xl and XZ. Unfortunately, he found that they were "practically
unworkable 1if xl and X2 are correlated as we should have to find the
third and fourth order product moments'.

ter, C. C. Craig [20] y (1929), developed this approach by

11
ERAY ) A number of other cases are to be included in u forthcoming research
W report to be released ly the Applied Mathematics Research Laboratory,
e Aerospace Research Laboratories.
4
Wy
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ponents. Craig demonstrated the advantages of using the semi-invariants

'*%ﬁ’ (as opposed to the moments) by constructing the moments of Y, in the

1
" oase of correlated X, and X, with relatively little difficulty. Tre

|
y
et deriving the moments of Yl in terms of the semi-invariants of the com- E
I resulting expressions are cumbersome by present day standards and wce L

;;" diffioult to apply.
b )
E:E,‘ In this time period, the hypothesis that Yl must be near-normally
B
M)
Bt distributed given that the components Xl and x2 are distributed
",;:9.-' normally was strongly supported. Investigations of Merrill [86] in \
-
W : \
- \:: 1928 aud by Geary [38] , 1930, wers instrumental in disproving this '
Y -
$gs;’: conjecture. Merrill's investigation, by graphical approximation,
'_‘,L',%; showed that when the correlation b%:._ween x1 and xz is high and the ;
. ,' b's A
:v: coefficients of variation Sxi = -——i—. i=1, 2, are large, there is :
LA
s:.kl xy
&
ﬁ. ; & considerable deviation from the normal p.d.f. Geary established
ad
‘,% this result on a more rigorous foundation. by formulating what is now
N
:‘:sg & widely known approximatioh. He considered the problem as formulated
g
”‘& in this manner:
- ;:;: Let Xl and X2 be two jointly distributed normal random variables h
N .l f
gl with the p.d.f.,
‘l.."'il
= ;1 \° fepm) fx, X, :
. (i‘ - - - -’
';-a: 8(xpyx;) = T - 2 °XP )° = 2 (lo- 1) '2< 10'1)( 20"2) +( 20'25 ' :
.":::9 2 9195 4/1-9 2(1-Q ) 1 1 2 2 ‘
0|
1
e (4-11)
s';‘i" vh.oro:'uxl = Py pxa = Poy o;l = d‘l, 6;2 = g, and @ is the coefficient of
{
E‘,'
N 57
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correlation,

When the expected values p, = j, = 0, the g(xl. x2) reduces to

> 2
X 2 @ X, x x
g(xl.xz) = 1 5 exp { - 1 5 -15 P, S - - o (4-12)
270y 1g 2A-gI\ 47 q% %
Consider the random variable Yl' vhere
b + x,
¥ = (4-13)
&+ xy
and a and b are constants; then the functioa
&y, - b
t = (4-14)
2 2 2
\/"i Y "2RG GV G

is approximately normally distributed with expected value t =0 and standard
deviation o3 = 1, provided that (a + x2) is unlikely to assume negative
values, Geary ghows that this latter condition is satisfied if

(a3 di), i.e., the coefficient of variation of (a + xl)-‘:%— .

Geary's and Merrill's results gave definite proof that the
hypothesgis of the "normally distributed index" was incorrect in many
cases and have lead to the problem termed “characterizing properties of
a ped.f." which is discussed in Chapter VI,

It is advantageous at this polht to -demonslrate that the integral
methods disuussed in Chapter III may be used to ohtain an expression for
the p.d.f. of Y1 in order to lay further groundwork for discussing

other known results.
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In the independent case, the joint p.d.f. of X, and x2 igs of the form

1
g(xl, xa) = fl(xl) fz(xa). (4-15)

When considering the random variable Yl = xl/xp, it is necessary to use

the methods described in Sectionm 3.4.2 in order to define a one-to-one

transformation. By specially defining Pr(x2 = 0) = 0, the inverse

functions x, = yl/ya and X, = ¥, map the set

¥ = i—ooAx < 00; =00 <x,< 0, 0<x, < o0} into the set

1 2 2

A= {—m"—ylf-m; -oo<y2< 0,0<y2<oof where the joint p.d.f.

g(yl, y2)> O. The IJ! =ly,l and the marginal p.d.f. of ¥, is, by

equation (2-27),

c 2
-y -y
= 1i 2 1 2 _2 1
vy 0 eXpy= T N1 ¥ exp 3 Wpt
-00 2w di 2 di 2‘”0} 2
(4-16)
00 ¥y J.— y 2
+ lim ‘ 2 exp { - -—-J-‘-é ylz yaz —t exp ——-—-% dya .
c—0 2Xag 2 o 2N o7 2 o,
C 1l 1 e 2

Equation (4-16) is directly integrable, provided the limits exist, so

that
g, o
gly,) = L 2 _ v ¥y, A0, (4-17)
.n,(ylz o.aa . 6_12)




——
-

-
-

s

S P

' . -
g
b

e 5
-

.
AT e

The more complicated result, My ;nf,u2 # 0 of g(yl) may also be ob-

tained by applying the methods of Section 3 .4.,2, This result was first

shown by Fieller [33] and Baker [4] in 1932.1‘2 It is
E) 2 2
1 9% ﬁ“ 1 By CARAE, N,
glyy) = 2 Z_2 2, *P\" T\ 2T 2
(d‘2 Y0 - 2Qy, 6 o5ty ) 2(1-—( ) % g o,
2 .
v oxpd 4 (= vy By ) G QA To- sy 57)+y) O (Qu,-Ry )
2 2 _ 2 2 2, . 2y 3/2

% Y, TRy Gt Toy™ y)"-2 @y 0] o3 + 9°)

QM G X ) Hy) GRs, G -ay 6
- EN N
f G % G v -2k 6 G D)

0

We mee that if Py =Ry = Qe 0, g(yl) reduces to Equation (4-17):and

under the conditions p, = u, = 0, e £ 0, g(yl) reduces to

2
1~ 6. o
'R 9% v, # 0. (4-19)

The calculation of values of the c.d.f., of ¥y is accomplished merely by

12) This result is generally attributed to E. C. Fieller.
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e

A the use of a set of tables of arc-tangent in these two cases.

© a

p " Fieller's paper is mainly devoted to obtalning, by quadrature, an
]

et
l':\!‘z expresaion which will simplify the numerical calculations associated
i

Rl with equation (4#-18). His rather complicated quadrature method,
n 0

:Q:: formulated in terma of existing tabulated functions uf the bivariate
)
Ré normal density function, was derived under the follewing hypothesis.
¥

W

.":!' Consider the ratio Yy = xl/x2 where random variables xl and Xa
- li';'.

‘,"’" are described by the joint p.d.rf. of equation (4~11)., The points
:‘:. (xl. xa) corresponding to a given value of y; lie on the line

X) =¥y X5 . (4-~20)

Thus, the probability that an arbitrary element of g(xl,xa) will

have an index {vl': ¥y < vz} i8 equal to the volume of the portion of
X g(xl, xa) which lies above the area swept out in the (xl, x2) plane

- by the line x, = y, x, as it revolves from

X = v X
o to X) =V, Xy .

.;ﬂf Taking vy = -0, this probability is the probability that MY £y

% and is calculated from
W

) 2%
:: V= ]m/ 3("11“ ) dx dx, + —/.D./' g(xl,x) dx dx., . (4=21)
- Wk

0O

=00 =00 vx

2
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k;t When g()\:1 . xa) is of the form (4~Ll) and each variable is expressed
B L5 13

b in terms of deviations from its respective mean, V way be written as

'-.'4‘1 4 2 2 _l
N V= . 1 X, 2rX )X, v %1 Nax,ex
. W - \/__2 exp (= a 2) 5= - 3 172
L 2o o, \/l-r 2(l-r a. o, O L J
,. . ash 172 2 172 1

h -f\l (4-22)

"‘.‘

0.9

t,i where a and b are two portions of the (xl ’ x2) plane indicated in
?: ; Figure 3. The boundaries of the a and b portions are the lines
X 1

&
A o o
; X, + X, w0,

AN A = _. -

q::' Xy + X = Jl(xa + x2).

If the transformations x, = of and X, - ¥y Xy = n are made, the

- portions & and/B of the ( °<sn ) plane which correspond to a and b

b

%é in Figure 3 are bounded by the lines
‘f‘.} : }

,'7]‘.‘9. oK+ x2 = O'

5 Sy i -

R M+ xy =¥ % =0

: A This area is shown in Figure 4,

Therefore if this change of variable is performed, V becomes

) e
¥. 5 azT'l'ar'la'2 Ll-r ,
2. { o o ey &) (N+yw) }
2

where x

? o o °

% % 1

1

l}In this derivation r denotes the coefficient of correlation.
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. which is identically 1 2

0l l-f

q
A0 K

5{ From this identity, these results are apparent;
]

5 2,0 2y 2 2, 2 2 2 2

:.‘:' d;( (l-e) o % (lr)/(e'i -2ry, 0 9ty C’E’
0

I.t: 2

a,

1 (l—ea)

&* (1-r2) | (4-21)

'..!'a. * 2 =(r‘i-yld:2) %

2 2
G‘l (l-r ) .
{'. By squaring the last equation of(4-24) and multiplying the result Ly
A

‘,% the first two equations, we obtain these results:
2

2 . 2 2 2 2 i
.,%g e""“i”yl"'a)/("i"2”’1‘3"5*’1 o3 ) (4-25)
N g0 that

)
b))
'3 (1-()2) = (l—ra) o‘ia (d'-a -2 ¥ 63_ 5 2 2)

1 2t Yy 9 ) (4-26)

i ’= d—‘( - 65 ] ("""‘27)

~
t
”~~
Q
[y
i
o
e |
&
-
)
ol
-+
ta
[ ot
Y

, (4-28)

and

&"5
)
[
%
384
=)
nI
[
a
N

. (4-29)
g

[
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n_ *1 791 %
- 2 2 aF'
(" ~2ry) 6 63+ 037)

and ¥ =
U
the quadrants A and B of the (X, Y) plane that correspond to the

portions a and b of the (xl, xz) plane have ss » common corner the

point (=h, -k) where

x
h=--2-,
(o
2 (4=30)
Xy = ¥ X
k=121.2 —
(61" -2ry o G+y o)

From equation (4-23), V hecomes

o0
V=ff o exp --—1—5 (XZ—ZQXY+I2) ax dyY } o (4=-31)
2Mo o, ¢ 1-r 2(1-3)

A+B

Thus the provability of obtaining an index for which ¥y =V is given

by
/
oQ 00 o0 00

c=1-v=f[+:{£c ;—;(.—Ji‘-ﬁQexp —2(1-92)(x2-2exy+r2)dxdr.

h k
(4-32)

Eyuation (4-25) provides two valuee of e The appropriate value is

chogen by noting that as y, —v ®, ihe point
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(h k) —————>

80 thal the positive square root makes (1-V) =—> O as is desired.

Extensive tubles are found in [140& for which the value of the

integral,

1
Z(Q) dXdY j/i/:_——“-é eAp /_ 'E'le??T [XZ_ZQXY# y‘? ]\ Xdy
2Ty 1@ \\ ¢ ‘}d
(4-33)
h k h k

is calculated for small increments of Q ’ —1<Q;‘1. For non-

posative h and k, the following relations hold:

2
%Y
ﬂz(g) dxdy =/_T7%'_— e ay - U(‘Q) daxay
-b k K h k

a::‘ (2) };/:kfz(g) dxdy hf_‘/z____-:‘r__ R X* ax - hf};/ 2(-g) dxay

) and
"

(1

~r

il

:‘?- (3) z(p) dXdY =1~ f i e""t"xadx- L e-VZYZdY + f f Z(Q)dXdY
= J f 3 et JJ
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) Probabilities of interest may be calculated with the ald of these

relations and the appropriate values of p, h, k, X,and Y.

i'g With the publication of Fieller's quadrature method, many agreed that the
:.s. problem of the quotient of two normaliy distributed random variables
"' was essentially solved. In later papers, emphasis was turned to the

.'j ;:: study of the general mathematical properties of the random variable

;:: quotient. Two such notable papers appearing in the late 1940's were

. published by Curtiss [24] and Gurland [48] . Curtiss approached the

:g study of the properties of the quotient from an analysis of the

'. application of the Lebesque-Stieltjes integral.

B Gurland formulated the c.d.f. of the ratio of two linear combinations
' ' of correlated normal random variables, He presents two theorems for

:I this distribution;
) ’5

Theorem 1: (for positive denominator). Let Xl, X2, .« ooy Xn have a

joint c.d.f., F(x,, ¥,y « « « 4 X ) with the corresponding characteristic
1t 2 n

‘a.a-"_f- »

" I function ﬁ(tl, tay o 0 0y tn'). Let G(x) be the c¢.d.f. of the linear

combination, (a1 X, + 8, Xy # 00 oy Xn) / (b1 X[+ o oo bn Xn),

n’b

n
If P%E b, xjéo} = O then
3 ]

31

“' ¢t< "b 'oa-,t -
$ 6(x) + G(x-0) = 1 - 2 (e€ay-5y =) " ooy 2}, (4-34)

bn are real numbers.

‘:.i vhere &, @,y « « o+ , & 10t
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Theorem 2: (for positive or negative demoninator)., Let G(x) be the

c.d.f. of the ratio of linear combinations (of Theorem 1), If

n
P{E bixi=0}=0 then
i=1

+ 3tla,-b, x.)y.eeytla ~b t ) +
a(x) +G(x-.o)='1--,-,--'_1—i *d{ 11 lt 2 ““} (4-35)

Fha;-b) x1), .0 tla -b x )]
t

where: Z*(t. toue.uit ) =/f../’ei“'1 Xttt %) g Blxpyxgpeenx)
P

k X0

dt

and

1t x o0t x)
- LI l l
¢(tl't2,u.0,tn) = / -] n n dF(x1|x2....,xn).

2.5 X <0

4,3 The Rectangular Density Function

A random variable, X, defined on a finite interval b { a<sx « bg '
(&, b, finite real numbers) is said to obey the uniform or rectangular
p.d.f. if over the finite interval ¥ , the probability of A, a sub~

interval of ¥ , is given by

- length of A L N
P [Al Tength of , A a subset of & , (4-36)

0 , otherwise,
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Lo
Aft:wf Thus the c.d.f. of the rectangular probability law, by this definition, is

't’
3 o, X -~ a,
: F(x) =
%:".‘ £-a B <X =b (4=37)
I ba T T =T =
?"0:':‘
T 1 b~
*‘0'*: ' X,
},::E‘ If we differentiate (4-37), we find the p.d.f. of the rectangular error
t
¥
i:t; function to be
e
" \ 1
. £(x) = == a= x =b,
A‘,{r:l: (4-28)
i
Tl = 0, elsewhere.
KRG
e L,%,1. The Product of Two Identically Distributed Rectangular Variables:
2‘5,:: The product of two identically distributed rectangular varlables, say
Y
;;:“' ¥y = Rle, is easily found by quadrature utilizing the methods of
.l-’g!
] sections 3.4,1l.and 3.4.2. Four distinct cases arise in solving for
o the p.d.f. of ¥y = R1R2, where R 15 a rectangular variable defined on
v
:::}: ¥ - ia - X = b}. The distinct cases may be enumerated as: Case (1)
L)) 7
::?!:" ¥y = RlRa' R defined on interval ¥ &o that O = a =<b, Case (2) R de-
it fined on interval ¥ so that a <O =b, |bl > |a|, Case (3) R do-
oot
o)
,éa":" fined on interval ¥ so that a <0 <%b, |a| > |b|) and Case (4) R
L
%:!:;2 defined on interval § so that a <b -< 0. The ped.fi's of ¥y for

each of these four cases are presented in Table 1T, Appendix A. The
distribution of the product of any number of ldentically distributed

rectangular variables can essily be cbtained from Kendall's [146 ]

derivation o” the p.d.{. of the geometric mean of samples from a

0

E&é rectangular distribution,

)

:&.: 4,3,2, The Guotient of Two Identically Distributed Rectangular Variables:

a1

A8 The quotient of two identically distributed rectangular variables is

2]

) ,“
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also easily fourd using the methods of Sections 3.4.1 and 3,4.,2., The
same distinct cases depending upon the interval of definition as in
4.3.1 arise in the problem, The p.d.f.'s of theso four cases are pre-

sented in Table III, Appendix A.

L.4 The Trimngular Density Function.

The sum or the difference of two identically distributed rectangular r.v.'s

defined on'¥ = {aex2b] is triangularly distributed. The p.d.f.
of T is

X=2 a

= Z a < Xx <b+a ,
(b-a)
£(x) =
2b-x2’ bra<x £2b , (4-39)
(b-a)

0 y elsewhere.

L,4.1 The Product of Two Identically Distributed Triangular Variables:

Slightly more cumbersome expressions result from applying the methods
of Chapter IITto finding the p.d.f. of Y27, T, and Y1=T1/T2. This
difficulty is due primarily to the fact that the p.d.f. of the tri-
angular variable is defined by two branches as in (4~39), In deriving
the p.d.f. of Tl T2. one must determine which combination of branches
of '1‘l and 'I‘2 must be considered for each of the various mutually ex-

clusive partitions of the set defined under the transformation. The

T A K S O T . . e WY kB A

condition is best illustrated by considering the problem of deriving
this p.d.f. when T is defined on an arbitrary positive interval, Under

the transformation y, = T, T, = x, X, , ¥, = X, , the set
1 172 172 2 2

71

Y IR K S E. T N R M- XX Y € T PR PR

A T R o o A A (L L ARV A TR AT N S R AR AT
Lo U S e N DR MR D A S

1]



~2b, 28« X, =2b} is mapped into the set graphically

1 2
'ﬁ illustrated in Figure 5. Here, the notation g, g' and h , h' denote the

A 8' = {Ea - X

! respective branches of f(xl) and f(xa) which apply to the partitions of 8 .
{ The p.d.f. of Y1 is derived by integrating over Y5 the product combinations
| as indaicated in Fipure 5 over the partitions A, B, C, D, and Eof (3.

L.é Two important special cases have been derived. (Table IV, Appendix A).
s Thege are the cases in which T is defined over a positive interval [O, 2]

and t'.e interval [-2, 2] .

'& b,h,2 'he Quotient of Two ldentically Distributeéd Triangular Variables:

The p.d.f.'s of two special cases for T defined on [o, a] and [-2. 2]

have been derived and are presented in Table V, Appendix A

|
.ﬂ b5 The Product and Quotient of "Mixed Components".
3 The product and quotient forms of the three measurcment error
variables under consideration which have not yet been treated are
c RN, TN, R/N and T/N. There 15 no requirement to investigate the
':.g reciprocal forms of these quotients since Cramér [22] has insured
% that the p.d,f. of the reciprocal of a gquotient is immedliately evident
g upon derivation of the p.d.f. of the quotient.
g The f{our forms above lead to rather cumbergome expressions in re-
» spect to numerical caleulations. A more convenient method of analysis
’ i in the cases of the -juotient is demonstrated.
9
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. (b=, 2b)
B 2 |

b+a

E

L = - - - - -

%\J—-----——
<
—

4a° 2a(b+a) bab (b+a)° 2b(béa)

Figure 5. Geometric Representation of the Region/f .
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-. ivj}' 4,5.1,1 The Product of a Reotangular and a Normally Distributed Variable:
'. :E:;ti‘: Certain cases of this random vari:ible product may be formulated in terms
‘3:-.9' of the tabulated exponential integral. As an example, consider
-.i""»- 1 = RN = xl xa where xl is rectangularly distributed on {Osx1 s J.]
?t:E" and x2 is normally distributed with parameters N{O, 1) and defined
,:?Eﬁ such that Pr()(2 = 0) = 0. Defining the transformation, Yy = Xy X5
'::’:: Yy = Xy, the p.d.f. of Yl is by Section 3.4.2, Chaptex. III,
i fyl_..}.._. 0-75!32 dy, -0<y, €0,
b < J -
";:'?o' i W i
| ,'.’: Py = o . - yaa
\:” f ;/-,-—Ea.-i 2—-—;-2-— dyz, 9<yldoo.
1
.5'§:; Thus, with the substitution. 6 = y?_a. #(y,) satisfies
_ 7‘%:4'
g‘,‘s o0 R
e ?’(yl) = 2 ﬁ j:? = = 4o y; #0;
!
LR
o which, in turn, may be expressed .8 a function of the tabulated
oy exponential integral after the substitution
;;, v = o,

X

Y _.:jr;u*d-u:.-!

%
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Thus,

?(yl) = f ‘—— dv, yl # 0. (‘-I'-l#O)

All product forms of Y, = RN, where N i5 taken as N(O, 1), may be
expressed as a function of the tabulated exponential integral. An extensive
table of this integral is presented in referencs [143]' .

Other product forms in which N is N(/A £ 0, 0‘2;! 0) are not ex-

pressible as simple functions of this integral.

4.5.1.2 The Product of a Triangular and a Normally Distributed Variable:

As was the case in the preceding section, only the product cases of
Y, = TN in which N is taken N(O, 1) are easily attainable by the

quadrature methods. Cne of the less complicated examples is the case

of Y, = TN= X; X, where T is defined on {0 £x, €2 | and N is N(O, 1).
The p.d.f. of Xl is,
g(xl) = X of—.xlsl,
f(xl) =
g'(xl) = 2-x1, 1< Xy <2,

The p.d.f. of X2 is defined such that

1 'y‘”‘za
h(x2)= —_— e R -ao<x2<0.0<x2<oo,
£({x,) = VZ’K
:0' x2=00

The regions of definition under the transformation 71 =X} X5y ¥ = X, are

shown in Figure 6.
?5 v '}

AR R R PR



NN
‘\‘ g(xl).h(xa)“§\\>\/<\/\<\\\\§ )

.‘:' ) ' )
‘e‘ \ \E (xl'\‘h
S §/ \\\ Yo =¥y

R <%
' ‘4 ' ‘\'\‘\\\\\h\\\\\}/ \
x\\\\\\\&\\\\\\\

N
\; ) Figure 6. Geometric Interpretation of the Area of
‘ Definition under the Transformation

< Y1 =% X0 Y2 7 %
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The p.d.f. of Yl is expressed as

y 2 -
1/2 v, % ) oo<y2<0,
2~ ~= ~-y.)d
( vy, e (-y,)dyh ~00 <y, <0,
?(yl) =
co
-
P e dyz y
Y, 0« ¥y <00,
In the above, ?(yl) reduces to an expression involving functions of
the srror functions and of the exponential integral so that
N ™
2 1 2 1
Hy FN ¥ “ky,”  y,°
2 1 2 2
Ply) = == |e -e + e dy, - e
‘/ 22X ‘}27(
Y1/2 ¥
(4=41)
2
71
Rl
+ 1 / ~ dv, -0 « yl < oo
‘/ 2m J2
1
5

All other cases of Yl in which N(O, 1) may be reduced to combinations
of these special functions. Tables of the exponential integral and the

error functions are presented in references [143] . [um] , and [11»5 ] .
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4,5,2.1 The Quotient of a Rectangular and a Normally Distributed Varlable:

A rectangular variable, say Xo. defined on { &% X <b } way be re-

defined on the interval [0, l] through the use of the transformation,
X, = X(b-a) + a
where X is rectangularly distributed on [Q, l] . The original rectangular

variable may also be redefined on the interval [-l, l] by the trans-

formation

x° = XIAP+-{,
where’,é?z half-range of the interval [n. b] and % = mean of the
interval [a, b] .
The distribution of Yl = R/N is greatly simplified by using one
of the above transformations. In the special case of Yl = R/N = Xl/x2

where R is defined on {Oﬁ- X £ 1 } or {-1 <x f_l} and N is taken

to be N(O, 1) where Pr(x2 = 0) = O, the p.d.f. of y, is simply,

I -
2
2y
¢(y1) = ‘——}"““{__ l-e 1 } § -0 <€ yl < o, (4-40)
2T

In the more general cases, R may be distributed as any of the four
cases enumerated in Section 4.3, and N taken to be N( g, &%), The
regpactive p.d.f.'s of ¥y in these four cases are shown in Table VII,

Appendix A. It is apparentthat these expressions are rather awkward

and difficult for numerical computations.
Broadbent [15] has contrihuted a general method with which to in-

vestiate a ratio in which the numerator is a rectangularly distributed

u,f\!-’ o
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L]

'-:;E:g‘ random variable and the denominator is unspecified but possesses certain
i&“‘:i general properties. The o.d.f. of Y, = R/N may be obtained in terms
:.:'.;': of tabulated integrals by treating thim special case by Broadbent's
:ﬁg:é method of analysis.

E“"': Any arbitrary random variable quotient of independent components
:':g whose numerator is reoctangularly distributed may be written in the
1'%: following "standardized" form:

e

:;,..“.,; ¥ = (4@ p+ o), (4=43)
‘::3:1 where:

,E::‘E:: N is rectangularly distributed om [-1, 1] ,

';o;.-'\" ¥ is the expected value of the original R variable,

/0 ig the half-range of the original R variable,

hA f is normally distributed with parameters (O, 1),

R

‘5 and}x and 6~ are the parameters of the original N variable,
\j'{' The hypothesis is only slightly restricted by requiring that

el

-‘ XPO,//V=0('hereO<oL¢l,/u¢O. %:ywherem:}é‘oo.
i ve (Zy e wpaeg g (-t
}4 Since yj = ;1— 1+ oly )/ + ’ -
R

:-f the standardized quotient y, way be considered, where

h‘"' x

\q ¥y = ( %)yi = = (4=45)
A8 2

18

b In (4-45), Xy is rectangularly distributed on (1 - o(, 1 + o) and
;:;:i X, is normally distributed with mean 1 and variance 72 In this

A
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special case, X, is described by a probability density function

2
d . =
f(xa) = %5 F(xz) existing almost everywhere and a c.d.f. E(xz) =z

which has an inverse, say G(z), which is defined, non-zero,and finite
for almoat all =. This conditivn allows the preclusion of probability
measure at points (x2 = 0) and (x, = o0 ).
The function z is independent of xl and is rectangularly distrib-
uted on (0,1), a property of all c.d.f.'s. The joint p.d.f, of z

2

P

x2S

and X1 is by theorem 2, Chapter 1II,

>
e

'
]
.!‘0_':

1
{ﬂ(z, xl) = 3ol dz dxl.
In order to obtain the joint p.d.f. of z and Xy note that for seny z,

dx, = lG(z)ldy1 and y, is bounded by

((1 - ol)/a(z), (1 + &)/G(2)), if z >¢€,
((1 + o)/G(2), (1L - &)/G(2)), 1ifz < &,

where F(0) =€ , € not necessarily small.

)

a Therefore, z and y, have the joint p.d.f.,
h

L

4 1

¢ W (z, yl) = 5—3<_|h(z)‘ dz dy,
VY

4

i over the region shown in Figure 7,

"

ad

o

: o
)

4 gg:
" 2
‘ -
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: =(1+0l) /G(z)|
. |
|
R
I
|
‘ Z
|
0 [} ]
re T
! |
' I
= ' |
R |
2 sy, =(1- 00/a(2) !
o a(1 + 00)/a(z) !

Figure 7. Geometric Interpretation of the
Region of Definition of ¢z, y,).
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The Pr(0 < ¥ £ Ql), for (Ql> 0), ls given by the integral of this

function over the region A bounded by y, = Qs z = 1 and y, = (1 -~ «/G(z)
minus the integral over the region § by ¥y = Ql‘ z = 1 and

= (1 + o)/G(z), 80 that
Pr(0 <y, < Q) ==J;J' 5—-13-: |aCz)| dz dy, - J;f-él&- |G(z)| dx dy, . (4-46)

After integration of this repeated ‘ntegral in respect to ¥ the first

integral may bLe expressed as

51& [Ql G(z) - (1 - &) :}iz. (L-47)
z:=F [(1-«)/621}

If we change the variable to ? ond write
g(€) = g1 +¢ €),

the result is the p.d.f. of the standardized form of x2. Now let

<
I

(1 - ol - @)/ (¥#Q),
and

Y

1

(1 + ol - %)/ (#Q).

The integral (4-47) becomes

¥Q

o0
1 Q)
w I e = s (€-x) g(€) at.
- x

In thia special case where random variable X, is normally distributed,
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Iy g{X) = In(x) i1s the Hermitiam probability integral of order n

tabulated in the British Association tables, 2nd ed. (1946)}2

The second integral of (4-46) is obtained in the game manner and is
denoted by Jl g(Y). Since Pr(yi < Q) = Pr(xz-c 0) + Pr(x2 = ) =¢
as previously noted, the c.d.f. of ’1 isg, for Ql> 0,

¥
F(y’l) = Pr(yl < Ql) =C + -2--21 {Jl g(x) - Jq s(Y)} . (4-48)

It follows that from (4-48), the

Pr(y, > Ql) = -’-:—Qalz {[! + Uy g(Y)] - [x +d, g(x)]} -C. (4-49)

The forms (4-48) and (4-49) are useful when ¢ is small for the

caloculation of percentage points at the tails of the distribution of
Yy since as Q; —» O and X, Y —» 0, both 7, g(X) and I, g{Y)=~» O =
the former more slowly than the latter. For small Ql’ Jl g(Y) is small
in comparison with Jl g(X) 1in the case of normally distributed Xy In
this case the lower percentage points of yi are ( j%) times those of
Yqe

When € is not small, the Pr(yl é;Qa). (Q2 < 0), must be considered.
The integrals over the region in Figure 7 bounded by ¥y = Qz, z =€ ,

¥ = (1 + o)/G(2) and ¥, = Qs 2= € and ¥y = (1 - 0)/G(z) may be

12) A detsiled account of these integrals is also given by Fisher

(B. A. Tables, 1931).
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oy expressed as

-

v ~1/p -1/¢

Q

Pr(y, #Q,) = 5o (¢-Y) g(g)af - (€-X)a( E)a €
. Y §:=x

e T ]

RS
: »ﬂ‘- ‘.’t-
. Fod Tt

-
-
TR
"

%ﬁﬂﬂ where:
Te e o= (PR X = (- - /).

NN 4,5.2.2. The Quotient of a Triangular and a Normal Variable: As shown

Y in Section 4.2, the sum (or difference) of two independent rectangular
iy variables distributed on the same interval is triangularly distributed,
%*H Congiderable difficulty is encountered in deriving the respective

P\ p.d.f.'s of Y, = T/N. This difficulty is attributable to the fact that
-H{f the p.d.f. of T is defined in two branches as Eguation (4-39), The re-
?igf sulting p.d.f.'s are functions of the error function. In the simplest
$ case, i.e.I is triangularly distributed on [0, 2] and N is taken to be

EXPH N(O, 1), the p.d.f. of Y. is expressible as the difference of two

1
{ tabulated error functions, So that

A

\ 1/y 0
gb 1 " y22 -+ y22
Y1

W}'l) = _é— e dy2 - e dya » yl # 0. ('l'-SO)

A /¥, 1/y,

e Usging Broadbent's method of analysis, an expression convenien%

?h
‘ for numerical computation may he derived.

e

DEREA
L oL

: J Consider the sum (or difference) of two independently distributed

e
i

: oy g
Y A
e 31‘&
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rectangular randow variables defined on [a, b] with the same half-~
range 48 . Allow the sum (or difference) of their means to be de-

noted as § . The ratio T/N may be written in a similar form to that
of (L4-43) or

N=(¥e B pr o §)

(Conditions being such that ¥ > 0, 'g = o where 0 < 2¢{ < lyp >0,

5 =/ where 0 < < ), The variable %} is distributed on

[-2, 2] and } is independent of Y and satiafies those conditions

outlined in the preceding section.

X
-

N
e

The standardized quotient is

=

In this case, has the p.d.f.

xl-1+2o(
L . for (l—zo(f_xls_l)'
Ax,) = oc
1

S . for (1 <l_l+2o().
bol,

The joint p.d.f. of z = F(xz) snd y,“is

(D) {yy 6(2) - 1+ 20 } daz ay)/hel®, (- 20 )/8G)) £y, £1/6(2))

(4-51)
&(z) f1+20 -y G(2)} dz dyl/’loéa. (1/6( 2 £ 3, £ (1 + 26 ) /6(2)),

when 2 > € and corresponding expressions when z < € over the

region shown in Figure 8.
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7Y, = 1/6(z)
y,=(1420¢)/6( )

Figure 8. Geometrical Interpretation
of f(z’ yl .



The Pr(0 « Y, % Ql). (Ql > 0),is the integral of the first

element over the region A bounded by y; = Qo z=1and ¥y = (1-20¢)/G(2)
minus the integral of the difference of the two elements bounded by
Y; 2@, 2 =1 and v = 1/G(z), minus the integral of the second

element over the region bounded by ¥, = Q2 =1and ¥y = (1+20C)/G(z).
The first of these integrals ia

1l

1 2

2 as, \2
::2- ¥ {Ql [G(z)] - X, G(z) (1-2¢C) + (1-2e¢) }dz. (4-52)

2= F [a-200)/g)]

The integral is simplified by changing the variable of integration
to ¢ and writing

U= (1 - 2a- Q)/(§¢Q,).
The integral (4-52) becomes
¥ o)

T % (8- 1% g €) af).
=0

Thus, if

= i '. _

(ot se

5, 80 = 3 (f- 1% g(€) atf),
=u

Vo= (1-Q))/( Q) and W = (1+20L -Q,)/( %/Q,)s the full expression

-\
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o (h-53)

b4
+f_9§

J, gl = 27, g(Vv) + J_g(w)
(20() 2 2 2

Pl:‘(y1 < Q) =€

It may be concluded also that

2
[U +1—.:‘25(0)] -2[V251-J23(v)] .

ya 2

(202)°

2

Pr(y, > Q) =

+[W ; L J, g(W)] -€, (4-54)

LY

e

Equations (4~53) and (4-54) have similar computational adventages as

s

noted for (4-48) and (4-49),

a1

Voloro e,
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V. LIMITING DISTRIBUTION3, APPROXIMATIONS AND ASYMPTOTIC RESULIS

5.1 Introduotion.

A frequently encountered problem in the missile and space induatry
may be described as follows:
A complex mechanism (say, a missile) contains many
individual and, to some extent, independently operating
subsystems. Such structures include sirborne subsystems
such as payload, guidance, electrical; hydraulic, flight
control, pressurization and ailrframe as well as ground

support subsystems, l.e., a ground power, facilitieg and

propellent subsystem.

Freguently, component dataare available pertaining to failure rates
of each of these subsystems. Thess data are used to estimate the overall
system failure rate. Of interest then is the statistical statement
which may be made concerning overall system fallure probability.

This c¢lassical problem in reliability analysis has receaived con-
siderable attention; however., most attempts, in practice, end in one
of two melthods of analysis. There may be a decision to use thz ex-
ponential failure probability density function to estimate the foilure
probability of each subsystem. As an alternative, the use of a digital
computer is made to simulute operation of the overall system and thus

gain, through repetition, a confidence statement of the ovurall system

) B

FAN

failure probazbility. The use of the exponential density function
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features the highly important property of forming a complex product

a8 simply by summing the exponents of the variables representing com-

28
;is ponent failure rates.
L In general, problems concerning the establishment of a reliability
: ;: estimate for various equipment or events may be regarded as an investi-
By
;I gation of the properties of a random variable formed from the product of
W several components. Problems of this type may be investigated by

'gh studying the distribution of Y1 which may be expressed in the general
.iﬁ form
o
' n 8
. A 'S H’ X, . (5-1)

! i=1 j=n+l

As seen in Chapter 1V, Geary [38] produced an approximation for

3 Y, = N /N, where N represents the normal density function. Fieller [32)
;'?i shows exact percentagesof N1/N2. Craig [20] and Aroian [2] have studied
'; and tabulated results of NlNa' In addition, Broadbent [lh] ) [15] studied
iq% meagures of efficiency which are of the form R/N and T/N where R and
L
gﬁ T repregsent the Rectangular and Triangular distributioms. Certain
&g linear combinatioms of random variables in quotient form have been Wy
qg examined such ag Gurland's [48] investigation of réﬁ
j bk

;;7(1
pIS L

K = (81 xl + 32 x2 + seat an xn)/(bl xl + bz xa Yoeaot bn xn)

L

=L 2

where the joint density function f(xl, Xop 0 e ey xn) is known. All

of these results are of a specific nature and are not generally applicable
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3:' to investigating distributions of the type (5-1).
A .

Several approximations to distributions of random variables of this

..
< R BN RS

type (5-1) have been investigated. One of these will how be described,

e

5.2 Lognormal Approximationa. ::-
: _. Consider a measure Y, of the form (5-1) in which each component is %
"%:'J subject to rectangular or normally distributed measurement error with Fﬁ.
:Egg known half-range or coefficient of variation. In many applications, E;
| » the distributions of the sampling or measurement errors are known to be %
i:‘:g one of these two forms, and their standard deviations or half-ranges &
‘...:!l can usually be found by simple investigation. 1In other applications, .
- o the distribution of these errors can only be estimated and them per-
?;?: haps the roughest approximations should be used only as bounds for
:gg experimental error,
‘ It is impossible to list exhaustively all possible combinations
)

of errors to consider in (5~1). In the event of a large number of
errors being combined, the asymptotic distribution may be uged with

confidence [Cramér [22]]. It 15 in the intermediate cases that ap-

.1,5.: proximations must be criiically considered. The choice of a suitable
.E‘:::. family of approximating distributions,however, will always be

"e."'-' rather gubjective, In this respect, the consideration of an

a approximation is directed towards finding a "working, first-order

% approximation”. Several authors, i.e., Shellard [115] , Finney [}5],

Gaddum ,and Johnson, have investigated the use of lognormal approximations

|
w
’.:: to (5-1) as an alternative to attempting to find its exact distribution :CJ
() _‘,‘l
KX using the methods of Section 3.4. They have shown that the p.d.f. of !ﬁ:
) ol
b
.‘ 91 :
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I, (5-1) tends to the lognormal as s -—» 00 under very general

&
:' conditions.
M
> The most widely used lognormal approximation to (5-1) is a variate
\
b
- z such that log(z- ? ) is normally distributed with mean a and vaeriance e
“}. 6‘2. Here, for simplicity, only the methods of selecting p and 0"2 : '@. . :
J | AL
3 . '
¥ are considered, f bein; considered as cqual to zero. The notation a&%’vzg E’g
N i) ..|.l'j‘
W oLl. ol., o + o 4 o, denotes the coefficient of variation or the %:!.‘r
‘ e n Ly 53'
.-'"i: quotient of the half-range and the mean of a rectangular variable for ‘
- Al each of the variates Xqv Xoy s 0 0y Koo Thus Yl = R/N,
\
o (o(l = 0.33, 062 = 0.10), denotes the quotient of a rectangular variate,
. }\ whoge mean is three times its half-range and an independent normal
'.; variate whose coefficient of variation is 10%. The variate z is
/|
necessarily positive although Yl may have negative values. When Tl “-
N oLl, 0(2, « » o+ 4 @are small positive values, the approximation by this ;‘"'"\ES
) ' lognormal digtribution may be satisfactory, since the probability attached 'é& .0.5
W to the possibility of negative values is exceedingly small, H\y‘
. s SO AU
4 There are two methods of fitting the lognormal approximation. The i
; G
H :: firsgt method of choosing Y and d"‘z is to calculate the moments of :‘:‘:}:::\;g' "
&y % N
& N ()
u log y; and to set n and a2 equal to the first and second corrected éé&d .ﬁt
] R
moments. This method, termed the method of fitting by moments to log Yy - L
R was first detailed by Finney [34](1941). Au alternate method is to
]
3 choose the lognormal approximation whose mean and variance are equal
N to the mean and variance of y.. This method generally termed, the
¥ 1 ~—
" method of fitting by moments to y,, differs from that of the first
W
PR
0.,&".;%
D
Wb
::0:. o&."&
0
by .:' _
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method but the difference ig seen to disappear as n increases. The
possibility of two methods raises the question of which method should be
used.

Let a lognormal p.d.f. have mean m and variance v2 and let the p.d.f.
of the logarithm of the variate from the legnormal have mean m and

variance d‘a. 1t is easily shown that

n

exp (p+ a-z/a),

v© = exp i(a,z + 0'2)} {exp( o) - 1}, (5~2)
M= logm =% log (1 + v2/n2),
2= log (L + va/mz).

The fitting to log ¥y requires that we gelect the mean and variance of
log y, and set p and o equal to them. ''he k% point of this fit is
exp()u + Py o~ ), where the probability that a standardized normal variable
is less than P, is t/100,

The fit to ¥y requires that the mean and variance of Yy be found

and set equal to m and va. 'he k% point of this fit is

> % > ¥
(m exp [pt {log (1 + ¢t )} / (1 + t%) (5-3)
where: t = g/m, the coefficient of variation of ¥yqe

The k¥ points of (5-3) are tabulated in Table VIII, Appendix A. 'The

appropriate points are found by: (L) determining the expected value and

coefficient of variation of Yo (2) entering the table with the appropriate

t, and (3) multiplying the value in the table by m,
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In order to find the moments of y, or of log ¥y expressions are derived for
the moments of various positive and nagative powers of the normally
and rectangularly distributed variables. These variables may be ex-
pressed as X = )1(1 + o{w) where oland w are as previously defined.

In the case of normally distributed w, the moments of log(l + olw)

are more easily derived from the truncated distribution,

"
" exp (=% w°) dw/ {(1-&)/ " 2 } . y > -.-—— , (5=4)

R0

[}

_-5 which has the property,
N

' Pr(l + w<0) =€, (€ <1070 when 0 < o( € 0.15).
j‘. For all practical purposes, (5-4) is indistinguishable from the

b
"-'§ normal p.d.f. with the above restrictions.

-l The moment-geherating function of log(l + o(w) is E [(1 + o(_w)it]

e
»“i% and may be written as

)

i, Yol

o 1 2 2 2

' —mp— (141t olw + % it(it-1)ol" wo+...)exp(-F w dYdw + K (5-5)
o\ ‘kW(LE)

oy
W ~Yol
vhere |K|< € /(1-€).
Broadbent [14) has discussed this integral and its convergence

“ and has shown that it leads to the cumulants of log (1 + olw). He

has also shown that the cumulants of log (1 + o{w) when w is rec-

R tangularly distributed may be obtained and that a similar analysis leads

.‘i«"f‘i .‘cf‘“} R M‘F i KW“J&# SRR
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to the expected values of various powers of (1 + olw) for both cases
13
of w. These expressions for E [(l + ofw) ] and E [log(l + o(w)r]

for r = +%, *+ 1, +2, and + 4 are shown in Table 1X, Appendix A.
Before conasldering a complicated case for the lognormal approxi-

mation, it is worthwhile to consider the very simple independent cage

i
N, 1+ o(l w) ¥ A%k,
of Yl = ﬁ; = m whereN:L represent the normal p.d.f. The

coefficidmts of variation, o(_l and 042 of the numerator and demominator

are taken as 100 oZl, and 100 oéa respectivaly.

Using Table I1X, these results are obtained:
. R 1 2 b
E yl] = B I_N]] B [EE] = = (l) (1 + 062 + 3 °L2 + o-o),

E !12] =B [NIE] E[-l—-;?] = (1+ o(lz)(1+3 o(az} 15 042" +eee),

-

2
v y1] =E[yla]-—E [yl] =v¥ = Py o B3 o248 oL+ .u),

Similarly for the method of fitting to log ¥p» e obtain these

results:

-

E [log le
\ [log yl]

3]

po= =% oéla +?;o(,l'++...) + (% 9%2 +30424 + eed)

(o(l g tees) + (o% h + eee)e

-C
|°£n b 'q't ?'

13) J. Haldane [‘BL] has also derived these moments.
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éﬂ; The first two moments of the logunormal fitted to log Y1 using these
.«: values of p and 6"2, are:

o
Efégf Mean = 1 + odzz + % oLlu + g 062‘+ LTI
.
Eé;."-i vard o ? ot st 2 2 b

':‘::: ariance = o(," + ol;," + 3 l+30(l o(.2+5u(.2+....

e

';gé These estimates agree with m and v2 to 0(0612, 0¢22). and to higher

! ﬁi orders when o(l = 042, thug the differenze in the two fits is small when
igﬁk' 0(1 and 0(2 are small, In fact, for this case, there is complete agree-
Py

- ment in the first three significant digits at the 1%, 5% and the 95% pointa

between the two methods of fitting and the exact poiwnts computed by
Craig's methods (4-8). The differesnce between exact points and the
two methods of lognormal approximation may be shown to be £ + ,002

at the 1%, 5%, 95% and 99% points in the cases of Rl/R?_, RN, and Nl/NE.

We now return to the problem of setiing limits to

N

';:Q yl = (xl xa « & @ xj)/(xj+l e & o xn).

. If the number of component variates is larger than two, the log-

\"l‘ v

)

. A normal approximation will give satisfactory results when the coefficients

of variation of the components are small and do not vary greatly. It

is ,therefore, a suitable approximation for general use.

To calculate the first two moments of ¥y it 1s necessary to know

the coefficient of variation or guotient of half-range and wmean, of each
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component, and then to combine the values given in Table IX. The
percentage points are then given in Table VIII, Finally, these

points are to be multiplied by

(}11).12 v n}zj)/(}lj_‘"l LI 4 ‘}ln)l

where My o= ;i'

As an example, consider
¥y = RN /NN,

and o, = .01, o, = .02, ol = 005, o) = 015, oy = 0,005 and

5
o{6 = 0,005,

Using Tables VIII and IX, we find the mean and coefficient of
variation of Y, to be 1.00026 and 2.57%. The 1% and 99% points of

Yl are 0.937 and 1,063,
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VI. CHARACTERIZING PROPERLTIES OF STATISTICAIL DISTRIBUTIONS

6.1 Introductiou.

If Xl and X2 are independent and Yl = Xl + XE is known to obey
a normal p.d.f., it is well known (Cramér [22] ) that X, and X, must
each be normally distributed. This suggests the general problem of
determining when the p.d.f. of an algebraic combination of random
variablees uniquely determines the respective p.d.fe.'s of the cowmponent
random variables. Investigations of this type have led to a class of
statistical problems formally termed 'characterizing properties of
statistical distributiomns.”

An important phase of this problem is that of determining the
properties of observations from their estimated p.d.f. when 1t is known
that the samples are in reality either a product or a quotient of

random wariables.

6.2 Three Important Problems,

By Theorem 3, ChapterIII, the p.d.f. of a random variable quotient
Yl = xl/xz, where Xl and XZ are arbitrary independent random variables,

is given in its most general form as

o0
Ply) = fy 1) gy, ) lapl dry, (6D
-
where the transformation ¥y = xl/xz, ¥y = %, is implied and tx (*)

and gy (* ) are the respective independent p.d.f's of Xl and XP.
5 2
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Several important problems may be formulated regarding (6-1);
three of which will now be briefly conaidered.
The first and most straight-forward is that of determining Sb(yl) when

the functional  forms of f, (- ) aad gy (*) are known. This prob-
1 2

lem sinply reduces to the integration of (6-1).
The second problem which many conslider as being the "classical™

characterization problem may be formulated as follows:

Let Xl and XE be two independent and identically distributed
random variables having a common p.d.f., f(x). Let the quotient
Y, = xl/'x2 be dimtributed insome known p.d.f., }Eiyl). Is it possible
to obtain a characterization of f£(x) by the propertiss of the quotient
p.d.f2?

In this case, Equation (6-1) may be written as

o0
Ply,) = £(yy ¥5) £(y,) |v,] dy, (6-2)
-0
where only the form of ¢%yi) ig known. Among the questions wihich
naturally arice are: (1) how many indepundent rolutions of £(* )
satisfy the linear integral equation (6-2) for a given function of
§a(y1)?, and (2) if more than one, is it possible to deduce the

gencral properties of the cluss of 11 £f(x) saliafying (6-2)7

Several investigators have dealt with a Cauchy form for §9(yl). lﬁ!‘
ot
When Xl and X2 are independently and normally dis*ributeu random }L“j&
- t.':,\ A

variables with parameters (0, 1) or (0, 6~°), it is well known thut g

T X
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Y, = X /x2 is Cauchy distributed symmetrically about ¥y = 0. It has

1 °
been conjectured that this is a unique property of the normal p.d.f.;
@ hypothesis which implies the existence of only one solution of f£(x),

namely, f(x) = N(O, 6‘2), which satisfies the linear in®segral equation,

n

” yz)f(ylyg |y2| dye. (C = a constant), (6-3)
41

Laha E75]. f( 6], 5tec\q[ll?] and Maulden [8% all have subsequently
proved this conjecture to be false by exhiblting several mon-normsal
solutions. Goodspeed [@Ca has shown in fact that an infinity of
golutions to (6-3) exists.

Laha [?63 has shown that if X, and X, are independently and
identically distributed random variables having a common ¢.d.f.

F(x) such that the quotient ¥,=X;/X, follows the Cauchy Law distrib-

uted syumetrically about zero, then F(x) has these general properties:

1) F(x) is symmetric about the origin x = O}
ii) F(x) is absolutely continuous und has a continuous p.d.f.
(x) =F(x) >0 ;
iii) the rzadom variable X has an unbounded range;

iv) the p.d.f. f(x) satisfles the linear integral equation
[os]
c' =

1+ yla

(6-4)

£(yq ¥p) £(y5) ¥, dys,
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which holds for all ¥y where C' is a constant. (Here again the

transformation, y, = xl/kz, y, = X, is implied).

It is now apparent that an answer to the guegtion of the number of
f(x)'s satiafying the @guation (6~4) is the equivalent of completely
enumerating all solutions to this integral equation. This problem is
very difficult and still remains tc be solved.

Mauldou [B5 ] has studied similar problems showing in particular
that: (1) the ratio of two independently and identically distributed
chi~gquare variables is not the only quotient distributed according to

the general F-distribution,

b-1
?(y ) = r‘ (8+b) yl
1

(" (a) (b2 (1+yl)b+a’

(Odyltoo. a, b>0) (6-5)

and (2) that we cannot assert that f(x) is normal even when a sample
of X i=1, « « «+ y n observations is taken from the same p.d.f,
distributad symmetrically zbout zero such that the gumple statistic
t =X ‘In_/s_ is distributed as Student's t-distribution (X, s
dencting the usual sampling statistics.)

The third protlem is a general case of the preceding problem and

involves solving the integral equation

s 0]
Flyy) = fxl(yl y,) gxa(ya) ly,| 4y, (6-€)
~Q0

when one of the two combinations of functioms, (V(yl). fx (*)) or
1

(V’(yl). gy (*)), is known.
2
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' In certain sampling studies, it is conceivable that collected

&

Al data y,,( =1, + « +, n),will be of a ratio formeay y, = x, /x

E i 1 li aiv
% and at the same time estimates of the respeciive p.d.f.'s of the ratio
g Iy and of one of the components, say Xl( can be made with a high

]

? degree of certainty. In these cases, it is reasonable to question
Yy whether or not the general properties of X2 may be ascertained.,

% A simple metnod of obtaining an estimate of the p.d.f. of x2 is
to consider the ratio X, = X;/Y, using the estimated p.d.f. of the
B respective components. However, the p.d.f.(SZKxa)) may represent
o only one of geveral possible solutions. 1In this case only from the
Lt

ﬂﬁ complete enumeration of all solutions satisfying cquation (6-6) will 1t
T be possible to deduce the general properties of gy ().
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‘ TABLE VLLI
B Standnrdized Lognormal Percentage Pointe
ik l|
centage point of the lognormal diatribution with this mean and standard

" Given the mean m and standard deviation , let® = 100 s/m. The per-
A deviation is the entry in the table, multiplied by m.'

Lower 1% points (k = 1)

ERy t | 0.0 0.1| 0.2 | 0.3 O.h | 050,607 (08 J0.9 | A
&ﬂ O | 1.0000| 9977| 9954| 9930 | 9907! 988kL| 9861 9838| 9815 | 9792 -23
?' 1 | 0.9770| 9747 9724| 9701 | 9679] 9656( 9633| 961L| 9588 | 9566 | -23
o 2 | 0.954h | 9521 949g| 9l77| ohsk| 9432 ohLo| 9348| 93266 | o3hh| -22
3 | 0.9322( 9300 9278| 9256 | 9233 9213| 9169| 9148 9148 | 9126 -22 L
A 4 | 0.9105| 9083 9061| 9040 | 9019| 8997| 8976| 8955| 8933 | 8912} -21
31 5 | 0.4892| 8870| 8849| 8828| 880y| 8787| 8766| 8745| 8724 | 8702 | -21
L 6 | 0.8633| 9662| 8641| 8621 | 8600| 8580| 8559( 8539 8519 | 8498 | -20
AN 7 | 0.8u78| Bus8| 8438 8418 | 8398| 8378( 8357| 8338| 8318 | 8298 | -20
o 8 | 0.8278| 8358 8238| 8219 8199 8179| 8160| 8140l 8121 | 8101 -20.
. 9 |0.8082 | 8062l Boh3| Bo2k| 800k §985( 7966 7947| 7928 | 7909 | -19
‘o 10| 0.7890| 7871) 7852| 7833 | 7814|7795 | 7776| 77581 7739 | 7720| <19
. 11 | 0.7702 | 7683 7665| 7646 | 7628 7609| 7591| 7572| 7554 | 7536 -18
:>‘ 12 | 0.7538 | 7500 7481 | 7462 | 74bs| 7h27| 7h09( 7391| 7374 | 7356 -18
: 13| 0.7338| 7320 7302| 7285 7267 7249| 7232| 7214 7197 | 7179| -17
o 14 ] 0.7162 | 7144| 7127| 7110| 7093 7075| 7058 7ou1| po24 | 7007| -17
" 15 | C.6900 | - - - - - - - - - -
’..0
‘*: Lower 5% points (k = 5)

g 0.0 0.1 | 02 |03 |0.4] 0.5 0,607 108 [0.9] A

t

O [1.0000 | 9983| 9967 | 9951 | 9934 9918 9902| 9885]| 9860 | 9853 16

1 10,9836 | 9820| 980k | 9788 | 977L| 9755| 9739| 9723 | 9707 | 9691 | -16

2 10.9675 | 9658| 96L2 | 9626 | 9610 95941 9578 | 9562 | 95u6 | 9530| -16
| 3 | 0.951k | 9498| ok82| 9467 | 9hsL! 9435 9kl9| 9403 | 9388 | 9372| -16
:Q ; 0.9356 | 9340| 0324 | 9309 | 9293| 9278 | 9262| 9246 | 9231 | 9215]| -16

6

7

8

9

0,9200 | 9184] 9168 | 9153 | 9137| 9122| 9106| 9091 | 9075 | 9060| ~15

0.9045 | go2g| 9014 | 89gg | 8983 8968 | 8953 | 8937 | 8922 | 8907 | =45
0.4892 | 8877| 8862 | 8846 | 8831 8816 | 8801 | 8786 | 9771 | 8756 | -15

2 0.8741 | 8726| 87LL | 8696 | 8681| 8666 | 8651 | 8636 | 8622 | 8607 | ~15
33 0.9592 | 8577| 8562 | 8548 | 8533| 8518 | 8503 | 8489 | Burk | 8460 | -15
! 10 | 0.8445 | 8u30| 8415 | 8401 | 8386| 8372 | 8357 | 8343 [ 8328 | 8314 | -15
& 11 10,8299 | 8235| 8271 | 8256 | 8242| 8228 8213 | 8199 | 8185 | 8170 [ -1k
@ 12 10,8156 | 814z2| 8128 | 8113 | 8099| 8085 8071 | 8057 | Bok3 | 8029 | ~Lk
K0 13 | 0.8015 | 8001| 7987 | 7973 | 7959| 70US| 7931 | 7917 | 7903 | 7889 | -14
a 1k | 0.7875 | 7861| 7848 | 783k | 7820| 7806 | 7793 | 7779 | 7765 | 7751 -1
o 15 0. 7738 - - - - - - - - - -
»
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; [}
Y
:";?
o
I
S Upper 1% pointa(k = 99)
& ¢ 0.0 |o.|o02|o03| 04405 |06 0.7 |08 |09 |A
Ry o T1,c000| 0023 cok7| 0070] oo9k| 0117| oihL | 0164 | 0188 | o21s| +23
L 1 | 1.0235| 0259| 0282| 0306| 0330{ 0354%| 0378 | okn2 | ok26 | O4SO | +24
' 2 | 1.0474| 049o8| o522 Os547| 057L| 0595| 0620 | 064k | 0669 | 0693 | +24
.ag 3 | 1.0718| ofh3| 0767| 0792| 0817| 0841| 0866 | O89L [ 0916 | O9hL | +25
”'. L | 1.0966| 0991{ 1016| 10hi] 1067] w92 LL17 | 1142 | 1168 | 1193 | +25
o 5 | 1.1219| 12bs| 1279] 1296| w320 1347 1372 | 1398 | 1k2k | 1450 | +26
.u 6 | 1.1476| 1502| 1528 1554 1580| 1606| 16322 | 1659 | 1685 | 1711} +26
. 7 | 1.1738| 1764| 1790} 1Bl7| L843] 1870] 1896 | 1923 | 1950 | 1977 | +27
8 | 1.2004| 2030| 2057| 2084] 2111) 2138| 2165 | 2193 | 2220 | 2247 [ +27
o ‘| 9 | 1.2274| 2302| 2329| 2356| 2384| 2411| 2439 | 2ke6 | 2kok | 2522 | +23 I
' % 10| 1.2549| 25771 260%| 2633| 2661| 2689 | 2746 | 2745 | 2775 | 2804 | +28 ;:z‘h%
AN
.Y 11| 1.2829| 2857] 2885| 29141 2942| 2970 2999 | 3027 | 3056 | 3084 +28 "'
Lo 12| L3113 3141! 3170| 3199| 3228 (3257 | 3285 | 3314 | 3343 | 3372 | +29 .., \‘
iy 13| 1.3402| 3431| 3460] 3489| 3518 | 3547 3577 | 3606 | 3636 | 3665 | +29 \.‘:\.‘\
N 14 | 1.3695| 3724| 3753 3785| 3813 ! 3843 | 3872 3902 | 3932 | 3962 | +30
i 15| 1.3992| - - - - - - - - - -
o
i ;‘!. Upper 5% points (k = 95)
S
S t | 0.0 0.L|0.2|0.3 |0 |0.5]|086 |07 [08 |09 | A :ﬂ-' i
o R
1,3: 0 | 1.0000| 0016| 0033| 0Ok9| 0066 | 0083 | 0099 | 0115 | 0132 | OL49 | +17 _' 0
i L | L.otes| o1s2) 0198, 0215| o232 024y | 2065 | 0282 | 0299 | Q3.6 | +17 N
.y 2 | 1.0332| o34g| 0366| 0383| oboo | o417 | 0433 | o450 | 0467 | OUBM | +17 .&v{}}u"’
3 | 1.050L| 0518| 0535| 0552| 0569 | 0586 | 0603 | 0620 | 0637 | D654 | +17 '0.'3}.’,,
, 4 | 1.0671 0688] op0s5| 0723 0740 | 0757 | 077k | 0791 | 0809 | 0826 | +17
" 9 | 1.0843| o86b0| 0878| 0895| 0912 | 0930 | 0947 | 096k | 0982 | 0999 | +17 —-5-.-,@.,;6:
4, ; )
iy 6 | 1.1017| 1034| 1050] 1069 1086 | 1a0k | 1121 | L1139 | 1156 | 1174 | 417 liineeatel
il 7 | 1.1191| 1209| 1226| 124k | 1262 | 1279 | 1297 { 1315 | 1332 | 1350 | +18 |$'" o
: 8 | 1.1368| 1385| 1403| 1421| 1439 | 1456 | 1474 | 1k92 | 1510 | 1528 | +18 o .;04..
9 | 1.1545| 1563| 1581| 1599| 1617 | 1625 1653 | 1671 | 1689 | 1707 | +18 BRI
- 10 | 1.1725| 1742 17601 1779| 1797 | 1815 | 1833 | 1651 | 1869 | 1887 | +18 b IR
R 11| 1.1905| 1923| 1941 1959| 1978 | 1996 | 2014 | 2¢32 | 2050 | 2069 | +.8 Mo 11 8
-“-k 18 | 1.2087| 2104| 2123| 2142 | 2160 | 2078 | 2196 | 2245 | 2233 | 2232 | +18 RERSANE
- 15| L.2270| 2288 2307| 2225( 2343 | 2362 | 2380 | 2399 | 2k17 | 2436 | +18 p{--(}gn\-‘.
:}3 1h | L.oush| 2h72| 2491| 25L0| 2528 | 2547 | 2565 | 2584 | 2602 | 2621 | +19 ) j?‘\?a
; 15| L.26%9| - - - - - - - - - |-
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TABLE IX

Expected Values or (i+otw)T For Various r.
(See chapter 5.)

w is distributed normally w is distributed ieq-
r with mean zerc and vuriance| tangularly in the inter=
one val (-1, 1)
E(1 + o))" | 1e02/B-150¢ /128, uens | 1=al/2h = o /128 ~ vuien
1 1 1
2 | 1402 1+e¢ /3
| 1e6ecizect 122 of /5
l ~% 1+10L2/8 + 1050L“/128 o 1+o<2/8 + 704“/128 + ases
-] 1+Q‘_a + 30‘-44' seves 1+°‘.2/3 + “4/5 + so0rve
2 1
-2 1+ 20¢%4 1500 + elen 1/(1-0¢%)
2 b 2 L
-4 141000 4+ 10500 + eesee 14100L7/3 + 706 + ceee
E log(letw)’ —r(ot2/2 4 30(4/4 + eee) -r(o?/6 + odq/ZO + a0)
Vv log(l+olW)T 200t 5002 4 een) P2 2/3 + 70t /15 4 uay)
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TABLE X

1. Tables of the cumulative distribmtion funct on of the random

X X2

variable 74 = =%— , Where J(i are normally distributed.
%G %

The p.d.f. of 2 is  f£(2) = I,(z) - Ia(z) in which

2
~ ¥y -LQV1!2+V2+ e =
I(z) = _° 2(1-p 2) =
27 =\ 1-p ©

b=t
1 2 z 1 z 1\ dx
*| exp)- (x= + =)+ [(v— v)x+(v-ov)-—] —_
f [ 2(1__()2) & 1_(02 170 Y2 20 x (%
(0]

»
and Ia(z) is Lhe save integral defined on the interval (woco, O).

2. Values of f£(z), the probability density function, andF (z), the cumulative

AR LRt
H’qﬁ R :..-3:%':':‘5 L ﬁ-.'tga-:’?.. ¥§ T N

MR

)
distPibution function of 2z for varioug velues of v, = Xy y Vo= *2
1l —=' "2 ==
rx rx
1 2
and the coefficient of correlation e
»
see sectlon 4,2, chapter 1V
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TABLE X a

Case 1: @ = 0, v, = 0, v, = 0. 'The p.d.f. of f(z) is symmetrically

distributed mbout the singularity point z = O with %(z) = 0, o = 1,
z
In tuls case F(z) = 1 - F(-2).

yA £(z) F( 2)
-10. 90 .00001 .00001
- 9.0 00002 400002
- 8.0 .00005 . 0000k
- 742 .00011 .00019
- 60"" .00026 000021
- 5&6 l00061 000056
- 4,8 .00146 .00139
- "‘.O 000355 o00323
- 3.6 .00557 . 00509
- 3.2 .00878 .0079€
- 2.8 01,305 »01231
- 2.4 02235 .01943
- 2.0 . 03625 .03090
- 1.8 LOL645 .03914
- l.6 005983 004969
bt - Lok «07756 .06336
e - 1.2 .10138 08114
W - 1.0 13402 .10450
) - 0.9 « 15493 .11890
ak - 0.8 «17996 L1344
[0 - 0.7 +21025 15508
5'!‘ - Oa6 ¢21|'7’+9 -17?90
W - 0.5 «29425 20491
Wt - Ok - 35477 .23721
R - 0.3 . 43887 . 27656
.t'.‘ - 0.2 ‘55790 032585
W - 0.1 77256 45242
- 0 +08 » 50000,
bl
1
{ )
??
&

e $ATA )—-C j,’\});x}v }_ N AR TR e
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TABLE Xb

Cage 2: @ =0y vy = (1.0)(0), v, = 0(1.0).
symmetrically distributed about the singularity peint z = O with
E(z) = 0 and o = /2. 1n this cage F(2) = 1-F(-z).

The p.d.f., £(z) is

[¢ <}Vs]
L ]
o

. b oYW
- L ] A ]
OVOMNEONTO FOON O BOF NN D

* L) [ ]

.OpOOHi-‘l:‘l-‘

-
W HEN O

OOO?OO

£(2)

« 00001
» 00002
» 00005
« 00012
« 00029
.00058
.00118
00239
. 00485

. 00981

.U1397
.01992
02846
.04078
.05873
.07069
.08533
.10340
«12595
«15460
.17195
.19193%
.21519
24270
«27593
.317%6
« 37159
44891
.58215

+00

.00139
.00282
. 00576
.01166
01642
.02319
.03287
.0h672
. 06662
.07949
«09509
«11397
13690
16490
.18129
.19948
.21984
24273
.26866
.29833
33278
«37380
42535
50000

et
‘:N‘.:::"'t
|'::0‘.




TABLE X. ¢

, Cage 3: @ =0, vy =V, = %. The p.d.f., f£(z),has parameters E(z) =0.25
E';"fi; and & = = 4&nd pessesses a singularity at z = Q.
i
frs
g:';':'
. 4 £(z) F(z)
B
.c',;.; -9.6 .00001 . 00001
K -8.8 .00002 . 00002
b0 -8.0 00004 00005
1‘(‘!3’] -'? . 2 . 00010 . 00010
—60 ‘+ 000023 000026
-{"1.:1, «5.6 .00054 . 00061
o 4.8 .00128 .00112
halyi -4,0 .00311 .00288
: Y “306 .00488 .004'48
xf ..l' "3.2 .00769 000699
| -2.8 .01221 01097
. ] -2.4 c°195’+ [] 01732
IS -2.0 .03165 02756
JoN $l,2 .08809 .10436
o -0.8 +15568 «16520
e -0,k 20423 24302
e ~0.2 . 47388 « 32084
A ~0.1 61499k -37703
;&.:, -0,0 o « 50000
3"" Iy o. l . 68106 . 50855
¥ 8 0s2 «51947 -56858
% 0.k 36322 65685
e, 0.8 .21768 «77030
K ,' 1.2 -14230 -85791
1ied 1.6 09621 89273
.,:. X 2.0 .04589 92520
N 2.8 .04589 .96318
3.2 02241 «97407
3.5 01571 .98177
k0 .01103 .98712
4,8 . 00545 «99371
5.6 00269 +99697
6l .00133 .99858

e e
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3}3 APPENDIX B - ANNOTATED BIBLIOGRAPHY

"W

B

:':.:' The components of a guotient or product of a random variable

X

)

::.é.' assume many different representations. Not only is one interested
4 .

' 1n ratios and products of random variables described by a specific

1‘ %i:%'; frequency function, but also of these functional forms of variances,
AaN

:“\ ranges, proportions, various forms of Milla' ratio, correlation co-
W

At

_'3' h efficients, etc,

:43» The following bibliography is believed to be very comprehensive
5; in respect to articles pertaining to the distribution theory of
o products and quotients of random variables. However only & small
sample of articles pertalning to cther subjects as those mentioned
"L-_::l above are given.

’c.:s

o An index is presented in which listings appear by headings
. ,: ’,: classifying many of the various combinational forms of quotients
haed

:':l.:'r:( and products,

t-.( !

B
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I.

II.

III.

1v,

V.

VI.

VII.

VIII.

IX.

Xe

Index

Distribution Theory of Products and Quotients, Transformations ,and
Approximations.

2, 3, 8, 12, 14, 15, 16, 19, 20, 21, 22, 24, 27, 30, 31, 33, 35, 37,
38, ko, M, 42, 48, 50, 51, 55, 60, 63, 65, 66, 68, 69, 70, 73, 75,
76, 77, 78, 81, 82, 83, 8s, 86, 89, 93, 97, 107, 109, 111, 112, 11k,
115, 116, 117, 118, 120, 125, 126, 129, 131, 133, 13k,

Extreme Values, Extremal Quotients and Maximum-Minimum Ratios,

36, 45, 46, 47, 56, 64, 90, 91, 124,

Products and Quotients of Various Parameters of a Probability
Density Function (Ranges, Median, Standard Deviations, etc.),

4» 59 239 26; 539 51" 611 79. 809 921 98o 99v 100, 102' 10“" 105,
106, 108, 113, 122, 123, 132.

Variances and Covariancea,

4, 43, b4, 52, 57, 58, 62, 67, 103, 121, 127, 128, 130

t Distributions,
6, 17, 71, 74, 111, 119

F Distributions,
1, 9, 28, 49, 96

Ratigmand Products=-Quadratic Forms and Linecar Functions.
10, 25, 39, 59, 9%, 95, 110

Mills' Ratio,
7, 13, 18, 88, 101

Applications,
11, 29, 32

Correlation and Regression Forms.

72, 84, 87
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Annotated Bibliography

1. Aroian, L. A., "A Study of R. A. Fisher's 2 Distribution and the
Related F Distribution,'" Annals of Math, Stat. Vol. 12, 1941.

The purpose of this paper is to discuss the semi-invariants of the Z

distribution and to find useful approximations for them. The distri-
B

bution of Z = Y% log ~l§ ,where sia,(i = 1, 2),are sample estimates of
8
2
variances is well knownj
4
%nl ﬁn2 n,z
2nl n, e

(z) = dz.
¢ ﬁ (nl n2> (nl e.-Zz + n2) ?Knlmaj
27

The author shows that as ny and n, approach infinity in any manner the

dlstribution of Z approaches normality.

2. Aroian, L. A., "The Probability Function of a Product of Two
Nermally Distribution Variables," Annals of Math. Stat. Vol. 18, 1947,

Let Xl and Xa follow a normal bivarliate probability function with
means Yl and Ya’standard deviations @ and o}, and correlation co-
efficlent il’xa. Also, let el = fl/di and dé = fz/oz. Craig[?l]
found the probability function of 2 = X, X2/ 6] o5 in closed form as
the difference of two integrals. Craig, for the purposes of numerical
computation, expanded this result in an infinite series involving powers
of 2, €1 &5 and Bessel functions of a certain type. Difficulty arises,
for large 91 and 92. in the convergence of this expansion. Aroian
demonstrates that Z may bo approximated by the Gram-Charlier series

and the Type IIT function and presents the percentage points of F(w) for

the epeclal case Vl =1, V2 = 10 and r = O.

120
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ja 3. Aroian, L.A., Tables ond Percentage Points of the Distribution
N Function of a Product, Hughes Aircraft Company, California, 1957,

) Let Xl and X2 be normal uncorrelated variables with means my and
)"
&‘ : o - T
‘ 3? m., and variances ﬂl and o&, respectively, and let Sl = ml/ol. I'he
X author finds: (1) The LOO ofpercentage points of the distribution of
o Z = x1x2/°1°é are tabulated for different values of Si L =12,2); (2)
L)
, %‘ The cumulative distribution of 2 1s also tabulated.
h W "
-Tﬁ 4. Baker, G. A., Distribution of the Means Divided by the Standard
Deviations in Samples From Nonhomogeneous Populations , Annals of
" Math. Stat, Vol. 3, 1932, A
1‘.
)
;-h‘ It 15 the purpose of this paper to discuss the distribution of the
(A |
)
:ﬁ means of samples(of size two) measured as the mean of the population
[)

. which have been divided by the standard deviations of the samples,

Experimental results for samples of four from normal populations are

presented,

4

1t
S+ Baker, G. A., Dastribution of the Ratio of Sample Range to
' Sample Standard Deviation for Normal and Combinations of
' Normal Distributions," Annals of Math. Stat. Vol. 17, 1946,

This note summarizes, in tabular form, some of the numerical results
obtained i1n previous studies of the distribution of sample ranges 1in

o terms of the standard deviation of the sampled population for homogeneous

o populations,
'!:‘ "
b. Banerjee, Sy Ke¢y A Lower Bound to the Probability of Student's
.é Ratios_Sankhya, Vol. 18, 1957,
‘*& Samples of size n are drawn from a population having mean m, end
»
8
‘43 2né and 4th cumulants k2 and kh respectively. Starting with Tchebycheff's
.= 2
i lemma that if a variate X has mean m and variance @) then
)
o ) b
L) [+
Ll P(X £ m-k*) = T
; {: o k
&ﬁ 121
i.
K hr
W {1
F
) o
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whateaver k2 may be, the behavior of Student's ratio is congidered from

the viewpoint of estimating the confidence interval. In particular, a

lower bound to the probability of the event * " E& opX - L8 4y
\’ n ‘J n
1 kh
calculated to be y where B, = — 3.
B.-3 I « k
2 2 t 2
- v T - i
(t<-1) n

A table 15 given for t = 3 and several values of B2 and n.

7. Barrow, D. T., and Cohen, A. C. Jr,, '"On Some Functiong Involving
Mills' Ratio,” Annals of Math, Stat., Vol. 25, 1954,

In this note, it is proved that for all finite values of h,

W(h) = & o Azh(zZ-h)
m12 (z-n)2

is monotonic increasing so that 2 ml2 - m, > Oand 1 <« ¢(h) < 2, The

function 2 is the recipiocal of Mills' ratio and m, and m, are the first
and second moments of a singly truncated normal population about a point
of truncation. The function ¥(h) frequently arises in connection with

maximum likelihood estimates of population parameters from singly trun~

cated normzl samples.

8., Bartlett, M., "The Distribution of Second Order Moment Statistics
in the Normal System," Proc. Camb. Phil. Soc., Vol. 28, 1932,

Let x be a normally distributed variable and the distribution is

written as

2 .
dp= (:amca)'y‘ X Ky gy
where k2 is the semi-invariant of order 2. The moment generating
function of the distribution of x2 is developed. From this the generating

.
function of the semi-invarisnts (k) of x° is developed.

122
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131
9. Barton, D, E., David, F. N., and O'Neill, A., Some Properties of the
Logarithm of the Non-Central P B1ometrika, Vol. 47, 1960,

Given two independent variables: 6 distributed as u non-central

chl saquare variable with fl degrees of freedom and non-central parameter

and X~ distributed as a central chi squcre variable with f

2 degrees
of freedom, the non-central F is defined as
(62/1‘ )
1
F=z = 5
(x/£,)

The log transformation of F and the possibility of a normal approx-

amatlion to the transformation are discussed here,

10. Basu, D. Un the Dependence of Iahear Functions of Independent
Chance Variabies, Bull., Inter, Stat. lnste., Vol. 33, 1953,

Relying on the ussumption that the random variables X, ,X,,

Olco'xn

are independently distributed and possess finite moments of all order,

the auther proves the following: If there exist two linear functions
n n
{ = 2: and £ = 2: b, x, withab, # 0 and [and §
§=1 j 39 ' 373 33
are stochastically independent, then each x, iz normally distributed.

" 1"
11. Bliss, C. I., 7The Calculation of Dosage-Mortality Data ,

Annals
of Applied Biology, Vel., 22, 1935,

Very detailed applications of experimental data to the problem

of estimating the quotient of twe quantities subject to experimental error

are given.
"
2. Bouse, 5., 0On the Diutribution of the Ratio of Variances of Two

Samples Drawn From a Given Normal Bivarinte Correlated Population,
Sankhya, Vol. 2, 1935.

t

A formula for the p.d.f. of the bivariate chi distribution is given

lhis formula is corrected by Krashnaiah, et. al, [70]. Tae
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-'.\\:f-’ '; : \:% {,5\1 3‘\0{ (N ,{\\‘f\{‘&{f‘\ 1‘)&55\\ \{--}% ’ \:.[fﬁ ‘& . .. .\f 3}:%7 -[:‘h{ 4\..
el

ol b (AR N N R A

2
[

» - A..-_...-_iA_-An-_p_-.L



distribution of 2 = U/V, the ratio of two correlated chi varlates is

given,

1%, Boyd, A. V., "Bounds for Mills' Rutlio for the Type III Distribution,”
Annals of Math. Stat., Vol. 29, 1958.

Des Ra] [101] and Cohen have shown that in estimating the parameters
of the truncated Type III populations, it is necessary to calculate for
several values of x, the Mills' ratio of the ordinate of the standardized
Type III curve at x to the prea under the curve from x to . For large
values of x, existing tables are inadequatc. Thec object of this note is

to eastablish lower and upper bounds for this ratio,

14, Broadbent, S. R., "Lognormal Approximations to Products and Quotients,"
Biometrika, Vol. 43, 1956.

The problem considered is to obtain bounds of limits upon combinations
of random variobles (random in the sense of measurement error) in a product

or quotient form. The general form is consldered to be
q:(xl’xao..xn)/(xn.'_loxm...xr)'lfnfr.

A summary of the known exact results is first given. The lognormal
distribution which is asymptotically exact is shown to glve useful
aprroximations when fitted by moments to the combination above. Tables

arc given which make its application relatively simple.

15. Broadbent, 5. R., "The Quotient of a Rectangular c¢r Triangular and
a General Variate," Biometrika, Vol. 41, 195k,

See Chapter IV of this report.




16. Buohler, R. J., "Confidence Intervals for the Product of Two Binomial
Parumeters,'" Journal of the American Stat. Assoc., Vol. 52, 1957,

The author generallzes the importunt practical problem of obtaining
confidence limits on products of binomial parameters., The analysis le
gpeclialized to cmall probabilitdes of fallure and moderate sample sizes.
The results are restricted to the two-parameter case and no efforts are
reported on the general ocase of the product of n parumeters, The use

of Llnequalities forms the banis of this analysis.

17. Chung, Kal-Lai, "The Approximate Distribution of Student's Distri-
bution,!" Annals of Math. Stat., Vol. 17, 1946.

The asymptotic expansion of the distribution of certain statistics
12

in a serdies of powers n '° with a remalnder term gives nn estimate of the

-t

.,,__
e

accuracy of the normal approximation to that distributaion. H, Cramér

A

e

first obtained the asymptotic expansion of the mean and P, L. Hsu ob~
tained that of the variance. In this paper, themethods of Cramér-Hsu
are applied to Student's statlstic, The important results are that 1f
certain conditions are met by the population distribution, an asymptotic

expansion may be obtained for this statistilc.
18. Cohen, A. C. See Barrow [7]

19. Craig, C. C., "The Frequency Function of X/Y," Annals of Math.,
Vol., 30, 1929.

At this time (1929) only Pearcon (97 ) had studied y/x for known
distributions, Pearson investigated the problem by attempting to find
expressions for the moments of y/x in terms of the known characteristicas
of the joint distribution function F(x, y),such as the coefficients of

varlation, ete. Cralg extends his work by obtaining expressions for the

125
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semi-invariants. Very tedlous and cumbersome mathomatical expressions

arise which hinder application. (Swe Chapter IV)

20. Craig, C. C., "On the Frequency Function nf XY," Annals of Math,
Stat., Vol. 7, 1936.

The p.d.f. of a product of u pair of normally distributed random
variables 15 discussed under the following conditions: Let Xl and X2
follow a joint normal bivariate p d.f. with mean ;l’ EP' stundard

deviationsey , ¢ respectively,and correlation coeffiocient ¢ Let

1 2
X
. . s -2 ‘
V= xl/ca_ and V5= S . Craig finds the p.d.f. of uz = xlxa/ai o5

in closed form as the difference of two integrals. (See Scction 4.2)

2l, Craig, C. C., "On the Frequenoy Distribution of the Quotient and
the Product of Iwo Statisticul Vuriables," American Math. Monthly,
Vol, 49, 1942,

This work is divided into three scctions: 1) the author discusues the
relativoly simple methods of finding the quotient y/x in which both
x and y are distributed in a bivariate normal distribution, 2) a treat-
ment of the distribution XY is given and, 3) a discussion of the quo-

tient oéjm m3/m23/2 where m2 and m3 are the second and third central

moments calculated from a sample of N observations 1s given.

22. Cramgr, H., Mathemalical Methods of Statistics, Princeton University
Press, 1957.
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23, Creasy, M. A., "Limits of the Rutio of Means," Journal of the Royal
Stat. Soo., (Serles B), Vol, 10, 195k.

Iimits for the ratio of the means of two normal p.d.f.'s are ob-
tained by a method which 1s anulogous to that used in finding fiducial
limits for the difference of two means with possibly unequal variances

(the Fisher-Behrens problem).

24, Curtias, J. H.y "On the Distribution of the Quotient of Two Chance
Variables," Annals of Math. Stat., Vol. 12, 1941,

A rigorous treatment of methods of finding the distribution of the
ratio 2 = Xl/X2 for known distributions of xl and X2 is given. Partiocular

attention 1is pauid to exiiténce proofs in the presentation of tho variable
transformation method of finding the distribution of 2 in terms of the
joint density function of (xl, x2). Four important formulae concerning

the trangformation of variables method of finding F(Z) are glven.

25. Darmois, G., "Sur Une Propriété Caractéristique de la Loi de
Probabilité de Laplace," (. R. Acad. Science, Paris, Vol.239, 1951.

A remarkable characterization of the normal p.d.f. is that if Xy

and X, are two independent chance variables such that two linear functions

axl

then both Xl and X

+ b, (ab £ 0) and cx, o+ dxX, (cd # 0) are distributed independently,
5 are norrally distributeds This theorem haas been
proved without any assumptlon about the existence of moments by the

author using earlier results of Grmedenko and Kac [63 ].

26. David, H. A., Hartley,H,0 ., and Pearson, K., '"The Distribution of the
Ratio,in a Single Normal Sample, ot Range to Stoandard Deviation,"
Biometrika, Vol. 41, 1954,

The author presents certain percehtapge points of the ratio of samples

of n observatlons from an underlying normal populatlon., The ratloc con-
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cerned is &) range, w, of a sample of n observations to b) the standard

deviation, 8, where both w and 5 are caloulated from the same sample
W of n observationg, The method of analysis uses the moments of the distri-

bution of w/s.

27. Davidy F. N., "Reciprocal Bernoulll and Poisson Variables," Anais
de Faculdade de (iencios do Porto, Vol. %7, 1953,

Sl ¥
‘-

]

%‘E Taubles of the p.d.f. of U‘E(%)where X is a non-zero random

N

fﬁ variable desoribed by the positive Bernoulli and Poisson freguency

r."

' functions are presented.

-:’;!

Y 28. David, F. N. See Barton [9]

Wi

ﬂé 29, DeGroot, M. H,, "Some Aspects of the Use of 'Sequential' Probability
_ Ratio Testa!' Journal of the American Stat. Assoc., Vol 53, 1958,

“.'

%ﬁ This paper investigates the use of Wald's sequential probability

;‘, ratio test as to the ciroumstances of applying the test when

[

ﬁ' there is no known population variance. The behavior of the test when an
K7

:,:; erroneous value is taken for the value of the variance is investigated in
vl

ﬁ two applicailons. Additicnally, the use of the test is discussed for

"

el

N applications in which the variance can be reastricted to a given

™ .

k. finite interval,
I

*$ 30, Doob, J. L., "Limiting Distributions of Certain Statistics," Annals
'Qé. g__Math Stutuq VOl. 6, 19350

& A rigorous treatment of some of the fundamental concepts of frequency
ﬂ:i distributions is first prescnted. This presentation provides a foundaticn
;4 for the treatment of thederivation of a limiting distribution. Many
s
ﬁ? fundamental lemmas dealing with the concepts of a limiting distribution

' are derived.
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"
3l. Epstein, Benjamin. Some Applications of the Mellin Transformation
in Statisticsy Annals of Math., Stat. , Vol. 19, 1948.

It is well known thal the Fourier transform is a useful analytic
tool for astudying the distribution of the sum of independent random
variables., It is the purpose of this paper to siudy the Mellin Trans-
form in relation to products of independent random variables ~f the form
R IR PT where "y 13 defined on positive intervals. In this paper
Epstein uses the Mellin transform to obtain 7 = N1N2 as a Bessel function.

1] n
32. Fieller, E., C., The Biological Standardization of Insulin,
Journal of the Royal Stat. Soc., (Series B), Vol. 7, 1940,

Results involving quotients of random variables and the p.d.f. of
an index are used in an application of a bilological assay of insulin.

"
%%, Fieller, E. C., The Distribution of an Index ©f & Normal Bivariate
1]
Population, Biometrika, Vol. 20, 1932,

Thic is a notable paper concerning the ratio of two normally distrib-

uted random variables. By quadrature, Fieller presents a solution to

the p.d.f. of Yl = Nl/NE for the general case. The normal case is expressible

in terms of the bivariate normal p.d.f.

34, Finney, D.J., "The Distribution of the Ratio of Estimates"of Two
Variances in a Sample From a Normal Bivariate Populatioen,
Biometrika, Vol. 30, 1938.

Finney shows the p.d.f. of the ratio Z =U/V of two correlated chi variates.

From this result, he obtains the c.d.f. of Z and discusses certain pertinent

My g 20
> |

applications,

"
35. Finney, D. J., On thg Distribution of a Variate Whose Logarithm is
Normally Distributed,  Journal of the Royal Stat, Soc., (B), Vol. 7, 1940,

The problem considered here is to detormine efficient estimates of

et e et =S

both the mean and the variance of a given population from the sufficient

i T




statlistics for the normal distribution of the transformed data where the
logarithm of the observed values is taken as the transformation (the
distribution of the logs is known Lo be normal).

The estimates for the mean and variance are given in terme of an
infinite series (actually a Bessel function) wiih : ow convergence ex~
cept for small values of parameters involved and these are modified for
better arithmetic computation.

The efficiency of estimutions without oconsidering the above type

transformation is also discussed.

36. Fisher, R. A., and Tippett, L., "Limiting Forms of the Frequency
Distribution of the Smallest and Largest Number in a Sample,"
Procecedings of the Cumb. Phil. Soc., Vol 24, 1927.

Constants for obtainlng the first four moments of the distribution
of the Jargest member of @ sample from a normal population for samples
up to 1000 are given, Possivle limiting forms of such distributions in
general, are discussed. Many tabular and graphic illustrations are

presented.

37. Furstenberg, H., and Kesten, H., "Froducts of Random Matrices,"
Annals of Math. Stat., Vol. 31, 1960.

R. Bellman, "Limit Theorems for Non-Commutative Operations," Duke

Math, Journal, 1954, considers this problem: Let Xl, XZ, x> vesy form

k]

a stationary stochastic process with values in the set of k x k matrices.

He investigated the asymptotic behavior of nyl = x? Xnﬂl o . e Xl and

showed that if the X" are independent, then the lim n ' E {1og(“Yl)i,j}
n—» o

exists, (i, j refers to the i j® entry of the matrixy) Bellman conjectured

that n"ﬁ(log(nYl)i, j - B {103 (nYl) i, j} ) is asymptotically norrnlly

distributed. This paper adds more evidence that Bellman's conjecture is correct.
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38. Geary, R. C., "The Frequency Distributicn of the Quotient of Two Normal

"\‘ Variables," Journal of the Royal Stat. Soc., Vol. 93, 1930.
‘o
& Geary supplies an approximation of q = x/y which is widely used. He
?'_i shows that for X and Y normally distributed with respective means Xand Y
'y
: and Q defined as x/y,the statistic
3 %
; 2 2 2
3 2 = (a-Q)/(o¢,? @® ¢ 0e,? @)
'f; is approximately normally distributed where °<1(i = 1, 2) represents
T3 x_ L
‘ 2 = and &
v ‘U. X J
R
)
% 39, Geisser, S., "The Distribution of the Ratio of Certaln Quadratic
I Forms in Time Series,'" Annals of Math. Stat., Vol. 28, 1957
: ’; In testing hypotheses that successive members of a series of ob-
o servations are serially correlated,a number of statistics have been
’ proposed. Durbin and Watson gave exact distributions for some of these
”“5 when slipghtly modified. This paper extends this work for a non-null case
'li of two of these modified statistics and gives a simple expression for the
= moments of another.
:é 40. Goodspeed, F. M;;fVThe Relation Between Functions Satisfying A
S Certain Integral fquation and the General Watson Transform"
('%g Canadian Journal of Math., Vol. 2, 1950,
X a
ﬂ’ Goodspeed investigates the integral eguation
A
.3' 00
- v o e
4 f F(x) Flu,x)dx = 3=
3 0
=7 discussed in Chapter VI. In particular, a class of furctions F(x)
4 satisfying the equation is sought,
i 131
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fﬁa” 41, Gordon, R. D., '"The Estimation of a Quotient When the Denominator
e Is Normally Distributed," Annals of Math. Stat., Vol. 12, 1941,

jr el

This investigation is devoted to obtaining an estimate of the means

A of components of ratio values obtained in a time series. The time

A N
!

:$$ geries is of the form x/y. Of corresponding interest in the time :‘
W

series are mean values x and y, (true value, b/a). The search is for
an estlmate of (b/a) which has the property that it may be numerically

integrated. Gordon defines a function Y(x) so that

Efy» v®} =Ey « E { v} = (b (ﬁ) = b/a.

e
T ) iem ey |

pr

The function derived by the author iz a funotion of Mills' ratio.

-
Bt

L2, Grab, E. L., "Tables of the Expected Value of 1/X for Positive

Bernoulli and Poisson Variables," Journal of the American Stat.

Agsoc,, Vol. 49, 1954,

Tables of the probability function of o E (%) y where X is a

non-zero random variable described by the positive Bernoulli and Poisson

A Ay
-g . -

e
o
m

o

T

frequency functions are presented. Methods of solutions are presented

which are more efficient than the factorial series method first pre-

!

sented by Stephen[11§ in 1945.

43, Greenwood, J. A., and Greville, T., "On the Probability of Attaining
a Given Standard Deviation Ratio in an Infinite Series of Trials,"
Annals of Math. Stat., Vol. 10, 1938.

Investigations are directed toward finding the probability that the

ratio of the deviation from the expected number of successes in a

L i o |0 o st el

Binomial experiment of n trials, (xn - np),to the standard deviation
'Jxmpq (recomputed after each triasl) will exceed some positive number k.
The authors prove that if tn =(xn-np)7%pq, then for some n the probability

tn = k is unity.
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)
s
. 44, Greville, T. See Greenwood [43] .
¥ 'ﬁ 45. Gumbel, E, J. See Keeney [647 .
'g. h6. Gumbel, E., J,, "The Geomotric Range for Distributions of Cauchy's
h“ Type," Annals of Math. Stat., Vol. 21, 1950.
",A;',. The author considers the distribution of the reciprocal of the
l..
X
:v geometric ranpge of large samples drawn from population characterized
“yl
;jﬂ by the Cauchy (or nearly Cauchy) distribution, Brief tables and
- graphs of the probability functions are presented.
\.‘
!b‘
= 47. Gumbel, E. J., and Herbach, L. H., The Exact Distribution of the
?: Extremal Quotient,” Annals of Math. Stat., Vol. 22, 1951,
L}
LIV
A method of. obtaining the exact distribution of the quotient ¥ ,
by
g “& of the extreme values found in a sample of n > 2 observations taken
I
'ég from the same distribution is presented. This is an extension of the
9
’ author's first published work (1950) dealing with the asymptotic distri-
. éﬁ bution of the extremal quotient. The authors, in this paper, consider
N
\
jq: the Laplace, Exponential, Gamma, Normal and Cauchy distributions as

components of the quotient and present brief graphu of the prob-

=2
r
L

;* sbility function associated with the mample size n.

b

b: 48, GQurland, J., "Inversion Formulae for the Distribution of Ratios,"
oy Annals of Math. Sta%., Vol. 19, 1948.

o Gurla.d gives theorems and proofs that the distribution function

1]

-' e« v LA '

.? G(x) of (nl X, +a,x, + ta xn)/(bl X, + b, x, + +b x) {
R .

X is obtainable if the characteristic function of the joint density E
o function (xl, Xy0 0 0 ey xn) is known. He also presents inversion ;
)

o formulae for G(x) and shows the density function of G(x). Certain cther |
LW -

ﬁf ratios of quadratic forms are investigated.
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k9. Hack, H. R. B., "An Empirical Investijgation into the Distribution
of the F-Ratio in Samples from Two Non-Normal Populations,!
Biometrika, Vol. 45, 19%8.
Experimental data obtained from an agricultural experiment are
uged to estimate the distribution of the F-ratio selected from two

hipghly skewed populations.
50. Haglisg, P. See Krishnaiah [70] .

51, Haldane, J. B. S., "Moments of the Distribution of Powers and
Products of Normal Variates," Biometrika, Vol. 32, 1942,

Various distributions are found, the derivations of which are
greatly detailed. They are: (1) the distribution of a cube of a

normal (O, 1) variable, (2) the general case of the distribution of any

I
i

=

power of a normal variable, (3) the distribution of the product of n

-
.:
R
_Ju3;

independent normal variables, (4) the special case of the product of

-
e

-

3 normal independent random variables, (5) the product of two

X
o

correlated normal variables, and (6) the Galton~Macalister distribution,

52. Hart, B. 1., and VonNeumann, J., "Tabulation of the Probability of
the Ratio of the Meaa Square Successive Difference to the Variance,"
Annals of Math. Stat., Vol. 13, 1942,

VonNeumann determined the distribution of 822/ 32 , the ratio of the
mean square successive difference to the variance estimate, for odd
values of sample size n. In this paper, the probability function
developed is evaluated for other values (specific) of n. The evaluation

methods are dependent upon the Incomplete Beta functions.

53. Hartley, H. O.,, and Ross, A., "Unbiased Ratio Estimatoras," Nature,
vol. 174, 1954.

Ratio estimation used in sample surveys to estimate the population

mean Y of a variate y with the help of the known population mean X of
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some correlated variable X suffer from the defect that they are bilased
estimators and by amounts for which ohly approximate formulae are offered.

Confined here to simple random samples of n pairs Vi X from a

population of N pairs, various ratio estimators of Y can be formed such
as 3" =X _I_ ' /y\ = XT where ;, ;. r are arithmetic means of samples of
x
y
Yo X4 and ;i, respectively. To get exact formulas for the blases one
i

A - ~ — v
obtains E(y) = Y - Cov (i v X] 4 E(y) =Y = cov (E . x) which give
x

~ ~ -y
bounds on the biases: lbias iny|= ¢y/x S | bias in y|£ cy/x - d‘y .
These have previcusly been attained for large sample approximation.
54, Hartley, H. O.  See David, H. A. [26] .

55. Haviland, E, K., "On the Distribution Function of the Reciprocal
of a Function and of a Function Reduced Mod. 1," American Journal
of Math., Vol. 63, 1941,

Proofs are presented which show that under suitable conditions, the
functionsl/x( t) and x(t) possess asymptotic distribution functions if
x(t) does. x(t) is a measur.... real function defined for every t.
This asymptotic distribution function is expressed in terms of the

distribution function of x(t) for certain specified cases.
56, Herbach, L. H., See Gumbel, [47] .
57. Hess, J. , See Kish [67].

58. Hirshfeld, H., O., "The Distribution of the Ratio of Covariance
Egtimates in Two Samples Drawn from Normal Divariate Populations,"
Biometrika, Vol. 29, 1937.

The question of testing whether there is a difference between

correlation in two normal populations is considered. The distribution

135




of the ratio of covariance estimates is found and a detailed discussion
of the sppropriateness of its use in this test is presented. The
development of the dlstribution requires frequent use of the incomplete

Beta function. Some agricultural experiments are detailed.

59. Hogg, R. V., "On Ratios of Certain Algebralc Forms," Annals of Math.
Stat., Vol. 22, 1951.

Necessary and sufficient conditions for the stochastic independence
of the ratio of two random variables and its denominator are given
and this result is applied to special linear forms. More specifically
let x, y be one dimensional random variables with joint density function
g(x, y). Let P(y € 0) = O and assume the moment generating function
M(u, t) =B [exp (ux + ty)] exists for ~T<u, t <T, T>0 ; then in
order that y and r = ? be stochastically independent,it is necessary

-

k k K
and sufficient that 9—-§$%4—3) - 9——5£%ﬂ91 ; EL_EK%?_EL’ k=0,1,2, 040
ou o u dt

3" M(0,0)

o tk

60. Huntington, E. V., "Frequency Distributions of Products and Quotients,"
Annala of Math., Stat., Vol. 10, 1939,

Proofs of four well known theorems are presented. These theorems re-
sult in a mathematical formulation for obtaining the distribution of a

sum, product, quotient and difference of two random variables. As an

example, a geometric proof is given to show that the distribution of the

§] quotient 2 = x/y is given by

"‘A. 1 56
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P
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R
'-!r':}l 00 [+ -]
% - Q(z) = (s, ¥) gly) y dy
L)
o
o -0 0
?_l ‘:"
e where x and y (f(y) » O), are independently distributed random variables.
' et
Bl
6l. James, G, S., "On the Accuracy of Weighted Means and Ratios ," ":J\:Nl‘:
Biometrika, Vol. 43, 1956. gﬁ,Q
e 3

X9+ o ¢ ¢ ¥ are k quantities derived from observations which are

¥

independent and normally distributed sbout the same mean p  but with

. , - 2
different variances ?\1 o )\2 Ty e s ey A o The Ai

i

are known but estimates 512 are used. A confidence limit for M is

"'i
.n:' J!
g required. Let w, denote 1/A 0‘2, the reciprocal -variance or weight
Fal i 1 Y% P
kx 2 -
: of x, ,and let z, denote 1/(A, o;%). Allow w = 3w, and z =) z,. It
o
:::. is reasonable, in the absence of firm knowledge of the true weighta
1t
:::": to estimate X = J w.x./w. The distribution of = wﬁ(;e - m) depends
0 stimate X = L wyXy/¥- M= M) dep
MR
' on the ratio of wo. The desired result ig then to find a function
o v v
y 1 "2 K
;ﬁ M5 -;‘=, - + sy = such that
‘-!:::"
il pe[Ipl € pow] = ».
g
g¢ﬂ This function is found and tabulated for the case k = 2.
b
R
} 62. Johnson, N. L., "Some Notes on the Investigation of Heterogeometry
anl in Interactions," Trabajos De Estadistica, Vol, 13, 1962.
33; In this paper certain important distribution theory of use in
L0
BN the Analyslg~of-Variance model for analysis of interactions is developed,
-'
t
%ﬁ 137
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63. Kac, M., "On a Characterization of the Normal Distributiom,"
American Journal of Math., Val. 61, 1939.

A simple characterization of the normal distribution is presented.
The characterization is bused on an invariant priuciple and admits a

physizal interpretation.

64, Keeney, R. D., and Gumbel, E., J., "The Extremal Quotient," Annals
of Math. Stat., Vol. 21, 1950.

After defining the extremalquotient as the ratio of the largest to
the absolute value of the smallest obgervation in a sample, the
authors investigate the analytical properties of symmetrical, continuous
and unlimited distributions through a ratio defined as a ratio of two
non-negative varimtes with identical diatributions, Among the im-
portant results is the fact that the logarithm of the extremalquotient
iy symmetriocally distributed. Asymptotic distribuvtions of the extremal

quotients from the Cauchyand Exponential distributions are exhibited.
65. Kecten, H.  See Furstenberg [37] .
66. King, E. P. See Lukaocs [82] .

67. Kish, L., and Hess, I., "On Variances of Ratios and Their Differences
in Multi~Stage Sampling," Journal of the Amwsricanm Stat. Assoc,,
Vol. 54, 1959,

The aim of this preseutation is to discusa the computation for the
variances for the estimators r = x/y and (r - r') where the random
variables y and x are sample totals for two variables obtained from a
multi-stage design. The variate x often repregents the sample size which
reprosents the siwplest c¢ase of r. This and several other cames are con-
sidered. Several useful computational forms are presented for

var(r-r') = var (r) + var (r') - 2 Cov (¢,r').
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"
68. Kotlarski, I.. On Random Variables Whose Quotient Follows the
Cauochy Law, Colloquium Mathemuticum, Vol. 7, 1960,

The question of describing a class ¥ of random variables possessing
the property that the ratio of any two independont random variables from
the class having the same frequency function follows the Cauchy distribution
is considered. A method is given for constructing an arbitrary number
of random variables belonging to * along with the necessary and sufficient
conditions for belonging to)‘ « Mellin transforms are used throughout
the analysis. It is shown that the random veriables whose frequency

functiong are determined by the Mellin transforms which are solutions

to the functional equation h(z) h(-z) = 1 , (‘1"Re(5)‘1) '
cos 2

2

in the class of Mellin transforms of symmetrical random variables belong

m

to the class * »

69. Krishnaiah, P. R., P. Hagis, and L. Steinberg, The Bivariate Chi
Distribution, Technical Report #3, Applied Math. Dept. Remington

B ulgt ey !'
0
Rand Univac, Philadelphia, 1961, ??0‘5
k)
1" "
?0. Krishnaiah, P. R., Hagis,P., and Steinberg, L, A Note on the ()

Bivariate Chi Distribution, " SIAM Review, Vol. 5, 1963,

Several properties of the bivariate c¢hi p.d.f. are discussed with
some mention of possible applications. Moments of the Jjoint p.d.f. are
presented and the distributions of the sum of 1] and V and the ratio

Z = U/V are shown.
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71. Kruskal, W., "The Monotonicityof the Ratio of Two Non~Central t
Density Functions," Annals of Math. Stat., Vol. 25, 1954.

The ratio of two different non-central t density functions with

the same number of degrees of freédom is shown to be strictly monotone

i e
¥ e O

with sense depending on the relative values of the two non-central

3 constants. The author also cites several statistical applications in

% which the ratio of two non-central t density functions arise.

q

]
fh 72. Kuh, E., and Mayer, J., "Correlation and Regression Estimates When
N the Data are Ratios," Econometrica, Vol. 23, 1955.

1)

ﬁ The authors examine the influence of rutio tranesformations on
g

;f correlation and regresaion estimates. After & discussion of the
) "spurious" ratio correlation problem, necessary and sufficient conditious
)
f: are deduced for the correlation between two series with a comwon
'% denominator to equal the partial correlation between numerator series

%

with the deflating variable's influance heid constant. It is shown that

b
f$ conditions must be fulfilled to obtain the hest linear unbiased least
i
;3 squares estimates when the data are in ratio form.
y
; ?%. Kullback, S., "The Diatribution Laws of the Difference and Quotient
N of Random Variables Independently Distributed in Pearson Type III
& Laws," Annals of Math. Stat., Vol. 7, 1936.
N
:a The distribution of the difference u = x-y where

L

o % xP-l oY o~1 0=<x =00

KA = : = -
§ () =y ¢ f9 = Fm e Y Yoy o

N
'% is first found. The distribution function of the quotient w = x/y is
;' investigated through the utilization of the transformation w = e where
L“
W u = log x ~ log y. The distribution function P(u) is found and with
q
N appropriate substitution the solution of the distribution function of the
]
"

quotient is found.

o0
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74, Laderman, J., "The Distribution of Student's Ratio for Samples of
Two Items Drawn from Non~Normal Unlverses," Annals of Math, Stat.,
Vol. 10, 1939,

The formal expression for the distribution of student's t is
derived from samples of two drawn from any population having a con-
tinuous frequency function. A geometric method similor to that used

by Rider is used.

75. Laha, R. 3., "An Example of a Non-Normal Distribution where the
Quotient Follows the Cauchy Law,’” Proceedings of the National
Academy of Science, Vol. hli, 1958,

For x, y, independently and identically distributed random variables,

p
(the density function of x being f(x) = -ﬁ’I-F:— . 1 , =0 € X < 0,),
1+X

it is shown that the ratio x/y follows a Cauchy distribution thus
proving untrue a preéviouasly well known conjecture that this was a unique

property of normal variates.

76, Laha, R. G., "On the Laws of Cauchy and Gauss," Annals of Math.
Stat., Vol. 30, 1959,

It ig well known that x/y followa the Cauchy distribution when x
and y are normal (O, ot ). The question arises, "is it posasible to
obtain a characterization of the normal distribution by this property
of the guotient?". Laha constructs a class of functions which have the
property that their ratios are Cauchy distributed but the components
are non-normal. He also presents and proves several important lemmas

concerning characterizing distributions.

?77. Lsha, R. G., "On a Class of Distribution Functions where the Quotient
Follows the Cauchy lLaw," Transactions of the American Math,Soq.,
Vol. 93, 1959.

The author again concerns himself with the distribution of the ratio
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of identically distributed random variables with a commonr distribution
function F(x). If the ratio follows the Cauchy law, is F(x) necessarily

normal? Laha conastructs a different class of funoctions in this article.

78. Loeve, M., "Fundamental Limit Theorems on Probability Theory," Annals
of Math. Stat., Vol. 21, 1950,

The fundamental limit theorems on probabllity theory are classified
into two groups. One group deals with the problema of limit laws of
sequences of sums of random variables, the other deals with the problem
of limits of random variables in the sonse of almost sure convergence.
This article is a detalled development of the aignificant results in

each class as they were chronologirally achieved,

79. Link, R. F., "The Sampling Distribution of the Ratio of Two Ranges
From Independent Samples," Annals of Math. Stat.; Vol. 21, 1950.

Investipgation of the joint sampling distribution of the ratio of

ranges, '1/w2. where w, = (xn - xl)/hr , are made for certain specified

distributiong. Tables of valuas of Prob (wl/w2 £ R) are presented. The
underlying distributions congidered are 1) Rectangular Distributiom,

2) e *, and 3) Normal Distribution.

80. Link, R. F., "A Correction To: The Sampling Distribution of tae
Ratlio of Two Ranges From Independent Samples," Annals of Math. Stat.,
Vol. 23, 1952.

A correction showing that the probabilities computed in the refercnce
above are correct only when R€ 1 is shown. P. R, Rider ("The Distri-
bution of the Quotients of Ranges in Samples from a Rectangular Population,"

Journal. American Stat. Assoc., Vol. 45, 1951) gives the correct density

function for R 2 1.
142




81. Lukacs, E., and Sz‘éz. 0., "Certain Fourier Transforms of Distri-
butions," Canadian Journal of Mathematics, Vol. 3, 1951.

The question of when a given function can be the characteristioc
function of a probablility distribution is considered for a restricted
class of functions; namely, functions which are reciprocals of poly-

nomials, with the view in mind of deriving ronditions which are easy to

apply. The lollowing necessary conditions are derived:

If the reolprocal of a polynomial without multiple roots is a
characteristic function, then the following two conditions are sutisfied:
(1) The polynomial has no real roots. Its roots are either all on
the imaginary axis or in pairs + b + i a symmetric with repard to

this axis.

(2) If b+ia (a, b realj a £ 0, b # 0) 48 a root of the poly-

nomial then it has at least one root i e such that sgn o = sgn a

and |oCl £ |al .

The assumption concerning multiple roots is used 1in deriving (2).

82. Lukacs, E., and King, E. P.,, "A Property of the Normal Distribution,"
Annals of Math, Stat., Vol. 25, 1954,

The authors prove the theorem under Basu [10] imposing slightly less

restricted conditions. Their conditions require only that the random
variables X190 X3y » o o 4 X may or may not be identically Jistributed

and pcssess finite moments of order n.

83. Mann, H. B., and Whitney, D. R., "On a Test of Whether One Variable
is Larger than the Other," Annals of Math. Stat., Vol. 18, 1947,

Let x and y be two random variablel with continuous cumulative distri-

bution functions F and G. A statistic u depending upon the relative ranks
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of the x's and y's is proposed in this paper for testing the hypcthesis
F = G. The conditions under which f(u) is developed are stated and uses

of the test of hypothesis are given.
84, Mayer, J. See Kuh [72] .

85. Mauldon, J. G., "Characterizing Properties of Siatistical Dictri-
butiong,"Journal of Math, Oxford, Vol. 7, 19%56.

i Three problems dealing with the general theme of when does the
distribution of a sampling statistlic determine that of the population
are discussed. A represzntative problem is described as follows:

Consider X and Y to be independently distributed variates sach
that r = X/Y has the general F distribution,

_— ["(a+b) _ i
[ (a) (v (14v)8*P

dv, O« v £ 003 a8, b> 0.

Is it still true that X and Y need not he chi-square variaies?

86. Merrill, A. S., "Frequency Distribution of an Index when Both Com-
ponents i llow the Normal Law," Biometrika, Vol. 20, 1928.

One of the earliest papers to investigate the deviation of
error in the normal. distribution approximation Zor the ratio of two
rundorm variables. In this paper, the author investigates the ratio of
the form (y + y)/(x + X) and, through graphic means, demonstrates that
whet. correlation is high between x and y and the coefficients of

variation large, there is a considerable deviation from normality.

87. Mickey, M. R., "Some Finite Population Unbiased Ratio and Re-
gression Estimators,”" Journal of the American Stat, Assoc., Vol. 54,

1959.

A clags of ratio and regression type estimators is given such that

R R O T



the estimstors are unbiased for random sampling, without replacement,
from a finite population. Non~-negative, unblased estimntors of
population variance are provided for m subclass of these. Similar re-
sults are given for the case of the generalized procedures of sampling
without replacement. Efficiency is compared with comparable sample

gelection and eatimation methods for this case,

88, Mills, J. P., "Table of the Ratio: Area of Bounding Ordinate for
any Portion of the Normal Curve,' Biometrika, Vol. 18, 1926.

The tabular values for .00 € x < 10,00 (in increments of .01) of

w

and a discussion of its derivation and many possible uses are presented.

S 89. Moore, P. G., "Transformations to Normality Using Fractional Powers
. of the Variable," Journal of the Amexican Stat. Assoc., Vol.52, 1951.

AN
o An ei;amination of the properties of a csrtain class of trans-
b
"g::. formations is made under the mssumption that they are deaigned to
. N
L)
Co transform the variate X into some formof the normal distrihution. The
<
‘_!:" class of trangsformations is that of
o
""3 'je'_:lzl x"",o <y < 1 aad non-uegative ¥ ,

Some congideration is given to a Type IIT variate X, in respect tz the
use of (X - of)¥ where o is alzo a random variable and is distributed

uniformly ou the interval [0, 1] .

90, Murty, V. N., "The Distribution of the Quotient of Maximum Values
in Samples From a Rectangular Distribution," Journal of the

)

j American Stat. Assoc., Vel. 50, 1955.
'E . When there is a priori knowledge that two samples have been drawn
- from rectangular populationswith {he same lower hcunds, the hypotheais
.3}': 145
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that both samples have been drawn from the same population can be

" tested by means of the quotient of maximum values. The distribution

L
i)
;k ! of thig statistic is derived, and its properties studied. Explicit
E
g
A .g'! expressions for the power function of the test are given, and a
Lﬁi' table of 5% values of the quotient is presented for sample sizes up
OO0
?9: tu ten.
8
C|.'
O 91. Nair, K. R., "The Distribution of the Extreme Dcviate from a
Sample Mean and Its Standardized Form,'" Biometrika, Vol.35, 1948,
Y
oy Lsnote Hyw + oo s X, B84 random samnle of n obgervations drawn

from sny statistical universe so that tle obgervations are ranked in

“see

ascenasing order of mugnitude, The suthor first summerizes the efforts

. e

.,:ﬂ of other studies of the distribution of X, In this paper attention
25 ﬂ is concentrated on McKay's method of solution [Bigmn&xigg. Vol.27,
:‘ B

p. 466] . It is shown that the distribution of u = (xn—xr/ o),

B

(termed the MoKay statistic), can be found in a more direct way than

et »
e

that utilized by McKay. The distributior of u is reducad to certain

integrals termed G-functions., Tabular values of f(u) are presented.

)

92, Newman , D., '"The Distribution of the Range in Samples From a
Normal Population in Terms of an Independent Estimate of the
Standard Deviation," Biometrika, Vol. 31, 1939,

The author makes use of the results obtained by K. Pearson in

computing probability lovgls for w/q", where w = the sample range and

¢ = population variance,to determine appropriate corresponding levels
of w/e where s is the independent estimate of ¢~ based on the sample.
The distribution of q = w/s is obtained and factors to convert

E(q) to E(w/o~ ) are presented,
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93. Nicholson, C., "A Geometric Analysis of the Frequency Distribution
of the Ratio Between Two Variables," Biometrika, Vol.32, 1941.

An interpretation of the geometry of the distribution of (Y+¥)/(X+X)
where X, Y are normal (O, oy o;) and independent is presented. The

case of dependency ls glven some consideration.

94, Noether, G. E., "Two Confidence Intervals for the Ratio of Two
Probabilities and Some Meazures of Effectiveness," Journal of the

e -
-
v

3f§ American Stat. Assoc., Vol.52, 1957.
TN
._.F*‘
‘ The problem of comparing a success rate of hypothetical experi-
iﬁ mentul method with that of a standard method is attached using the
v
§
':'-" statistic
" P, - F
‘w‘l. P = 2 l
- 1-P
;ﬁyl 1
: ?- where Pi' i =1, 2, represent the success ratio of the old and new
!
“fﬁi methods, reaspectively. This is & departure from the usually method of
ot finding a confidence limit on the difference Z&: P2 - Pl' The re-
.;;i;
a$ lative advantages and disadvantages are discussed.
PR |
el
'33# 95, Olkin, I., "Multivariate Ratio Estimation for Finits Populations,"
“" Biometyrika, Vol. 45, 1958,
a% This paper is concerned with the extension of ratio estimation to
ah
Y
-~K% the case where multi-auxillary variables are used to increase presision.
y.tﬁ
The following model is presented:
N
. adl -
-$§ Population Y., . « « , Y i Y unknown
Qé 1 n -
b . 3 _ Y
éz Y90+« + 9 X3 X # O known, R = .
[ L] 1
I X, X 3‘(. £01! R ¥
" :’: p],’ LI S pn, P aown, P = ..x.
e :;: and the (p+l) x (p+l) covariance matrix is known.
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r, X, ++..+w r X where

The proposed estimator of Y is ¥ = w
FrOP oy 171 PPP

1

w = ('1’ v oe oy wp), E:'i = 1 is a weighting function and r, =

'__‘_Nlr<l

As 1s the result from the univariate case, ¥ is shown to be
biased in general but consistent. The Hartly-Ross estimator is
generalized to yleld an unbiased estimator of Y.

A large sample approximation is given for the mean, variance and

mean square error (to O(n-a)) and the optimum choice of the welghting

function (mo as to minimize the variance of ¥) is discussed.
96. O'Neill, A. See Barton [9] .

97. Pearsom, K., "On the Constants of Index Distributions,!" Biometrika,
Vol. 7, 1910,

The frequency distributiom of R = X/Y is investigated by calculating
the distribution of R = 2X when 2 = 1/Y. The known properties of X and
Y distributions are used to develop expressions for the moments of
R = X/Y. Pearson applies this method to obtain a distribution of an
Opsonic index. The coefficienta of variation, means, and standard

deviations of the raw data are kinown.
.98, Pearson, E. S. See David, H. A. [26].

99, Pillai, K. C. S., and Ramachandran, K. V., "On the Distribution
of the Ratio of the i% Observation in an Ordered Sample from a
Normal Population to an Independent Estimate of the Standard
Deviation,” Annals of Math. Stat., Vol. 25, 1954.

——

’..?_.'

A

The distribution of an observation, X,y in an ordered sample of

' ¥ AL

size n from a normal population with zero mean and unit standard

deviation is developed as & geries of Gamma functioms. This distri-

Ao 2

bution, in turn, is utilized to find the disiribution of q, = (xi/s)

| @




where s is an independent estimate of the standard deviation with v
degree of freedom. In a similar manner, the distribution of the

"gstudentized" maximum mndulus un = |xn/s| is obtained. Uses of these

statistics are investigated.
100. Pothoff, R. F. See Roy [113] .

101, Des Raj, "On Mill's Ratio for Type III Populations,"_Annals of
Math. Stat., Vol. 24, 1953.

Several authors have studied the Mills' ratio, i.e., the ratio
of the area of the standardized normal curve from x to co and the
ordinate at x, The objective of thim note is to establish the mono-
tonic character of, and to obtain lower and upper bounds for, the

ratio of the ordinate of the atandardized Type III curve at x and the

area of the curve from x to .
102, Ramachandran, K. V. See Pillai, [99] .

103, Reiter, S.,, "Egtimates of Bounded Relative Error for the Ratio of
Variances of Normal Distributions,'" Jourmal of the American Stat.
Assoc., Vol. 51. 1956,

A method of comparing the variability of two competing industrial
processes is investigated. In this paper, the process whose variability
is in question behaves like & normally distributed random variable with
012 representing the variance of the first process and 052 that of the
second, The ratio 012/052 is dinvestigated not through the normal
F distribution, but through methods of obtaining a bounded relative

error, & minimax estimate as suggested by Girshick in Theory of Games

and Statistical Decision, Wiley and Sons, 195k,
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104. Rider, P. R., '""The Distribution of the Quotient of Ranges im
Samples From a Rectangular Distribution," Journal of the Anerican
Stat. Assoc., Voil. 22, 1951.

The distribution of the quotient of the ranges of two independent
random samples from a contlinuous rectangular distribution is investi-
gated, The distribution is shown to be independent of the population
range. Uses of the distribution are discussed. The special case of
equal sample sizes is investigated and four brief tables of probabilistic

values are presented.

105. Rider, P. R., "The Distribution of the Product of Ranges in
Samples From a Rectangular Population," Journal of the American
Stat. Assoc., Vol. 48, 1953.

A general formula is given for the product of the ranges of two
independent samples from a rectangular population. The formula does
not apply to cases where the sample sizes are the same or if they differ

by unity. Special considaration has beem given to these two cases.

106. Rider, P. R., "The Distribution of the Product of Maximum Values
in Samples from & Rectangular Distribution," Journal of the
American Stat. Assoc., Vol. 50, 1955.

This note is to supplement the article by Murty[90] by deriving
the distribution of the product of maximum values in random samples
from a rectangular p.d.f. The case of the product of K maximum

values of samples of equal sizes is also considered,

107. Rider, P. R., "Generalized Cauchy Distributions," Annals of Inst.
Stat. Mathog Vol, 9' 1958-

This paper compares the asymptotic variance of medians in samples
of size n from any distribution (which is continuous and possesses a con-

tinuous first derivative in the vicinity of the median) with exact
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N variances from distributions of the following type:

ER |

ity -h
‘::'l £f(x) = C (1 + [x-o] k)
Tl

R Cex L

where:

e - rEne2)

e R S

0 :
g &
o It is seen that for appropriate values of k and h, f(x) becomes the W
e N
e Cauchy and Student~Figher distributions. -
.’&!" ‘ ':;
jﬁg 108. Rider, P. R., "Variance of the Median of Samples from & Cauchy ‘ﬁ
! Distribution," Journal of the Americam Stat. Assoc., Vol.5%, 1960, !
o,:‘o )
Ay
'fﬂ The exact values of the variances of the medians of small samplen
. A from m Cauchy distribution are given. The tgbular values have been
L)
)
'“hs computed from the integral expressiom representing the frequency
‘.‘. "
Wb
25 function of the median of & sample of[z K+ {]observations. Values of
W k considered are integer values up to 15.
L) .‘f
. _".0.1
15&' 109. Rider, P. R., "Expected Values and Standard Deviations of the
:ﬁu Reciprocal of a Variable from a Decapitated Negative Binomial
R Distribution," Journal of the American Stat. Assoc., Vol. 57,
. 1962.
(o
j‘\ Tables are given of values for the expected value of 1/x, l/x2
1
i
3:$§ and the standard deviation of 1/x where x follows the negative bi-
X
b nomial distribution whose zero class is deleted. A recurrence relation
an
ygi is established using the form
o = i
"gﬁ Em(k) = E Kt . "
~ x=1 ;!
W (1) -7
'b' A closed form of Em (the expected value of 1/x) is obtained and &4
. e !
A "
.:g results are computed . .r.rically, '
g ;
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110. Rietz, II. L., "On Certain Preoperties of Frequency Distributions
Obtained by a Linear Fructicnal Transformation uvm the Variates
of & Given Distribution," Annals of Math, Stat., Vol. 2, 1931,

oo

Lol
=

i
0
\ Certain properties are examined of the distribution of the variatens
‘} u, = (e X, + £)/(g X, + h) obtained by & linear fractional transformation
A"s'd
f#" of the x's where e, f, g,and h are real numbers so selected that
v " u=(ex+ £)/(g x+h)
3‘-5
is continuous ~1 € x < 1.
,E“ This investigation results in observing the properties of the differential
(3N
g.% equation %’% = E_e__-___{g .
R (gx+h)
111. Rietz, H. L. "On the Frequenoy Distribution of Certain Ratios,"
X Annals of Math. Stat., Vol. 7, 1936.
e
; A general resumé’ of the published articlea of the early investi-
e
o gations of ratios is presented. In addition, a geometrical description
W
5& of the distribution of the ratio t = y/x for several cases im whioh
%
ja{ X, y are taken to be uniformly distributed over certain simple geometric
e,
" shapes 1s presented. The author considers four cases, the simplest
0 Gy
;%: being that in which x and y are uniformly distributed over the offmet-
A,
"“‘
ﬁ&: rectanguler plane.
L‘_i\:D
e 112, Rietz, H. L., "On the Distribution of the Student Ratio for Small
fuq Samples From Certain Non-Normal Populatiocns," Annals of Math. Stat.,
Wi Vol. 10, 1939.
)
'f The author investipgates the behavior of students ratio when ob-
L
; servations sre tuken from certain non~normal distributions. Measures
o
\J
v& of efficiency are given as the effects of departure from normelity are
N
i \
&a deacribed through regresslon techniques applied to the original data.
R
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11%. Ross, A. See Hartley [53]) .

114, Roy, S. N., and Pothoff, R. F,, "Confidence Bounds on Vector
Analogues of the Ratio of Means and the Ratio of Variances for
Two Correlated Normal Variates and Some Associated Tests," Annals
of Math. Stat., Vol. 29, 1958.

In this paper confidence bounds are obtained on the ratio of

variances of a (possibly) correlated bivariate normal population,

and then by generalization, on a set of parametric funotions of a

correlated p + p variate normal population and on the ratio of means &E‘:‘é
of these two populations. ':::
i
115. Scheffe; H., "On the Ratio of the Variances of Two Normal. Populations," Ann. e
of Math. Stat., Vol. 13, 1942, v';:
This paper presents 4 concise and rigorous presentation of the .
methods of testing whether two variances may be considered egual when &,
estimated from samples from a normal population. The presentation details 0
the significant tests and confidence interval methods based on the ’\
F distribution and on Neypan's various criteria, ::; ;
116. Shellard, G. D., '"On Estimating the Product of Several Random ',go:'.
Variables," Journal of the American Stat. Assoc., Vol. 47, 1952, :;é:
Through the applications of the central limit theorem and logarithmic E::t::‘é
trangformations, the author finds a suitable approximation to the follow-
ing problem: Let xi,i = 1ly « « + y n be random variableg with mutually &E;é
independent distributions and let X = 7 x;. What is the probability E\';Eg:
that X lies between A and B, i.e., Pr {A <X «<B } ? An lnvestigation ‘
of the error introduced in a few simple cases ls investigated. %ﬁg
N
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1}-',!}
et

:il‘;-l‘

B

:i'::.'

s

;:'.ftf 117. Steck, G. P., "A Uniquoness Property Not Enjoyed by the Normal
: Distribution," Annals of Math. Stat., Vol. 29, 1958,

el
":»"‘:c Counter-exomples are construated showing that a ratio following

a Cauchy distribution does not necessarily have normally distributed

;‘l (1
et

components., The author uses Fourier transforms of specially defined
: B
ggugfi functions to construct his oounter-examples.
BLA
.3‘9\:‘:1‘ o
e 118, Steinberg, L. See Krishnaiah (69 , |70}
-H-'l'!,rﬂi
. 119, Stephan, F. F., "The Expected Value and Variance of the Reciprocal
" ) and Other Negative Powers of a Positive Bernoulli Variate,” Annals
AW of Math. Stat., Vol. 16, 1945.
By
B Moments of the positive Bernmoulli distribution,
Y 1
::!:"' n n n
;}'2' px) = (x) p* " / (1-q)
8
e '
"':;c where x, n are integers, 1 = x =< n,
n;;"" are found through the application of factorisl series. Other distri-
L]
]
E?.:u' butions such as the positive Hypergeometric and Polsson are considered.
any
oty
L)
_"ﬁ" 120. "Student", "The Probable Error of the Mean," Biometrika, Vol. 6, 19
i.:'l:l; The classic paper is divided into nine sections, the most note-
." ..
{::::o:: worthy are those showing:
T.f::j:

I. The derivution of the frequency distribution of the standard

"' 3 deviations of samples drawn from a normal populat'ion, and
.. g IT. that the mcan and standard deviation of a uumple are
i “‘
- independent.
s ,
“:::':' 121, Szasz, O. See Lukacs [81] .
S
"...‘:’.
i

154

A P Y ST O U L TR S A T



! 122. Thompson, W, A., "The Ratio of Variances in a Variance Components

ﬁsgg Model," Annals of Math. Stat., Vol. 26, 1955,

:‘:E This disoussion concerns A , the ratio of two variances which
;?&' arise in "mixed' incomplete block designs. A class of invariant

.§§I statistics for a test involving this ratio 1s developed as well as the
?ga joint distributions of this statistic. The test is used for the

;.“e;‘! hypothesis A < Ao VB. A > 3\.1 .

e |

:Nm 122. Thompson, W. R., "On a Criterion for the Rejection of Observations

o

and the Distributionof the Ratio of Deviation to Sample Standard
Deviation, " Annals of Math., Stat., Vol. 6, 1935,

7";%‘-1'

o

The distribution of r = -E- where 8 is the sumple standard deviation

and & is the deviation of an arbitrary observation of the sample from

-

!?ﬁ%

the sample mean is developed. Thils distribution is discussed in re-

‘.r‘b‘s Dt
- e WE Vo

lation to its use in the criterion for rejecting certain elements from

a sample.

124, Thompson, G. W., "Bounds for the Ratio of Range to Standard
Deviation," Biometrika, Vol. 42, 1955.

w';:o‘ This work supplements the work of David, Hartley,and Pearson om

y

‘i?« the distribution of the ratio of the range w Lo the standard deviation
!

N 8. Bounds are shown to exist for w/s for all populations with non-zero
-‘,;;: variance and percentage points are given for samples of three from a

)

"

s::;' normal population. It is also evidenced that the bounds are distri-
".,".

ﬁ.‘_ bution free.

i

;%ﬂ 125. Tippett, L. See Fisher [36] .

o
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126, Tukey, J., and Wilks, S. S., "Approximation of the Distribution
of the Product of Beta Variables by a Single Beta Variable,"
Annals of Math. Stat., Vol. 17, 1946,

Certain maximum likelihood ratic test criteria have been shown to
be distributed as a product of k-l independent Beta variables. The
purpose of this note 1s to consider a method of finding a fractional
power of this testcriterion which is approximately distributed accerding

to the incomplete Beta dlstribution function
ERINC
and to find appropriate p and q.

127, VanUven, M. J., "Adjustment of & Ratio,' Annals of Bugenics, Vol.9,
1939,

Given n pairs of observations xl, Yyv oo o v X Y where Xpr Vi
are assumed to have the same weight 8 and all observations are

X
putually independent the different ratios am, = ;E are adjusted to be

koo
"best" value m. Taking x, y as rectangular coordinates this means to
find the straight line through the origin that fits the points
PK(xk, yk) best. In this paper the probability distributions of
¢ertain quantities involved in the adjustment are investigated assuming

that the true errors ianvolved in the observations are normally distri-

buted.

128. Von Neumann, J., "Distribution of the Ratio of the Mean Square
Successive Difterence to the Variance," Annals of Math. Stat.,
Vol. 12, 1941,

Let x,, « « « 4y X be variables representing n successive obser-
1 n
vationa in a population which obeys the normal distribution law., Define

the mean and standard deviation estimates in the usual way and let the

156




mean square successive difference Babe

n-~1

2 1 2
&= m——) E (xml-x)u) .
A=l

o
The distribution of & and, in particular, its moments are studied here.

e '. G : 20

' 129, Von Neumann, J. See Hart [52] .
.
e 130, Whitney, D. R. See Mann [83] .

131, Wilks, S. S., "Certain Generalizations in the Analysis of Variance,"
Part 4 of '"Moments and Distribution of the Ratio of Independent
Generalized Variances," Biometrika, Vol. 24, 1932,

The moments and distribution of the ratio of independent gere¢ralized
variances for samples from a multivariate normal population are determined.

The generalized sample variance is defined as the determinant | ai;j'

N

(M) Wh e a = . = ¥ N - . - i = l e 4 @
‘:;:’! er i] agi N Z(xlo( xi)(xa% xj) (1, ] ’ ’ n), when
. .:"‘, J=1

,:‘::5: a sample of N items from a n~variate normal population is taken.
"W N

5.'§

o - 1 . [

= - L. . th y

. _;:"; xi N ;—’ yioL igz the sample mean of the i% variate, xio(. the value
S

i o= 3 '
;:'::: of the i% variate xi for the o® &ndividua]]. The generalized population Q
. bq.l. E
ol 1

" variance A is defined to be A =lc3"'i cr":j pjj' where o~y ig the o
< 104 i
" standard deviation in the population of the i¥ variate and (pid) is the 3’.{
o h
RN matrix of population correlations. Q
i; l‘ .
| T 132. Wilks, S. S., See Tukey [125] . ;
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133, wiliiams, J. D., "Moments of the Ratio of the Mean Square Successive
Difference to the Meen Scuare Difference in Samples from a Normal
Universe,! Annals of Math. Stat., Vol. 12, 194l.

Cunsider a sample of n items, X9 Xor ¢ o 0y xn.from a normal

population with zero nean andvariance 6'2, the variates arranged in

tenmporal order. The moments of the ratio 52 to 82 are derived when

52\ 2
(n-1) 8 -S (xj“xj-bl)

134, Wishart, J., and Bartlett, M., "The Distribution of Second Order
Moment Statistics in the ilormal System," Proc, Camb. Phil. Soc.,
Vol, 28, 1932,

Let x be a normally distributed variable and the distribution is

written ss

2
dp = (21rk2)'” o Ve X /Ky ax

where k2 is the semi-invariosut of order 2. Tle moment generating

function of the distribution of x2 is developed. From this the

generating function of the semi-invariants (kr) of x2 is dcveloped.

135, Yuan, P. T., "On the Logarithmic Frequency Distribution and the
Semi-iogarithmic Frequency Surface," Annals of Math. Stat., Vol.4,
1933.

The logerithmic frequency function

oy A ARBIN 3 R
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!il‘ 1 b Al ) 2
35 —p (log )

1l 2¢

s @
"F_’ ™ clz-a)

Ls investigated.

Various methods of determining the parameters of this frequenocy

";ﬁ function have been proposed by different authors. This paper utilizes
[ 1
,hv the method of moments and presents tables facilitating the computation
i
5
MI;! of constants by this method.

4 136, Tables of the Bivariate Normal Distribution Funciion and Related
i : Functions, National Bureau of Standards, Vol. 50, Applied Math.
et Series, 1950,

:

&

0 137. Owen, D. B,, "Tables for Computing Bivariate Normal Probabilities,"
o Anials of Math., Stat., Vol. 27, 1956,
)
iﬁ 138, Pearson, K., Tables for Statisticians and Biometriciansg, Part 11,
gkl Cambridge University Press, 1931 It
. O Y,
’* y 139. Cadwell, J. H.y "The Bivariate Normal Integral," Biometrika, Vol. 38,
| 1951. N
o T
'3'| 140, Gupta, S. Se, "Probability Integrals of Multivariate Normal and .::.'::
:ggl Multivariate t,”" Annals of Math. Stat,, Vol. 34, 1963, e
H

-

P S
P

141, Watson, G. N., Theory of Sessel Functions, Cambridge Univeruity

5: Press, London, 1922,
Vé: 142, Luke, Y. L., Integrals cf Bessel Functions, McGraw-Hill Book Co.,
! Inc., New York, 1962.

143, Tables of the kExponential Integral, National Bureau of Standards,
Vol. 1%, Applied Math. Series, 1951,

é 144, The Probability integral, British Assoc. for the Advancement of
4] Science, Math. Tables, Vol., Vil, 1939,

.

s 145. Tables of the Krror Function and lts Derivative, National Bureau

TR of Standards, Vol, 41, Applied Math. Series, 1954, by

Lol 146, Kendall, M. G., The Advanced Theory of Statistics, Vol. 1, Hafner v,::‘
.; Fublishing Comp., New York, 1958. l.,gsg
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