AD @03 563

ON INCREASING TREATMENT
CONTRAST PRECISION AND THE
ESTIMATION OF STRUCTURAL
PARAMETERS IN COVARIANCE
ANALYSIS

A Report

to

U.S. Army Biological Laboratories
Fort Detrick, Maryland

under
Contract DA 18-064-AMC-103(A)

Prepared by

-William: S, Mallidsi-..
Booz, Allen Applied Research, Inc.

4815 Rugby Avenue
Bethesda 14, Maryland

June 1964

BOOZALLEN APPLIED RESEARCH INC.

WASHINGTON
CLEVELAND
CHICAGO



ki Bl

TABLE OF CONTENTS

Page
Number
SUMMARY iv
1. INTRODUCTION 1
2, INCRFEASING TREATMENT CONTRAST PRECISION
- WHEN THE COVARIABLE IS UNCONTROLLED,
INDEPENDENT OF TREATMENTS, AND O ¢ = 0 5
‘ : 172
2.1 The Structural and Reduced Systems, and
the Estimation of Treatment Effects When
a is Known 5
2.2 The Estimation of Treatment Effects
' When < is Unknown 9
2.3 Tesats of Significance, and the Analogy
With the Usual Covariance Method 12
2.4 On Increasing Treatment Contrast Precision
in Balanced Incomplete Block Designs 16
3. THE QUESTION OF DIRECT AND INDIRECT
EFFECTS WHEN THE TREATMENTS AFFECT
THE COVARIABLE AND 0. ¢ = 0 20
: 172
3.1 The Estimation of Direct and Indirect Effects
When All Treatments Have a Possible Effect
on the Covariable 20
3.2 ' An Nlustration Wherein the Treatments Define
& Factorial Experiment and the Covariable is
Independent of One Factor 23

.ii-




Page
Number
4. THE ESTIMATION OF STRUCTURAL
PARAMFETERS WHEN o_ $0 32
1 2

4.1 Preliminary Remarks 32
4.2 An Extension of the ''Instrumental

Variable Estimation Technique" 35
4.3 An Example of Underidentified Parameters

and Their Estimates Through Instrumental

Variable Estimation 39
4.4 The Estimation of Direct and Indirect

Effects, as Discussed in Section 3,

When ¢ 0 43

€. €
12
: . REFERENCES 48

-iii-

T U e ek




Absr s Ay

e N e 825

SUMMARY

Analysis of covariance in randomized and balanced incomplete
block designs is reconsidered in terms of structural regression. In
practice, the covariable is usually uncontroiled and may follow a linear
model as does the variable of interest. If the covariable and treatments
are independent, then the covariable model contains no treatment effect,
and the treatment contrast precision on the variable of interest is in-
creased, not only asymptotically, but in the finite sample.‘ If the co-

variable is affected by one more of the treatments, then the estimation

of direct and indirect effects. is considered. Finally, when structural

parameters are underidentified, inwhich case direct and indirect .gffects

are not estimabie, an alternative estimation procedure is discussed.
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1. INTRODUCTION

Consider the randomized block design model

= + +
m T + BJ. OtyZij + eij (1.1)

Y1ij
where 'ri(ﬁj) is the fixed differential effect of the ith (jth) treatment
(block) on a response of interest, say yli;]" which is taken from the
(i, j)th experimentelunit, i =1, ..., q j=1, ..., r. pis
usually the base from which the differential effects are estimated, and
eij is the random model error. The covariable, yzij’ is assumed in-
dependent of treatments and is included in model (1. 1) to account for

differences in the yzij from one experimental unit to the next in esti-

mating treatment contrasts.

Consider, next, the following three conditions and/or assumptions
which may accompany a covariance analysis:
1. The covariable is uncontrolled, and is measured with .
negligible measurement error.

2. The covariable, though independent of treatments, is,
perhaps, dependent on blocks.

3. The covariable is unaffected by the variable of interest,
though not conversely.




Under the circumstances, it may be reasonable to assume the following

linear model for the covariable:

yZij = uz + 5323 + €2ij (1. 2)

where BZij is ihe fixed differential effect of the jth block on y21j’ and

€ 2ij is the random model error. For consistency of notation, model(1.1)

is rewritten as

Yig TPt T PPy v %Yy t Sy

When there is doubt regarding the independence of treatment and

covariable, then a treatment effect, say Toy? should be included in the

model for the covariable; i. e.,

= p + T, +B, + € (1.3)

Y2ij 2 2i 2 2ij

so that model (1. 1) is now rewritten as

=p, + T+ B +ay21j+e (1. 4)

Y 14 1 1i 1j lij'

Substituting the expression for Yo ij in (1. 3) into (1. 4) yields

Y1y ° (b +Guy) + (7 +a7,) + (ﬂlj-t-Oﬂ ) o+ (em ij)

where Tl + Ot'rz i is the overall treatment effect on STERST is the direct

treatment effect on y 1’ and @7 .  is the indirect treatment effect on y 1

2i
or that treatment effect which is passed on to Y, through Y-

-2-




Regarding the model errors, ¢ 1j and GZij, the following

assumptions are made:

E(elij) = E(€21j) = 0

_ - - . o
E(elij Cli'j') E(€Zij€2i'j’) 0 for ifi' or j#j

€135 S2i5) * O

E (

In Sections 2 and 3, we will illustrate the following. Assume

o = 0. Then
€12

(1) if treatments and covariable are independent and if
model (1. 2) is adequate for the covariable, the treatment
contrast precision on the variable of interest (y l) is in-

creased, not only asymptotically, but in the finite sample;

(2) if treatments affect the covariable and if model (1. 3) is
adequate for the covariable, then that estimated treatment
effect on the variable of interest, which is obtained through
the usual covariance analysis, is the direct treatment effect
on y,; and corresponding treatment contrasts also have'

increased precision in the finite sample.




If 06152 # 0, which is considered in Section 4, it will be shown
that statement (1) still holds. However, &, in the context of state-
ment (1), and direct and indirect effects, in the context of statement (2),
are not estimable through usual techniques due to underidentification,

When parameters are underidentified, an alternative estimation pro-

cedure is discussed.




2. INCREASING TREATMENT CONTRAST PRECISION
WHEN THE COVARIABLE IS UNCONTROLLED,
INDEPENDENT OF TREATMENTS, AND
0 =0

2.1 THE STRUCTURAL AND REDUCED SYSTEMS,
AND THE ESTIMATION OF TREATMENT
EFFECTS WHEN @ IS KNOWN

Consider those applications where the covariable is uncontrolled,

independent of treatments, and where the system (described inSection 1)

Yig M1t Tt Py %Yy toCyy (2.1.1)
yzij =H, + ﬂzj + ezij (2.1.2)
is adequate. It is assumed that
2
‘lij | 0 ‘oel o
. | i.i.d, ol. lo 02 ; ‘(2.1.3)
-2ij €, | _

i.e., | 1 is identically and independently distributed with

“uy oy
expectation [0, 0), and variance o:l 0

S |
l)t:c
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Models (<. 1. 1) aiud (2. 1. 2) describe a partial and relevarnt structus
of the experimental unit and are thus termed the structural regresSion
models or the structural system. It is inconsistent, logiczally though not
necessarily statistically, to estimate the system's parameters separatel
or model by model; for in doing so, Yo is fixed in (2. 1. 1} and uncon-
trolled in (2. 1. 2); certainly Yo cannot assume both roles simultaneously

Moreover, if instead of (2. 1. 2), yZij =g, 4+ T2i+B2j +a'y“j+e , then

2

separate least squares estimation leads to inconsistent estimates as is

2ij
discussed L. Haavelmo (1943).

Substituting (2. 1. 2) into (2. 1. 1) yields

ylij = (“l +cxu2) +o ot (alj+aazj) + (elij +ae2ij) (2.1.+

which, along with (2.1.2), is termed the reduced system or the reduced

regression models. In (2.1.4), not oniy is v, dircctly estimable, as

i

opposed to, say, the direct block effect, Bl .- on yl,' but also, in the

| ) |
reduced system, Yy NO longer assumes a dual rolé. Separate estima-
tion in thisreducec system yields consistent es\i-mute_s; boyéver the
errors of the reduced system, « 1ij + ctem. and cm.. are corrglp’ge'd.
which, concurrent with a nonexistent treatment effect in (2.1. 2), implie
an increased treatment contrast precision (hrongh joint estimution

{Mallios (1961)). as will now be shown.




From (2.1. 3) it follows that

[elij + anij' ezij] : il d. [(0,0), ] (2.1.5)
~ where
i ]
~ , c + (1205 ’ aa2
, Z 15 2 f2
= .} = (0,,,) (2.1.6)
: 2 2 hh!
ao ; oc‘
. ‘2 2
b -

) -1 V y ]
h,h' =1, 2. Der_xote z by (ohh ) and write the sample form of (2. 1. 4)
and (2. 1.‘2) as ;ylij =m+ ti + bj +e

and y21j =m, +b, +e,., re-

2 2] 2ij

correspond to y +Qp o Ty

lij
spgctufgly, wherg m, t, bj and elij

+Qe, .

Bjj ¥ @By Bnd &, t Oy,

1ij
For Q@ k_nown; best'(Markoff) estimates, among the class of linear,

‘unbiased estimators, are found by taking partials of

2,2,q,r

hh!
Z ehij eh'ij ¢, (2.1.7)
h,h', i,

equating these to zero, and utilizing the usual restrictions that

Zvi = Z ahj = 0. (2.1.8)
J
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The resultant estimates are

t = @), -F) - oy - ¥, by T Vg Y, (2.1.9)

where
@ = 015005 Ty T Z i/ ™ Ynj * X yhij/q’
: i

and
Z yhij/ qr.
ij

12 40 2.1.6),

Also, with ¢ )

12 = Plo);059

_ 2 g2
var (ti-ti,) = 20”(1 -p )r = Zcef. (2.1.10)

If Tos is included in model (2. 1. 2) when, in fact, 12 = 0, then 1'1

is estimated by

t, | = (yli-yl) =T 0+ € % + a@zi-ez) (2.1.11)

-t




2.2 THE ESTIMATION OF TREATMENT
EFFECTS WHEN 2 IS UNKNOWN

For Z and functions thereof unknown, various estimates of Ti
have been considered [ Mallios (1961), Zellner (1962)], though in a
slightly different context. Perhaps the most obvious estimate ig that
which maximizes the likelihood function, assuming normality in (2.1.3).
This estimate requires iteration to convergence. Since in (2.1.9) &
is unknown, only the.ti change in iteration which implies that the un-

biased estimator

z (35~ M - byl lar - 1) (2.2.1)

remains unchanged in iteration, where (qr - r) c;zl gr is the maximum
likelihood estimate oi ¢,,. Choosing an initial estimate of Ti as

22
tgo)‘ in (2. 1. 11) and the other estimates as in (2. 1. 9), then the estimators

(o)
Z )y~ m - t bj)(yZij - my - by)/(ar - q -+ 1)
(2.2.2)

and

(0) Z (yllJ -m - t( ) - b ) /(qr -q-r+1l) . (2.2.3)
i]

(o)

From P )/o = , a
(o)

are consistent and unbiased for 919 and ¢ L
(1)

second estimate of T S8y ti (y - ?1) -a (iz i ?2), is obtained




(1)
12°

(D)

11 are calculated. This

. (1) (1), .
from which o a = 012/052, and o

process is continued until stable estimates, say t;‘, ax = c>li‘2/o 32,

and ¢ T y are attained. The efficiency of the maximum likelihood
. 2 2
. L; - * . £ LN . . ] . = -
estimator, t*-tf, i#i', is given by (2.1, 10) and cxel 6,1 "% %9
' 2 2
' %% = ok - g¥ o %
estimated by o¥ ¥ 012/0 39

1

Aside from tf - t*, all estimates obtained during the iterative

1"’
(o)

cycle (except for ti - ti?)) are consistent and equally efficient; i. e.,
_ (o)

(o) (o) "
12° 910 andod, = oy

tgl) - ti,l ), is therefore consistent and efficient [Zellner (1962)] ; and,

since o are consistent, the initial estimate,

since the initial estimate and the '"final" estimate, t¥ - t}, share the
same large sample properties, so must all estimates obtained during
the iterative cycle. While the exact finite sample variation of these
estimates remains unresolved, Zellner (1964) in a somewhat different

context, produced yet another T estimator and derived its finite

1!
sample properties. His approach is as follows: Assuming normality

in (2. 1. 3) and including a treatment effect, say t,. =0, in (2.1.2), then

2i
it is seen that r_, is estimated by t where E(tzi) =0; T is

2i
then estimated by tgo)

2i  Y2i Y2
in (2. 1. 11): and the consistent, unbiased variance-

i i . (o)
covariance estimates s 1 - 11
o= SN () . o
$19 z (ylij m-t, bj)(yzn. m, -ty sz)/(qr q-r+l), (2.2.4)
1j




and

Z gy Ty =ty = Dy /lar ~q -5+ 1) (2.2.5)

are distributed as Wishart variates independently of ?u - §1 and

Yoi = Yo If T 18 reestimated by

A - — —
Ty 7 O m ) - (815/895) By - Ty) (2.2.6)

A
then, since 812 and 522 are consistent, the efficiency of Qi - Ti' is
A

given by (2. 1, 1¢); moreover, {;i -,

, is unbiased; i.e.,
i

S
H
=

A —_ - — —
E(r) = EF,-7) - 12/822) EF, -¥

since s 12/s22 is distributed independently of Yo; =Yg whose expec-

tation is zero. Zellner then derived the exact second moment of
A A

T T given by

(1- pz)(1+¢) = (2/r)o: (1+0¢) (2.2.7)

AN A
var('ri- Ti') = (2/r) o :

1

where ¢ = (N - 2)'1ﬂ:'1/2

FT[(N+1)/2])/T(N/2) and N=qr-q-r+l,
AA

and showed that the exact distribution of 'l'i - ‘l’i, rapidly approaches

normality, for N > 10. Note that when Q@ = 0, the exact second moment

of a treatment contrast is 20 /r, comparing the latter with (2. 2. 7), it

is seen that the inclusion of covanable in (2. 1.1), when in fact'y 1 i




S TI Pure

independent of yz, i,e., @ = 0, produces a decrease in contrast

precision. As such, it is assumed throughout that |a| is substantial,

, , AA (1) _,.Q) .
In comparing the estimators T T and t -t there is

i' i it ’

reason to prefer the latter even though its finite sample variation is,

(o) (o)
hh!' <var shh' where cr11

, (0)_ R
922~ 999

at present, unknown. Note first that varg

(o)

is given in (2. 2. 3); o9 is given in

n _ (o)
(2.2.1); 8)) % 0;7. 59

(2.2.5); i.e,,

is given in (2. 2. 2);

8., is given in (2. 2. 4); and 859 is given in

(o)
°11

var var s, .,

2
20“/(qr-q-r+l) 11

(o)
12

1
]

var g 2of2/(qr-q-r+l) var s

12°

but

(o) _ , 2 9.2 =
99 = 2022/(qr-r) < Aozzl(qr-q-r*-l) = var s...

var o 29

1)

() t:, = function (o

) (o), _ (o),
12° 722 i

12’ 22"
gl) - t:,l ) has greater precision in finite samples. Thus,

A A
Since T, - 7, = function (s,,/s,,) while t
it is likely that t

in actual application, it is advisable to present both estimates.

2.3 TESTS OF SIGNIFICANCE, AND THE ANALOGY
WITH THE USUAL COVARIANCE METHOD

A
In using T, in estimating i the obvious estimate of

2 2
O, = %) ~9)g/0g 18 8}

2
) 5 8, " 312/322. However, the latter,

-12-




found from a nonlinear combination of the s is biased; making the

hh'’
: 2 2 2 . .
adjustment (qr - q - r + 1) si‘ /J(qr - q -r) = s., 8 is unbiased
1 1 1
for 05 . Then the null hypothesis Ty T Tq = 0 is rejected if

1

[(qrer-l‘)iz - (qr--q-r)s?] (q-l)sr,2 > F, (g-1,qr-q-r) (2.3.1)
€1 1 €1

where
.2 2
(qr-r l)sel = z (ylij-m bj)
ij
2
- z(v -m-b ) y,..-m_,-b,.) H(y -m. -b )2
1ij 1’V 2ij " ™2 " Py L Va2ij =™z Py,
ij ’ ij

is the estimate of (qr - r - l)o: with TG 0, and Fa (q-1,qr -q-r)
|
is the upper @ critical value of the F distribution with q - 1 and

qQqr - q - r degrees of freedom. Note that if ¢ in (2. 2.7) is negligible
A
and r

A
Y is sufficiently normal, then the test in (2. 3. 1) is nearly

exact rather than asymptotic.
In the usual covariance analysis [ Anderson and Bancroft (1952)],
the estimate of ™ is identically A i in (2. 2, 6), while the adjusted treat-

ment mean square is tested by (2.3.1). However, assuming the co-

variable fixed, the treatment contrast precision is

-18-




2031 /r'+ Ty Ty ofl Y Gy myty by 202
: i

in the limit and under (2. 1. 2), (2. 3. 2) reduces to (2. 1. 10), for then,

the variance of the estimated slope is known and yZi - yZi, becomes

E(?Zi) -E (3"21,) = 0. For uncontrolled covariables, (2.3.2j is an

asymptotic result and is therefore comparable to (2. 1.10), not to the

finite sample result in (2. 2. 7). Hence, under (2. 1. 2) there results

not only an increase in relative efficiency, but also, if ¢ is negligible,

this increase applies to finite samples.

Herein, one result is that T is estimated by - )

A — —
TS 0T - (Bl Gy - Yy

whether model (2. 1. 1) 18 considered alone (the usual covariance
analysis) or whether the entire system in (2.1.1) and (2. 1. 2) is
utilized. In the former case, the covariable is assumed fixed, and
the cstimated treatment effects are adjusted for differences in the ¥y
between experimental units, When the entire system or (2.1.1) and
§ (2.1.2) is applied, the adjustment is somewhat different. Under (2. 1. 2)
., the covariable is independent of treatments. However, iz (" iz. the
@ estimate of Top is non-zero (with probability equal to 1) so that

izi - iz becomes an estimable within sample bias. Since the errors




of the reduced sys'em in (2. 1. 4) and (2. 1. 2) are correlated (when
a # 0), im - iz should be accounted for in the estimation of T
Thus yli - 371 is adjusted by an amount -Ot(i21 - ?2) to produce the

proper estimate of 'ri.

Example 2.1. Williams (1961, p. 119) describes an experiment

on the effect of temperature on the maximum compressive strength of
timber specimen. Material from ten trees was taken and a specimen
from each tree was tested at each of five temperatures. The moisture
content of each specimen was uncontrolled so that a covariance adjust-
ment was made to the data. Williams' detailed analysis illustrates, in
part, that the residual variability was reduced substantially through the
introduction of the covariable and that temperature effects were highly

significant.

If the trees (or blocks) in this example were fixed, then the
structural system in (2. 1. 1) and (2. 1. 2) applies since moisture con-
tent is independent of temperature (moisture content is measured
pricr to the application of temperature) and follows the model in (2. 1. 2).
However, the fact that trees arer random will be disregarded in the
same manner that least squares estimates are utilized in mixed and
rmdom modelé. As iuch.. the treatment contrast precision in this

example is, from (2.2.7),




@/r) 2 (1+0) = (1/8) o> (1+9)
1 1

where

lﬁ-l/Z

6 = 34 r(18.5)/ T'(18) = 0.069,

Since ¢ is negligible, the treatment contrast precision becomes

(1/5) a: rather than the usual result given by (2. 3. 2).
1

2.4 ON INCREASING TREATMENT CONTRAST
PRECISION IN BALANCED INCOMPLETE
BLOCK DESIGNS

Consider the incomplete block design model

o= A (B + T +B. + €) 2.4.))
Yig T A0 T TRy ‘

where Aij =Q0orl;i=1...,9.3=1 ., r. Let u denote the num-
ber of times a trcatment is replicated; let v denote the number of
plots per block, and let every treatment appear with every other treat-
ment in the same block an equal number of times, say w. Thus, we
have a balanced incomplete block (BIB) design and " is glﬁmtted by_-.
£ z yl‘ u_/r - 2 A Z yuj‘lrv, 2.4.2)
j J i

Denoting the variance of the model error in (2.4.1) by ¢ the treat-

11’
ment contrast precision is




Y .
var (t; - ;) - 2 3,,/r E, (2.4.3)

¢ <1 [Anderson

and Bancroft (1952)). In{2.4.1) if Aij =1 for all (i, j), then we have a

where the efficiency factor Ef = [uw - 1) +w]/uv and E

randomized block (RB) design and the contrast precision is
2 o“/r < 2 o“/rEf.

However, if blocks become heterogenous when the number of plots per
block equals the number of treatments, then a comparison of the con-
trast precisions between the two designs is misleading; i. e., assuming
heterogeneity withinblocks, the estimated g 11 for the RB design becomes

larger than the estimated 11 for the BIB design.

It will now be shown that it is possible to utilize the BIB design
(described by model (2. 4. 1)) and at the same time to achieve a treatment
contrast precision which is nearly identical (if not greater than) the

2 aulr value for the RB design.

In all the design of the experiment, another response, say Yo
must be identified, where Yq is independent of treatments and is highly

correlated with y, Then, if Yq follows the model

.qu, Aij ('.:2 + sz + EﬁJ) (2.4.4).




while

= 1 . [0
Aij (p.l T Bij + yZij +€_..), (2.4.5)

Y1 2ij

we may apply the results of the previous sections. The reduced system

corresponding to (2. 4. 5) and (2. 4. 4) is

= A Q s a
Vi = 445 l(ul+ u2)+'ri+(61j+aszj)+( liJ.+ e2ij)] (2.4.6)

i = e {¥ = a = a
and (2.4.4). Letting » W+ 2k, Bj Blj+ 823" and eij elij+ €2ij’

it is seen that the model in (2. 4. 6) is identical to the model in (2. 4. 1).

e c . ' o S
Let var ( 1ij +a 2ij’ €2ij) (ohh')’ k,h' = 1,2, Then, considering the

entire reduced system, the Markoff estimate of ‘l'i is

Z Yyilt - X % Zyuj/"
) . ) i
(0, 21095 [Zyzq Z ij Zyzn/"]

and

var (t, - ;i,) = (2/rMo, -0 /G )/E

q, . 4 _.
= (20, /)1 -07) .5 (2.4.7) |

-18-




The parameter 012/ 0y, i8 replaced by an estimate, say 8121822’
precisely as in Section 2. 2; i.e., including a treatment effect, say
Toi ~ 0, in (2. 4, 4), then the residual squares and cross products yield

A
the estimates Sy9 and S1g- Thus 7. is estimatea by T where

z y113 z 13 z th
S12/899 [Zyzld - ZAij Z yzu’/r"] (2.4.8)
j i

AN
and the exact second moment of T, Ty 18

) = (2ay, /T - 021 + 0)/E, (2.4.9)

A
var (1, -
i i

where

°=(qr-q-r-1;-1ﬂ_1/2I‘ [(qr-q-r+2)/2] /r‘[(qr-q—r+1/2]

is the finite sample correction factor as in (2. 2. 7). Note that if ¢ is
negligible, then (2. 4.9) reduces to (2. 4.7). Thus, if p2 is sufficiently

large, to the extent that (1 - p2) and E_ cancel, then we have (2/r) o

f 1

the contrast precision for a RB design.

-19-
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3.1

3. THE QUESTION OF DIRECT AND INDIRECT
EFFECTS WHEN THE TREATMENTS
A¥FECT THE COVARIABLE AND

6 ¢ = 0
1

THE ESTIMATION OF DIRECT AND INDIRECT
EFFECTS WHEN ALL TREATMENTS HAVE A
POSSIBLE EFFECT ON THE COVARIABLE

Consider the structural system (described in Section 1)

= . + .. + B +dy21j+e..

Y1 1 1i 1 1ij

Yoij = Mg T Toy T Byt o€y

The reduced models are (3.1.2) and

Y1

).

= (0
© 1+ o 2) + ('rn+ 721) + (Blj+a sz) + (elij+ anij

Let the sample form of (3.1.2) and (3.1. 3) be written as

and

ylij = m + ti + bj + elij

-20-
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(3.1.2)

(3.1.3)

(3.1.4)

(8.1.5)




where m, ti’ bj and e correspond to My +au2, T, +0Qr .,

11j ii 2i

g + a . -
B 1 aszj, and elij +ae21j, respectively. The assumptions regard

ing the ¢ 's in (3.1.1) and (3. 1. 2) are identical to thoge in (2. 1. 3).
Adding *he restriction that z Toi = 0 to those in (2. 1, 8), the Markoff

i
estimates become

m =¥, t. = @, -7, b,

"N
<
]
<

—
e
—
@
[
(=2}
~—

m, =¥y oty T Oy -Fp). By = G

1 2
Note that the estimates in (3. 1. 6) do not contain elements of the un-

. ) 2 22 ‘ .2 |
with var (ti - ti,) = (2/r)(°e +a o, ) and var (tZi- tZi') = 20(-:2 /r.

known z, a convenience which results when the design matrices of
two or more linear, reduced models, with correlated errors, are

identical [ Mallios (1961)].

Since treatments may have direct and indirect effects on y 1’ the

parameters of the structural system need be estimated. ‘l‘21 is esti-

mated directly by t2 { equating ti to T it ar,. and substituting t2i

1 2i

for = there results q -1 equations in q unknowns, But from the

2i’
estimate of z , given by the BLh of Section 2.2, we have three equations,
8,., 8,,, 8,,, in three unknowns 02 ) 02 and @, From the estimate of &,
11’ 712° T22 € €
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given by a = 812/822, we can estimate Tli‘ the direct treatment effect

A :
ony,, by tli = ti - atZi' But tli is precisely ‘l'i in (2. 2.6), so that the

usual covariance technique provides proper tests and estimates of the
direct treatment effect on Yy under the structural system in (3.1.1)

and (3.1.2); moreover, var (t,. - tli') is given in (2.2. 7).

A
Thus, if the t ; are significant while the t.. =7 ; are nonsignificant,

2

then the treatment effect on Y, is indirect; i.e., the treatment affects Y

li

through the covariable and not directly. If both the thi and t ; are signif-

2

icant, then there are both direct and indirect treatment effects on Yy

Example 3.1. Anderson and Bancroft (1952, p. 302) discuss an

experiment on the effect of fertilizer levels on the yield of sugar beets.
The covariable is stand, which may be influenced by fertilizer though
not by yield; and the field is divided into six homogeneous blocks. The
analysis shcws that treatment effects on yield, adjusted for stand, are
not significant, while treatment effects on stand are highly significant.
Disregarding the model in (3.1.2), the experiment certainly falls into
the "uncertain class'. However, stand is adequately predicted by blocks
and treatments, as is hypothesized by model (3.1.2). Thus the analysis
impliea that there is an indirect rather than a direct treatment effect on

yield; i.e., the treatment effect on yield is through the stand. Though
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there is little need to consider treatment contrast precision for direct

effects on yield, the value of ¢ is given by

28! < 121 (15.5)/ 1 (15) = 0. 077.

Treatment contrast precision for direct treatment effect on stand is
20(-:22/6 whose estimate is 318.5.
3.2 AN ILLUSTRATION WHEREIN THE TREATMENTS

DEFINE A FACTORIAL EXPERIMENT AND THE
COVARIABLE IS INDEPENDENT OF ONE FACTOR

Scheffe (1959, p.217) presents data from an experimental piggery
where six young pigs, three male and three female, were allotted.to
1 g0 and {3

in inéreasing proportion, were given to one male and one female in

each of five pens. Three amounts of protein, say, f

each pen. The pigs were weighed individually each week for 16 weeks,
and the growth rate (yl) in pounds per week was calculated for each pig.
The weight (yz) of each pig at the beginning of the experiment is the

measured covariable.

For purposes of adding to homogeneity within pens, the allotment
of pigs to pens is by initial weight. Within each of the two groups of

15 male and 15 female pigs, the pigs are ordered from highest to lowest

according to initial weight; i.e.,




_—

e A—AS ok b - -

) SW o2 2 WM 15 are the 15 male weights

WFl > WF2 2. 2> WF, 15 are the 15 female weights,

The three heaviest males and the three heaviest females are assigned
to the first pen, the next three males and the next three females are

assigned to the second pen, etc,

Figure 3.1 presents a path diagram relating sex, protein, 'order-
ing, and pen to growth rate and initial weight. The arrow from Yo to Y,
describes a possible effect of initial weight on growth rate. Sex may
have a direct effect on ¥, and Yo and hence an indirect effect on Yy
Also, protein may effect Yy though certainly not Yo and pen may
have an effect on Y,
Figure 3. 1

A Path Diagram Relating Sex, Protein, Ordering,
and Pen to Growth Rate (yl) and Initial Weight (yz)

Sex e———ugm yf.——Pen

Protein yé-‘——Ordering




The five ordered groups will, very likely, yield a significant
source of variation for Yo These groups can be looked upon as five
fixed blocking effects on Yo in the same way that pens are blocking
effects on Y, However, it must be assumed that the 30 selected pigs
are representative of the population of pigs with respect to initial

weight.

From Figure 3.1, the following linear structural models, in

sample form, are hypothesized:

ylijk =m +s + fj + (slf)ij +b, + ayzijk + elijk (3.2.1)
Yaijk = ™2t %21 * Pax * Caijk (322)
where s, :8ex i=1, 2; fj : protein level, j=1, 2, 3; blk:
pen, k=1, . . ., 5; bzk: ordering, k=1, 2,. . . , 5. The reduced
models become (3. 2. 2) and
+
Y144 = (ml + amz) + (su + “21) + fj (sli’)ij
+ (blk + abzk) + “lijk + “Zijk, (3.2.3)

sm+8, +f +(slf) +b +e

I | ij "k ijk’




under the restrictions that

z 5 - X £ = z (s,0); = z b, = Oh=12 (324
i j ij k

The assumptions regarding e 1ijk + aezijk and €y ijk * the population
errors corresponding to eijk and e2ijk’ are that

€lijk T *C2ijk
- U W do '. oz
€ 2ijk 0

L - L

where X = (ohh,) is given in (2. 1. 6).

A
Analogous to the derivation of T in (2. 2. 6), the fixed effects are
estimated as follows. Include a protein effect, say f i and a protein

by sex interaction effect, say (521’2)ij , in(3.2.2), i.e.,

Yoy = Mg * 8y * fp; * (Bl + By * €5k

A A
where E(faj) = E(s *0. Then a=s,,/ 8,9: Where the o,

afa)y
estimators are found from the sum of residual squares and cross

products; e. g.,

A
2 * Z ®;ik Say/30 -
ijk




1]
Substituting th for ohh' in
2 11 12 2 22
Z €k © * %k %25k © * 255k O
ijk
hh

and holding the 8™ fixed in differentiation, then, under (3.2.4), the

estimated fixed effects are

m =Y "W,
8); = 0 - ) - 2l -¥y).

fj = G-lj -y - a(izj =¥y (3.2.5)

(8,0, = Oy =) - a0y - 8 - 1
by = @) -7 - Gy - ¥
m=F,., mry,. 8,%F);"F. 8y *Vy-7¥, (3.2.6)

by * Gy - by = Gpy - TP

 The ef'ﬁciency’ of s " ‘.»'l i is 20: / 15 while its exact second mément
, - 2 ,

is @ / 15)(1 + ¢) where ¢ is givenin (2.2.7). Similarly, the effi-
J

ciency of f - tj, is 302 / 10 and its exact second moment is
| :

L4

ad J 10001 + 9),
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Note that the estimators in (3. 2.5) are precisely the estimates
obtained through the usual covariance method which considers only the
model in (3.2.1). By introducing (3. 2.2), there results, in estimation,
a subtraction of ‘Gzi - '}72) in the expression for 8y which yields the
direct sex effect of Y- The subtraction of comparable terms in the
expressions for fj and (slf)ij adjusts for within sample bias, and

serves to increase contrast precision {as is discussed in Section 2.3).

The analysis, given in Table 3.1, illustrates the consequences of
three approachea to this problem: (i) a model is hypothesized for the
covariable, though it includes fzj + (azfz) j; hence the design mstrices
of the reduced models are identical and separate estimation is identical

to joint estimation; (ii) only the model in (3. 2.1} is considered; (iii) the

structural system of (3.2.1) and (3. 2. 2) is hypothesized.

Under (i), the results are decidely conservative, Tests of effects, |
for each model separately, are éhown in the unadjusted mean ggquare
colurans of Table 3; 1. Here, neither treatments nor pens bave a signifi-
cant effect on growth rate, while ordering has a highly significant .effect
on initial weight. Under approach (ii), the usual covariance method,
the adjusted treatment mean square foi growth rate is significant at the

five percent level, and this is due to protein levels. The estimated




slope a = 0,088, and the estimated variance of a is (0.253)(442. 933)-1.
Finally, under (iii), statemenis regarding treatment effects on y, are
identical to those under approach (ii). In addition, sex has a negligible
effect, not only on growth rate, but on initial weight. And from the
unadjusted mean square column for y 1’ it is seen that the model for
initial weight, given in (3. 2. 2), is adequate with 8g; = 0. Protein
contrast precision is estimated by 283 / 15 = 0, 034; however, N = 20
and ¢ = 18) 1«2 q0.5)/r (10) = 0.1097 is negligible, o that the

latter precision and the tests of significance apply to finite samples.

In Section 2. 2 four treatment effect estimates were discussed:

(1)

. the unadjusted, unbiased conservation estimate; t' °, the efficient

t(aa)

~ estimate based on one cycle of iteration; {l\'. the usual covariance
estimate; and t*, the maximum likelihood estimate. Table 3.2 pre-
sents the three protein means based on these four estimates, i.e.,

£(°)+il. f(”*-'il, f+i‘, f:r+3‘il correspond to t(°). ‘t“). R

4>

and t¥, respectively.
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4., THE ESTIMATION OF STRUCTURAL
PARAMETERS WHEN
Ye T ° |
1 3

4.1 PRELIMINARY REMARKS
In Section 2, 2, the reduced system

-'ylij (‘“1 +au2) ¥ (Blj +°-‘sz1,) +r(€1‘ij + GZij) (4.1.1)

whxch corresponds to the struetura] system in (2.1.1) and (2.1, 2) was

’ consuiered under the assumptmn that

re vae,. | | o® +a?, ad’
1ij 2ij -~ - £ € 9
var R . (4.1.3)
€., e | Qo 02
L 2ij . €y €y
If o $# 0, then
€1%2
Peli. + aegy.. g +2a0 + a202 0 +ao
J N 1 162 €2 €€ €
var . = . aaz 02 (4.1.4)
L 2ij €€, € €q
-32-
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and the treatment contrast precision is still increased; i.e.,

Ty Ty c (8)p)85))Fy; - )

and

1]

var (v, - '/r\i,) (2 a“/r)(l - pz)(l +6)

€. €

2 o2 /r)(1+o) f o =0,
€ 1%2

where 8) 2/s22 is that estimate of 012/ PP for which finite sample
properties are available. However,

2 2
0,0l 00 = (o + ag )/u if o $ 0

012/022 = o if o = 0.

Moreover, within the realm of the data and assuming no further prior
knowledge, @ cannot be estimated by existing techniques due to under-

identification; i. e., in model (4. 1. 1) there are q + 2r unknown param-

eters (ul, uz, x B Tl;. o oy Tq_lo Blloo . oy Bl, r_la leoo o oy az’ r"l).

and in the covariance matrix of (4. 1. 4) there are an addiﬁoml three

parameters (°: ) o: ,» and o, ), 8o that the total nuthb&rbf un-
1 2 1 2 ’

known parameters is q + 2r + 3; but from the reduced syiteni of

T R DR «



(4.1.1) and (4. 1. 2) and from the estimate of the covariance matrix in

(4.1.4), there are only q+2r + 2 equations; and it is easily seen that

the underidentified parameters are @, 02 , and o©

€ elez'
The estimation of these underidentified parameters may be of

importance for the following reasons.

A
(}) Since = function (slzlszz)

2 2
and since o /o = (o + Qg )/a ,
12° 22 6162 ez e2
it may be that oele2 (# 0) is approximately equal to Otogz(# 0)

but opposite in sign. In this case, ¢,, is approximately

12
zero, and from the sample, one might be led to the mistaken
conclusion that Y is independent of Yg OF nearly so.

Thus, if a resolvement of the structure of the experimental

unit is the issue, then existing techniques should be applied

and presented with caution.

(2) If % ¢ # 0, then there is the very basic question, "Why
172
are the errors of the structural system correlated?' It

may be that the structural models are inadequate in that
other important variables have been neglected, in which

case o, . # 0. On the other hand, it may be that the

l€
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structural models are, in fact, adequate and that Oc ¢ $0
172
is due to the extraneous effects of the infinity of variables

which can be measured from an experimental unit.

In what is to follow, an estimation technique is discussed whereby
underidentified parameters are estimable. However, no pretense is
made that the questions posed in (1) and (2) can, at present, be ade-
quately resolved or even nearly so. All that is done is to suggest an
approach which may be of some value in the actual consideration of
(1) and (2).

4.2 AN EXTENSION OF THE "INSTRUMENTAL
VARIABLE ESTIMATION TECHNIQUE"

Consider the functional relationship [Williams, (1961, Chapter 11)]

n = 78 (4.2.1)

where 7 is a parameter to be estimated, and n and ¢ are measured

with error by

y =1 - ¢, x = 8 +05. (4.2.2)

y = 7x + (€ +78) is obt: ined by substituting the expressions in (4. 2. 2)
into (4.2.1). In a sample of, say, size n, the least squares estimate
of 7 may be inconsistent, since x is correlated with the error term

€+7%. As such, an alternative method of estimation is now discussed.
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Assume

i=1,...,n, so that (¢ai + 761) : i.i.d. (0, °§ + 72062). From the ith
experimental unit from which the responses ¥; and x, are drawn, let
w denote another variable which will be termed an instrumental vari-
able. Assume that the functional relationship in (4. 2. 1) is invariant
under changes in extraneous (instrumental) variables and that the
measurement errors are ﬁncorrelated with the instrumental variable.

Then in a regression of ei +yt;i on u,, say,

€ty =a+aqu + a4,

ao = al = 0, where ao’ al‘ A are intercept, slope, and model error,

respectively. In the sample, the estimate of Gl is

a = ; (€i+ ”i)ui/ gu?, _

assuming u = 0. But o, =0, and equating a, to zero yields

;(e"* ®lu =0 = 2:‘("" %) u




whence

A .
7 = z yiui/ Z X,u, (4.2.3)
i i

A
is a consistent estimate of Y. 7 is termed the instrumerntal variable

estimate of 7.

We will now show why the instrumental variable estimation tech-
nique cannot, in its present context, be applied to the estimation of
parameters in a regression relationship where the independent variable

is uncontrolled and measured with error. Consider the regression model
+
T s Yyt + ¢ (4.2.4)

where the intercept is assumed zero, M and { are measured with error
according to (4. 2. 2) and & is the model error. Substituting the ex-

preasions in (4. 2. 2) into (4. 2. §), we have
y-rx o+ (e+mact), (4.2.5)

Again, in & sample of éize n, the ususl least squares estimate of 7 -
may be inconsistent since x and 3 are correlated. In lddhion, the
error term ¢ + 78 + ¢ can nardly be ssgumed independbﬁt of extra-
neous varizbles since the mcdel error ¢t is composed of variables o_uéh |
as u. i. e., the regression relationship is rot iﬁvuﬁnt_md&r chmguin ;

extraneous or instrumental variables.
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To apply instrumental variable estimation to a regression rela-
tionship, we must find a variable u such that ¢ + 70 + ¢ is inde-
pendent of u. Such a variable u is available from two sources, a
table of random numbers and disassociated experiments; i. e.
€ + 75+ € is independent of u if the u, are drawn from a table of
random numbers; also, if the ¥y and X, in (4. 2. 5) correspond to, say,
a biological experiment and the u, are responses taken from an
unrelated industrial experiment, then €+ 98 + et s again inde -
pendent of u. Consequently, the instrumental variable estimation
technique can be applied to a regression relationship (where the in-
dependent variable is subject to measurement error and is uncontrolled)

if the u, are properly chosen.

If the independent variable, &, in (4. 2. 4) is controlled and/or,

if the measurement error 8 ~ 0, then the usual least squares estimate

of 7, say ¢ = z A /z x?. is the best estimate and
i i

var ¢ = 02 /Z xiz (4.2.6)
4 |

where 62 * 03 + 0:4- . Regressing €t t-‘: “n w produces the estimate

of 7 as given in (4. 2. 3), where

var 9- 02 Zu? /(z “i‘i)z . (4.2.7)
i i

el i

st

LU R L
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Comparing the result in (4. 2. 6) with that in (4, 2, 7), then we have the

very obvious result that

A
var y > var ¢ where uf x

= var ¢ where u=x, i.e.,

.2 Zuz/(z ax)? > oz/zxz

since

(2xu)2/z x° Zuz <1.
The latter is a well known inequality.

Thus, we have shown that if least squares estimation (when appli
cable) is compared to instrumental variable estimation, the latter pro-
duces conservative estimates but has broader applicability.

4.3 AN EXAMPLE OF UNDERIDENTIFIED PARAMETERS

AND THEIR ESTIMATES THROUGH INSTRUMENTAL
VARIABLE ESTIMATION

In the previous section, the instrumental variable estimeation
technique was utilized in the estimation of parameters when there exis: -

substantial measurement error. In this section, as in Sections 1, 2,

and 3, we assume that measurement errors are negligible, and the




instrumental variable estimation technique is applied for the expressed

purpose of estimating underidentified parameters.

Consider the structural system

Yy =Wt ayZi ey (4.3.1)
Yoi = Fo + € (4.3.2)
= m_. + e_, (4.3.3) -

i=1,...,n where u, and i

1 o are population means; (4. 3. 3) is the

sample form of (4. 3.2); @ is the rate of change in y, per unit change

in Yy and eli and €y; are model errors. It is assumed that

B ] r B
- 2
T1i oel Oelez
€2i Ue € 062
| | 172 2_|

The reduced system corresponding to (4. 3. 1) and (4. 3. 2) is
= (0] Qe
(ul + uz) + (eli + 621) (4.3.4)

Y145

= b+ € = m + e (4.3.5)

-40-
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and (4. 3. 2), and the covariance matrix of the reduced model errors,

+ : . .
(eli €0 c2i)’ as given in (4.1, 4),

The Markoff estimates of (ul + Otp.z) 2, B,

2
02 + 2 %o + a? 02 , O + Otc: , and o€2 are, respectively;.

1 2 2 12 2 2
Zyn/“’zyz Z(yn’y)/(“ Z(yl 'y”yz'yé)/(" ),
i i

and z (y .-; )2 /(n-l). Thus, u,, %, ¢ , and 02 are under-
2i Y2 1 4.-:le2 el

identified, and the instrumental variable estimation technique is applied.

The n x 1 vectors u = (un) and u, = (u2‘,) are drawn, say, from

a table of random numbers. Ilet U(n x 2) = (y_l s 3_2) and El = 32 =0,

Then in the regression model

= Q v Q + 4, 3.
©1i o ¥ U T Bgug Sy (4.3.6)

0‘o = Otl = 052 = 0, where €1 is the model error in (4. 3.1) and Ai is the

model error in (4. 3. 6). Let «‘ nx1)-= (c ). Then the least squares

estimates of al and O_, say

2
' [U,U]-l

are equated to zero, so that

-4]-




g™ v -xe) =0

where y (nx1) = ), Xnx2) =, y_z), lnx1) =(1),

Yo nx1) = (yZi)’ and _9_'l = (u, , @), Thus,

1
N
W -1

8. = Al = (UX) Uy, (4.3.7)
!

var 8 = T @wulwxtd |
1

and the estin.ate of °: is
1

N2 2
0. = z eli/(n-Z),
1 .
i
A

A
" where e,. = yl. L -Oty.zi.

li i

A —
The estimate of My is p g Y9 8O that oe2 is esiimated by
2

ne 2 _ — .
o, = z €5 /(n 1), where €y T Yoy " Yo Thus o . s
v 2 i 172
 estimated by ¢ - Z (n - 2)
estimatedby o _ = €5 %9 n .
12 :
i
: AA AA
A significant departureof p = © /o o_ from zero would
: €601 € e =

imply the rejection of the hypothesis that Op ¢ ° 0. Utilizing an
172
approximate test, the hypothesis O ¢ = 0 is rejected if

12

t

(- 35270 -4242 ty n-3)d.t],
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b

A
swhere €, (qr x 1) = (€

where to is the upper critical value of Student's t distribution with

n - 3 degrees of freedom.

4.4 THE ESTIMATION CF DIRECT AND INDIRECT
EFFECTS, AS DISCUSSED IN SECTION 3, WHEN

0€€#0 ‘
1 2

Consider the structural system in (3.1.1) and (3. 1.2). The
corresponding reduced system, in sample form, is given by (3. 1. 4}
and (3.1.5). Since direct and indirect effects on y1 are underidentified,

when o c e # 0, we again apply the instrumental variable estimation

12
technique.

Let the sample form of (3. 1. 1) be written as

A
ylij =m o+t 0+ blj + a.y2ij + elij . (4.4.1)
Then
A + N+
- - e
g ¥y -¥X 8 (4.4.2)

A

+
lij)’ y, (arx1) = (ylij)' X [qr x (q+r+2)

is the design matrix corresponding to the model in (3.1.1), and

A+
6 = (m

+
9, , a)'. Since X s

t 1q

t, ., b

110 g . b

1’ 11°°°

singular, choose a basis of X+, say X[qrx(q+r)]. Then

6 1 [(q + r) x 1] is the corresponding vector of non-redundant param-

eters, and (4. 4. 2) is rewritten as
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N
=y, - Xo. (4.4.3)

[
[

Select q+r vectors, say u such that §

v Zp o Sqap

is independent of u,; and let

Ulgqrx(@+r)] = (u ).

P B Eq+r

Then in the modeil
€1=a+au+..+au + .. + O

o 11 L2 q+ruq+'r.+A’

the U's are zero. The least squares estimate of o= (Otz) is

= (U U)-1 U' e

i®

1
A
Equating a to 0, 9 in (4. 4. 3) is given by

= wx Y

o>

and

/\ - - - [y
var 8 - R wuntwxrtd v

1 1

A
Let z and Vz denote that portion of € and V corresponding to

the non-redundant direct .reatment effect estimates on'y 1’ Then the .

hypothesis TR =.'rlq = 0 is rejected if
- N .
G2 Gv. 0 G- %% > E
= 2 t’.l o4

-44-




where Fa is the upper @ critical value of the F distribution withq - 1

and qr - q - r degrees of freedom, and

S .
1, -1 0
J = 0
1, -1
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