


Sumniary 

The following missile assignment problem is considered.    Missiles 

are to be assigned to targets in two distinct steps.    First, each 

inijsile is programmed so that it can be fired at any one of a small 

number of targets,  the number of targets being the missile capability. 

The programming of the missiles is represented by a qualification 

matrix   Q.    Second, if battle occurs, all missiles are to be assigned 

to targets and launched.    Each missile must be assigned to a target for 

which it is programmed.    It is assumed that only a random subset    X 

of the missiles will actually be available for battle, and so the 

assignment must be made for a reduced qualification matrix    Q(X).    The 

questions considered are "what is an optimal assignment given the reduced 

qualification matrix    QU)?", and "what can be expected from this assign- 

ment?"    Use of a damage function is proposed.   An optimal assignment is 

one which maximizes the value of the damage function.    The damage function 

may be chosen to represent a wide variety of optimization requirements. 

The main part of the paper describes Monte Carlo procedures for estimating 

the expected damage and the probability that the damage will be at least 

c   for any number    c.    In an appendix several examples are given to 

illustrate the use of the damage function.    Another paper  [l]  describes 

an algorithm for finding an assignment which maximizes the damage function. 
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Introduction 

This note deals with certain mathematical problems connected 

with the assignment of missiles to targets.    The problems are those 

which arise because the missiles have a multiple target capability. 

The assignment of such missiles to targets occurs in two distinct 

steps.    First, each missile is programmed so that it can be fired at 

any one of a small set of targets.    The number of targets for which 

the missile may be programmed is its target capability.    Second, when 

battle actually occurs and the missile is to be fired, it is assigned 

to one of the targets for which it is programmed.    The second step, 

i.e. the assignment of the missile to a target, takes almost no time. 

However, the first step,  the programming of the missile for a set of 

targets, is very time consuming.    Therefore, we assume that if battle 

actually occurs, the missile cannot be reprograramed but must be fired 

at one of the targets for which it is already programmed. 

When battle occurs, it may be that not all of the missiles are 

available.    Still because of the multiple target capability, there will 

be many different ways of assigning the available missiles to targets. 

One problem is to pick the best possible assignment.    Another problem 

is to evaluate the effectiveness of the original missile programming. 

Because of the complexity of the final assignment procedure (the 

procedure which picks out the best assignment of available missiles), 

this problem must be done by the Monte Carlo method. 

To describe the problems more precisely and introduce some of our 

terminology, let us look at a simple example. 



Consider a group of nine mlsalles, each missile having a capability 

of two targets, and suppose that there are six targets. The group might 

be set up with the missiles programmed as follows: 

Missile Targets Missile Targets 

1 1,5 6 3,6 

2 1,6 7 3,4 

3 1,2 8 4,5 

A 2,5 9 4,6 

5 2,3 

We will represent this programming of missiles by a qualification matrix 

Q: 

/ 

Q = 

11100000 

00111000 0\ 0 ' 

\ 

000011100 

000000111 

100100010 

01000100    1/. 

If    q^ * - 1» this means that missile    j    is qualified, i.e. programmed, 

to go to target    i.    Thus, for    Q, we have    q,,  = q12 = q,- = 1, so 

missiles 1, 2, and 3 can all be fired at target 1. 

Now consider the situation if battle actually occurs.   It may well 

be that not all missiles are available; some might be out of order, 

disable by enemy action, or already used.    Suppose that missiles 3, 4, 

and 8 have been eliminated.    Then the situation is represented by this 

qualification matrix: 



0  o  o  o\ 

«2 = 

\ 

1 1 

0 0 10 0 0 

0 0 1110 

0 0 0 0 11 

10 0 0 0 0 

0    10    10    1 
• 

The first problem to consider is:    Find an optimal assignment 

of missiles to targets given a qualification matrix such as   Q2.    We 

will call this the basic assignment problem»    In this basic assignment 

problem we assume that all missiles are to be launched; we do not 

consider the possibility of keeping some missiles in reserve. 

Clearly, the first thing we must do in attacking this problem is 

to define the term optimal.    We propose the use of a function that gives 

for each assignment a number called the damage for that assignment.    An 

optimal assignment is then one for which the damage is a maximum.    A 

natural idea is to make the damage equal to the expected value of the 

loss which the enemy will suffer if the missiles are launched with 

the given assignment of targets.    However, by suitably choosing the 

damage function, many different optimization criteria may be represented. 

The appendix contains several examples to illustrate this.    It is hoped 

that these examples will help the reader gain familiarity with the 

damage function concept.    Example 4, which shows how to maximize the 

probability that all targets are destroyed, is especially interesting. 

Precise definitions of the terras "damage function" and "basic assignment 

problem" are given in Section 1.    However, no discussion of the solution 

of the problem is given.    For that, the reader must turn to Reference  [l], 



which he should certainly read along with this document.    There 

an efficient algorithm for solving the basic assignment problem is described. 

The second problem we consider is:    Evaluate the effectiveness of 

the original qualification matrix.    If we knew that all missiles would 

be available for battle, there would be nothing to this problem.    The 

measure of its effectiveness would simply be the damage for the best 

assignment, this being found by the algorithm mentioned above.   However, 

we do not expect all the missiles to be available for battle, and here 

a random element enters the calculation.    It seems reasonable to assume 

that each missile has probability   p    of being available.    We then ask 

what is the expected value of the damage resulting from the best possible 

assignment of the available missiles.    Except in some simple cases, it 

seems Impossible to compute this expected damage by analytic methods.    Instead, 

we turn to the Monte Carlo method.    The problem could be attacked 

by straightforward simulation, but a better approach is possible.    This 

is given in Section 2.    In addition to asking for the expected damage, 

one might want to know the probability that the damage would be at least 

a certain value.    For example, one might ask for the probability that 

all targets would be destroyed.   This may also be calculated by the 

Monte Carlo method.    The calculation is described in Section 3. 

1.    Damage functions and the basic assignment problem 

In this section, we give a precise statement of the basic assignment 

problem.    The terms defined here will be used freely in the following 

sections.    No description of the algorithm for solving the problem is 

given here.    The reader must obtain all information about that from 



Reference [l], and it is Ktrongly recommended that he do that before 

going on to Section 2.    Examples illustrating the use of the damage 

function will be found in the appendix.    The reader might also vrish 

to look at some of these before continuing to the discussion of Monte Carlo 

methods in Sections 2 and 3. 

We begin with some definitions,    A qualification matrix    Q    is a 

zero-one matrix, i.e. a matrix in which every element is either zero or 

one, which has at least one non-zero element in each column.    A quali- 

fication matrix is assumed to represent the programming of a set of 

missiles as described in the introduction.    The restriction that every 

column has a non-zero element means simply that every missile is qualified 

for some target. 

An assignment matrix   A   belonging "uo a qualification matrix   Q 

is a zero-one matrix with the following properties. 

(1.1) If   q., = 0, then    a., =0. 
ij ij 

(1.2) For each j there exists exactly one i such that a. . = 1. 

An assignment matrix is supposed to give the targets at which the 

available missiles will be launched. Condition (l.l) means that a missile 

can be launched only at a target for which it is qualified. Condition 

(1.2) says first that a missile can be launched at only one target, i.e. 

it cannot go in two directions at once, and second that it must be 

launched at some target. This last condition we mentioned in the intro- 

duction; to repeat: "in the basic assignment problem all missiles are to 

be launched at oncej none are to be kept in reserve." 
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Note that the value of a  is a function of p, although this is not 

made clear by the notation. 

The purpose of this section and the next is to investigate the 

following situation. A damage function g(i,j) and an n x m 

qualification matrix Q are given. However, for the conjectured attack 

each missile has only probability p of being available. Thus, the 

qualification matrix of the available missiles is a random variable, 

Q(X ), where Q{X ) is the matrix obtained from Q by dropping out 

those columns which are not in X . The damage for an optimal assign- 

ment belonging to Q(X ) will be denoted by d(Q(X )). We are 

interested in the properties of the random variable d(Q(X )). 
P 

In this section we study the problem of estimating E[d(Q(X ))]. 

For convenience, we will write E(Q,p) = E[d{Q(X ))]. The expected 

damage E(Q,p) is a natural measure of the effectiveness of a quali- 

fication matrix. If the value of p is chosen realistically, we might 

well choose between two qualification matrices Q, and Q  by 

comparing E(Q1,p) and E(Q ,p). 

Here is a simple example of calculating the expected damage 

E(Q,p). Take Q to be the matrix 

\0 1 1/. 

Suppose the damage function is 

For any random variable Y, fil] will denote the expected value of Y. 



g(i,0) - 0 all i 

g(i,J) =1    1 < j,    all i. 

That is, the damage is just the number of tarpets covered by the 

assignment. Now it is easy to see that d(Q(X )) = o(X ). The 
P      P 

probability that X  contains exactly k missiles is 

(k)p (1 - P) 

Therefore, E(Q,p) = Z k(^)pk(l - p)3"k. For p = l/3 this is 
k=0    K 

2 2 3 
E(Q,p) = 0 + 1 x 3 x (i) x (|) + 2 x 3 x (i)   x (|) + 3 x 1 x (±)   x l 

= 1.0. 

For   p = 2/3, this is 

2 2 3 
E(Q,p) = 0 + 1 x 3 x (|) x (|)   + 2 x 3 x (|)   x (^) + 3 x 1 x (|)   x 1 

= 2.0. 

Unfortunately, an exact calculation of the expected damage can 

be made only in very simple cases such as that given in the example. 

For large qualification matrices and more complication damage functions, 

the calculation must be made by the Monte Carlo method.    A sir/ '^ 

approach would be to carry out a direct simulation of the problem. 

One could generate a sequence of independent random sets    X  .....A 
N P   ' P 

and form the estimate ^ - «7 2 d(Q(A )). The expected value of T 
1=1 

is clearly E(Q,p). The variance of ? could be estimated by 
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Two objections can be raised against this procedure. First of 

all, it yields an estimate of E(Q,P) only for one value of p. To 

find E(Q,P) for a different value of p, the entire calculation would 

have to be done again, using the new value of p In generating the 

random sets X « Secondly, this procedure takes no account of the 

operation of the algorithm which finds the optimal assignment for Q(X:) 

and computes dCQU1)). As well as finding d(Q(X:)), the algorithm 
P P 

obtains as intermediate results the values d(QJ(Xl)) for J = l,...,a(X ), 

where Q^(ä ) is the matrix containing only the first j columns of 
P 

Q(X^), The direct simulation procedure makes no use of the values 

d(QJ(xJ)) for J <a(X*). 

A procedure which avoids both of these objections has proved quite 

efficient in practice. It makes use of a random permutation d of the 

Integers l,2,...,m, i.e. a permutation chosen at random from all the 

raj permutations of the integers 1,2,...,m. For the permutation o , 

we let Q(ö) denote the qualification matrix obtain from Q by 

permuting the columns of Q according to d. Thus, if the elements of 

Q(d) are q* , we have qj. = q^mi wh«re d(j) is the integer 

into which the permutation a    takes J. For j < m, we let Cr (d) 

denote the n x j qualification matrix consisting of the first j 

columns of Q(d ), 

To estimate E(Q,p) proceed as follows: Generate a sequence 

d ,d ,.,.,d„ of independent random permutations of the Integers 

l,2,...,m. Let 

N 
(2.2)        5. =i 2 d(QJ(dJ). 

J    i=l 
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Then for any probability p, an unbiased estimate of E(Q,p) iis 

m 
(2.3)   0=2 q 5 , 

where   q,    is given by (2.1)» 

Note that the parameter   p    enters into the calculation only 

through the    q,    in (2.3).    Thus,  the number of calculations involving 

the parameter   p    is independent of the number of permutations used. 

Moreover, one may save the values of the    5.,    Then, at some later date, 

the estimate    W   may be calculated for various values of   p    without 

generating any additional random permutations. 

The natural measure of the error in a Monte Carlo estimate such 

as  (2.3) is the standard deviation of the estimate.    This is defined 

as follows.    The variance of the random variable   W    is   V[W]  = 

E[(fl - E[tJ])2].    The standard deviation of    Q    is    v^T.    The usual 

procedure in a Monte Carlo calculation is to make an unbaised estimate 

of   V[fl]    and then take the square root of this as an estimate of the 

standard deviation.    Therefore, in the remainder of this paper we will 

only discuss the problem of estimating the variance. 

Unfortunately,  if we desire to estimate the variance of    W,  ^c seems that 

intermediate computations Involving    p    must be made.    Let 

m 
(2.0 Wi =   2 qrd(Qr(di)), 

r=0 

and let 

i    N 

(2.5) Grs = |   2 d(Qr(d1))d(Q3(di)). 

An unbiased estimate of   V[VJ]    may be computed by using either of the 
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i'ollowlnr: two expressions 

(2.6) l - l^ll^ . H)2] = ^[ij^2   - 02]      or 

i m o 

(2^    z = T!rhT[ ^Vsar3-fli- r,s=0 

The two expressions on the rirfit are. In fact, equal. 

The expression (2,7) might be used to avoid intermediate computations 

with the parameter    p.    Unfortunately, many computations will be needed 

to find the    G    •    In fact, it will require   m(m - l)/2    multiplications rs 

and additions  for each random permutation. 

The remainder of this section will be devoted to proving that the 

estimates    1?    and    2   do have the desired properties.    Note that we can 

write 

,     N     m N 
(2.8) 0 = ^   2   [ Z q d(Qr(d   ))]  = ±   Z W . 

w 1=1 r=0 r 1 w 1=1 1 

Thus, Q    is the average of the identically distributed random variables 

W ,W ,,,.,WN.    Thus we have 

(2.9) E[&]   =  E[WJ  =    Z q E[d(Qr(d))] 
1       r=0 r 

where d is a random permutation. Moreover, by familiar argument from 

the theory of statistics, we know that an unbiased estimate of V[W] is 

just Z as given by (2.6). To verify that E[VJ] is equal to 

E[d(Q(X ))], we need only note that 

(2.10) E[d(Qr(d))] = E[d(Q(Xp))|a(Xp) = r]. 
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Here, the term on the rl^ht denotes the conditional expectation of the 

random variable d(Q(X )) given that a(X ) - r, i.e. that the number 

of elements in X  is equal to    r. The expression on the right of 
P 

(2.10) is independent of    p,  because all sets with the same number of 

elements have equal probability.    Now by definition    q      is  equal to 

Prob[Q(X ) = r].    Thus (2.9) becomes 

m 
(2.11) E[fll  =   Z  E[d(Q(Xn))Ia(X  ) = r]Prob[a(X ) = r]  = E[d(Q(X ))], q.e.d. 

r_0 P P P P 

The only remaining statement to prove is that (2.6) and  (2,7) are 

equivalent, i#e,  that 

N m 

^12)        N,Vi=     Z
nV3

Grs- 
i=l r,s=0 

This is obtained by squaring the expression (2./J.    We get 

,    N    0      ,    N       m 

i=l i=l r,s=0 

m 1    N 
=      Z    q qji   2 d(Qrrd   ))d(QS(d   ))] 

r,s=0 i=l 

ra 

=     2    qrqoGrs, q.e.d. 
r,s=0 

3.    Probability that the damage exceeds a given value 

The notation of the first two paragraphs of Section 2 applies also 

in this section.    We wish to study further the random variable    d(Q(X )). 

The expected value    E(Q,p), discussed in Section 2, is certainly the most 

useful single number associated with the random variable.    It is possible, 

however,  to get more detailed information about the distribution of 

d(Q(X )).    For any number    c, we can estimate   Prob[d(Q(X ))  > c], i.e. 
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the p'-obabillty that    d(Q(X ))    will be at least    c.    Knowing 

Prob[d(Q(X )) ^ c]    for several values of    c    would give us a good idea 
P 

of the distribution of the random variable    d(Q(X ))•    In some cases, 

knowing    Prob[d(Q(X )) £ c]     for a single value of    c    would be very- 

useful.    For example, if the damage Is Just the number of targets covered 

by the assignment and    c    is  the total number of targets, then 

Prob[d(Q(X )) ;> c]    is the probability of covering all targets. 

With notation the same as in Section 2, we can describe the Monte 

Carlo procedure to estimate    Prob[d(Q(X )) ;> c]    as follows: 

Let the damage function    g(i,j), the qualification matrix   Q, and 

the number    c    be given.    Generate a sequence of independent random 

permutations   d, ,d,,,,,,,d^.    For    1 < i < N    and    0 < r < m, set 

(3,1) 

Fr(di) - 1    if    d(Qr(di)) ^ c, 

Fr(di) - 0    if    d(Qr(d1)) < c. 

Let 

(3,2) 
1    N 

P    =i   Z F  (d,), 
r     N .   ,  r    i 

Given any probability   p,  let    q    = 

of   Prob[d(Q(X )) > c]    is 

( )p (1 - p) ~ •    An unbiased estimate 

(3,3) 
m 

? =    Z q P  , 
r=0 r r 

An unbiased estimate of   V(^)    is 

m 
(3.0 2 = /N I n   [ 2 trPr - T2], where 

r=0 

(3.5) t   =qf +2[    2    a q  ]. 
r     T        s=r+lT s 



If. 

»m, Note that for fixed    1, d(Q (0 )) <  ••• < d(Q  (0.)).    Therefore,  for 

each permutation   0   t  there is a critical number    n(d   )    such that 

(3.6) 

Fr(di) = 0 

Fr(di) = 1 

r < n(cJi) 

r > n(d ). 

To determine F (d ) for all r, it is only necessary to find n(d.). 

In order to verify that (3.3) is indeed an unbiased estimate of 

Prob[d(Q(X )) > 0], note that 

(3.7) 
m 

E[?] -   2 q E[F  (d)],  where 
r=0 r      T 

0    is a random permutation.    Further, we have 

(3.8) E[Fr(d)] = Prob[d(Q(Xp)) > c|o(X ) = r] 

and 

(3.9) Prob(Q(X ) = r) = qr. 

(Recall that a(X ) is the number of missiles in X ; and that given 

that a(X ) is equal to r, X  is simply a random subset of r 
P P 

elements, all such subsets being equally probable.) Combining (3.7) - 

(3.9), we have 

m 
(3.10)   E[Y] = 2 Prob(Q(X ) = r)Prob[d(Q(X )) ^ c|a(X ) = r] 

r=0      p p        P 

= Prob[d(Q(X )) ^ c], q.e.d. 
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To see that (3./J in an unbiased estimate of V[^]» let 

1  r=0 r r 1 

Then the Y. are independent identically distributed random variables, 

and ? ■= - 2 Y , Therefore, just as in expression (2,6), we have that an 

unbiased estimate of V[^]  is 

To prove that this is equivalent to (3.^)* we expand Y. 

^    m        „   ra  p p        m 

(3.12) Y^ = ( ^ l/J**))    = 2 [q7r(di) + 2 2 qrq3Fr(öi)Fs(di)]- 
r=0 r=0 s=r+l 

Now F (d.) is either zero or one, and for r < s, F (d.) <J F (d.), 
r   i ' '    r    i s    i 

Therefore,  (3.10) becomes 

(3.13) Y^   Z  [(q2+ 2   2    qrqs)Fr(di)]  =   Z  t F (d   ). 
r=0 s=r+l r=0 

Thus, we have 

,     N    _        m 
^   2 Y? =    2 t P  , 
N .  , i _ r r* i=l r=0 

and this proves that  (3.11)  is equivalent to  (3.A), q.e.d. 
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Appendix 

In this appendix we present four examples to illustrate the use 

of the damage function idea. The first example £ives the natural 

construction of a damage function based on the enemy's expected loss. 

The next two examples show how the damage function may be used to define 

an assignment problem based on the idea of target priorities. This 

includes the simple special case of assigning one missile to each target. 

The last example deals with the problem of maximizing the probability 

that all targets be destroyed. This is easily done using a suitable 

damage function and the algorithm of Reference [l], yet it does not 

appear on the surface to be a problem accessible to the damage function 

approach. 

Example 1. Damage function by analysis of target values and kill 
probabilities 

There are six targets, which have the following values to the 

enemy: 

Targets Value each target 

1, 2, 3 20 

A, 5, 6 10. 

The value is not assumed to be in any concrete measure such as men or 

dollars, although it may be; it is simply a measure of the relative 

importance of the target. Thus target 2, with a value of 20, is twice 

as important as target 5, which has a value of only 10. From this, we 

conclude that an action which would destroy target 2 with probability 

l/2 is equivalent to one which would destroy target 5 with certainty. 

In each case, the expected loss to the enemy is 10« 
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6 3        6 
d(A) - Z g(i,r.(A)) = Z g(i,2) + Z g(i,l) 

i=l    i     i=l       1=4 

= 7.2 + 15.0 + 19.2 + 2.0 + 5.0 + 8.0 = 56.4. 

Is this an optimal assignment for Q? This is not easy to determine 

using Table 1. Much mo. e convenient for this purpose is a table of the 

difference ^(i^J). The difference table corresponding to Table 1 is: 

Table 2 

i/J 1 2 3 4 5 6 

1 4.00 3.20 2.56 2.05 1.65 1.30 

2 10.00 5.00 2.50 1.25 .63 .31 

3 16.00 3.20 .64 .15 .04 .00 

U 2.00 1.60 1.28 1.02 .82 .66 

5 5.00 2.50 1.25 .63 .31 .15 

6 8.00 1.60 .32 .07 .01 .00 

The next table reproduces the first 3 columns  of Table 2.    In addition, 

certain entries are starred.    The number of starred entries in a row 

is  the number of missiles assigned to that target by the matrix   A. 

Table 3 

■n 1 2 3 

i 4.00» 3.20» 2^6 

2 10.00» 5.00» 2.50 

3 16.00» 3.20» .64 

4 2.00» 1.60 1.28 

5 5.00» 2.50 1.25 

6 8.00» 1.60 .32 
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The daniace for the assirnment   A    is Ju^t the sum of the starred entries 

in Table 3.    Now look at  the two underlined entries    v(A,l)       2.00    and 

f)(l,3) = 2.56.    The value of the assipriment matrix would clearly be  hi'her 

if    J)(l,3)    was starred  instead of    ^, (^,1),    An assiprunent which effects 

this improvement is: 

fl 11000000 

000110000 

000001100 

000000000 

000000010 

kO    00000001 

B 

The damage for    B    is 56.96, which is .56 greater than that for    A,  i.e. 

just the difference between   ^l^)    and    h{3,l).    The assignment matrix 

B    is in fact an optimal assignment matrix belonging to    Q.    Moreover, 

no assignment matrix for nine missiles  can improve on    B    whatever the 

qualification matrix may be.    To see this,  simply note that in Table  3 

with    6(1,3)    starred instead of    f)(^,l)    the nine largest values are 

starred.    Now the damage  for any assignment of nine missiles will be a 

sum of nine terms  taken  from Table 2.    Since  the damage for    B    is  the sum 

of the nine largest terms,  it is the maximum possible. 

An interesting point to note about  Table  2 is that    ^3,3)    is 

less than    J)(4.>3)     even  though the value of target U is only half that 

of target 3.    This occurs because target 3 is relatively soft and will 

almost certainly be destroyed by a salvo of two missiles.    In  fact,   the 

probability of the missiles destroying target  3 is  .96,  so there is  very 

little to gain by adding a third missile to this target. 
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Kxairiple . .    On»' !:il:;slle to fach target  ^ith a set of target priorities 

The problem of ansicnln/ one rnir.sile to each target Is a special 

c&.-e of the baTic assi^mnünt problem. Suppose there are six missiles 

anJ six targets with  the  ''ollowin,' qualiTication matrix 

There is an extra row in    Q.    This has  been introduced as  a dummy 

target,  for which all missiles are qualified,  to take  care of missiles 

not otherwise assigned.    It is necessary,  because at most  one missile 

is to be assigned  to each real target. 

Suppose  that  it is desired to  find an assignment which assigns at 

most one missile to each of the targets  1-6 and covers as many of these 

targets as possible.    If the  following damage function is used,   any 

optimal assignment  for the basic assignment problem will have the desired 

properties. 

(1) 

■(1,0)       0 

C(i,j)       1 

g{7,j) ■    j/2 

all    i 

1 < i < 6, 

1 < j  . 

1 < J 

Note that    J)(i,j)   - 0    for    i <  6    and    j ^ 2, and    ^7,j)  =  1/2    for all 

j,     Fherefore,  because all missiles  are qualified  for target 7,   an optimal 
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aasi^nment will asslfn at most one missile to each of the targets 1-6. 

If   n    missiles are assigned to    n    of the targets 1-6 and the remainder 

to target 7,  the dummy target,  the damage uill be    n ■♦■ 1/2(6 - n). 

Clearly this will be a maximum when    n    is a maximum.    Thus any optimal 

assignment has the desired properties. 

Here are  two optimal assignment matrices for this problem 

(2) A = 

'10    0 0    0    0" 

0    0    0 0    0    0 

0     10 0    0    0 

0    0    0 10    0 

0    0    0 0    10 

0    0    0 0    0    1 

,001000, 

B = 

0    0    0 0    0    0 

10    0 0    0    0 

0    10 0    0    0 

0   0    0 10    0 

0    0    0 0    10 

0   0    0 0    0 

,001000 

The assignment A fails to cover target 2 while B fails to cover 

target 1. It is not possible for an assignment belonging to Q to 

cover both of these targets. 

It is possible to construct a damage function for which any optimal 

matrix will have the properties given above, and in addition,  the 

assignment matrix    A    will be preferred over   B,    That is to say, a set 

of priorities  can be introduced for the targets so that target 1 is 

more important than target 2,    To give an exact statement of a priority 

scheme, it is necessary to give an ordering for the assignment matrices. 

An optimal matrix belonging to    0    is then one which is greater than all 

other matrices  belonging to    Q. 

Suppose that target 1 is most Important, target 2 is next most 

important, and so on to target 6,  the least important target.    An 
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assignment problem for thin net of targets and priorities might be 

stated in this way: 

Priority Assignment Problem 

Consider only matrices belonging to Q for which 

r (A) < 1 for 1 < i < 6. For two such matrices A and B, 

we say that A is greater than or equal to B and write 

B < A if one of the following conditions holds: 

(i)      2 r.(B) < Z r.(A), 
i=l 1     i=l 1 

(ii)     Z r.(B) -    Z T. (A)  and 
i=l 1    i=l 

for some k < 6, rk(B) < r (A) while r.U) = r.CB) 

for all i < k, 
(iii)    r^B) = r^A)    for all i < 6. 

The problem is to find an assignment matrix    A    belonging to 

Q    and with    r (A) < 1    for    i < 6    such  u.hat any other matrix 

B    with these properties  satisfies    B < A. 

Consider the assignment matrices    A    and    B    of  (2),     The 
6 

assignment matrix   A    is optimal.    We have,  in fact,    2  r. (A) = 5, 
'   i=l 1 

r^A) = 1, r2(A) = 0, r^A) = 1    for all    i    with    3 < i < 6.    It was 

pointed out above that no matrix belonging to    Q    could aasign to both 
6 

targets 1 and 2.    Hence, the maximum possible value of     2 r. (A)    is 
i=l i 

5;  and if    r, (A) = 1, r?(A)    must be zero.    The matrix    A    is greater 

than B,  because    r  (A)  = 1    while    r  (B) = 0. 
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A damage function for which any optimal matrix will be a solution 

to the target priority problem is easily constructed by modifying the 

damage function (l). For the function of (l), the quantities 

hii,l),  1 < i < (J   are all equal to one. It is only necessary to make 

these increases in order of target priority, provided that we keep 

^(i,l) > &(7,1) for 1 < i < 6. For example, we can use 

U) 

g(i,0) - 0 

g(i,j) =7-1 

g(7,j) = j/2 

all i 

1 < i < 6,   1 < J 

1 < j. 

The fact that a damage function of this type solves the priority assign- 

ment problem is proved in [l]. 

Example 3« A more complicated set of priorities 

Consider the damage function g(i>j) whose differences ^(i,j) 

are given by this matrix 

(5) 
^.0 2.0 0.0 

3.0 0.0 0.0 

1.5 0.0 0.0 

1.5 0.0 0.0, 

Write the targets in a list entering target i in the list one 

time for each non-zero »,(ifj). Start with the largest !»(i,j) and 

work downward.    The result is this list 

(6) 1,  1, 2, 2, 3, 4,  3,  5, 6. 
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Suppose that   n   missllea ore available, eacn qualified for all targets. 

An optimal assignment for the damage function (5) will assign missiles 

to the first   n    targets in the list (6), each target getting one missile 

for each of its occurences in the first    n    elements of the list.    For 

example,  if five missiles are available, they will be assigned to targets 

1, 1,  2,  2, and 3, i.e. two missiles to target 1, two missiles to target 

2, and one missile to target 3,    With seven missiles available,  targets 

1,  2,  and 3 would each receive two missiles, and one missile would be 

assigned to target A. 

Uhen  the missiles are not qualified for every target, the assignment 

will in a certain sense come as close as possible to assigning missiles 

to the first   n    targets in the list.    To be more precise, an optimal 

assignment   A   will have the following properties: 

(i)     If possible    A    will assign two missiles to target 1,    If 

that is not possible and one missile can be assigned to target 1,  then 

it will be, 

(ii)  In addition to satisfying (i), A    will assign, if possible,  two 

missiles  to target 2,    If that is not possible but one missile can be 

assigned to target 2,  then it will be. 

(ill) In addition to satisfying (i) and  (ii), A    will if possible 

assign a missile to target 3. 

(iv)    In addition to satisfying (i) -  (iii), A    will if possible 

assign a missile to target /*, 

(v)     In addition to satisfying (i)  -  (iv),  A    will if possible assign 

a second missile to target  3, 

(vi)    and so on. 
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The relationship between this set of conditions and the list of 

targets   (6) should be clear to the reader.    We call the list  (6) a 

list of priorities and say that an assignment natrix which in  optimal 

for the da'nap:e function   {'j)   is  optimal with respect  to this list of 

priorities.    The list of priorities is not merely an ordering of the 

targets.     It specifies how many missiles should be assigned to each 

target and in what order  the possibly conflicting requirements should 

be met.     For example, with the list  (6), one missile will be assigned 

to  target 3 rather than  target £.    However,  assigning a missile to 

target 4, is preferred over assigning the second missile to target 3. 

Moreover,  no preference is made between target 5  and 6.    Let us see how 

all  this will work out with a qualification matrix    Q, 

\ 

111111000 

000011111 

110000100 

001000010 

000100000 

000000001 

An optimal assignment matrix belonging to    Q    with the damage 

function  (5) Is 

A = 

r0 00011000 

000000110 

110000000 

001000000 

000    10000:; 

.oooooooo   : 

This achieves the maximum possible damage of 3A< 
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If mlsalles 1,  2,  and 7 of   0    are not available, the qualification 

matrix is: 

11110 0' 

0 0 1111 

0 0 0 0 0 0 

10 0 0 10 

0 10 0 0 0 

0 0 0 0 0 1 

«2 = 

An optimal assignment matrix for this  is 

/l    1 0 0    0    0 

'00 1 100 

0    0 0 0    0    0 

0    0 0 0    10 

0    0 0 0    0    0 

\o   0 0 0   0    1 

A2 = 

The damage for this assignment is 26,5« 

If missiles 3, i,  8, and 9 are not available from Q, the qualification 

matrix is 

An optimal assignment matrix belonging to 0_ is 
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The damage for    A„    is 26. 

Now as is indicated in  [1], the magnitudes  of the      ^(l,j)     are not 

important in determining the list of priorities.    Only the ordering of 

the    ^(i,,])    is  important.    Thus,  the damage  function    gw(i,j)    with 

different   ^(i,.]')    given belo^', results in the same optimal assignments 

as    fT(i,j)    above. 

Mi,;) - 

However, for the assignment matrices A  and A , the damages using 

gtt(i,;) are 79 and 90 respectively. Thus, using ga(i»,') it seems 

better to have missiles 1, 2, 5, 6, and 7 available (qualification 

matrix Q-) than to have missiles 3, U*  5, 6, 8, and 9 available 

(matrix Q^). On the other hand, the reverse is true if we use the 

damage function g(i,j). 

The point of all this is that it is not really sufficient to 

specify a list of target priorities. If we are to be able to compare 
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the effectiveness  of different qualification matrices, we must have 

more indication of the relative values of the various targets. 

Constructinn the damage function by a procedure like that of Example 1 

will give such information. 

Example U,    Maximizinn the probability of destroying all targets 

Assame that for each target    i     the kill probability    p,     is known. 

Then the probability that target    i    will be destroyed if missiles are 

launched according to an assignment matrix    A    is    1 -  (1 - p ) . 

Therefore,  the probability that all  targets will be destroyed is 

(7) P 
^(A) 

.   =    n   (1 - (1- p)1       ). 
A      1=1 1 

Given a qualification matrix   Q, we ask for an assignment matrix    A 

belonging to    Q    for which    P(A)    is maximum. 

At first it might appear that this problem cannot be fomulated 

using a damage function as described in Section 1.    However, note that 

P(A)    is a maximum if and only if    log(P(A))    is a maximum,  and 

n r.(A) 
(8) log P(A) -   2    log(l -  (1 - p ) 1      ). 

i=l 1 

Now this looks very much like a damage function expression. Let us 

define g(i,j) as follows: 

g(i,0) =0   all i 

g(i,j) = c + log(l - (1 - p1)'
5)    for j ^ 0, 

where c is chosen so that for all i and k 
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(9) g(i,l) > g(k,2) - g(k,l). 

We claim that g(i,j) is a damage fimction, i.e. it satisfies 

(1.3) - (1.5). Clearly g(i,0) = 0. To verify that g(i,j) is concave 

in j, let f(t) = (1 - (1 - p^1) for t > 0 and h(t) = logf(t). 

In Example 1 it was proved that f is concave, i.e. that f,'(t) < 0. 

Clearly f^t) ^ 0 and f(t) ^ 0. Therefore, for h(t), we have 

(10) h'(t) = f'(t)/f(t) ^ 0 

and 

From (10), we conclude that for all i and j > 1, g(i,j)  is increasing 

in j, and from (11), we conclude that for all i and j > 1, g(i,j) 

is concave in j. The choice of c so that (9) holds insures that 

g(i,j) is concave and increasing in j  for all j ^ 0. 

Now suppose that it is possible to find an assignment matrix A* 

belonging to Q such that for all i, r. (A*) ^ 0, Then we claim that 

log P(A) is a maximum if and only if 

n 
d(A) = Z  g(i,r(A)) 

i=l 

is a maximum.     To see this, simply note that because of Condition  (9) 

d(A)    cannot be a maximum if    r.(A)  = 0    for some    i.    But with 

r. (A) ^ 0    for all    i, we have 

d(A) = log (P(A)) + nc. 

Now if no matrix    A    belonging  to    Q    exists for which    r.(A) ^ 0 

for all    i,  then    P(A) - 0    for all matrices    A    belonging to    Q.    Hence 
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we can  conclude  thai  for an assignment matrix    A    belon^in^ to    Q, 

P(A)     is  i maxirrin  if  the   iaina^e    d(A)     is  a maxinuin. 
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