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SUMMARY

Analysis of covariance in randomized and balanced incomplete

block designs is reconsidered in terms of structural regression, In

practice, the covariable is usually uncontrolled and may follow a linear

model as does the variable of interest. If the covariable and treatments

are independent, then the covariable model contains no treatment effect,

and the treatment contrast precision on the variable of interest is in-

creased, not only asymptotically, but in the finite sample. If the co-

variable is affected by one more of the treatments, then the estimation

of direct and indirect effects is considered. Finally, when structural

parameters are underidentified, in which case direct and indirect effects

are not estimable, an alternative estimation procedure is discussed.

-iv-



1. INTRODUCTION

Consider the randomized block design model

Ylij = + 1'i  +  0 i + ay 2 j + ij (1.1)

.th (th) ramn
where T i (P) is the fixed differential effect of the i t( ) treatment

(block) on a response of interest, say yl ij, which is taken from the

th
(i j)t experimentEiunit, i = 1,..., q; j = 1,..., r. .4 is

usually the base from which the differential effects are estimated, and

e.. is the random model error. The covariable, y is assumed in-Y2ij'

dependent of treatments and is included in model (1. 1) to account for

differences in the y from one experimental unit to the next in esti-2ij

mating treatment contrasts.

Consider, next, the following three conditions and/or assumptions

which may accompany a covariance analysis:

1. The covariable is uncontrolled, and is measured with
negligible measurement error.

2. The covariable, though independent of treatments, is,
perhaps, dependent on blocks.

3. The covariable is unaffected by the variable of interest,
though not conversely.
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Under the circumstances, it may be reasonable to assume the following

linear model for the covariable:

Y2ij 2 +2 2j +C2 ij (1.2)

.th
where 02ij is Lhe fixed differential effect of the j block on y2ij' and

2ij is the random model error. For consistency of notation, model (1.1)

is rewritten as

Yij I= + T + P + ay 2. + C lij

When there is doubt regarding the independence of treatment and

covariable, then a treatment effect, say -2i' should be included in the

model for the covariable; i. e.,

Y2ij 2 + T2i + 02j + C2ij (1.3)

so that model (1. 1) is now rewritten as

Ylij i 41 + I 01j + aY2 1j + Cij" (1.4)

Substituting the expression for y2 ij in (1. 3) into (1. 4) yields

+ (T(l + 2j) + ( C

where i + a2i is the overall treatment effect on YI or, is the direct

treatment effect on y,, and ctr2 i is the indirect treatment effect on y,

or that treatment effect which is passed on to y1 through Y2 "

-2-



Regarding the model errors, c lij and c 2ij' the following

assumptions are made:

E lij E (F2i j  0

E (c2 2 2 ) 2
1 ) , 2ij C 2

E (Elij C l,j,) = E (E2i j c2ij ) = 0 for i i' or j jI
2ij

E lij 2ij E I 2

In Sections 2 and 3, we will illustrate the following. Assume

a = 0. Then
E1 2

(1) if treatments and covariable are independent and if

model (1.2) is adequate for the covariable, the treatment

contrast precision on the variable of interest (yI) is in-

creased, not only asymptotically, but in the finite sample;

(2) if treatments affect the covariable and if model (1.3) is

adequate for the covariable, then that estimated treatment

effect on the variable of interest, which is obtained through

the usual covariance analysis, is the direct treatment effect

on Yj; and corresponding treatment contrasts also have

increased precision in the finite sample.

-3-



If 0, which is considered in Section 4, it will be shown

that statement (1) still holds. However, a , in the context of state-

ment (1), and direct azd indirect effects, in the context of statement (2),

are not estimable through usual techniques due to underidentification.

When parameters are underidentified, an alternative estimation pro-

cedure is discussed.

-4 -4-L
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2. INCREASING TREATMENT CONTRAST PRECISION
WHEN THE COVARIABLE IS UNCONTROLLED

INDEPENDENT OF TREATMENTS. AND
0 -o0

IlF. 2

2.1 THE STRUCTURAL AND REDUCED SYSTEMS,
AND THE ESTIMATION OF TREATMENT
EFFECTS WHEN a IS KNOWN

Consider those applications where the covariable is uncontrolled,

independent of treatments, and where the system (described inSection 1)

ylij - '1 + rj + + Y2ij + clij (2.1.1)

Y2ij ' 2 +  2j + e 2i (2.1.2)

is adequate. It is assumed that

i i. d. 0 0 2(2.1. 3)

i.e.,[ it 41 is identically and independently distributed with

2expectation [0. 01. and variance a 0

200
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Models (k. 1. 1) aiid (2. 1. 2) describe a partial and relevant structus

of the experimental unit and are thus termed the structural regression

models or the structural system. It is inconsistent, logically though not

necessarily statistically, to estimate the system's parameters separate]

or model by model; for in doing so, y 2 is fixed in (2. 1. 1) and uncon-

trolled in (2. 1. 2); certainly y 2 cannot assume both roles simultaneously

Moreover, if instead of (2. 1. 2), y 2 ij "2' '2i' +%2jc"'y Iij" + 2 ij - then

separate least squares estimation leads to inconsistent estimates as is

discussed L. Haavelmo (1943).

Substituting (2. 1. 2) into (2. 1. 1) yields

yli. = 9 0g + T + (0 1 .+ .j) + (C i +"2 ) (2. 1.

which, along with (2. 1. 2). is termed the reduced system or the. reduced

regression models. In (2. 1. 4). not oniy is r1 dirtctly estimable, as

opposed to, say, the~ direct block effect, 15 on y but, also, in the

reduced system. Y2no longer assumes a dual role. Separate estima-

tion in this reducer; system yields consistent estimates; however the.

errors of the reduced system. -E + QC and c art Correlated.

-which, concurrent with a nonexistent treatment effect in (2. 1. 2). imipIie

an increased treatment contrast precision through joint estinuttion

iMalllos (1961)J. as will now be shown.



S
From (2. 1. 3) it follows that

[Ili. + ae2ij, E2ij] i.i.d, (OO),j ] (2.1.5)

where

2 2 2 2
C + a C ,a

2 E2

2 2 = (ahh,). (2.1.6)

2  
2

22

-1 hh'

h, h' 1, 2. Denote by (a ) and write the sample form of (2. 1.4)

and (2. 1. 2) as y m + ti + b + e and y 2 i.=m2 +b +e re-
1 j j 1li 2i j 2+2j 2ij'

spectively, where m, t. b. and e correspond to 1 1 +al 2 P Vi lij

+ 2 and e 2i

For a known, best (Markoff) estimates, among the class of linear,

unbiased estimators, are found by taking partials of

2, 2, q, r

e hij (h (2.1.7)

hp h', i,

equating these to zero, and utilizing the usual restrictions that

ITi =hj = 0. (2.1.8)
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The resultant estinates are

t. = iY 1  ( 2i - Y2  b 2  = 2j Y2  (2. 1.9)

b. = Y 1j " 2= , m 2 2  Y'

where

12 22' Fhi =Z Yhij /r. Yhj =i Zq,

and

Yh = j Yhijqr.

1/2
Also, with 312 P(a 1 1 a2 2 ) in (2. 1.6).

var (ti - t,) = 2lI(I -p )/r 2a 1 . (2.1.10)

If T is included in model (2. 1. 2) when, in fact, = 0, then T.
2i '2i1

is estimated by

t ° ''- = " ' + a 2 (2. 11)va i. . ) (o ) + a / v 'a i 't)

and vr(o)- t~) 2(y2+a 2 a2 )r, so that va tz i a(t(o) - 0
i 1 2j - t

-8-



2.2 THE ESTIMATION OF TREATMENT
EFFECTS WHEN a IS UNKNOWN

For Z and functions thereof unknown, various estimates of T

have been considered [Malios (1961), Zellner (i962)], though in a

slightly different context. Perhaps the most obvious estimate is that

which maximizes the likelihood function, assuming normality in (2.1.3).

This estimate requires iteration to convergence. Since in (2. 1. 9) a

is unknown, obly the.t, change in iteration which implies that the un-
1

biased estimator

0* (y2ij- m 2 - b 2
")2 / (qr - r) (2.2.1)

* ii

remains unchanged in iteration, where (qr - r) o 2 /qr is the maximum

likelihood estimate oi a 22. Choosing an initial estimate of Ti as

(o)
t , in (2. 1. 11) and the other estimates as in (2. 1. 9), then the estimators1

12(°) (y Iij - m - t(° b)(Y2 ij " m2 -b 2 j)i(qr - q - r + 1)

13 (2.2.2)

and

(0) (o m " t (O) 2/ ( q r  r + 1) (2.2.3)11 lij m i "" "

ij

(o)/ = (o)
are consistent and unbiased for a12 and Oli. From ao, * a( , a

12 11'12 22

second estimate of Ti . say t (l) a(0 ) is obtained

i; -9-
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from which 1)= 01a/0* and a are calculated. This1212 2 2' 11

process is continued until stable estimates, say t-, a* = a*o 
1 12 22'

and a *1' are attained. The efficiency of the maximum likelihood11 2 a2 2

estimator, t*- t,, i i', is given by (2. 1. 10) and a = a - a 22
1 if C 112

estimated by a*2 = c - o22/a 1
1 1 i

Aside from t.* - t* , all estimates obtained during the iterative
1 i

(o) (o)cycle (except for ti - tif ) are consistent and equally efficient; i. e.,

sic 1o) (o) 22 22o
since a12, a (0) and a * a(o) are consistent, the initial estimate,

(1) (1)t 11 - t1, , is therefore consistent and efficient [Zellner (1962)] ; and,

since the initial estimate and the "final" estimate, t.0 - t*, share the
1 i

same large sample properties, so must all estimates obtained during

the iterative cycle. While the exact finite sample variation of these

estimates remains unresolved, Zellner (1964) in a somewhat different

context, produced yet another Tr. - Ti estimator and derived its finite

sample properties. His approach is as follows: Assuming normality

in (2. 1. 3) and including a treatment effect, say -2r 0, in (2. 1.2), then
2i 2i 2iweeEt.)0 *i

it is seen that r2i is estimated by t2i=y2i-Y2 where E(t 2i 0; i is

then estimated by t °0. in (2. 1. 11). and the consistent, unbiased variance-1

(0)
covariance estimates s (0)

12 (o) 2  b 2j)/qr (2.2.4)

1 ) y2ij' 21 q r+1
i-

-10-



and

s22 (Y 2 j -n 2 - t 2 i - b2j) 2 /(qr - q - r + 1) (2.2.5)
ii

are distributed as Wishart variates independently of - and

Y - If T, is reestimated by

A
A i (YUi- Y1) " (s 1 2 /s 2 2 ) (Y2i - Y2 ), (2.2.6)

A A.then, sinces 12 and s22 are consistent, the efficiency of T - T. is1 1

A A
given by (2. 1. 10); moreover, ,r. - . is unbiased; i.e.,

Eri ) = E13yi -y1) - Els2Is2) E(y.i- y2)--.
E (ii 1222 ) 2i 2

since s12/S22 is distributed independently of Y2i - y2 ' whose expec-

tation is zero. Zellner then derived the exact second moment of

A A. 'r given by
1

A A 2 2
var(-r. - Ti,) = (2/r) a,, (1- 2 )(1+ ) = (2/r) 2cC (1+0) (2.2.7)

1

where *=(N- 2)'it /2r.[(N+ 0/2]/r(N/2) and N- =qr-q-r+l,

A A
and showed that the exact distribution of o. - '. rapidly approaches

normality, for N > 10. Note that when a = 0, the exact second moment

of a treatment contrast is 2a 2 /r; comparing the latter with (2. 2. 7), it
c 1

is seen that the inclusion of covariable n (2. 1.1), when in fact Ylis

-11-



independent of y2 i. e.*, c 0, produces a decrease in contrast

precision. As such,, it is assumed throughout that cc is substantial.

A AIn comparing the estimators T . - ri and t - i teei

1 .,mtherei

reason to prefer the latter even though its finite sample variation is,

at present, unknown. Note first that var a (0) < var s, where c 0

is given in (2. 2. 3); 0o) isgvni 2.2;6(o) = * isgvnn12 igiein(.. 2),~ 2 22isgenn

(2.2. 1). s 0 ) 11al s12 is given in (2. 2. 4); and s 22 is given in

(2. 2. 5); i. e.,

var a 0)= /c2(qr - q - r + 1) =vars

var a()=2 o - q - r + 1) =var s12

but

var a (0) 2o 2 / (qr - r) < 2c;2 /I(qr - q - r + 1)=var 82222 22 2222

A A (1) (1) (0) (o)~Since Tr* - T. it function (s 12IS2 ) while t. - ti= function (012 /a22).

it is likely that t ()- t~l has greater precision in finite samples. Thus,
i if

in actual application, it is advisable to present both estimates.

2. 3 TESTS OF SIGNIFICANCE. AND THE ANALO)GY
WITH THE USUAL COVARIANCE MdETHOD

A
In using T' in estimating , the obvious estimate of

2 r2 is 2 a 2 However, the latter.
12' 22 1 1 212222

-12-



found from a nonlinear combination of the shh,0 is biased; makinp the
22 2

adjustment (qr - q- r + 1) s*2 /(qr - q- r) s , s is unbiased
2  C1 Te t 1

for a l. Then the null hypothesis - q 0 is rejected if

[(qr t-r -I~i 2 (q s21]( 1>F q-1 r-q-r (2.3.1)

where

(qr - r -IA 2 (Y11 -in -b.) 2
1 i j

• 2m --. )yb )y.m b-
(Y i 2 -2 yjM2 3 2

is the estimate of (qr - r - 1) cl2 with T. O, and Fa (q- l,qr -q-r)
e I

is the upper cx critical value of the F distribution with q - I and

qr - q - r degrees of freedom. Note that if 0 in (2. 2. 7) is negligible

A A
and -i " 'i is sufficiently normal, then the test in (2. 3. 1) is nearly

exact rather than asymptotic.

In the usual covariance analysis (Anderson and Bancroft (1952)],

A
the estimate of ri is identically r i in (2.2. 6), while the adjusted treat-

ment mean square is tested by (2. 3. 1). However, assuming the co-

variable fixed, the treatment contrast precision is

-13-



2a2y, ).0 )222*C~ (72i 2 C -yi 2 't2 i -b2 j) (2.3.2)

in the limit and under (2. 1.2), (2. 3. 2) reduces to (2. 1. 10), for then,

the variance of the estimated slope is known and Y2i - Y2i' becomes

E Y2i) - E (2it) = 0. For uncontrolled covariables, (2. 3. 2) is an

asymptotic result and is therefore comparable to (2. 1. 10), not to the

finite sample result in (2.2. 7). Hence, under (2. 1. 2) there results

not only an increase in relative efficiency, but also, if 0 is negligible,

this increase applies to finite samples.

Herein, one result is that 'r is estimated by

A1

Si = ffli 1) - (s12 /s 2 2 ' )q 2 i '2 )

whether model (2. 1. 1) is considered alone (the usual covariance

analysis) or whether the entire system in (2. 1. 1) and (2. 1. 2)1 is

utilized. In the former case, the covariable is assumed fixed, and

the estimated treatment effects are adjusted for differences in the Y2

between experimental units. When the entire system of (2. 1. 1) and

(2. 1. 2) is applied, the adjustment is somewhat different. Under (2. 1. 2)

the covariable is independent of treatments. However, - the

estimate of r2i' is non-zero (with probability equal to 1) so that
21

y2 i  y2 becomes an estimable within sample bias. Since the errorsI
~-14-



0
of the reduced system in (2, 1.4) and (2.1.2) are correlated (when

a # 0), y2i - Y2 should be accounted for in the estimation of r"*

Thus Y i Yl is adjusted by an amount -ay2i - Y2 ) to produce the

proper estimate of V..
, 1

Example 2. 1. Williams (1961, p. 119) describes an experiment

on the effect of temperature on the maximum compressive strength of

timber specimen. Material from ten trees was taken and a specimen

from each tree was tested at each of five temperatures. The moisture

content of each specimen was uncontrolled so that a covariance adjust-

ment was made to the data. Williams' detailed analysis illustrates, in

part, that the residual variability was reduced substantially through the

introduction of the covariable and that temperature effects were highly

significant.

If the trees (or blocks) in this example were fixed, then the

structural system in (2. 1. 1) and (2.1.2) applies since moisture con-

tent is independent of temperature (moisture content is measured

prior to the application of temperature) and follows the model in (2. 1. 2).

However, the fact that trees are random will be disregarded in the

same manner that least squares estimates are utilized in mixed and

random models. As such. the treatment contrast precision in this

example is, from (2. 2. 7),

-15-



(r)2 2
(2 0 (1 +0) (1/5) 2 (1 +0)~E1 1

where

3-1 -1/2
= 34 1 A(18.5)/ -1(18) =  0.069.

Since 0 is negligible, the treatment contrast precision becomes
2

(1/5) a rather than the usual result given by (2.3.2).
C1

2.4 ONl INCREASING TREATMENT CONTRAST
PRECISION IN BALANCED INCOMPLETE
BLOCK DESIGNS

Consider the incomplete block design model

y1 ij = .. (1 + + 0. + £ ) (2.4.1)

where A.. =0or l; i = 1, . q; j 1 .. r. Let u denote thenum-
13

ber of times a treatment is replicated; let v denote the number of

plots per block, and let every treatment appear with every other treat-

ment in the same block an equal number of times, say w. Thus. we

have a balanced incomplete block (BIB) design and i is estimated by

. yl/r - / i ylrv. (2.4.2)

Denoting the variance of the model error in (2.4. 1) by a the treat-

ment contrast precision is

-16-



0
var - 2 3f (2.4.3)

where the efficiency factor Ef (u(v - 1) + w]/uv and Ef < 1 (Anderson

and Bancroft (1952). in (2.4. 1) if tA.. - 1 for all (i, ), then we have a

randomized block (RB) design and the contrast precision is

2 aIl/r < 2a 1/rE f .

However, if blocks become heterogenous when the number of plots per

block equals the number of treatments, then a comparison of the con-

trast precisions between the two designs is misleading; i. e., assuming

heterogeneity within blocks, the estimated a I I for the RB design becomes

larger than the estimated a I I for the BIB design.

It will now be shown that it is possible to utilize the BIB design

(described by model (2. 4. )) arid at the same time to achieve a treatment

contrast precision which is nearly identical (if not greater than) the

2 o1 1/r value for the RB design.

In all the design of the experiment, another response, say Y2 "

must be identified, where Y2 is independent of treatments and is highly

correlated with y 1" Then, if y 2 follows the model

y21j, ij (42 + 2j + 21j (2,4.4)

-17-



while

Ylij ij ( +  I i ij +aY2ij + C2ij (2.4.5)

we may apply the results of the previous sections. The reduced system

corresponding to (2. 4. 5) and (2. 4. 4) is

Y [(i1 + a2)+ + ( + + Q i ) +c C:] (2.4.6)
>ii ii 1 2 i 2~ j e2j

and (2.4.4). Letting 1 i + a P =P - lj +ap2j# and Cij = EIij+(a 2ij+

it is seen that the model in (2. 4. 6) is identical to the model in (2.4. 1).

Let var (elij + ct£2ij' e2ij) = hh'X h, h' = 1, 2. Then, considering the

entire reduced system, the Markoff estimate of 'r is

ti Ylij/r "  y I ylij rv

3 3 i

and

var (t - ti,) 2 (2/r)(ol - 12/022)/ E

2(20 /r)(I -0 )I.f (2.4.7)
11 -

-Is



The parameter 012 / 022 is replaced by an estimate, say s12/S22'

precisely as in Section 2. 2; i. e., including a treatment effect, say

2i = 0, in (2. 4. 4), then the residual squares and cross products yield

A
the estimates s and s.1. Thus T. is estimated by . where

22 1

i Z ylij/r "  A. Ylijy/rv

j 3 i

-(s 1 2 /s 2 2 )[ y2ij/r- X1Aj y 2 ij/rv] (2.4.8)
j j i

A A
and the exact second moment of T. -i is

A A 2-var 1I,'- Tit) = (2a I/r)( - p21 + )+)/Ef (2.4.9)

where

®(qr-q-r-l1 '21 -1/2 /r r

S- i r [(qr-q-r+2)/2] r[(qr-q-r+l/2]

is the finite sample correction factor as in (2. 2. 7). Note that if 0 is

2
negligible, then (2. 4. 9) reduces to (2. 4. 7). Thus, if p is sufficiently

-2)

large, to the extent that (1 - ) and Ef cancel, then we have (2/r)

the contrast precision for a RB design.

0

-19-



3. THE QUESTION OF DIRECT AND INDIRECT
EFFECTS WHEN THE TREATMENTS
AFFECT THE COVARIABLE AND

e - 0

1 2

3. 1 THE ESTIMATION OF DIRECT AND INDIRECT
EFFECTS WHEN ALL TREATMENTS HAVE A
POSSIBLE EFFECT ON THE COVARIABLE

Consider the structural system (described in Section 1')

y1ij =" 141 + rH ii +a 'y2ij + lij(31)

y2ij = 2 + T 2 i + P 2j + ' 2ij- (3.1.2)

The reduced models are (3. 1. 2) and

y1ij = (1 + g + (,r + a-r ) + (P .+aP + (e .+ae (3.1.3

Let the sample form of (3. 1.3) and (3.1. 3) be written as

y~ij = + t. + b. + e i(314

and

y2ij m 2i + j e21j (3.1.5)

-20-



where m, t i , b. and e correspond to 1 +a 2, T +a-2i

Plj +ao2j. and elij + ae2ij' respectively. The assumptions regard-

ing the e 's in (3. 1. 1) and (3. 1.2) are identical to those in (2. 1.3).

Adding he restriction that X ' 2 i 0 to those in (2. 1.8), the Markoff
i

estimates become

m Yl tiy ) b =(7 - (3.1.6)

m2 =Y2' t 2 i y -5-2)' b2i '72j.Y2)

with var(t- t) = (2/r)(o +a a) and var(t2 i-t 2 i,) = 2 r.

Note that the estimates in (3. 1. 6) do not contain elements of the un-

known E, a convenience which results when the design matrices of

two or more linear, reduced models, with correlated errors, are

identical [Mallios (1961)].

Since treatments may have direct and indirect effectb on y1 , the

parameters of the structural system need be estimated. o2i is esti-

mated directly by t21; equating t i to i + Or21 and substituting t2i

for T21' there results q - 1 equations in q unknowns. But from the

estimate of z, given by the s hh of Section 2.2, we have three equations,

a' * ' in three unknowns a 2 P a2 and a. From the estimate of a,
11, 12' 22, th1 

- 2
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given by a s 12/s22, we can estimate T the direct treatment effect

A
onY, by ti-- t i - at2i. Butt i is precisely 'r i in (2. 2. 6), so that the

usual covariance technique provides proper tests and estimates of the

direct treatment effect on yI, under the structural system in (3. 1. 1)

and (3.1.2); moreover, var (tli - tli , is given in (2.2.7).

A
Thus, if the t2i are significant while the t r " are nonsignificant,

then the treatment effect on yl is indirect; i.e., the treatment affects yI

through the covariable and not directly. If both the tli and t2i are signif-

icant, then there are both direct and indirect treatment effects on yl'

Example 3. 1. Anderson and Bancroft (1952, p. 302) discuss an

experiment on the effect of fertilizer levels on the yield of sugar beets.

The covariable is stand, which may be influenced by fertilizer though

not by yield; and the field is divided into six homogeneous blocks. The

analysis shows that treatment effects on yield, adjusted for stand, are

not significant, while treatment effects on stand are highly significant.

Disregarding the model in (3.1.2), the experiment certainly falls into

the "uncertain class". However, stand is adequately predicted by blocks

and tl.eatments, as is hypothesized by model (3. 1. 2). Thus the analysis

impliea that there is an indirect rather than a direct treatment effect on

yield; i. e., the treatment effect on yield is through the stand; Though
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there is little need to consider treatment contrast precision for direct

effects on yield, the value of 0 is given by

(28)- 1  -1/2r (15. 5)/ r (15) = 0.077.

Treatment contrast precision for direct treatment effect on stand is

2o2/6 whose estimate is 318.5.

3.2 AN ILLUSTRATION WHEREIN THE TREATMENTS
DEFINE A FACTORIAL EXPERIMENT AND THE
COVARIABLE IS INDEPENDENT OF ONE FACTOR

Scheffe (1959, p. 217) presents data from an experimental piggery

where six young pigs, three male and three female, were allottedto

each of five pens. Three amounts of protein, say, fII f2 # and f3

in increasing proportion, were given to one male and one female in

each pen. The pigs were weighed individually each week for 16 weeks,

and the growth rate (yl) in pounds per week was calculated for each pig.

The weight (y2 ) of each pig at the beginning of the experiment is the

measured covariable.

For purposes of adding to homogeneity within pens, the allotment

of pigs to pens Is by initial weight. Within each of the two groups of

15 male and 15 female pigs, the pigs are ordered from highest to lowest

according to initial weight; i.e.,

-23 -



W >W > WM 15 are the 15 male weights
MI - M2 M1

and

W > WF2 > > WF, 15 are the 15 female weights.

The three heaviest males and the three heaviest females are assigned

to the first pen, the next three males and the next three females are

assigned to the second pen, etc.

Figure 3. 1 presents a path, diagram relating sex, protein, order-

ing, and pen to growth rate and initial weight. The arrow from y 2 to YI

describes a possible effect of initial weight on growth rate. Sex may

have a direct effect on yI and Y2' and hence an indirect effect on y,.

Also, protein may effect y1, though certainly not y2P and pen may

have an effect on y1"

Figure 3. 1
A Path Diagram Relating Sex, Protein, Ordering,

and Pen to Growth Rate (y1 ) and Initial Weight (y2 )

Sex Wly---Pen

Protein yje- -Ordering
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The five ordered groups will, very likely, yield a significant

source of variation for y 2. These groups can be looked upon as five

fixed blocking effects on y 2 in the same way that pens are blocking.

effects on y I. However, it must be assumed that the 30 selected pigs

are representative of the population of pigs with respect to initial

weight.

From Figure 3. 1, the following linear structural models, in

sample form, are hypothesized:

Ylijk 1 ' "1i f 1 +SIO +bk+ay2j+elijk

Y21jk ' 2 + ' 2 i 2k +e21jk (3.2.2)

where s * sex 1 1, 2; f. : protein level, j a 1, 2, 3; b 1k:I. .3

pen, k = I, . . . .5; b 2 k: ordering, k a 1. 2. .. , 5. The reduced

models become (3. 2. 2) and

y *(M +am )+(s +as )+f+80lijk 1 2 11 21 j Ii

+ 1b k + ab2 k )+(e lljk+ a*2 jk) (3.2.3)

M+s 1 +f f+sf)1 +bk +ej
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under the restrictions that

8h b 0, (s).= ~h =1,2. (3.2.4)
i ij k

The assumptions regarding elijk+ 2ijk and e 2jk the population

errors corresponding to eijk and e 2ijk are that

e 1 ijk + a 2ijk0

e 2ik 0

where a (hh') is given in (2. 1.6).

A
Analogous to the derivation of -. in (2. 2. 6), the fixed effects are1

estimated as follows. Include a protein effect, say f2j. and a protein

by sex interaction effect, say (s 2 f2 ) i, in (3. 2. 2). i.e.,

Y2ijk = m2 
+ s2i + f2j + (a2f2)ij + b2k + e2ijk

A Awhere E(f.) E(sf O. Thename /a where the o
ee 2j 22 ij 12 22# hh'

estimators are found from the sum of residual squares and crosI

products; e. g..

Am

a e /20.
12 -jk ek t2ijk

ijk

-2I
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Ahh' hh' i
Substituting s for in

~'2 11 12 2 22
(eika +eijk e 2ijk a+e2ijka

ijk
Ahh'

and holding the s fixed in differentiation, then, under (3. 2. 4), the

estimated fixed effects are

In=Y - Y

8 Ii qi-~ -I aG62i - 2).

f. q Y- YI) a (3.2.5)

(aIU a ij YI) W2tj2) i

b -kaO~kY aq 2k - 2 ) -S

bb1k alk1 2k a 2k Y2)

The efficiency IOf s8 al is 2a 2/15 while Its exact second moment
31

is (2 %/ 15)(1 + 0) wher'e 0 is given in(2.2.7). Similarly, the effi-

ciency of f, - is 2*2,/10) and its exact second moment is
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Note that the estimators in (3. 2.5) are precisely the estimates

obtained through the usual covariance method which considers only the

model in (3. 2. 1). By introducing (3. 2. 2), there results, in estimation,

a subtraction of a(Y 2i - Y2 ) in the expression for s i, which yields the

direct sex effect of yI" The subtraction of comparable terms in the

expressions for f. and (s f) adjusts for within sample bias, and

serves to increase contrast precision (as is discussed in Section 2.3).

The analysis, given in Table 3. 1, illustrates the consequences of

three approaches to this problem: (i a model is hypothesized for the

covariable, though it includes f. + (s ) hence the design matrices
2j 2 2 3

of the reduced models are identical and separate estimation is identical

to joint estimation; (ii) only the model in (3.2. 1) is considered; (lii) the

structural system of (3.2. ) and (3.2.2) is hypothesized.

Under (i). the results are decidely conservative. Tests of effects.

for each model separately, are shown in the unadjusted mean square

columns of Table 3. 1. Here, neither treatments nor pens ha%e a signifh-

cant effect on growth rate. while ordering has a highly significant effect

on initial weight. Under approach (), the usual covariance method.

the adjusted treatment mean square for growth rate is signiftcant at the

five percent level, and this is due to protein levels. The estimated
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slope a = 0.088, and the estimated variance of a is (0. 253)(442. 933)l

Finally, under (iii), statements regarding treatment effects on y I are

identical to those under approach (ii). In addition, sex has a negligible

effect, not only on growth rate, but on initial weight. And from the

unadjusted mean square column for y1 , it is seen that the model for

initial weight, given in (3. 2. 2), is adequate with s2i = 0. Protein

contrast precision is estimated by 2s2 /15 = 0.034; however, N = 20

= 1 8 ~ -1 / 2 
1 /

and * =8)-1 (10. 5)/r (10) = 0.097 is negligible, so that the

latter precision and the tests of significance apply to finite samples.

In Section 2. 2 four treatment effect estimates were discussed:

to) (1)t), the unadjusted, unbiased conservation estimate; t 11  the efficient

A
estimate based on one cycle of iteration; 1, the usual covariance

estimate; and t*. the maximum likelihood estimate. Table 3.2 pre-

sents the three protein means based on these four estimates, i. e..

(0) 1) + 0 (1f) +YI fi +Y f + YI f * + YI correspond to t 10 1. t A

and t*, respectively.
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4. THE ESTIMATION OF STRUCTURAL
PARAMETERS WHEN

1 c 2

4.1 PRELIMINARY REMARKS

In Section 2. 2, the reduced system

yli. = (u +a2) + T 'z + (l +1 2) + (l +(% *.) (4.1.1)
ql 1 2 1 lj 2J lI 2

Y2ij 2 + P2j + 2ij (4.1.2)

which corresponds to the structural system in (2. 1. 1) and (2. 1. 2) was

considered under the assumption that

2 22 2Cli + a ei a a a a
I ij 2ij 2.9 2

var (4.1.3)
2 22ij a 2 €2

L 2. L2

If C #0, then1 2

6 .a 2 + 204 a + (% 2 a a +a(% 22 2 2 o2

lij 2ij i C IC2 2 el e2 C C2

var 2 2 (4.1.4)
C2ij aClC 2 e2 02
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and the treatment contrast precision is still increased; i. e.,

Ti = Y'i " Y - (s 12/S22)W2i - Y2 )

and

var r i - Tit) = (2 all/r)( - p2 )(1 + )

(2 a2 l/r)(1 + 0) if 0

where s 12/s22 is that estimate of a12/a22 for which finite sample

properties are available. However,

/ a +ay2 )  a 2  if Cy 0
012/ 22 = ( 2+ 2  42 C IC2

if l2 -0

012/ 22 a i 0.

Moreover, within the realm of the data and assuming no further prior

knowledge, a cannot be estimated by existing techniques due to under-

identification; i. e., in model (4. 1. 1) there are q + 2r unknown param-

eters (41' 42'a' ' " T -rq is0 11' ' "a 0 , r -l V 021 " " 0 "° 2, r-I)

and in the covariance matrix of (4. 1. 4) there are an additional three
2 2

parameters (a C . 2' and a so that the total number of un-12

known parameters is q + 2r + 3; but from the reduced systemi of
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(4. 1. 1) and (4. 1. 2) and from the estimate of the covariance matrix in

(4. 1. 4), there are only q + 2r + 2 equations; and it is easily seen that

2
the underidentified parameters are a, a C and a

The estimation of these underidentified parameters may be of

importance for the following reasons.

A
(G) Since T function (s 12s 22)

and since a12/22 = (a + aa 2 ) / 2

it may be that a (0 0) is approximately equal to a;2 ( 0)Cl 2 E2
but opposite in sign. In this case, a 12 is approximately

zero, and from the sample, one might be led to the mistaken

conclusion that y I is independent of y 2 s or nearly so.

Thus, if a resolvement of the structure of the experimental

unit is the issue, then existing techniques should be applied

and presented with caution.

(2) If a 2 a 0, then there is the very basic question, "Why

are the errors of the structural system correlated?" It

may be that the structural models are inadequate in that

other important variables have been neglected, in which

case al 0. On the other hand, it may be that the

F-2
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structural models are, in fact, adequate and that a F- e 0

is due to the extraneous effects of the infinity of variables

which can be measured from an experimental unit.

In what is to follow, an estimation technique is discussed whereby

underidentified parameters are estimable. However, no pretense is

made that the questions posed in (1) and (2) can, at present, be ade-

quately resolved or even nearly so. All that is done is to suggest an

approach which may be of some value in the actual consideration of

(1) and (2).

4.2 AN EXTENSION OF THE "INSTRUMENTAL
VARIABLE ESTIMATION TECHNIQUE"

Consider the functional relationship [Williams, (1961, Chapter 11

n = Yt(4.2. 1)

where y is a parameter to be estimated, and rj and t are measu .ed

with error by

y Y 7x + (,6 + Y B) is obt~ined by substituting the expressions in (4. 2. 2)

into (4.2. 1). In a sample of, say, size n, the least squares estimate

of Y may be inconsistent, since x is correlated with the error term

£6 +Y. AS such, an alternative method of estimation is now discussed.

-35-
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Assume

cI 0 0
i. i. d.,

5.0 0 2

i1,...,n, sothat((c + 78) : i.i.d. (0, 2 + 7 02). From the

experimental unit from which the responses yi and xi are drawn, let

u. denote another variable which will be termed an instrumental vari-1

able. Assume that the functional relationship in (4. 2. 1) is invariant

under changes in extraneous (instrumental) variables and that the

measurement errors are uncorrelated with the instrumental variable.

Then in a regression of e i +Y6 on ui , Say,

Ci + Yi - + alu i  + "i

0, where (O , A1. 4 are intercept, slope, and model error,

respectively. In the sample, the estimate of 09! is

a, + 7 u / I'
i i

assuming U O. But 0! 1 0. and equating a I to zero yields

I(+) u 76U Y ,
i 4
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whence

A I~
Y 2 yu. / x iu (4.2.3)

A
is a consistent estimate of Y7. '/ is termed the instrumental variable

estimate of 7.

We will now show why the instrumental variable estimation tech-

nique cannot, in its present context, be applied to the estimation of

parameters in a regression relationship where the independent variable

is uncontrolled and measured with error. Consider the regression model

I t+ e (4.2,4)

where the intercept is assumed zero, 'q and J are measured with error

according to (4. 2. 2) and r+ is the model errar. Substituting the ex-

pressions in (4. 2. 2) into (4. 2. 4), we have

y ~X + (+ 76+c ) (4.2.5)

Again, in a sample of size n, the usual least squares estimate of

mayr be inconsistent since x and b are correlated. In addition, the
+.

I error term c + it + can hardly be ossiumed independent of extra-.

Ineous variables since the model error c is composed of variables, such

as u; i. e.,* the regression relationship is not invariant und.*' changes inm

extraneous or instrumental variables.

-37-



To apply instrumental variable estimation to a regression rela-

+
tionship, we must find a variable u such that k + 75 + e is inde -

pendent of u. Such a variable u is available from two sources, a

table of random numbers and disassociated experiments; i. e.

e + 75 + e+ is independent of u if the u. are drawn from a table of1

random numbers; also, if the yi and xi in (4. 2. 5) correspond to, say,

a biological experiment and the u. are responses taken from an1

unrelated industrial experiment, then c + 5+ + is again inde-

pendent of u. Consequently, the instrumental variable estimation

technique can be applied to a regression relationship (where the in-

dependent variable is subject to measurement error and is uncontrolled)

if the ui are properly chosen.

If the independent variable, t, in (4. 2. 4) is controlled and/or,

if the measurement error 8 0 0, then the usual least squares estimate

of Y. sayc X iyi/ x2 . is the best estimate and

var c a 2 /X 2  (4.2.6)

2 .2 2 +
where. + a + , Regressing ci + f .An ui produces the estimate

of I as given in (4. 2.3). where

A o2 2
var 7 2 u / ux )2  (4.2.7)

fAi i
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Comparing the result in (4. 2. 6) with that in (4. 2. 7), then we have the

very obvious result that

A
var 7 > var c where u x

= var c where u x, i.e.,

2 2 /(Z ux)2 > 02 / 2

since

(XU) 2 / x2  u2 < '

The latter is a well known inequality.

Thus, we have shown that if least squares estimation (when appli

cable) is compared to instrumental variable estimation, the latter pro-

duces conservative estimates but has broader applicability.

4.3 AN EXAMPLE OF UNDERIDENTIFIED PARAMETERS
AND THEIR ESTIMATES THROUGH INSTRUMENTAL
VARIABLE ESTIMATION

In the previous section, the instrumental variable estimation

technique was utilized in the estimation of parametero when there exiw'.

substantial measurement error. In this section, as in Sections 1. 2,

and 3. we assume that measurement errors are negligible, and the

-39-
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I
instrumental variable estimation technique is applied for the expressed

purpose of estimating underidentified parameters.

Consider the structural system

yli = + ay 2 i + (4.3.1)

Y2i 2 + E 2i (4.3.2)

= m 2 + e 2i (4.3.3)

i = l,.. ., n, where p.1 and "2 are population means; (4. 3. 3) is the

sample form of (4.3.2); C1 is the rate of change in yl per unit change

in Y2 and el, and c2, are model errors. It is assumed that

'li 0 a2 C
6

i. i.d. 1 1 2

2
62i 0 E6 02

1l2 €2

The reduced system corresponding to (4.3. 1) and (4.3.2) is

yij (L + a p2) + (Eli + c2i) (4.3.4)

= + C = m + e. (4.3.5)
1 1
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and (4. 3. 2), and the covariance matrix of the reduced model errors,

(Cli + aC2i' C2i), as given in (4. 1. 4).

The Markoff estimates of (I1 + ) - 231 2

2 2 2 2 2+ +2c 2 +~ a , e P, + 00 , andac 2 are, respectively,

i i i i

and 2 2 / n -1). Thius, C c a and 2 are under-ad (2i 2 en 1) The 22l c6 1 2

i

identified, and the instrumental variable estimation technique is applied.

The n x 1 vectors uI  (Uli) andu (u )aredrawn, say from

a table of random numbers. Let U(n x 2) = (u u2 ) andu = u = 0.

Then in the regression model

ao + a uli +2u2i +  (4.3.6)

a =oa 2 = 0, wherec is the model error in (4. 3. 1) and A is the
o 1 i i

model error in (4. 3. 6). Let (n x 1) = (cl). Then the least squares

estimates of aI and a2) say

12

are equated to zero, so that
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Or

[u U] U! tY1 -Xe1  = 0

where Y (nx 1) - (Yli), X (nx2) (, y2), 1 (nx 1) =(),

Y2 (n x 1) = (Y2,), and Of = (jL , C). Thus,

AI (U' X) 1 Y (4.3.7)

A -1 -1 -1 2
var 9  = (U X) (U' U) (U' X)' o

1 1

2
and the estin.ate of a is

€1A 2 2
A Awhere elIi 2Yli a y2i,

A 2
The estimate of A2  2 Y2 so that is estimated by

C 2 e2, /(n- 1 where e 2 i Y2i - Y2 Thus a C1 C is

A 
Iestimated by a E 2 . e1 . e2 i / (n - 2).

A A /A AA significant departure of P = a / i from zero would
1 2 1 2

imply the rejection of the hypothesis that o = 0. Utilizing an
12

approximate test, the hypothesis a 0 is rejected if
1 2

t = [( - )A2/( -\2)]1 / 2

[(n-3)p/(I p2 1/> ta [(n- 3) d.f. I
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where t. is the upper critical value of Student's t distribution with

n - 3 degrees of freedom.

4.4 THE ESTIMATION OF DIRECT AND INDIRECT
EFFECTS, AS DISCUSSED IN SECTION 3, WHEN

0 #0
1 2

Consider the structural system in (3. 1. 1) and (3. 1. 2). The

corresponding reduced system, in sample form, is given by (3. 1. 4)

and (3. 1. 5). Since direct and indirect effects on yI are underidentified,

when o . 0, we again apply the instrumental variable estimation
1 2

technique.

Let the sample form of (3. 1. 1) be written as

A

y1ij 7 ml + tlii + blj + ay2ij + flij' (4.4.1)

4

Then

A + Ax+
A e (4.4.2)

A A +

twhere c, (qrx 1) 0 1), y 1 (qrx 1) =(y ), X qrx (q+r+2)J

is the design matrix corresponding to the model in (3. 1. 1), and

A+ .+
e = (m I  tI  , t b , . b , a)'. Since X :s

singular, choose a basis of X +, say X [qr x (q + r) . Then

e [(q + r) x 1] is the corresponding vector of non-redundant param--1

eters, and (4. 4. 2) is rewritten as

-43-
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A A
l-- Yl - xe (4.4.3)

Select q+r vectors, say u1 .. , u . . such that c

is independent of u,; and let

U[qr x(q+r)] = (u I V.. _u .0Uq+r .

Then in the model

ao + a, u I + + a.u . . + q+rUq+r ,+

the A 's are zero. The least squares estimate of a= (a) is

-1
a = (U' U) U-

A
Equating a to 0, e in (4. 4. 3) is given by

A -1e (U'x) y

and

A -1 -1 -1 2 2
vare - (U, X) (U IU) (U, X), , V T,

A
Let z and V denote that portion of e and V corresponding to

tne non-redundant direct i:eatment effect estimates on yl. Then the

hypothesis r1 = Y " q 0 is rejected if

I1 A2
(JZ), (JV J,) (Jz)/(q- > F

- 4
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4

where Fa is the upper a critical value of the F distribution with q - 1

and qr - q - r degrees of freedom, and

1, -1

1, -1 0
00

j 0

1, -1
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