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Summary

The following missile assignment problem is considered. Missiles
are to be assigned to targets in two distinct steps. First, each
missile is programmed so that 1t can be fired at any one of a small
number of targets, the number of targets being the missile capability.
The programming of the missiles 1s represented by a qualification
matrix Q. Second, if battle occurs, all missiles are to be assigned
to targets and launched, Each missile must be assigned to a target for
which it is programmed. It is assumed that only a random subset X
of the missiles will actually be available for battle, and so the
assignment must be made for a reduced qualification matrix Q(X). The
questions considered are "what is an optimal assignment given the reduced
qualification matrix Q(X)?", and "what can be expected from this assign-
ment?" Use of a damage function is proposed. An optimal assignment is
one which maximizes the value of the damage function. The damage function
may be chosen to represent a wide variety of optimization requirements.
The main part of the paper describes Monte Carlo procedures for estimating
the expected damage and the probability that the damage will be at least
¢ for any number c. In an appendix several examples are given to
{1lustrate the use of the damage function. Another paper [1] describes

an algorithm for finding an assignment which maximizes the damage function.
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Introduction

This note deals with certain mathematical problems connected
with the assignment of missiles to targets. The problems are those
which arise because the missiles have a multiple target capability.
The assigmment of such missiles to targets occurs in two distinet
steps. First, each missile is programmed so that it can be fired at
any one of a small set of targets. The number of targets for which
the missile may be programmed is its target capability. Second, when
battle actually occurs and the missile is to be fired, it is assigned
to one of the targets for which it is programmed. The second step,
i.e. the assignment of the missile to a target, takes almost no time.
However, the first step, the programming of the missile for a set of
targets, is very time consuming. Therefore, we assume that if battle
actually occurs, the missile cannot be reprogrammed but must be fired

at one of the targets for which it is already programmed.

When battle occurs, it may be that not all of the missiles are
available. Still because of the multiple target capability, there will
be many different ways of assigning the available missiles to targets.
One problem is to pick the best possible assignment. Another problem
is to evaluate the effectiveness of the original missile programming.
Because of the complexity of the final assignment procedure (the
procedure which picks out the best assignment of available missiles),

this problem must be done by the Monte Carlo method.

To describe the problems more precisely and introduce some of our

terminology, let us look at a simple example.




Consider a group of nine missiles, each missile having a capability

of two targets, and suppose that there are six targets. The group might

be set up with the missiles programmed as follows:

Missile Targets Missile Targets
1 1,5 6 3,6
2 1,6 7 34
3 1,2 8 b5
4 2,5 9 4y6
5 2,3

We will represent this programming of missiles by a qualification matrix

Q:

11 100O00O0O00O0
060 01 110O0O00O0
Q____000011100
0 000 0O0T1T121
1 061 0O0O010O0
01 000 10O 1/,

I5¢ qij = 1, this means that missile j 1is qualified, i.e. programmed,
to go to target i. Thus, for Q, we have 97 T 95 ~ q13 =1, so

missiles 1, 2, and 3 can all be fired at target 1.

Now consider the situation if battle actually occurs. It may well
be that not all missiles are avallablej some might be out of order,
disable by enemy action, or already used. Suppose that missiles 3, 4,
and 8 have been eliminated. Then the situation is represented by this

qualification matrix:




11000 O

0 01 00O
o011 10
Q2—

0 000 1 1

1 00 0 0O

01010 1/.

The first problem to consider is: Find an optimal assignment

of missiles to targets given a qualification matrix such as Q2. We
will call this the basic assignment problem. In this basic assignment

problem we assume that all missiles are to be launched; we do not

consider the possibility of keeping some missiles in reserve.

Clearly, the first thing we must do in attacking this problem is
to define the term optimal. We propose the use of a function that gives
for each assigmment a number called the damage for that assigmment. An

optimal assignment is then one for which the damage is a maximum. A

natural idea is to make the damage equal to the expected value of the
loss which the enemy will suffer if the missiles are launched with

the given assigmment of targets. However, by suitably choosing the
damage function, many different optimization criteria may be represented.
The appendix contains several examples to illustrate this. It is hoped
that these examples will help the reader gain familiarity with the
damage function concept., Example /4, which shows how to maximize the
probability that all targets are destroyed, is especially interesting.
Precise definitions of the terms "damage function" and "basic assigmment

problem" are given in Section 1. However, no discussion of the solution

of the problem is given. For that, the reader must turn to Reference (1],




which he should certainly read along with this document. There

an efficient algorithm for solving the basic assignment problem is described.

The second problem we consider is: Evaluate the effectiveness of
the original guélification matrixe If we knew that all missiles would
be available for battle, there would be nothing to this problem. The
measure of its effectiveness would simply be the damage for the best
assignment, this being found by the algorithm mentioned above. However,
we do not expect all the missiles to be available for battle, and here
a random element enters the calculation, It seems reasonable to assume
that each missile has probability p of being available. We then ask
what is the expected value of the damage resulting from the best possible
assignment of the available missiles. Except in some simple cases, it
seems impossible to compute this expected damage by analytic methods. Instead,
we turn to the Monte Carlo method. The problem could be attacked
by straightforward simulation, but a better approach is possible. This
is given in Section 2, In addition to asking for the expected damage,
one might want to know the probability that the damage would be at least
a certain value. For example, one might ask for the probability that
all targets would be destroyed. This may also be calculated by the

Monte Carlo method., The calculation is described in Section 3.

1, Damage functions and the basic assignment problem

In this section, we give a precise statement of the basic assignment
problem. The terms defined here will be used freely in the following
sections. No description of the algorithm for solving the problem is

given here. The reader must obtain all information about that from

"
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Reference [1], and it is strongly recommended that he do that before

going on to Section 2, Examples 11llustrating the use of the damage
function will be found in the appendix. The reader might also wish

to look at some of these before continuing to the discussion of Monte Carlo

methods in Sections 2 and 3.

We begin with some definitions. A qualification matrixz Q is a
zero-one matrix, i.e. a matrix in which every element is either zero or
urie, which has at least one non-zero element in each column. A quali-
fication matrix is assumed to represent the programming of a set of
missiles as described in the introduction. The restriction that every
column has a non-zero element means simply that every missile is qualified

for some target.

An assignment matrix A belonging 1o a qualification matrix Q

is a zero-one matrix with the followlng propertiese.

(1.1) If qij = 0, then 84 = 0.

(1.2) For each j there exists ex=ctly one 1 such that aij = 1.

An assignment matrix is supposed to give the targets at which the
available missiles will be launched. Condition (1.1) means that a missile
can be launched only at a target for which it is qualified. Condition
(1.2) says first that a missile can be launched at only one target, i.e.
it cannot go in two directions at once, and second that it must be
launched at some target. This last condition we mentioned in the intro-

auction} to repeat: "1

the basic assignment problem all missiles are to

be launched at once; none are to be kept in reserve."




For an assignment matrix A, we let ri(A) =z 8y i.e. ri(A)

J
1s the number of missiles assigned to target 1.

Let Q bean n X m qualification matrix. A damage function for
Q 1s a function g(i,}) def.ned for all i with 1<1<n and all

j with 0< J < m which has the following properties:

(1.3) g(1,0) = 0 for all 1.
(1.4) g(i,j) 1s for each 1 an increasing function of J.

(1.5) g(1,]) 1s for each i a concave function of J.

If we let »(1,j) = g(i,]) - g(i,3 -1) for J 21, Condition 1.5 is

squivalent to
(1.6) If j < k, then 8(i,k) < 8(i,§).

The quantity g(i,]) may be interpreted as the expected loss which the
snemy will suffer if J missiles are launched at target i. If we
assume that the enemy's total loss is the sum of the losses for each
target, then the expected loss to the enemy resulting from an assignment
according to the assignment matrix A will be

n

i=1
This leads us to the following formulation of the basic assignment
problem: Given a gualification matrix Q and damage function g for

Q, find an assignment matrix A which maximizes the damage d(A) given

b 1. L



An efficient algorithm for the solution of this problem 1s describec
in Reference [1]. In that paper, the problem is described in terms of
men and tasks, but translation into the terms of the missile problem is
easy. For the term "man" in [1], substitute "missile", for "job"
substitute "target", for "output" substitute "damage". The output or
damage in [1] is given by a set of functions fl(j),...,fn(j). The

relation to the damage function g(i,j) is simply fi(j) =g(i,3).

Interpreting g(i,j) as an expected loss, the Conditions (1.3)
and (1.4) are obvious. The Condition (1.5) is, however, a significant
restriction on the class of damage functions which we allow. It says,

roughly, that for each target the expected additional damage done by. -

sending one more missile to that target decreases as the number of missiles

assigned to that target is increased. It is possible to consider damage
functions without the restriction (1.5), but this condition is necessary

for use of the algorithm of Reference [1].

2. Expected damage for a given qualification matrix
In both this section and the next, we will let Xp denote a random

subset from the set of integers 1,2,e.e.yme The number m will be
assumed to be given and fixed throughout the argument. Each l..c.er

has independently probability p of beling in Xp. Thus p is a
parameter in the probability distribution of Xp. The number of elements
in Xp will be denoted by a(xp). The probability that a(xp) =r

will be denoted by q.» which is just a binomial probability, i.e.

(2.1)  Prob(a(X) =71) = q, = (Dp" (1 - p)" .



Note that the value of q,. is a function of p, although this is not

made clear by the notation,

The purpose of this section and the next is to investigate the
following situation. A damage function g(i,j) andan nxm
qualification matrix Q are given. However, for the conjectured attack
each migsile has only probability p of being available. Thus, the
qualification matrix of the available missiles is a random variable,
Q(Xp), where Q(Xp) is the matrix obtained from Q by dropping out
those columns which are not in Xp. The damage for an optimal assign-
ment belonging to Q(Xp) will be denoted by d(Q(Xp)). We are

interested in the properties of the random variable d(Q(Xp)).

In this section we study the problem of estimating E[d(Q(Xp))].*
For convenience, we will write E(Q,p) = E[d(Q(Xp))]. The expected
damage E(Q,p) 1is a natural measure of the effectiveness of a quali-
fication matrix. If the value of p 1s chosen realistically, we might

well choose between two qualification matrices Q1 and Q2 by

comparing E(Ql,p) and E(Qz,p).

Here is a simple example of calculating the expected damage

E(Q,p)s Take Q to be the matrix

O H
— O K
H O

Suppose the damage function is

#
For any random variable Y, E[Y] will denote the expected value of Y.




all i

i
o

g(i,O)

1l
=

g(1,J) 1< j, all 1.

That 1s, the damage 1s just the number of tarpgets covered by the
assignment. Now it is easy to see that d(Q(Xp)) = a(Xp). The

probabllity that Xp contains exactly k missiles is

(P (1 - Pk,

23k 3-k
Therefore, E(Q,p) = < k(k)p (1-p)” " . For p=1/3 this is

k=0
2 2 3
1y . (2 i 2 1
O+1x3x(3)x(3) +2x3x(3) x(3)+3x1x(3) X1

E(Q,p)
= 1.0.

For p = 2/3, this is

2 2 3
) +2x3x(§) x(%) +3x1x(-§-> X 1

E(Q,p) = 0 + 1x3x (5)x (

W =

2.0

Unfortunately, an exact calculation of the expected damage can
be made only in very simple cases such as that given in the example.
For large qualification matrices and more complication damage functions,
the calculation must be made by the Monte Carlo method. A sir: '~
approach would be to carry out a direct simulation of the problem.
One could generate a sequence of independent random sets X ,...,Xg
and form the estimate = % 1’;Illd(Q(X;)). The expected value of Y
is clearly E(Q,p). The varia;ce of ¥ could be estimated by

N

1 1 1y\42
To1 G E e’ - ¥).
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Two objections can be raised against this procedure. First of
all, it ylelds an estimate of E(Q,P) only for one value of p. To
find E(3,P) for a different value of p, the entire calculation would
have to be done again, using the new value of p in generating the
random sets X;. Secondly, this procedure takes no account of the
operation of the algorithm which finds the optimal assignment for Q(X;)
and computes d(Q(Xé)). As well as finding d(Q(X;)), the algorithm
obtains as intermediate results the values d(QJ(X;)) for § = 1,...,G(X;),
where QJ(X;) is the matrix containing only the first j columns of
Q(Xi). The direct simulation procedure makes no use of the values

d(Q3<x;>) for J<0(X“;;)-

A procedure which avoids both of these objections has proved quite
efficlent in practice. It makes use of a random permutation ¢ of the
integers 1,2,...,m, i.e. a permutation chosen at random from all the
m! permutations of the integers 1,2,...,m. For the permutation g,
we let Q(o) denote the qualification matrix obtain from Q by
permuting the columns of Q according to o¢. Thus, if the elements of
Q(s) are q;j, we have q§j = Q5 (4)? where ¢(j) is the integer
into which the permutation ¢ takes Jj. For Jj < m, we let Qj(d)
denote the n X j qualification matrix consisting of the flrst

columns of Qo).

To estimate E(Q,p) proceed as follows: Generate a sequence

G190 5900 esdy of independent random permutations of the integers

l,2’...,m. ﬁ

™ =

4@ ().

(2.2) 3. = s
S

] 1
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Then for any probability p, an unbiased estimate of E(Q,p) is

m
jeo 4

where 9 is given by (2,1).

Note that the parameter p enters into the calculation only
through the Q in (2.3). Thus, the number of calculations involving
the parameter p 1is independent of the number of permutations used.
Moreover, one may save the values of the Cj' Then, at some later date,
the estimate W may be calculated for various values of p without

generating any additional random permutations.

The natural measure of the error in a Monte Carlo estimate such
as (2.3) is the standard deviation of the estimate. This is defined
as follows. The variance of the random variable W is V[W] =
E[(R - E[W])z]. The standard deviation of W is MW]. The usual

procedure 1n a Monte Carlo calculation is to make an unbalsed estimate

of V[W] and then take the square root of this as an estimate of the
standard deviation. Therefore, in the remainder of this paper we will

only discuss the problem of estimating the variance.

Unfortunately, if we desire to estimate the variance of W, .c seems that
intermediate computations involving p must be made. Let
» r
(204) wi = -2_‘ qrd(Q (di))’
r=0

and let

(2.5) G =

= [ o
n o=

2 d(Q7(6,))d(0%(84))

i=1

An unbiased estimate of V(W] may be computed by using either of the




following two expressions

5 _ 1N rl. e IO ds 2 =2
(2.6) 2= §ggly 2 0y - D) =gl 2y - W er
i=1 1=1
(27) VA 1 [E G _w2]
* (N - 1) _ 9% rs y
r,s=0

The two expressions on the right are, in fact, equal.

The expression (2.7) might be used to avoid intermediate computations
with the parameter p. Unfortunately, many computations will be needed
to find the G__. In fact, it w21l require m(m - 1)/2 multiplications

and additions for each random permutation.

The remainder of this section will be devoted to proving that the

estimates ¥ and 7 do have the desired properties. Note that we can

write

=

N m
pX [Eqd(Q (6,))] =
1=1 r=0 T i=1

b Wi.

Zli—-‘

(2.8) #

"
== [

Thus, W is the average of the identically distributed random variables
wl,wz,...,wN. Thus we have

n r
(2.9) E[W] = E[w;] = 2 q E[d(Q (0))]

r=0
where ¢ 1s a random permutation. Moreover, by familiar argument from
the theory of statistics, we know that an unblased estimate of V[W] 1is
just Z as given by (2.6). To verify that E[W] 1is equal to

E[d(Q(Xp))], we need only note that

(2.10)  E[d(Q7(0))] = E| [aa(x) )Ia(x ) =rl.
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Here, the term on the right denotes the conditional expectation of the

random variable d(Q(Xp)) glven that a(xp) = r, 1.e. that the number

of elements in Xp is equal to r. The expression on the ripht of

(2,10) is independent of p, because all sets with the same number of

elements have equal probability. Now by definition q. 1s equal to

Prob[a(xp) = r]. Thus (2.9) becomes

(2.11) ER] = = E Q(X Mla(X ) = r]Proba(X ) = r] = B[A(Q(X ))], q.e.d.
r=0 p

The only remaining statement to prove is that (2.6) and (2,7) are

equivalent, i.e, that

1 N
(2 12) N Z W

m
- ;_ qrqsGrs’

This is obtained by squaring the expression (2.4). We get
1 N m b s

; $ 20 2 q9q4d(Q(s,))d(Q (s,))]
=11 Niopps=0 T ® 1 1

-z qQ.q [% gd(Qr(di))d(Qs(oi))]
rys=0 T ° N =1

m
= qrqE I‘S, q.e.d.
r, —O

3. Probability that the damage exceeds a given value

The notation of the first two pvaragraphs of Section 2 applies also
in this section. We wish to study further the random variable d(Q(Xp)).
The expected value E(Q,p), discussed in Section 2, is certainly the most
useful single number associated with the random variable. It is possible,

however, to get more detailed information about the distribution of

d(Q(Xp)). For any number c¢, we can estimate Prob[d(Q(Xp)) > cl, t.e.
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the probability that d(Q(Xp)) will be at least c. Knowing
Prob[d(Q(Xp)) > ¢] for several values of c¢ would glve us a good idea
of the distribution of the random variable d(Q(Xp)). In some cases,
knowing Prob[d(Q(Xp)) > ¢] for a single value of c¢ would be very
useful. For example, if the damage 1s Just the number of targets covered
by the assignment and ¢ 1s the total number of targets, then

Prob[d(Q(xp)) > c] 1is the probability of covering all targets.

With notation the same as 1n Section 2, we can describe the Monte

Carlo procedure to estimate Prob[d(Q(Xp)) > c] as follows:

Let the damage function g(i,j), the qualification matrix Q, and

the number c¢ be given, Generate a sequence of independent random

permutations 01’62""’°N' For 1<1<N and 0< r<m set

Flo,) =1 if d(Q'(s,)) 2 ey
(3.1)
Flo,) =0 if d(Qr(di)) < c.
Let
.
(3.2) Fr =5 F‘r(oi).
i=1

)m-r

Given any probability p, let q. = (2)pr(l -p o An unbiased estimate

of Prob[d(Q(Xp)) >c] is

(3.3) Y= 2qF

rr’
r=0

An unbiased estimate of W(%) is

(3.)  Z-pt [ZtF -9,

- STy [ 4Py - T, shere
(3.5) t.=q2+2 2 ]

. = + q.

i s=r+1qr .




Note that for fixed 1, d(Qo(oi)) < eee 7 d(Qm(oi)). Therefore, for

each permutation di’ there is a critical number n(di) such that

|
o

Fr(di) = r < n(oi)

(3.6)

|
—

Fr@i) = r> n@i).

To determine Fr(d ) for all r, it is only necessary to find n(di).

bl

In order to verify that (3.3) is indeed an unbiased estimate of
Prob[d(Q(Xp)) > c], note that
m
(3.7) E(}) = = qrE[F (6)], where

=0 r

o 1is a random permutation. Further, we have

(3.8) E[F (0)] = Prob[d(Q(Xp)) > clu(Xp) = r]

r

and
(3.9) Prob(u(xp) =r) = Q.

(Recall that a(xp) is the number of missiles in Xp; and that given
that a(Xp) is equal to r, Xp is simply a random subset of r
elements, all such subsets being equally probable.) Combining (3.7) -

(3.9), we have

(3.10) ElY]

rIZ:OProb(a(Xp) = r)Prob[d(Q(Xp)) > c]a(xp) = r]

= Prob[d(Q(Xp)) > ¢c], q.e.d.
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To see that (3.4) is an unblased estimate of V[%], let

m
Yi = Z:- qri‘r(di)o
r=0

Then the Y, are independent identically distributed random variables,

i
and Y - %J-E Y Therefore, just as in expression (2.6), we have that an

i.
unbiased estimate of V[Y] is

N
= 1 1 .
(B2 ) Z= WD [N 1;_—:1Y’12 o Y2].
To prove that this is equivalent to (3.4), we expand Yf
m m m
s 2 _ 2
(3.12) Y= (2qF (6,00°= 2 [¢F20,) +2 2 qaF (0,)F,(s,)].
=0 r=0 s=r+l

Now Fr(di) is either zero or one, and for r < s, Fr(oi) < Fs(di).

Therefore, (3.10) becomes

Y2 m 5 m m
(3.13) = 2 [(q+2 2 qq_)F (s,)] = 2 tF (g,).
i =0 T S:rﬂrsri r___Orri
Thus, we have
N m
%zyf: 2K S
i=1* =07 T

and this proves that (3.11) is equivalent to (3.4), q.e.d.
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Appendix

In this appendix we present four examples to illustrate the use
of the damage function idea. The first example gives the natural
construction of a damage function based on the enemy's expected loss.
The next two examples show how the damage function may be used to define
an assignment problem based on the idea of target priorities. This
includes the simple special case of assigning one missile to each target.
The last example deals with the problem of maximizing the probability
that all targets be destroyed. This is easily done using a suitable
damage function and the algorithm of Reference [1], yet it does not
appear on the surface to be a problem accessible to the damage function
approach.

Example 1. Damage function by analysis of target values and kill
probabiljties

There are six targets, which have the following values to the

enemy:

Targets Value each target
Ig 253 20
by 55 6 10.

The value is not assumed to be in any concrete measure such as men or
dollars, although it may be; it 1s simply a measure of the relative

importanceof the target. Thus target 2, with a value of 20, is twice
as important as target 5, which has a valueof only 10. From this, we
conclude that an action which would destroy target 2 with probability
1/2 is equivalent to one which would destroy target 5 with certainty.

In each case, the expected loss to the enemy is 10,




To construct the damage function, it is necessary to have the kill

probability for each target, i.e. the probability that a single missile

will destroy the target. The next table gives these kill probabilities.

Targets Kill probability
1, 6 o2
2, 5 5
3, 4 .8.

We assume that if several missiles are fired at a target their
effects are independent. Each missile either destroys the target or
leaves it undamaged. Then, 1f Py is the probability that a single
missile will destroy target 1, the probability that a salvo of

mis ‘1les will destroy target 1 is
- (1 -p )
1 - (1 pi) g

Thus, if the value of target 1 1is Vi, the expected damage to the enemy

from a salvo of J missiles at target 1 1is

g(1,3) = V,[1 - (1 - ).

Note that

b(1,9) = g(1,8) - g1, - 1) = (1 - )P ey,

Thus »(1,}) decreases with Jj; g(i,j) 1s concave in J.

The next table gives the value of g(i,j) for J < 6. Values
for J greater than 6 could be easily computed from the information

given above.
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Table 1
1/3 0 1 2 3 4 5 6
1 0 A 2 9.76 11.81 13.46 14.76
2 0 10 15 17.5 18,75 19.38 19.69
3 0 16 19.2  19.8, 19.99 20,00 20.00
4 0 2 3.6 4.88 5.90 6,72 17,38
5 0 5 fs5 8.75  9.38  9.69  9.84
4 0 8 9.6 9.92  9.99 10,00 10.00

The value of the damage for any assignment matrix ma; be easlly
computed from this table. Suppose, for example, we have nine missiles

with this qualification matrix Q

111000000
001110000
sol0 e 0011100
000000111
100100010
01000100 1/.

The following assignment matrix A Dbelonging to (Q assigns two missiles
to each of the targets with value 20 (numbers 1, 2, and 3) and c<ne to

each of the other targets.

O O O O O
O O O O o
o O O O +~ O
OO O O O + O
O O O + O o
o O O » O O
O O +» O o O
o - O O O O
H O O O O O

For 1 =1, 2, and 3, ri(A) = 2; and for i =4, 5, and 6, ri(A) = 1.

Thus the damage d(A) is given by




20

6 3 6
d(A) = P(i,!‘i(A)) = 8(192) 2 ﬁ(iyl)

>

i1=1 1=1 1=/

= 7.2+ 15,0 + 19,2 + 2.0 + 5.0 + 8,0 = 56.4.

Is this an optimal assignment for Q? This 1s not easy to determine
using Table 1. Much mo.e convenient for this purpose is a table of the

difference »(i,j). The difference table corresponding to Table 1 is:

Table 2
i/3 1 2 3 4 5 6
i 4,400 3.20 2456 2.05 1.65 1.30
2 10.00 5.00 2.50 1.25 .63 .31
3 16.00 3.20 6l .15 0/ .00
4 2,00 1.60 1.28 1.02 .82 <66
5 500 2450 1.25 .63 o 31 oilt5
6 8.00 1.60 32 .07 .01 .00

The next table reproduces the first 3 columns of Table 2. In additionm,
certain entries are starred. The number of starred entries in a row

is the number of missiles assi;med to that target by the matrix A.

Table 3
1/ 1 2 3
1 /,s00* 320" 2456
2 10.00* 5 ,00% 2,50
5 16.00% 3.20% NA
/ 2.00% 1.60 1.28
5 5.00% 2450 1.25

6 8.00* 1.60 .32
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The dama;e for the assipnment A 15 Just the sum of the starred entries
in Table 3., Now look at the two underlined entries *(4,1) = 2.00 and
5(1,2) = 2.5€. The value of the assirnment matrix would clearly be hirher
i »(1,3) was starred instead of »(4,1). An assifnment which effects

this improvement is:

111 00O0O0O0O0
0O ¢ 0o 110 0 O0O
n - 0 00 001 1 0O
0 60 0O 000 0 0O
O 0 6 0600 0 10
O 00 600 0O 1/.

The damage for B 1is 56.96, which is .56 preater than that for A4, 1i.e.
just the difference between »(1,3) and »(3,1). The assignment matrix
B 1is in fact an optlimal assignment matrix belonging to Q. Moreover,

no assignment matrix for nine missiles can improve on B whatever the
qualification matrix may be. To see this, simply note that in Table 3
with »(1,3) starred instead of »(4,1) the nine largest values are
starreds Now the damare for any assifnrent of nine missiles will be a
sum of nine terms taken from Table 2. Since the damage for B 1is the cum

of the nine larrest terms, it 1s the maximum possible.

An interesting point to note about Table  is that »(3,3) is
less than »(4,3) even though the value of target / is only half that
of target 3. This occurs because target 3 1s relatively soft and will
almost certainly be destroyed by a salvo of two missiles. In fact, the
probability of the missiles destroying target 3 is .96, so there is very

little to gain by adding a third missile to this target.




kxample ., One missile to each tarpret sith a set of taryret prioritles

‘he problen of assipnin- one misslle to each tarpet 1s a speclal
care o the basic assiynment problem, Suppose there are six micslles

and ¢ix taryets with the “ollowini® qualification matrix

1 0 0 0 0 O
0 1 1 €& 1 ©
Q g 1 01 0 1
B &8 B i I 8
0 0 1 0 0 1
1 & 1 &3 Ly .

There is an extra row in Q. This has been introduced as a dummy
target, for which all misslles are qualified, to take care of missiles
not otherwise assigned. It is necessary, because at most one missile

i1s to be assiyned to each real target.

Suppose that 1t is desired to find an assignment which assigns at
most one missile to each of the targets 1-6 and covers as many of these
tarpets as possible. If the following damage function is used, any

optimal assirnment lor the baslic assienment problem will have the desired

properties.
#(1,0) 0 all 1

(1) p{i,j) = 1 1< 1< 6, 1< ]
r(7,3) = 3/2 Log .

Note that »(i,j) -0 for 1< 6 and j2 2, and »(7,j) = 1/2 for all

Js Theretore, because all missiles are qualified for target 7, an optimal
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assipnment will assiyn at most one missile to each of the targets 1-6.
If n missiles are assipmed to n of the tarpets 1-6 and the remainder
to tarpet 7, the dummy target, the damage will be n + 1/2(6 - n).
Clearly this will be a maximum when n 15 a maximum. Thus any optimal

assirnment has the desired properties.

Here are two optimal assignment matrices for thls problem

1 0 0 0 0O 0 0 00 0 O

0O 0 00 0O 1 00 0 O O

61 00 0O 01 00 0 O
(2) A= 0 0 01 0O B 0 001 0O

0 0 0010 0O 0 00 1O

0O 0 00 0 1 0 0 C 0 0 1

0O 01 00 O 0o 01 00 O0/.

The assipnment A fails to cover target 2 while B falls to cover
tarpet 1. It is not possible for an assignment belonging to Q ‘to

cover both of these targets,

It is possible to construct a damage function for which any optimal
matrix will have the properties given above,and in addition, the
asslgnment matrix A will be preferred over B. That is to say. a set
of priorities can be introduced for the targets so that target 1 1is
more important than target 2, To give an exact statement of a priority
scheme, 1t is necessary to glve an ordering for the assignment matrices,
An optimal matrix belonging to Q 1is then one which is greater than all

other matrices belonging to Q.

Suppose that target 1 is most important, target 2 is next most

important, and so on to target 6, the least important target. An
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assipnment problem for this set of targets and priorities might be

stated in this way:

Priority Assiymment Problem

Consider only matrices belonging to Q for which

ri(A) <1 for 1<1<6b, For two such matrices A and B,

we say that A 1s pgreater than or equal to B and write

B <A if one of the following conditions holds:

6 6
(i) 4 T'i(B) G ri(A)’
i=1 fi=yl
6 6
(i1) b ri(B) = ri(A) and
i=1 i=1

for some k < 6, rk(B) < rk(A) while ri(A) = ri(B)

for all 1 < k,
EEED) ri(B) = ri(A) for all 1 < 6.

The problem is to find an assignment matrix A belonging to
Q and with ri(A) <1 for i < 6 such ‘hat any other matrix

B with these properties satisfies B { A.

Consider the assignment matrices A and B of (2). The
6
assignment matrix A 1is optimal. We have, in fact, 2 ri(A) =5,
i=1
r.(A) = 1, r?(A) = 0, ri(A) =1 for all 1 with 3 < i < é, It was

1

pointed out above that no matrix belonging to (Q could assign to both
6

tarpets 1 and 2. Hence, the maximum possible value of .= ri(A) is
i=1

53 and if rl(A) =1, r2(A) must be zero., The matrix A 1is greater

than B, because rl(A) =1 while r,(B) = 0.

1
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A damage function for which any optimal matrix will be a solution

to the target priority problem is easily constructed by modifying the

damage function (1). For the function of (1), the quantities

5(i,1), 1 < 1 ¢ 6 are all equal to one. It is only necessary to make

these increases in order

of tarpet priority, provided that we keep

»(1,1) > 5(7,1) for 1< 1 < 6., For example, we can use

g(i,0) =0
(4) g(i’j) =7 -1
g(7,j) = J/2

all i
1 <1 <6, 1<

1<),

The fact that a damage function of this type solves the priority assign-

ment problem is proved in [1].

Example 3. A more complicated set of priorities

Consider the damage

are given by this matrix

6.0 6.0
5.0 5.0
(5) 4@ R0
3.0 0.0
l.5 0.0
1.5 0.0

function g(i,j) whose differences &(i,j)

aﬁﬂ\
0.0
0.0
0.0

0.0
0.0

Write the targets in a list entering target 1 1in the 1list one

time for each non-zero

(1,3). Start with the largest »(i,j) and

work downward, The result is this list

(6) 1, 1, 2,2, 3, 4, 3, 5, 6.
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Suppose that n missiles are available, eacn qualiflied for all targets.
An optimal assignment for the damage function (5) will assign missiles

to the first n targets in the list (6), each target getting one missile
for each of its occurences in the first n elements of the list, For
example, if five misslles are avallable, they will be assigned to targets
1, 1, 2, 2, and 3, i.e. two missiles to target 1, two missiles to target
2, and one missile to target 3. With seven missiles avallable, targets
1, 2, and 3 would each receive two missiles,and one missile would be

assigned to target /.

When the missiles are not qualified for every target, the assipnment
will in a certain sense come as close as possible to assigning missiles
to the first n targets in the list. To be more precise, an optimal
assignment A will have the followling properties:

(1) If possible A will assign two missiles to target 1. If
that is not possible and one missile can be assigned to target 1, then
it will be.

(11) In addition to satisfying (i), A will assign, if possible, two
missiles to target 2. If that is not possible but one missile can be
assigned to target 2, then it will be.

(111) In addition to satisfying (1) and (ii), A will if possible
assign a missile to target 3.

(1v) In addition to satisfying (1) - (iii), A will if possible
assign a missile to target /.

(v) 1In addition to satisfying (i) - (iv), A will if possible assign
a second missile to target 3,

(vi) and so on.




The relationship between this set of conditions and the list of
targets (6) should be clear to the reader., We call the list (6) a

list of priorities and say that an assignment matrix which is optimal

for the damape function (%) is optimal with respect to this list of
priorities. The 1list of priorities is not merely an ordering of the
targets. It specifies how many missiles should be assigned to each
target and in what order the possibly conflicting requirements should
be met. For example, with the 1list (6), one missile will be assigned
to tarpget 3 rather than target /. However, assigning a missile to
tarpet / is preferred over assipning the second missile to target 3.
Moreover, no preference is made between target 5 and 6. Let us see how

all this will work out with a qualification matrix Q.

111111000
000011111
g1 10000100
001000010
000100000
0000O0OUOOU0O 1/,

An optimal assignment matrix belonging to Q with the damage

function (5) is

00001100 O
000 00O 110
110000000
Ao o100 0000
000100000
00 0O0OUOOO0 1/.

This achieves the maximum possible damage of 34.
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If missiles 1, 2, and 7 of Q are not available, the qualification

matrix is:
111100
00 1 1 11
000 000
310001 0
010000
000 000 1/,

An optimal assignment matrix for this is

1100 00
001100
000000
b0 00010
000000
00000 1]/.

The damage for this assignment is 26.5e

If missiles 3, 4, 8, and 9 are not available from 7, the qualification

matrix is
i A B i
00 1 1 1
11001
35[0 0 0 0 0
000 0O
o000 0f.

An optimal assignment matrix belonging to Q3 is
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1 0 0

00 110
. g &8 b i
Ha—

0 00 O

0 0 0 0

0 00O O

The damape for A3 is 26,

Now as is indicated in [1], the magnitudes of the »(i,)) are not
important in determining the list of priorities. Only the ordering of
the +(i,j) 1is important. Thus, the damage function ¢ (i,j) with
different \*(i,j) riven belov, results in the same optimal assignments

as ¢{1,j) above.

(2]
-

n

20 20 O
18 17 O
b (1,1) = 15 < 0
3 0 0
1 0 0
1 0 0f.

However, for the assignment matrices A2 and AB’ the damages using
g, (1,) are 79 and 90 respectively. Thus, using g,(i, ') it seems
better to have missiles 1, 2, 5, 6, and 7 available (qualification
matrix QJ) than to have missiles 3, 4, 5, o, 8, and 9 available

(matrix Qz). On the other hand, the reverse is true if we use the

damape function g(i,j).

The point of all this is that it is not really sufficlent to

specify a 1ist of target priorities. If we are to be able to compare




30

the effectiveness of different qualification matrices, we must have
more indication of the relative values of the various targets.
Constructing the damage function by a procedure like that of Example 1

will give such information.

Example 4. Maximizing the probability of destroying all tarpgets

Assume that for each target 1 the kill probability 1 1s known.
Then the probability that target 1 will be destroyed if missiles are
r, (A)
launched according to an assignment matrix A is 1 - (1 - pi)i =
Therefore, the probability that all targets will be destroyed is
n I‘i(A)
(7) Po= 1 (1-(1-p) )e
Ay i

Given a qualification matrix 0, we ask for an assignment matrix A

belonging to Q for which P(A) is maximum.

At first it might appear that this problem cannot be formulated
using a damage function as described in Section 1. However, note that
P(A) is a maximum if and only if 1log(P(A)) is a maximum, and

r.(R)
) log(1 - (1 - py) e

(8) log P(A) =

Mo

i
Now this looks very much like a damage function expression. Let us

define g(i,j) as follows:

g(1,0) = 0 all 1

g(1,5) = ¢ +log(l - (1-p))  ror j20,

where ¢ 1s chosen so that for all i1 and k
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(9) 8(191) 2 G(kyg) - H(kpl)o

We claim that ¢(i,j) 1is a damage function, i.e. it satisfies
(1.3) - (1.5). Clearly g(1,0) = 0. To verify that g(i,j) 1s concave
in j, let £(t) = (1-(1- pi)t) for t >0 and h(t) = logf(t).
In Example 1 it was proved that f 1is concave, i.e. that f"(t) < O.

Clearly f'(t) > 0 and f(t) > O. Therefore, for h(t), we have

(10) h'(t) = £7(t)/f(t) 2 0
and
: 2
1) e = SRS o,

From (10), we conclude that for all i and j > 1, g(i,j) is increasing
in j, and from (11), we conclude that for all i1 and j > 1, g(i,J})
is concave in j. The choice of ¢ so that (9) holds insures that

g(1,]) 1s concave and increasing in j for all j > O.

Now suppose that it is possible to find an assignment matrix A#
belonging to Q such that for all i, ri(A*) ¥ 0. Then we claim that
log P(A) 1is a maximum if and only if

n
d(A) = 2 g(i,r(a))
i=1

is a maximum. To see this, simply note that beczause of Condition (9)

d(A) cannot be a maximum if ri(A) =0 for some i, But with

ri(A) $ 0 for all 1, we have
d(A) = log (P(A)) + nc.

Now if no matrix A Dbelonging to Q exists for which ri(A) $0

for all i, then P(A) = 0 for all matrices A belonging to Q. Hence
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we can conclude that for an assipnment matrix A belongin~ to 10,

P(A) 15 2 maximum 1¢ the lnmare d(A) is a maximun,
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