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ABSTRACT 

v Eclipse fraction is defined as the fraction of the orbital period that 

a satellite spends in the earth's shadow. This fraction is of great 

importance to any satellite which depends on a sun energizing unit 

( e. g., solar cell) for its electrical power. 

Sun-synchronous orbits possess unusual eclipsing properties be¬ 

cause of the unique orbital characteristic which defines them. The 

purpose of this study is to determine the characteristics of non- 

eclipsed sun-synchronous orbits (providing they exist) and the time 

history and average value of the eclipse fraction for those orbits which 

are eclipsed. Comparisons with non-sun-synchronous orbits are 

made. The effects of atmospheric drag, lunar and solar gravita¬ 

tional fields, injection errors, oblate earth geometry, atmospheric 

refraction of the sun's rays and the eccentricity of the earth's orbit 

are examined. Comparisons with the investigations of other authors 

are made. 
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1. INTRODUCTION 

\ 
I 

Eclipse fraction is defined as the fraction of the orbital period that a satellite 

spends in the earth's shadow. This fraction is of great importance to any 

satellite which depends on a sun energizing unit (e.g., solar cell) for its 

electrical power. If this fraction is small, the weight of auxiliary batteries 

required during eclijsed periods may be held to a reasonable figure. If the 

eclipse fraction could be reduced to zero, no auxiliary batteries would be 

required; this elimination would result in a further weight reduction making 

it possible for the satellite to carry a larger payload and/or to require less 

booster capability. 

Sun-synchronous orbits possess unusual eclipsing properties because of the 

unique orbital characteristic which defines them: Ù (the nodal regression rate 

of the orbit) equals X ( the earth's mean rate of revolution about the sun) ; 

therefore, fi = \ + K (a constant which may be selected). Depending on the 

value of K and the altitude, the eclipse fraction as a function of the time of 

year may be large, or small, or even zero. 

One of the goals of the following analysis is to determine the characteristics 

of noneclipsed satellite orbits, providing such orbits exist. It is conceivable 

that such orbits exist because the oblateness of the earth causes a nodal 

regression effect on satellite orbits. The nodal regression effect is a secu¬ 

lar rotation of the satellite orbit about the polar axis of the earth. Thus, the 

inertial orientation of the satellite orbit is continually changing as the earth 

revolves around the sun. Therefore, a phasing relationship between nodal 

regression and earth revolution will be sought. 

The analysis in this report is restricted to circular orbits, and spherical 

earth geometry is assumed even though an oblate potential is required for 

nodal regression. The effects of elliptical orbits and oblate earth geometry 

are examined in Section 8. 
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2. DETERMINATION OF ECLIPSE FRACTION 

The geometry relating the earth, sun, and a satellite may be visualized best 

by referring to Figure 1. This figure depicts a geocentric coordinate system 

in which the X-axis is directed toward the vernal equinox, the Z-axis is di¬ 

rected toward the north celestial pole, and the Y-axis, in the equatorial plane, 

forms a right-handed coordinate system with the X and Z axes. The orienta¬ 

tion of the orbit plane is described by: 

a. The node (Í?) in the equatorial plane measured eastward from the 
vernal equinox to the ascending node of the orbit plane. 

b. The inclination (i) measured in a counterclockwise direction at 
the ascending node from the equatorial plane to the orbit plane. 

The obliquity of the ecliptic (¢) is the angle between the ecliptic (the plane of 

motion of the sun as seen from the center of the earth), and the equatorial 

plane. The celestial longitude of the sun (X.) in the ecliptic is measured east¬ 

ward from the vernal equinox to the sun. The angle 0, where 0* < 0 < 180°, 

is the geocentric angle between the sun and the satellite, at any specified 

time. The significance of 0 in the determination of the eclipse fraction (f) 

is indicated in Figure 2. (Figure 2 shows R as the radius of the spherical 

earth and h as the circular orbit altitude.) The sun's rays are assumed to 

be parallel (i. e., sun at infinity) so that the earth's shadow is cylindrical in 

shape. The angle 0' given by Equation (1) is the geocentric angle between 

the sun and the satellite at the time of entrance into or exit from the earth s 

shadow. 

*'= ISO", „in"1 (jmj) (D 

When 0 > 0' the satellite is eclipsed. 

The derivation of the eclipse fraction will be further facilitated by referring 

to Figure 3 where ôj and are the declinations of the sun and satellite, 
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respectively, at any specified time. The longitudinal positions of the sun and 

satellite (Lj and L2) are measured from the vernal equinox and ascending 

node, respectively. The argument of latitude (u) is measured from the 

ascending node to the satellite. (The angle i)j is an auxiliary angle of no 

special significance. ) 

Spherical trigonometry provides the following relations: 

sin 6 = sin € sin \ 
(2) 

sin = sin i sin u 

sin L = tan 6 /tan € (4) 

sin L2 = tan 62/tan i (5) 

cos L = cos \/cos 6 
(6) 

cos L2 = cos u/cos S2 (7) 

and 

cos 0 = sin 6j sin + cos cos 62 cos 
(8) 

Since + (L2 - Lj), cos = cos |^2 -t 

functions of the sums of the angles yield 
^ + (^2 ~ Lj] and trigonometric 

(9) 
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With suitable reduction, substitution oí Equations (2) through (7) and 

Equation (9) into Equation (8) yields 

cos <t> - sin uJsin X^sin € sin i + cos e cos i cos 

- cos X^cos i sin 

+ cos u|sin X^cos € sin nj + cos X^cos njj 

If 0 and then Equation (1) are substituted into Equation (10), 

(10) 

CCS = cos[l80° - sin-1^)], .cos sin’1^) = . 

sin u|sin X^sin t sin i + cos e cos i cos iîj 

- cos X^cos i sin fljj 

+ cos u[sin X^cos € sin fij + cos \(cos ( r 

Given the orientation of an orbit (i and Í2), its altitude (h), and the date (in 

terms of X), two solutions for u may be obtained from Equation (11). One 

solution corresponds to entrance into the shadow; the other to exit from the 

shadow. Because we are only concerned with circular orbits, the eclipse 
fract ’on (f) is 

f = exit u 
entrance 

360° (12) 

In order to facilitate determinations oí f. the appropriate equations were 

programmed for a large digitai computer, the IBM 7090. As might be ex¬ 

pected the program is relatively simple and very rapid. For single values 

of h and , and 360 values of Í2 and X, 360 values of Í and an average <f) 

taken over all values of f are calculated in approximately 0. 2 minute. This 

run corresponds to almost daily samplings of f for a year for a given orbit 

-8- 



3. SUN-SYNCHRONOUS ORBITS 

The nodal regression rate (fi) due to oblateness is also programmed into the 

computer and is given by 

(13) 

Figure 4 shows h vs i for various positive values of Ù. Although only 

retrograde inclinations, 90° < i <180°, are shown, the figure is symmetri¬ 

cal about i = 90° so that values for direct inclinations, 0° < i < 90°, may 

be read along the abscissa by replacing i by (180° - i). As Equation (13) 

indicates, Q is negative for direct orbits. 

A sun-synchronous orbit is defined as an orbit which has a nodal regression 

rate equal in magnitude and sense to the earth's mean rate of revolution 

about the sun. Thus, Ò = X = 0. 985 647 deg/day and ÍÍ = X + K (a constant 

which may be selected). The locus of sun-synchronous orbits is presented 

as a broken line on Figure 4. These orbits are all retrograde and lie between 

h = 0 n mi, i - 95.°679 and h = 3225. 3 n mi, i = 180°. Sun-synchronous 

orbits about the earth do not exist above 3225. 3 n mi. If the ecliptic and 

equatorial planes were coincident and if the earth's orbit were circular, the 

nodes of a sun-synchronous orbit would maintain forever, neglecting pertur¬ 

bations, their initial orientation relative to the sun. Noon-midnight (f2 - X = 0°) 

and twilight (f2 - X = 90°) orbits are depicted in Figure 5. Because good 

illumination is required for photography a noon-midnight sun-synchronous 

orbit has been selected (Reference 1) for the Nimbus meteorological satellites. 

Almost one-half of every revolution will be available for photography. On the 

other hand the twilight orbits seem ideally suited for our purposes because 

their lines of nodes are always perpendicular to the sun line. Although the 

ecliptic and equatorial planes are not coincident (t = 23^4441) and the earth's 
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Figure 5. Noon-Midnight and Twilight 
Sun-Synchronous Orbits 
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orbit is not circular (eccentricity = 0.0167), these effects do not substan¬ 

tially alter the nodal-sun orientations just described. The actual sun-earth- 

orbit-shadow geometry for a twilight orbit is depicted in Figure 6 which shows 

three positions (summer solstice, autumnal equinox and an intermediate date) 

of the earth in its orbit. 
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4. A PREFERRED ORIENTATION, O - X = 90*

(

The search for orbits that are never eclipsed has led to the class of sun- 
synchronous orbits with a O - X = 90* orientation. However, all combinations 
of h and i of this class are not expected to be noneclipsing.

When an orbit is seen edgewise, it appears as a line segment with definite 
end points. The locus of sun-synchronous orbit end points is presented in 
Figure 7. The earth and straight lines delimiting the cylindrical shadow at 
those times of the year that correspond to the vernal equinox (X = 0*), 
summer solstice (X = 90 ), autumnal equinox (X = 180*), and winter solstice 
(X = 270 ) are also shown. Note that for each time of year a portion of the 
locus lies outside the shadow. For the times of year between those previ­
ously mentioned, the noneclipsed portion of the locus may be geometrically 
described (Figure 7) by rotating the shadow boundaries through an angle 6j. 
The declination of the s\m, 6^, measured from the vernal equinox, may be 
determined from X by the relation sin 6j = sin t sin X. At the equinoxes 

= 0*, at the summer solstice 6j = e = 23.*44 and at the winter solstice 
“ “* “ -23.44. The smallest of these noneclipsed regions corresponds 

to the summer solstice (X = 90*) which is the most restrictive time of year. 
Computer runs of orbits in this smallest region were made and they verified 
the fact that this region is noneclipsing.

The geometry which defines this region is presented in Figure 8. The 
trigonometric relation which defines the sun-synchronous orbit that is 
tangent to the shadow is cos(i + € - 90*) = sin(i + f) = R/(R + h). This 
relation may also be obtained from Equation (11) in the following 
If Q - X s 90 , Q may be eliminated from Equation (11) and

manner.

-cos sin = sin u sin X sin c sin i + sin X cos i ^1 - cos cjlj

- cos ilI - cos u sin X cos X^l - cos cjj (14)

-15-
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At the summer solstice, \ = 90°, and at the point of tangency, u = 2700, 

therefore Equation (14) becomes 

-cos sin |sin € sin i + cos i - cos t cos i - cos i 

cos sin 

WTh = sin(i +i) (15) 

This corroborates the relation obtained from Figure 8. If Ò = X = 0.985 647 

deg/day and Equation (15) are substituted into Equation (13), 

3 5 
sin ' (i + « )cos i = -0. 098 952 7 (16) 

An iteration procedure was used to solve for the double roots i = 10 1.°39 and 

115.°47. The altitudes associated with these inclinations are h= 751.9 

n mi and h = 1796. 6 n mi, respectively. Thus, any sun-synchronous orbit 

with a n - \ = 90° orientation that lies between altitudes of 751. 9 n mi and 

1796. 6 n mi is never eclipsed by the earth. 

It is interesting to determine the orbit whose end point is farthest from the 

shadow at its closest point (see Figure 8); it is desired to maximize the 

distance (R + h)cos(i + f - 90 ). The procedure will be to take the partial 

derivative of this distance with respect to the inclination, set this derivative 

equal to zero, and solve for the optimum inclination. 

3 5 
sin(i + € ) = K cos ' i sin(i + c ) 
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where 

+ 0 
Bi 

K = (9- 960795 
ñ 

i 
TJ. 

i 
13. 5 

= constant 

K cos i cos (i + € ) - y—sin(i + €)cosJ‘ ^ i sin i = 0 rr -1 

This equation yields a solution for i = 107.#96. The corresponding altitude 

is 1321. 4 n mi. The distance from the shadow at the closest point is 

130.4 n mi. 

Eclipse fraction (f) as a function of celestial longitude (\) for various altitudes 

(h) outside the noneclipsed region is displayed in Figures 9 and 10. These 

orbits are of interest because their eclipse fractions may be less, in an 

average sense, than the fractions for all other orbits at the same altitude. 

The other orbits would differ in inclination and/or initial orientation. (An 

examination of this hypothesis will be made in a later section. ) For each 

altitude noted, Figures 9 and 10 also present the corresponding f, the 

average value of f during a yearly cycle. 

Figure 9 presents altitudes in the region 0 < h < 751.9 n mi whereas 

Figure 10 presents altitudes in the region 1796. 6 < h < 3225. 3 n mi. The 

curves of both figures were machine computed but many interesting special 

cases were determined analytically. Because the curves are mirror images 

about \ = 90'^(summer solstice) and \ = 270° (winter solstice), the region 

90 < \ <270 is not displayed. Maxima occur at \ = 90° and 270° except 

for h - 0 n mi and for altitudes between approximately 3000 and 3225. 3 n mi. 

For h = 0 n mi, f = 0. 5 for all values of X. Half the earth's surface is 

always in darkness, therefore half of every great circle on that surface is 

in darkness. For h = 3225. 3 n mi maxima of equal magnitude occur at 

X = 0° and 180°. Minima occur at X = 90° and 270° in the region 

3207. 9 < h < 3225. 3 n mi. 
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Values of f at X = 90°, 270°, 0° and lb0° may be determined analytically 

from Equation (14). For X = 90° Equation (14) becomes 

R 
R + h 

which reduces to 

i/si = sin uisin e sin i + cos i - cos i cos e - cos iï ■cos sin 

sin u 

. -1 
cos sin 

cos(i 
(17) 

The two solutions for u may then be substituted into Equation (12) to obtain f. 

For X = 270°, Equation (14) becomes 

sin u 
cos 

sin'’(RTh) 
COS(i - € ) 

and for both X = 0° and X = 180°, Equation (14) becomes 

(18) 

sin u 
cos sin -l 

lR + h) 
COS 1 (19) 

Many machine computed points on the curves of Figures 9 and 10 were checked 

by means of Equations ( 17), ( 18) and ( 19). 

Values of X where f = 0 are of special interest. These values define the 

intervals during the year when noneclipsing occurs. The bounds on these 

intervals are described by a tangency condition. The orbit is tangent to the 

cylindrical shadow at these points. These points may be derived analytically 

us follows: Equation (14) may be rewritten as 

cos (p1 = A sin u - B cos u (20) 
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where 

cos 1 
A - |sin ¡sin e sin i + sin \ cos i(l - Cos €)J - 

B - |sin \ cos \(l - cos ejj 

Squaring Equation (20, and solving for sin u by the quadratic formula, 

sin u = 2A co 
(21) 

Because of ,he tangency condition only a single solution for u exists This 

requires that the quantity under the radical equals aero which relees to 

cos^0/ = + 
(22) 

Equation (22) may be solved for the desired values of X V • 
Figures 9 in alues of Various points on 

g d 10 were determined from Equation (22). A special 
when f = 0 at X - n° T S.I.- . ' special case exists 

equivalently sin; R/(R M -^ces to i = or 

«on ,13, for 0=1= 0 647 ^ ^ ^qua- 
eg/day the following equation results: 

• 3. 5. 
sin i cos i = -o. 098 952 7 

Equation (23) yields i = Q507ft tu 
’ ‘ The corresponding altitude is 17 ^ n 

Which is displayed in Figure 9. " mi 

(23) 

Another special case occurs when f = 0 at X = 270° r 

U2) becomes cos = A - -sin < a • * " ' " 15 E<!uation 
reduces to, -n « sm . + cos i . cos « cos i . cos i which 

R 
R~+ h = Sln^ - c) (24) 
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If f2 - X - 0. 985 647 deg/day and Equation (24) are substituted into Equation 

. 3.5,. 
sin (i - € )cos i = -0.098 952 7 (25) 

Equation (25) yields double roots, i = 172.°26 and i = 96.°62. The associated 

altitudes are h = 3207. 9 n mi and h = 154. 0 n mi, respectively. The curve 

for h = 3207. 9 n mi is displayed in Figure 10. It has a maximum f = 0. 173 

at X = 20° and a local minimum f = 0. 152 at X = 90°. All orbits with altitudes 

in the region 3207. 9 < h < 3225. 3 n mi are eclipsed a portion of every day of 

the year (all values of X). The curve for h = 154. 0 n mi is displayed in 

Figure 9. It has a maximum f = 0. 304 at X = 90° and f = 0 for all X except 

the region 26. 3 < X < 153. 7. This is also the threshold altitude at which a 

blip begins to appear at X = 270 . As the altitude decreases from h = 154. 0 

n mi, the blip grows rapidly until f = 0. 392 at X = 270° for h = 17. 6 n mi. 

But even at this altitude there is a gap between X = 330. 8 and X = 0 for which 

f = 0. This gap must close for some altitude between 17. 6 n mi and zero 

because f = 0. 500 = constant for h = 0 n mi. 

The altitude for which th^ gap closes can be found analytically as follows. 

Equation (22) may be expanded and rearranged to obtain a quartic equation 

in sin X: 

+ |jl - COS € - 2 COS € 
2. 

COS 1 (>- COS € 
. 2 . 2. 

sin € sin i 

(26) 
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Since the altitude for which the gap closes is known to be very low, the 
2 

approximation that h/R « 1 yields the following expression for cos ¢/: 

2 , 2 
cos <p = cos sin « cos sin-‘i1 -.|)jK2£. (27) 

Combining Equations (26) and (27) and using i = 95.°68 which corresponds to 

h = 0 n mi, 

^ = -0.00338 sin4\ - 0. 00324 sin3\ + 0. 0810 sin2\ + 0. 0392 sin \ + 0. 00490 

(28) 

For solution, an additional relation involving h or \, or both, was needed. 

Such a relation was found by determining the geocentric angle between the 

line to the sun and the normal to the orbit plane. The hypothesis is that this 

angle is a minimum for the \ at which the gap closes. Eclipsing is least 

likely at this point because the orbit plane is most nearly perpendicular to 

the sun line. The desired angle may be obtained by first specifying two new 

rectangular coordinate systems (see Figure 1). The first geocentric system 

has an X-axis, X , which passes through the sun; Y is in the ecliptic 
sun ° sun r 

plane, 90 east of X , and Z is in the direction of the north ecliptic pole. sun sun r r 
The second geocentric system has an X-axis, which passes through the 

ascending node of the orbit plane; Y , is in the orbit plane 90° from X , in 
orb r orb 

the direction of satellite motion, and ^•Qr^) is normal to the orbit plane forming 

a right handed system with X , and Y , . The transformation between X 
orb orb sun 

Ysun’ Zsun and Xorb’ Yorb’ Zorb is 8iven by the following matrix expression. 

'x 
sun 

cos X 

-sin X 

0 

sin X 

cos X 

0 

cos n 

sin n 

0 

-sin n 

cos n 

0 

orb 

orb 

'orb 

(29) 

/ “ * 
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Equation (29) was obtained by successively rotating the orb system through 

the angles i, SÎ, « and \ in order to bring the orb and sun systems into 

coincidence. The angle between the sun line and the normal to the orbit 

plane is the angle between Xgun and Whgn the rotation matrices of 

Equation (29) are expanded into one matrix, the cos of (xsun> Zorb^ is tlie 

component in the upper right-hand corner. 

cos(X , Z ,) = cos X sin £7 sin i - sin X cos £2 sin i cos € + sin X cos i sin e 
sun orb 

(30) 

When £2 - X = 90°, £2 may be eliminated from Equation (30), 

cos(X 
sun Z J orb 

sin i - sin X sin i(l - cos «) + sin X cos i sin € (31) 

In order to find a minimum value for (xsun> Zorb^ t^ie Part^a^ derivative of 

(X Z ) with respect to X will be set equal to zero and solved for the 
' sun’ orb 
optimum value of X, 

3(X , Z , ) 
sun orb 

-5x- 
2 sin X cos X sin i(l - cos Q - cos X cos i sin e _ q (32) 

= sin(X ,Zorb) 
sun 

One solution of Equation (32) is given by cos X = 0° for which X^ = 90° and 

X = 270°. However, these are not the desired solutions because they yield 
opt 

maximum values for (xsun> Z0rb^‘ Another solution is given by 

2 sin X sin i(l - cos «) - cos i sin f = 0 

or 

cos i sin € 
81 n ” 2 sin i( 1 - cos « ) 

(33) 

V 



- 193.9. These are the desired For i = 95.°68, \ = 346.° 1 and \ 
opt opt 

solutions because they yield a minimum value for X , Z = l.°07 

Figure 11 presents (Xsun> Z^) vs X for i = 95.°68. ""whenÍ = 346.° 1 

is substituted into Equation (28), h/R = 0 000 192 and h = 0. 66^ mi. This 

is the altitude for which the gap closes. Machine computation results shown 

in Figure 9 for h = 0. 7 n mi verified the above analysis. Results for 

h = 0. 1 n mi are also shown in Figure 9 in order to emphasize the rapid 

changes occurring in the low altitude curves. In the low altitude region, 

0 < h < 0. 66 n mi, f is a minimum at X = 346.° 1 and 193.°9 whereas Figure 

10 shows that f is a minimum at X = 270° in the high altitude region, 

3207. 9 < h < 3225. 3 n mi. 
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5. OTHER ORIENTATIONS, n - \ K 

A noneclipsed band of altitudea between 751.9 „ mi and ,7Qn , 
found at n - \ = 90° and X - on0 u 96. 6 n mi has been 

altitude bands should exist for s ’ T' °f ^ear- S-ilar 
muía exist for sun-synchronous orbits at X = on0 ^ , 

of ÍÍ - \ near 90° TV10 t a.nd values 

r o., wLb — 

r,d:r;i: ^rrthe cyiindricai—-- 

-n abon, tbe ^ ^ ^ ^ ^ — 

: untii 11——- 7ir*inB 
•he pen, of tangency may be analytically determmed. 

.bréame ^Z^ToT " WWCh tangenCy COnditi°" bV logic tha, produced Equation (22) from Equation (14) If > - o„. • 

substnuted into thia tangency equation, the result is ^ 

oos 4' = (sin , sin i + cos ( cos . cos ^ + ^ ( sin ^ 

The difference between Equations (22) and (34) is that Equation (22) all 
arbitrary \ but is restricted to Í1 - )i = on' ^ q (22) allo"s 

arbitrary Î1 - X. but is restricted to X. - 90s 7^’ qUaUOn (34) allows 

for cos fl after a considerable amount ^f algebraic ml ^ ^ 
aigeoraic manipulation. Therefore, 

(34) 

cos n = ~^n 6 cos i - sin os' 
cos e sin i 

sin € cos i R 
R + h 

cos £ sin i (35) 

Equations (35) and (13) were used to produce fh. 

12 Whiah presents h versus „ . X for X = 

defines a noneclipsed orbit whereas any no' , 1 mSlde 
hereas any point outside the egg defines an orbit 
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Figure 12. Noneclipsing Window 
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which has a nonzero eclipse fraction. The egg is symmetrical about 

Í2 - X = 90° for which h = 751.9 n mi and h = 1796. 6 n mi. As Í2 - X departs 

from 90° the noneclipsed altitude band decreases until at ÎÏ - X = 75.°6 and 

104.°4 the band reduces to a single point at h = 1300 n mi. 

Equations similar to Equation (35) may be derived for X = 0°, 180° and 

270°. For X = 270°, 

cos n = 
sin € cos i + 

R + h 
r n s £ sin (36) 

For X = 0° and X = 180°, 

sin Í2 = 

R 
R + h 
sin i (37) 

Noneclipsing windows for X = 90°, 270° and for 0° and 180° are shown in 

Figure 13. As expected the windows for X = 270° and for X = 0° and 180° 

are larger than the window for X = 90°. At Í2 - X = 90° and X = 270°, 

h = 154. 0 n mi and 3207. 9 n mi. At Í7 - X = 90° and X = 0° and 180°, 

h = 17. 6 n mi and 2900. 9 n mi. The curves yield the following kind of in¬ 

formation. A satellite in a sun-synchronous orbit at h = 2800 n mi and 

£2 - X = 65° will be eclipsed for part of each day during a six month period 

centered on the summer solstice. Note that although the summer solstice 

is the most restrictive time of year, the winter solstice is not always the 

least restrictive time of year because of the crossings of the X = 270°, and 

0° and 180° curves at approximately £2 - X = 59° and 121°. For 

59 ^ £2 - X < 121 and h < 600 n mi, X = 0 and 180° is less restrictive 

than X - 270 . This situation is aptly demonstrated in Figure 9 which re¬ 

veals that f for X = 0 is always less than f for X = 270 except in those 

cases when both values equal zero or 0. 500. 
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X = £70° 
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To this point in the analysis the search for orbits has been restricted to a 

search for noneclipsed orbits or orbits which have minimum average eclipse 

fractions. Orbits which have maximum average eclipse fractions are 

interesting if for no other reason than to determine an upper bound. Sun- 

synchronous noon-midnight (Í2 - \ = 0) orbits appear to be in this category. 

As indicated in Figure 5 these orbits are eclipsed for part of each day of the 

year. Eclipse fraction (f) for these orbits, as a function of X. for various 

values of h is displayed in Figure 14. Since these curves are mirror images 

about X. = 0 and X = 180 only the 0 < X < 180° region is presented. Note 

that the value of f for each value of h is greater than the f of Figure 9 or 

10 for the corresponding h, except for h = 0 n mi and h = 3225. 3 n mi 

(an equatorial orbit). The f vs X histories for these two altitudes are 

identical for Í2 - X = 0 and Í2 - X = 90 , therefore their values of f are 

identical. 

Maximum values of f for all h occur at X = 0° and 180°. The physical 

reason for this is that at the vernal and autumnal equinoxes these orbits pass 

through the center of the cylindrical shadow. The values of X which corre¬ 

spond to minimum values of f for constant h may be analytically determined 

as follows. The angle between Xgun and Zor^ is again expected to be a 

minimum. When Í2 - X = 0, O may be eliminated from Equation (30) so 

COS(^sun’ ^orb) = S*n ^|^cos ^ sin i(l " cos £) + cos i sin fj (38) 

Again the partial derivative of (Xgun> Zor^) with respect to X will be set 

equal to zero and solved for the optimum value of X, 

3(X , Z , 
\ sun orb 

5x 
) _ (sin X - cos^x)sin i( 1 - cos e) - cos X cos i sin f 

¡in(X , Z , ) 
V sun orb/ 

= 0 (39) 
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Figure 14. Eclipse Fraction versus Celestial 
Longitude for Various Altitudes 
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The solution for X is 
opt 

cos X = ~cos i s^n c - y cos i sin € + 8 sin^i(l - cos 
opt 4 sin i(l - cos 0-(4°) 

Solutions of Equation (40) produced the dashed line of Figure 14 which de¬ 

fines the locus of minimum f. 

Figures 9 and 10 for ft - X = 90° and Figure 14 for Í2 - X = 0° note values of 

f for various altitudes. Figure 15 presents f versus f2 - X for those altitudes. 

The curves are symmetrical about ÎÎ - X = 0°, 90°. 180° and 270°. Maximum 

values of f occur at Í2 - X = 0° and 180° while minimum values of f occur at 

X = 90° and 270°. Values of f for h = 0 and h = 3225. 3 n mi are seen to be 

constant, i.e., independent of fi - X. The noneclipsing window of Figure 12 

is shown, in a different perspective, along the f = 0 line of Figure 15. The 

curves for h = 75 1. 9 n mi and h = 1796. 6 n mi are both tangent to f = 0 at 

n - X = 90 , indicating the altitude extent of the window. The £7 - \ extent 

of the window is indicated, approximately, by the h = 1400 n mi curve. 
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Figure 15. Average Eclipse Fraction versus the Difference Between 
Node and Celestial Longitude for Various Altitudes 

( 
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6. COMPARISONS WITH NON-SUN-SYNCHRONOUS ORBITS 

un-synchronous orbits with a n - X = orientation have been shown to 

possess small eclipse fractions. In fact f = 0 for 751.9 < h < .796. 6 „ mi 

comparat.ve question naturally arises. For a given altitude, is the f for 

the best -„-synchronous orbit less than the f's for all non-sun-synchronous 

orbits If SO, by how much? The locus of all non-sun-synchronous orbits at 

a gtven altitude is a horizontal line in Figure 4 if the region 0 < i < 90“ is 

included. The sun-synchronous orbit is only one point on this line. 

A convincing plausibility argument may be made for the f = 0 altitude region 

ny non-sun-synchronous orbit in this altitude region will possess a nodal 

;;m?7; ratn n n0t eqUaI t0 ThUS' during a long period of 
me, fl - will assume all possible values, regardless of the initial value 

soTsle Th r ,S "r0: a< ”r°' eClÍPSÍng mUSt °CCUr' eVen at the summer 
can not equal zero, and the sun-synchronous, Í2 - X. - 90“ 

orbits are better than any non-sun-synchronous orbit in the 75 1.9 < h < 1796 6 
n mi region. ~ - 1 '^o. o 

Convincing arguments for any hypothesis are more difficult to mahe about the 

gram r, ", mi ^ 3 n ThC ”-hi„e pro- 

r r ipse ir:rns -— 
6iven. Care mus, be tahen in ^ that 

a true value for f will result A ^ i • initial final’ hat 
Ult- A true value 18 one which averages over all 

possible orientations of Í2 and X TK, 0 • 
Q and X F , interval must be cyclic in both 

■ I/2 d F;; eit7vPle’ a tWO mterval is required for an orbit having 
n - 1/2 deg/deg of X. Another complicating factor is that the difference be- 
tween the initial values of o anri \ • i ,. 
values of n , K. an add‘t,onal Parameter. For different 

"initial’ two »Uh the same h, i, ó and X. . . , will sample 

the shadow differently and obtain different values of f. The'Íactors jus, 
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mentioned make it impossible to exhaustively compute all possible non-sun- 

synchronous orbit parameter combinations. However, a representative 

subset has been calculated. 

Figure 16 presents f as a function of h for polar, equatorial and sun- 

synchronous orbits (both Í2 - \ = 90° and Q - \ = 0°). These curves and their 

intersections are very interesting. The fact that polar orbits possess smaller 

f's than the sun-synchronous, Q - \ = 90° orbits in the region, 2745 < h < 3225.3 

n mi, is immediately obvious. This altitude region applies to the lower, 

(ÎÎ - = 90°, 27.'°, of the two polar curves. The differences between 

the two polar curves reflect the effects of different values for (£2 - \). ,. 
initial 

Polar curves for all possible values of (£2 - X). . . ^ lie between the two polar 

curves presented in Figure 16. 

At this point in the analysis many machine runs utilizing various combinations 

of h, i and (£2 - M — were made. The results of these runs were quite 

revealing. None of the resultant f's fell below the polar, (£2 - = 90°, 

270° curve. At any given value of h, f typically displayed the following be¬ 

havior as a function of i. As i increased from zero, f would decrease from 

its equatorial value. As i approached 90°, equaled 90° and increased 

toward 180°, f would approach the polar, (£2 - X). . . ^ = 90° curve, touch 

it and then increase again toward the equatorial curve. This behavior is 

graphically presented in Figure 17 for h = 2400 n mi. When values of 

(£2 - X)^ . . ^ other than 90° were tested, f would approach, touch and move 

away from the polar curve which possessed the corresponding value of 

(£2 - X). ,f. .. 
initial 

Questions concerning the behavior of f in the vicinity of the inclination 

corresponding to a sun-synchronous orbit naturally arise. The results of 

the machine runs revealed that f at the sun-synchronous inclination is 

apparently a singular point. As i increases from 90° to 180°, f increases 

smoothly from a minimum at i = 90° to a maximum at i = 180° except for 

a singular point at the sun-synchronous inclination. 

( s. 
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Figure 16. Average Eclipse Fraction versus Altitude for 
Various Classes of Orbits 
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Figure 17. Average Eclipse Fraction versus 
Inclination for h = 2400 n mi 

( 
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As Figure 16 indicates, the singular point value of f will lie on the vertical 

line, corresponding to the given h, between the £2 - \ = 0° and Í2 - \ = 90° 

curves. The point on this line segment which T assumes is determined by 

the assumed value of fi - This variation of T with £2 - \ for a given h was 

depicted earlier in Figure 15. This behavior is also shown in Figure 17 for 

h = 2400 n mi. Figures 15 and 17 reveal that f for h = 2400 n mi possesses 

a maximum value of 0. 193 at £2 - \ = 0°. As £2 - \ increases, f decreases 

until a minimum value of 0. 030 is obtained at £2 - \ = 90°. As £2 - \ con¬ 

tinues to increase, f increases to a maximum value of 0. 193 at £2 - \ = 180°. 

An average value of f, obtained by integrating over all values of £2 - X, was 

found to equal 0.099. This point does fit on the smooth curve of T vs i shown 

on Figure 17. Therefore, f does increase smoothly from a minimum at 

i = 90° to a maximum at i = 180° if an average value of T (over all £2 - \) 

is assumed at the sun-synchronous inclination. 

Thus, our search for minimum values of f has led to the following con¬ 

clusions. the locus of minimum f for non-sun-synchronous orbits is the 

polar, (£2 - = 90 , 270 curve; the locus of minimum f for sun- 

synchronous orbits is the £2 - \ = 90° curve. As Figure 16 shows, the com¬ 

bination locus follows the sun - synchronous, £2 - \ = 90° curve to h = 2745 

n mi and then transfers to the polar. (£2 - = 90°, 270° curve between 

h = 2745 n mi and h = 3225. 3 n mi. 

The £2 - X = 0° and the absolute maximum curves of Figure 16 are also 

interesting. The £2 - X = 0 curve is the locus of previously described noon- 

midnight, sun-synchronous orbits. The absolute maximum curve describes 

an upper limit for T as a function of altitude. This limit was calculated 

assuming that the satellite passes through the deepest part of the shadow 

(i. e., that the orbit plane contains the axis of the cylindrical shadow) on every 

révolution. The equation for the maximum curve is T = — sin” ^[R/(R + h)l 
\ i i i i • ci TT 
Although this limit is not practical, since no satellite orbit will always pass 

through the deepest shadow, it does serve as a reference by which to gauge 

the eclipse fractions of real orbits. Note that the sun-synchronous, £2 - X - 0' 
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J 
curve lies near the absolute maximum, especially in the low altitude regime, 

The n - \ - 0 curve always lies above the equatorial curve except at h = 0 

n mi and h - 3225. 3 n mi where the two curves intersect. 

In brief summary, all sun-synchronous orbits are represented by points 

which lie on, or between, the n - \ = 0° and ft - \ = 90u curves of Figure 16 

while all non-sun-synchronous orbits are represented by points which lie on, 

°r between, the equatorial and polar, (ÇÎ - \). , = 90° curves 
initial 
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7. PERTURBATION EFFECTS ON SUN-SYNCHRONOUS ORBITS 
AND VELOCITY REQUIREMENTS FOR COMPENSATION 

7. 1 ATMOSPHERIC DRAG PERTURBATION 

Atmospheric drag causes a satellite to decay (lose altitude). With small 

deviations the orbit remains circular and the inclination remains constant. 

As can be deduced from Figure 4, the orbit moves vertically downward from 

the initial altitude, h . As the satellite decays, Q increases. Thus, f is 
o 

affected by both a decreasing h and an increasing D - Approximate 

analytical expressions for both h and D - X, as functions of time (t), may be 

obtained. 

Following the analysis of Billik (Reference 2) an exponential atmosphere 

will be assumed: 

(41) 

2 4 
where p is the atmospheric density (lb sec /ft ) at altitude h (ft) and 

p"(lb sec2/ft4) and ß(l/ft) are constants to be selected for the purpose of 

fitting an exponential atmosphere to the actual atmosphere in a given altitude 

region. 

For h « R, Billik has derived an expression involving h, t and known 

constants 

(42) 

where W/C^A is the ballistic coefficient involving: W, the satellite 

weight (lb), Cq, the satellite drag coefficient (dimensionless), and A, 
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the area (f,2) corresponding ,o CD; and where g is the acceleration (f,/sec2) 

ue to gravity; and where p is the earth's gravitational constant (f,3/sec2). 
Equation (42) may be solved for h, 

h = jH n['B(w/^DA) + e (43) 

where 

® = ßpg %/h-R = constant. 

As W/CdA -oo, h -*ho as it should. 

An equation for n - \ in term« of t- , j i 
terms of t and known constants will new be derived. 

n - X = J(0 - X) dt +K (constant) (44) 

Smce the orbit is initially sun-synchronous. X = ñ for h = h and i = i 

Equation (13). As the satellite decays, fi remains the sambas given 

Equation (13) except that h = h and i = i , 

o 
in 

in 

Í2 - X = K - 9. 9608 cos i /__R_y 5 / R \ 
\R + h/ + hj 

3. 51 
dt 

Assuming h « R, 

(45) 

n - X = K - 9.9608 
C°S iJ[-3.5(^) dt (46) 

The integral of h d, mus, now be determined. Using h from Equation (43). 

ßh 
+ e dt (47) 
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Let 

[-B(W^) ßh 
+ e s° that dZ = dt 

Substituting into Equation (47), 

f w/cda [ 
Jhdt = -|ÏB— J-'" 

VJ / C A 

ZdZ= --l3#~[Z(inZ - ^ (48) 

By substituting Equation (48), Z and B into Equation (46) and rearranging, 

(ÎÎ - \) - K = - 
(3.5)(9.9608)(W/CdA)cos i 

R 

(86400)poß2gvtR 

(49) 

The factor (86400) allows t to be measured in days. The constant K may 

be determined from an evaluation of Equation (49) at t = 0 when h = h and 

(n - M = (r? - \)t=0. 

k = (n - \)t=0 + 
(3. 5)(9. 9608)(W/r A)cos i 
_ u o ßh - 1 

o 

(86400)pQß 
(50) 

; 
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J 
Substituting K into Equation (49) 

(n - X) - (n - \)t=0 (3. 5)(9. 9608)cos i 
o 

R 

(80400)poß2g^TR °\W/CDA> 
(51) 

For purposes of discussion it will be assumed that the 1959 ARDC Model 

Atmosphere (Reference 3) is an adequate simulation to the actual atmosphere. 

Figure 18 presents p versus h for this model between h = 100 n mi and 

h = 300 n mi. In order to obtain an exponential match in this region, p and ß 

will be determined by substituting values of p and h at 140 and 250 n mi 

into Equation (4 1), 

2. 006 X 10 
-13 -140 ß 

= pe 

7.030 X 10 
-15 -250 ß 

= pe 

Solving this set of equations for p and ß, 

-11 lb sec 
2 

p = 1.428 X 10 

ß = 0. 03047/n mi = 5. 015 x 10-6/ft 
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Figure 18. Atmospheric Density as a Function of Altitude 

' 
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Substituting p and ß into Equation (41), 

P= 1.428 X lO^V0-03047 h (52) 

Results from Equation (52) are also presented in Figure 18. The exponential 

fit matches the ARDC 1959 Model reasonably well between 100 and 300 n mi. 

When all of the various constants are substituted into Equation (51), 

(n - X) - (n - xi 
Iv/CDA ^ = -1-0123 X 10'2COS iQ 

4. 858 X 10 -12 
- 32 

in 1.428 X 10 - 11 

• 8Z(w^ã)| 

(w7^ã)J- - 96.48 

4. 858 X 10" 12(0. 03047 h - 1)1 
_ o 

ho(w/CDA) (53) 

(n - X) - (n - \)t=0 

Note that-—,--— is only a function of initial conditions (h , p and w/cDA 
i ) and 

(t , u u u 

W7Cdä) ' E9uations (51) and (53) were satisfactorily checked for the 

case, W/Cj-jA-» ao; (Í2 - X) - (n - X)t_0 — 0 as it should. Figure 19 presents 

m-M-(n-Mt=0 ! , \ 
WT^S- versus (wTC^ã) 

hQ = 200 n mi to h = 100 n mi; (2) from hQ = 250 n mi to h = 100 n mi; (3) from 

hQ = 300 n mi to h = 100 n mi. Intermediate altitudes are noted on the curves. 

for three decay histories: (1) from 

As an example, consider the effects of decay from h = 200 nmi to h= 100 nmi 
(n - X) - (n - \) 

From Figure 19 't=0 

If W/CdA = 50 lb 
w/cda = 0. 14 deg 

lb/ft‘ 
and (w7C5ã)= 4- 14 days 

lb/ft' 

ft 
2 is assumed, (f2 - X) - (n - X)t=Q = 7. 0° and t = 207 day£ 
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or 204° of \. The effects of this decay on f are displayed in Figure 20 for 

(f2 - Mt_Q = 90°. The solid curves for h = 200 n mi and h = 100 n mi represent 

f histories for (f2 - \ = 90°) sun-synchronous orbits which are not perturbed 

by the atmosphere. The ^ng dashed curve describes the locus of points at 

h = 100 n mi after decay irom h = 200 n mi. The two short dashed curves 

represent typical f histories during decay: one starts at X = 60° and ends at 

X = 264°; the other starts at X = 320° and ends at X = 164°. These histories 

begin at the sun-synchronous h = 200 n mi curve and end at the h = 100 n mi 

locus after decay. Consider first the f history which ends at X = 264°. At 

this point f = 0. 220, all of which is due to decay since f = 0 for h = 200 n mi. 

The fraction, f = 0. 220, may be considered the sum of two parts: one due to 

decreasing h; the other due to increasing - X. From the h = 100 n mi curve, 

decreasing h accounts for f = 0. 202 while increasing f2 - X accounts for the 

remainder, f= 0.018. Next consider the f history which ends at X = 164°. 

At this point f = 0. 090, all of which is due to decay. Furthermore, it is all 

due to increasing Œ - X since f = 0 for h = 100 n mi. 

If the eclipse fractions due to decay are prohibitively detrimental to the satel¬ 

lite system, orbit sustaining is necessary. Bruce (Reference 4) has deter¬ 

mined orbit sustaining requirements for two methods of thrust application. 

The first method is simply a continuous application of thrust equal to drag. 

The second method consists of altitude gaining Hohmann transfers inter¬ 

spersed with altitude decays due to drag. Thrust is applied for only short 

periods of time; in fact, impulsive applications are assumed. In this method 

the altitude is allowed to vary an amount Ah whose upper limit is the desired 

altitude. 

Equation (5) of Reference 4 in combination with the familiar rocket equation 

provides the velocity requirements for continuous thrust orbit sustaining: 

AV = ÍJ 4) 
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whe re 

2 
g = the acceleration (ft/sec ) due to gravity at the altitude 

5 of the test stand where IsP is measured (gQ is required 
for conversion between mass and weight) 

I = the specific impulse (sec) of the rocket engine 
öx 

t = the time (sec) in orbit 

2 1 
q = the dynamic pressure (Ib/ft ) defined by qA^-pV 

V = the satellite orbit velocity (ft/sec) 

Given Icü and h, from which p and V may be determined, AV is solely 

a function of [t/(W/CpA)]. This functional dependence is presented in 

Figure 21 for various combinations of Igp and h. In addition, one curve 

corresponding to the second method, Hohmann transfers and altitude decays, 

is presented. Returning to the previous example where h = 200 n mi and 

W/CdA = 50 lb/ft2, the continuous thrust velocity requirements for a year 

(wTÜBÃ = 7-3 £or !sp = 1000 sec are 79 ft/sec' 

7. 2 SOLAR AND LUNAR GRAVITATIONAL PERTURBATIONS 

The perturbative effects of the gravitational attraction of the sun and moon 

will be examined in this section. These perturbative effects have been in¬ 

vestigated by Moe (Reference 5) who begins her analysis with Lagrange's 

Planetary Equations. A lucid derivation and description of Lagrange's 

Planetary Equations exist in Moulton's An Introduction To Celestial Mechanics 

(Reference 6).“ These equations describe the time rates of change of the 

orbital elements of a satellite as a function of the elements, the radial 

distance (r) the true anomaly (v) and the components of the perturbative 

acceleration. Moe averages these equations by integrating the derivatives 

of the elements over one revolution of the satellite and thereby obtains the 

change in each element per orbital revolution. Constant values for the ele¬ 

ments are assumed for each revolution. 
( 

f 
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When the unpertui'bed orbit is circular, Moe's equations reduce to 

Aa = 0 (55a) 

Ae = 0 (55b) 

-6K it sin y cos y sin i' 

Ai' = ---2- (55c) 
n 

An' = 

- 6K it 
d 

. 2 
sin y cos i 

2 
n 

(55d) 

where 

n 

3 2 
the gravitational constant (ft /sec ) for the perturbing 
body 

the satellite's mean angular motion (rad/sec) 

The symbols a^, i' and n' are defined in Figure 22. 

Equations (55a) and (55b) predict no secular changes in a or e due to the 

gravitational attraction of extraterrestrial bodies. However, i' and O' , 

which are referenced to the plane of the perturbing body rather than to the 

equatorial plane, do vary according to Equation (55c) and Equation (55d), 

re spectively. 

When the sun is considered to be the perturbing body, the geometry of the 

problem is described by Figure 23. Trigonometric relations which may be 

obtained from this figure are 

cos i' = cos i cos € + sin i sin £ cos Í2 (56) 

sin(\ + y) = sinfl 
sin i 

sin i' 
(57) 

•v 
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If fi - X. = constant and if i is given, then Equation (56) may be solved for i' 

as a function of X, Equation (57) may then be solved for y as a function 

of X. Assuming fi - X = 90° and a sun-synchronous orbit inclined at 150° 

(h = 2960 n mi), these equations have been solved for i7 and y and the 

functions (sin y cos y sin i') and (sin y cos i') are presented in Figures 24 

and 25, respectively. Figure 24 shows that the integrated average value of 

(sin y cos y sin i7) during the period of one year is zero. Therefore, the 

sun s effect on orbit inclination averages to zero after every year of satellite 

life. The variation during any year is small. The integrated effect during 

the three month period between X = 0° and X = 90° is only 0. 006 degrees of 

inclination change. 

F rom Figure 25 it can be concluded that the average value of (sin¿y cos i') 

during one year is -0. 555. Substituting this value into Equation (55d) yields 

Afi' = 0. 122 deg/yr. 

When the moon is considered to be the perturbing body, an additional averaging 

process may be incorporated Since the variation of i' during one revolution 

of the moon in its orbit is small, the functions involving y may be integrated 

over one revolution of the moon. These integrations are 

2tt 
n y cos y dy = 0 and 

2tt 
y dy 

2 

Thus, the moon's effect on orbit inclination averages to zero after every 

month of satellite life. 

2 ' 
The function (sin y cos i') is presented in Figure 26 as a function of X. The 

2 
integrated average value of (sin y cos i') from Figure 26 is -0. 396 which, 

when substituted into Equation (55d), yields Afi' = 0. 192 deg/yr. 
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The combined perturbation on the node by the sun and moon is approximately 

0. 122 + 0. 192 = 0. 314 deg/yr. This increment accumulates year after year 

but since the operational lifetime of most satellites is no more than a few 

years, the accumulation will not be much more than a degree. Since the 

effect of this accumulation on the eclipse fraction is insignificant, no velocity 

compensation determinations will be made. 
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8. OTHER EFFECTS 

8. 1 INJECTION ERRORS 

Satellite injection errors in h and i will produce deviations in f2 from the 

sun-synchronous rate. The deviation in Ù may be expressed 

An = Ai + Ah (58) 

The partial derivatives are obtained by differentiating Equation (13), 

9Ò 
■31 = 

+9.9608 sin i -ñ tan i (59) 

9Ò _ 3. 5 ñ 
3h " R + h 

(60) 

Equations (59) and (60) are graphically presented in Figures 27 and 28, 

re spectively. 

In order to ascertain the effects of injection errors, consider the following 

example. Assume the nominal orbit to be sun-synchronous at h = 400 n mi 

and i = 98^36. From Figures 27 and 28, AÕ = 0. 1 175 Ai - 0. 000 898 Ah. 

If Ai = +0.° 1, Af2 = +0.01175deg/dayorifAh= +10nmi, AÕ = -0.00898 

deg/day. Since Af2 is a constant, unless there are changes in h and/or i, 

the difference between fi and \ will increase or decrease linearly with time; 

Figure 29 depicts (fi - X) - (Í2 - Mt_Q as a function of time for the following 

injection errors: Ah(n mi) = +10, +20, +30, - 10, -20 and -30; Ai(deg) = +0. 1, 

+0. 2, +0. 3, -0. 1, -0. 2 and -0. 3. Figures 30 and 31 depict the same param- 

etei s for the same injection errors but for altitudes of 1400 n mi and 2400 

n mi, respectively. Because 9fi/9i decreases more rapidly with increasing h 

than does 90/9h, the injection error, Ai = ±0°3 , which produces the greatest 

deviations in (fi - X) - (fi - Mt_Q at h = 400 n mi, is replaced by Ah = ±30 n mi 

at both h = 1400 n mi and h = 2400 n mi. 
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The effect of injection errors on the eclipse fraction may be illustrated by 

the following three examples. In each example (Í2 - \)t_0 = 90° and combined 

injection errors of Ah = -30 n mi and Ai = +0.°3 will be assumed. The f 

versus \ history for the first example, h = 400 n mi, is presented in Figure 32. 

At \ = 90 (t = 0), f for the misinjected orbit is 0. 200 while f for the 

nominal orbit is 0. 181. At \ = 450°, one year later, f for the misinjected 

orbit is 0. 263. The relatively large difference between 0. 263 and 0. 200 is 

due to the deviation in Í2 - X after one year. From Figure 29 this deviation 

is seen to be 9.°8 for Ah = -30 n mi and 12.°8 for Ai = +0.°3 for a total of 

22.°6. 

For the second example, h = 1400 n mi, f = 0 for the first year for both the 

nominal and misinjected orbits. Since £2 - \ = 90° + 7.°8 + 5.°5 = 103.°3 (from 

Figure 30) for the misinjected orbit after one year, both orbits remain 

entirely within the noneclipsing window of Figure 12. 

The f versus X history for the third example, h = 2400 n mi, is shown in 

Figure 33. At X = 90° (t = 0), f for the misinjected orbit is 0. 1391 while f 

for the nominal orbit is 0. 1353. One year later f for the misinjected orbit 

is 0. 1424. The relatively small difference between 0. 1424 and 0. 1391 is due 

to the deviation in Í2 - X which (from Figure 31) is found to be 8.°8. 

8. 2 OBLATE GEOMETRY OF THE EARTH 

In the analysis to this point the earth has been assumed spherical in shape 

with radius equal to the equatorial radius of the oblate earth, i.e. 

R = Kg = 3443.93 n mi. The oblate geometry and the spherical geometry 

at the summer solstice are pictured in Figure 34. Note that the orbit radius 

r which is tangent to the oblate earth shadow is less than the corresponding 

r for the spherical earth shadow. But note also that the earth's radius R 

is less than R^.. The effect of both decreasing and increasing the altitude 

for tangency appears to be a net decrease. If this is true the noneclipsing 

window of Figure 12 will increase in size. 
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Figure 34. Oblate Earth Geometry 
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The unfamiliar symbols of Figure 34 are defined as follows. The radius of 

the oblate earth (R) is given by 

R = R^( 1 - f sin^0) (61) 

where 

f = the flattening defined by 

fA E _ 11 - 545 n mi _ 1 
“ 3443. 93 n mi " 298. 30 

Rp = the polar radius of the oblate earth 

0 = latitude 

Equation (61) describes an ellipse. The radius R± is the perpendicular 

distance in the plane of Figure 34 from the earth's ce; to the boundary 

of the shadow. The radius R|| is the radius of the eann at the point where 

the slope of the earth's surface is parallel to the sun line. 

When the oblate geometry is considered, the nodal regression rate must be 

determined from the generalized form of Equation (13) 

n = -9. 960 7951 (62) 

where r is an average orbit radius. Since the orbits are assumed to remain 

circular, r = r = R+ h= constant. From Figure 34, 

(63) 

Equation (63) cannot be substituted into Equation (62) until Rj^ has been 

described in terms of R 
E 
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The slope of an ellipse is dy/dx where y = R sin 0 and x = R cos 0, 

= 
dx 

R cos 0 d0 - 2 f Rj, sin 0 cos 0 d0 
■ — 2 

-R sin 0 d0 - 2 f Rj, sin 0 cos 0 d0 

Substituting for R from Equation (61) and canceling, 

(64) 

dx 
cos 0 - 3f sin 0 cos 0 

3 2 
sin 0 - f sin 0 + 2f sin 0 cos 0 

(65) 

The latitude corresponding to Rj_ is 0 = -90° + e = -66.°56 for which 

dy/dx = 0. 43074 and tan ^ dy/dx = 23.° 30. It will now be assumed that the 

angle between Rj_ and R|| is the difference in the arc tangents of their 

slopes(i.e., 23.°44 - 23°30= 0°14). Thus, the 0 corresponding to R|| is 

-66°56 + 0° 14 = -66°42 and 

R. = R cos 0.° 14 = RE[l - f sin2(-66°42)]cos 0.° 14 = 0. 997 18 Rj (66) 

Substituting Equation (66) into Equation (63), 

0.99718 R 
sin(i + «) = -—- 

r 

or 

R, 
= 1.00282 sin(i + € ) (67) 

Substituting Equation (67) into Equation (62) where Ò = X - 0. 985 647 deg/day 

sin^‘ 5(i + € )cos i = -0. 097 980 9 (68) 
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Equation (68) yields double roots, i= 101°17andi- im'TA u- u , ivi.iia.nai~ ilb.76, which correspond 
to h = 740. 2 n mi and h = 1821. 6 n mi, respectively. Thus, as Figure 35 

indicates, the oblate geometry of the earth does slightly increase the non- 
eclipsing window. 

8- 3 ATMOSPHERIC REFRACTION 

The sun's rays which pass near the surface of the earth are influenced by 

atmospheric refraction. The amount of refraction depends on the density of 

the atmosphere through which the rays pass and on the altitude (angular ele¬ 

vation above the horizon) of the sun. Since the rays are bent toward the 

regions of greater density, the sun's rays which are on the horizon will curve 

around the earth's surface and illuminate a portion of the region which was 

formerly thought to be eclipsed. This effect is depicted in Figure 36. 

Russell, et al, (Reference 7) state that under average atmospheric condi¬ 

tions sunlight on the horizon will bend approximately 35 min of the arc 

relative to an observer on the earth's surface. The refraction relative to an 

observer behind the earth and beyond the atmosphere will be twice this 

amount, or approximately 70 min of arc. 

The radius R' (see Figure 36) is perpendicular to the light ray which has 

been bent 70 min - 1. 17 after passing through the atmosphere near the earth's 

surface. The latitude (¢) corresponding to R' is 0= -66.°42 - 1°17 = -67°59 

(see Section 8. 2, OBLATE GEOMETRY) and 

f sin^(-67.° = 0.997 14 R 
E (69) 

For 0= -67.° 59. dy/dx from Equation (65) is 0.40977 and tan* 

Thus, tj; = 67.*59 + 22.°28 = 89.°87 and a = 180° - (i + £ - i.0i6). 
of sines, 

dy/dx = 22.°28 

From the law 

r _ R' 
sin sin a (70) 
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Figure 35. Oblate Earth Geometry and Atmospheric Refraction 
Effects on the Noneclipsing Window 
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Figure 36. Atmospheric Refraction 
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By substituting R', ^ and a into Equation (70), 

-^-= 1. 002 88 Jo. 99979 sin(i + ¢) - 0. 02028 cos(i + € ) j (71) 

By substituting Equation (71) into Equation (62) where Ò - X = 0.985 647 

deg/day, 

[o. 99979 sin(i + € ) - 0. 02028 cos(i + e )j3, 5cos i = -0. 097 963 1 (72) 

Equation (72) yields double roots (i = 100.°26 and i = 117.°99) which correspond 

to h = 640. 8 n mi and h = 1938. 0 n mi, respectively. 

As these solutions indicate, atmospheric refraction increases the size of the 

noneclipsing window. Figure 35 presents the noneclipsing window for com¬ 

bined oblate geometry and refraction. 

8.4 ECCENTRICITY OF THE EARTH'S ORBIT 

The analysis, to this point, has assumed that X, the rate of revolution of the 

earth about the sun, is constant and equal to the mean rate, 0.985 647 deg/day. 

Actually, the eccentricity, e = 0.0 167, of the earth's orbit causes X to vary 

sinusoidally about the mean rate. This variation will cause X to vary sin¬ 

usoidally about the value given by the mean rate, X = X t. 

When referenced to perihelion, the variation in X from that given by the 

mean rate is the same as the difference between true anomaly (v) and mean 

anomaly (M). This difference is given by Moulton (Reference 6) as, 

v - M = 2e sin M + e^sin 2M + 0(e3) (73) 

Equation (73) is graphically presented in Figure 37 (the short-dashed line) as 

a function of time for 1963 and 1964. Note that the variation is zero at every 

perihelion (M = 0) and aphelion (M = 180°) and reaches a maximum of 
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almost 2° early in April and about the first of October. The effect of this 

variation, even at its maximum, on the eclipse fraction is small. 

The nodal-sun orientations which were schematically depicted in Figure 5 

neglected both the eccentricity of the earth's orbit and the obliquity of the 

ecliptic, € = 23.°4441. However, the analysis of this paper has always con¬ 

sidered the obliquity of the ecliptic. The effect of the obliquity of the ecliptic 

on the difference between apparent and mean solar time is shown for com¬ 

parative purposes in Figure 37 by the long-dashed line. Note that the 

variation in X due to € is zero at the equinoxes and solstices and reaches 

a maximum of about 2.°5 in the early portions of Februrary, May, August 

and November. 

The combined effects of earth's orbit eccentricity and obliquity of the ecliptic 

produce the equation of time which is the difference between apparent and 

mean solar time. The equation of time is represented in Figure 37 by the 

solid line. The equation of time is zero four times a year; the middle of 

April, the middle of June, the first of September and the end of December. 

A maximum of about 4° is reached near the first of November. 

S. 5 ELLIPTICAL ORBITS 

The analysis, to this point, has considered only circular orbits. The effects 

of orbit eccentricity, especially in the range 0 < e < 0. 1, on eclipse fractions 

are certainly of interest. Cunningham (Reference 8) presents eclipse frac¬ 

tions for elliptical satellite orbits. His technical note tabulates eclipse 

fraction as a function of perigee altitude, apogee altitude, 6 (the angle between 

the orbit plane and the solar vector) and ß (the angle between the line of 

apsides and the projection of the solar vector onto the orbit plane). 

Table 1 presents eclipse fractions from Reference 8 as a function of ß for 

two values of eccentricity (e a 0. 1 and e a 0.4) and two values of 6 (6 = 20° 

and 6 = 50°). Also noted are perigee altitude, apogee altitude, h (the average 

altitude) and faye (the eclipsed fraction averaged over all values of ß). Another 
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Table 1. Eclipse Fractions for Elliptical Orbits 

e « 0. 1 h = 900 km 

hp = 200 km, = 1600 km 
e « 0. 4 h = 4600 km 

hp = 200 km, hA = 9000 km 

^circle = °- 329 6 = 20' 

^circle = °- 166 6 = 20’ 

20° 

40° 

60° 

80° 

f =0.334 100° ave 
120° 

140° 

160° 

180° 

circle 0. 230 

f = 0. 352 

0. 352 

0. 350 

0. 347 

0. 342 

0. 335 

0. 325 

0. 317 

0. 31 1 

0. 309 

20° 

40° 

60° 

80° 

f 
ave = 0. 169 100° 

120° 

140° 

160° 

180° 

f 
circle 

0. 182 

0. 190 

0. 198 

0. 196 

0. 187 

0. 172 

0. 156 

0. 143 

0. 135 

0. 133 

6 = 50° 

ß = 0 ° 0.153 

20° 0.165 

40° 0. 192 

60° 0.222 

80° 0. 246 

fave = 0. 229 100° 0.260 

120° 0.264 

140° 0.263 

160° 0.262 

180° 0.261 

ß = 0° 0. 000 

20° 0.000 

40° 0.000 

60° 0.000 

80° 0.000 

fave = °- 041 100° 0. 000 

120° 0.099 

140° 0. 103 

160° 0. 103 

180° 0. 103 
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parameter icjrcje (t^16 eclipse fraction corresponding to a circular orbit at 

altitude h and to the appropriate 5) is presented for comparison with fave- 

For the four cases examined in Table 1, the values of f . , are nearly 
circle ' 

equal to their corresponding values of fave- addition, except for the high 

e, high 6 case the dispersions in f from the average are not large. Thus, 

the additional complexity of elliptical orbits (two more parameters) and the 

relatively small differences in f values between circular orbits and elliptical 

orbits of moderate eccentricity are deemed sufficient reasons for not 

separately considering elliptical orbits. 

8. 6 EFFECTS OF MINOR SIGNIFICANCE 

Effects due to a sun not at infinity which would produce umbra-penumbra cones 

whose elements would deviate from a cylinder by approximately 16 minutes 

of arc and effects due to the oblate potential of the earth which could produce 

deviations from a circular orbit as large as ±0.9 n mi were judged to be of 

minor significance to the eclipse fraction and, thus, were not fully 

inve stigated. 



9. COMPARISONS WITH OTHER AUTHORS 

In the past other authors have investigated eclipse fractions for earth satellites. 

It is the intent of this section to compare the analyses and results of these 

authors with the analysis and results of this paper. 

Patterson (Reference 9) was perhaps the first to publish a method for calcu¬ 

lating the percentage time which a satellite in a circular orbit spends in sun¬ 

light (1 - eclipse fraction). This time is determined as a function of h, i and 

two earth-sun-orbit orientation angles. A spherical earth and a cylindrical 

shadow are assumed. Pierce, in a subsequent paper (Reference 10) expresses 

Patterson's equations in terms of h, i, fî, Q (right ascension of the sun) and 6 

(declination of the sun) in order to present a convenient graphical method for 

determining the eclipse fraction. 

Cunningham (Reference 8) adds complexity and value to his paper by examining 

elliptical orbits. His technical note tabulates eclipse fraction as a function of 

perigee altitude, apogee altitude and two orientation angles, 6 and ß. Sec¬ 

tion 8. 5 of this paper compares Cunningham's elliptical orbit eclipse fractions 

with circular orbit eclipse fractions for corresponding values of h (average 

altitude). 

Escobal (Reference 11) derives equations which yield eclipse times for 

elliptical orbits. In addition, umbra and penumbra deviations from the basic 

cylindrical shadow are developed. He also presents a correction for the 

geometrical flattening of the earth although the analysis is restricted to 

Keplerian orbits. 

The four papers briefly described above have some common characteristics. 

They all obtain equations, with varying degrees of sophistication, for the 

eclipse fraction. Escobal's development is the most sophisticated. Two of 

the authors present eclipse fraction (Pierce graphically and Cunningham 

tabularly) as a function of altitude, inclination and orientation angles. None 
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of the authors, except Patterson, and he with only one example, describe 

an eclipse fraction time history for a given orbit. Any point on such a time 

history for a circular orbit may, of course, be determined from any of the 

four papers. In fact various points on Figures 9 and 10 of this report were 

checked with results from Pierce and Cunningham and the agreement was 

very good. Since the authors were point oriented rather than orbit oriented, 

none of them considered sun-synchronism and/or orbit perturbations. 

Murrell (Reference IE) does describe a few eclipse time histories. However, 

he restricts his investigation to circular, equatorial orbits. Since all of 

Murrell's time histories are at altitudes above those considered in this paper, 

two machine runs at h = 8000 statute miles and h = 22, 300 statute miles (24- 

hour orbit) were made for comparative purposes. The computer program 

described in Section 2 was used. Complete agreement with his results was 

found. 

Since eclipse fractions at higher altitudes are probably of general interest, 

Figure 38 presents f versus h to h = 21, 000 n mi. Curves for equatorial 

orbits, polar, (fi - \). . = 90° orbits and f are displayed. 

Hanson and Fairweather (Reference 13) consider satellite eclipsing and 

examine the possibility of noneclipsed sun-synchronous orbits They cor¬ 

rectly determine in a manner similar to Section 4 of this report the most 

critical time of year to be the summer solstice. However, their criteria 

for noneclipsing (displayed in Figure 8 of Reference 13) are apparently in¬ 

correct. They display the sun-synchronous orbit inclination versus the 

"minimum" orbit inclination which is obtained from R/(R + h) = sin(i . + O. 
min 

They then claim that the noneclipsed orbits are those for which i . > i 
7 r min sun-syn 

This procedure is valid but their figure indicates a noneclipsed region which 

is far too large. Their difficulty may stem from the fact that i is 
° 7 7 sun-syn 

incorrectly found to lie between 0 and 90° and/or the fact that i . is found 
min 

to be "negative". Figure 39 of this report correctly displays their criteria. 
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Figure 39. Noneclipsing Criteria 
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The region for which imin > isun_syn is correctly bounded by the points, 

i = 101.e39, h = 751.9 n mi and i = 115.c47, h = 1796. 6 n mi, which were 

previously found in Section 4. Hanson and Fairweather do not consider non¬ 

sun synchronous orbits, orbit perturbations, injection errors, oblate earth 

geometry, atmospheric refraction, etc. in their investigation. 
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