
s>

n
i 60314& J

10 Ui
llib: I

It b I— 120 1*1 t t; ■■■
“ lU
1-25 iii-4 B16 <<.v

:V^; >v
1

* 'mr , " '■ Oft''•■‘•i-fe z < -*0y:'*'<§!♦ f .' "»v •

^:zmm
:'.l^

.. ,. , F‘>

m-
'M

Ji' ’ u

OPERATHW SYSTEMS
■■ ’ V

O«orse H. Nealy : i. ■ V
st.

SiV-S
E", m

...^4... ■ if
m̂4.-

I4iy 1962

y
IHMa

■V •i,s^

<

r-■ v<_> -

1^"

Erp»'*

11

CONTENTS

introduction. x

INPUT-OUTPUT SYSTEMS .. • , aaaas.5

Terminology a a .. ^

Symbolic Input-Output . ^

Input-Output Executor 22

Channel Communication Cells .. po
The ASSIGN Routine . . Sfi
Attention Requests .2Q
Other Assumptions ...ÜÜÜÜÜ 34

Buffering Systems

Alternating Buffering. **
Pool Buffering ... ••••••••• ¿0
Logical Flags ... ¿0
Multiple Use of Buffers.!!!!!!!. s?
Select and Unit Interpretative

Routines ..
Dispatching ...I!!!!!.
Opening and Closing Flies ...!!!!!!I. àí
Trap Protection ././///. 61

SUPERVISORY SYSTEMS .

Introduction ..
... 03

Wie Supervisor .

Definition of ’’job" .. gc
Control Card Interpretation . ** &&
Sequencing within Jobs . ”** go
Processor Supervision.!!!*** 71
Unit Assignment .//////. 74

Wie Vigilance Committee... 7g

Hardware Monitoring. 7o
System Transfer Points./. 7q
Execution Monitoring ..####]|*******

Linlcage Routines . g^

Processor Linlcage .. flo
Object Code Linlcage.//. gf
Supervisor Linlcage .!!!!!!!!!!! 84

iii

CONCLUDING REMARKS . 86

Appendix I
I. INDEX OF TERMS . 8?

REFERENCES **••••••••••••••••••••••••••••••••••••(,

OPERATING SYSTEMS

George H. Mealy*

The RAND Corporation, Santa Monica, California

INTRODUCTION

Over the past five or ten years, programmers have

gradually been weaned away from the practice of approaching

a bare machine with card decks and sharpened red pencils

in their hands, fighting with the console for more or less

extended periods of time, and leaving triumphantly with a

sheaf of results or In defeat with a ream of post-mortem

dump. Over the same period of time, operating systems have

gradually evolved from attempts to bridge the gap between

the programmer and the machine. IMs has not been an un¬

alloyed blessing so much as a practical necessity. Machines

have become faster and more complex, a large variety of pro¬

gramming and debugging aids have become available, and the

problems themselves have become larger and greater In variety.

It is no longer possible for an Individual programmer to be

-«-
.. Any views expressed In this paper are those of the

author. They should not be Interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of Its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of Its staff.
,.. 8 Paper was prepared for presentation at the
University of Michigan Engineering Sumer Conferences to
be held In Ann Arbor, Michigan, June 18-29, I962.

-2-

an expert In every phase of programing and machine usage;

he now finds himself at the tender mercy of the operating

staff and the system programmer responsible for providing

him with some of the necessities of life«

As each new programming language has come along, there

has been a great tendency to embed it into Just enough of

an operating system to allow it to be used at all* The

result, especially on large and somewhat popular machines

like the IBM 7090, has been a number of system tapes in an

installation, all with different operating characteristics,

and specialization of programmers according to programming

systems (one, in most cases) with which they are familiar.

There has been comparatively little effort devoted to con¬

solidating our gains in one area and making them available

to programmers working in another area.

To a great extent, the current emphasis on programming

languages, as opposed to other aspects of the programmer's

approach to the machine, is misplaced. The actual amount

of time the programmer spends coding is small as compared

to the time he spends in problem analysis, checkout, and

setting up runs. An advance in the art such as the intro¬

duction of recursive procedures must be reckoned as small

when compared with advances in symbolic modification and

checkout methods or in our understanding of input-output

systems. It is entirely possible that, in our current

enthusiasm for so-called common languages, we may be

-3-

settling * common level of mediocrity rather than a

genuine advance in our operating methods.

The object of having a machine is to run Jobs, not

programming systems. To call the systems that stand be¬

tween the programmer and the machine "programming systems"

is to place undue emphasis on mechanical coding aids and

sno\ emphasis on the other aspects of operation.
0 ¿t- *‘S' » *Sjr

i - ^ h we shsdl mean the^whole complex
_ Corf*7'*''

of programming^ debugging, and operational aids with which

the programmer deals. For the purposes of discussion, we

OU ' - --
-divide the cong>onents of an operating systiera^into

three categories:

(1^ Input-output systems: Codes which, in conjunc¬

tion with the hardware, get data in and out of

the machine.
/

(Processors: Codes which transform data.

3«; Supervisory systems: Codes which are responsible

for Job or task sequencing and communication be¬

tween the programmer and components of the opera¬

ting system. —__

The existence of tens of thousands of words of code

which perform the above functions does not guarantee that

we have a system — in many cases, it is Just code. The

word "system" implies organization and coherence, not size

and complexity. Also, to be systematic is not necessarily

to be inflexible. In these lectures, our main emphasis

-4-

win be on the provl.lon of a coherent a.t of corusca¬

tion convention, (we he.lt.te to u.e the ten. ».tandard.»)

which will promote rather than hinder flexibility of con-

atructlon and use.

Ter. used below will, for the most part, be intro¬

duced in context rather than by explicit definition. E.ch

tern introduced i. underlined the first time it appear..

Abbreviation, for terms appear 1„ parentheses following

the fir.t occurrence of the tern, a li.t of tens, u.ed,

together with the number of the page on which each 1. in¬

troduced, appears at the end of these notes.

-5-

INPÜT-OUTPUT SYSTEMS

TERMINOLOGY

In order to discuss input-output systems in some

detail without reference to a particular machine family.

It Is necessary to establish a terminology that Is non¬

committal but at the same time can be Interpreted reason¬

ably precisely in the case of any given machine. This

will be done on the basis of elementary hardware functions,

irrespective of how these functions may be mechanized.

The essential principles Involved In the construction

of Input-output systems are hardware-independent to a much

greater extent than is commonly recognized. It Is both

possible and reasonable to design systems In such a way

that the programmer can well afford to be unaware of what

particular type of input-output device any information file

may be associated with from one run of the program to the

next — except, of course, for matters of grand strategy

in design of his program.

A basic distinction that we must maintain is that

between storage that is used serially and that which is

used randomly, both on the programming and on the hardware

levels. However, an information file that is processed

sequentially may reside on a random-access device and vice

versa. Prom the programming point of view, we will for

the most part be discussing serial information file proc¬

essing irrespective of device type, although much of what

-6-

we say will be equally applicable to randomly-accessed

information files.

On the device level, the essential difference between

serial and random seems to be a question of one versus two

or more physical degrees of freedom. More precisely, we

should speak of a tape-like device as opposed to a drum-

Ufo device [1]. In the one case, the information Is

stored in a linear array -- in order to read a given block

we may pass over unwanted information on the way. In the

other case, we may start reading at any point, irrespective

of the location of the block last read or written. On this

basis mb might assign the usual input-output devices as

follows :

Tape-like Drum-like

Tape
Typewriter
Card Reader
Card Punch
Line Printer
Transmission Line
Keyboard

Core
Drum
Disc
CRT Display
Plotter
Photographic Store
Switch Panel
Lights

Note that whether transmission between the machine and

the device is serial or parallel is inconsequential — the

above classification is based on the type of access to the

medium involved. With a tape, access is produced by linear

motion in one of two directions and maybe by also skipping

information; with a drum, some kind of addressing is in¬

volved, whether or not physical motion (such as motion of

7-

a disc access mechanism) is required as a result of ad¬

dressing.

It is often the case that information is written as

a sequence of words or characters separated by gaps. These

continuous sequences will be called records. The word

block will be reserved to denote a record of maximum size

(when such a maximum exists). Block size will be potential

length of a typed linef the number of columns on a card,

etc. On reading, the end of a record may be recognized

and will commonly terminate transmission, requiring another

read instruction in order that transmission of the next

record commence. Por instance, cards constitute records,

as may a printed line or a typed line followed by a carriage

return or other special indication of end of record. Even

on a drum-like device, information may be transmitted on a

record basis, in which case records rather than words will

be addressed. On some tape devices, indeed, a record and

a block are identical (e.g., the Philco S-2000 or Minneapolis-

Honeywell H-800 tape systems).

A higher grouping of records, called a file, is often

recognized. End of file, then, is that condition that is

recognized while reading at the end of the group and that

is written in order to finish off an output group. Since

the word "file" is also used in a logical sense, wr need

two terms. That is, there is a physical grouping as indi¬

cated above as well as a logical grouping which may or may

not coincide with the physical one. We have already used

-8-

the word "file" in both senses. In cases where ambiguity

may otherwise result, we will speak of P-files and L-files.

The phrase "information file" will always imply that the

file is an L-file.

In order to introduce the remaining hardware termi¬

nology, we must first resort to a picture (Pig. 1). This

is, of course, not to be taken literally except on a

functional basis, although it is fairly accurate for many

of our present larger machines.

The function of a channel is to transmit information

between a controller and the machine. This information

may be both control information and data. Some rearrange¬

ment of information may be necessary (e.g., the storage

is parallel, but controllers require serial information

transfer)• The channel must inform the processor of error

conditions or termination of an operation. In more complex

machines, the channel may also have processing capability

and operate under control of a program independently of

what the main processor may currently be doing. In gen¬

eral, the channels and the main processor will compete for

main storage access cycles.

The function of a controller is to select a satellite

unit, relay control orders to it (e.g., rewind, eject sheet,

read forward, position access mechanism to a given address,

etc.), and transmit data between the selected unit and the

-9-

Machíne
proper

Channels

Controllers

Units

-Information path

-Control poth

Fig, I — Input-output hardware

-10

channel. It raust also relay exceptional or normal condi¬

tions (e.g., parity error, end of record, unit busy, etc.)

back to the machine via the channel.

It may be the case, as with the IBM 7090, that each

controller is associated with only one channel or, as with

the Phllco S-2000, that any channel can be used with any

controller — the two possibilities should be kept in mind

when we come to discuss input-output executors below. In

a given hardware situation, of course, not all of these

(channels, controllers, units) will be physically recog¬

nizable. Functionally speaking, however, these distinc¬

tions are necessary.

We can now define terras based on the type of infor¬

mation transmitted back and forth among the processor,

channels, controllers, and units and the type of action to

be performed by each functional link, we do not feel it

necessary to distinguish between the ways in which control

information nay be transmitted. That is, control informa¬

tion may be transmitted over the same lines over which data

is transmitted or may be transmitted over lines that are

separate and, indeed, that may be separate lines for each

type of control function, we shall speak as if the former

were the case, but shall have to recognize the other possi¬

bilities in the discussion of select routines. (For the

sake of definiteness, we will take as our running example

the hardware organization of the IBM 7090, the 7909 data

-11-

channel, the 7640 hypertape controller, and the 7631 disc

file controller.)

Let us first take the case of control Information.

We may suppose that this originates In words transmitted

from the main storage to a channel. Commands are those

words that Initiate and control the action of the channel

Itself • Orders are those words that Initiate and control

actions of a controller. (Additional control lines will

be required between processor and channel and between

channel and controller, but we speak as If the bulk of

control Information were In the form of control data and

originates In main storage.) The term "instruction” will

be reserved for Imperative words Interpreted and executed

by the main processor. It may be the case that commands

or orders are executed sequentially qua program by the

channels and controllers. In this situation, we will

speak of channel programs and controller programs as

opposed to the main processor program.

A channel program may. In the general case, consist

of at least the following types of commands:

1. Control: Transmit an order or a sequence of

orders to the controller.

Read: Set the channel, controller, and unit

for reading data.

3« Write: Set up everything for writing.

-12-

4. Sense: Request the controller to send back status

data (i.e.# error conditions, unit ready, end of

file, etc.).

5» Copy« Given a main storage origin, maybe a word

count, and whether read, write or sense Is to

occur, start transmitting data.

6. Set Mode: Set the channel for any peculiar

Information translation to be accomplished during

data transmission (e.g., binary or decimal mode).

7. Select: Connect up to a specified controller.

8. Bid: signal the main processor that the channel

program has ended (usually, via a trap).

9* Branch: Branch in the channel program, possibly

conditionally.

An order, or a controller program, will exercise the

various features of the input-output units attached to the

controller. The only common order Is probably:

Select: The following orders apply to a given

unit attached to the controller.

In the case of tape-llke devices, we might iiave: rewind,

unload, forward space record or P-file, backspace record

or P-file, carriage return, change ribbon color, ring

gong, sound lQ.axon, etc. In the case of drum-llke devices,

we might have: locate Initial address for transmission,

advance film frame, select plotting character, turn on a

light, select switch or switch bank, ring gong, etc.

-13-

We must distinguish between those input-output

operations that result in data transmission and those

that result only in control operations (control operations

will usually be necessary in either case). We will call

these data versus non-data operations. The word "select"

will be used in the wide sense to denote an entire input-

output operation fron its initiation by the main processor

to its final conclusion, signalled by release of the chan¬

nel. Thus we will speak of data selects and non-data

selects to denote the two major types of input-output

operations in their entirety.

Of great Importance is the manner in which the main

processor reacts (or does not react) to the completion of

a select. It is generally true in our current larger

machines that select completion results in a trap. That

is, the location counter is stored in a fixed location

and the instruction at another fixed location is executed.

The details of this action differ considerably among dif¬

ferent machines. Por Instance, non-data selects may never

result in a trap at completion, traps may not be enabled

at all, or a trap may occur when the channel senses an

unusual condition — such as a parity check — even though

the channel program has not reached completion, (we will

call the latter type unusual end, as opposed to normal end.)

A trap may occur even though the channel is not engaged in

a select (for Instance, a typewriter demands attention, a

tape has Just been loaded, a rewind has been completed, a

14

disc access mechanism has finished positioning Itself,

etc«)* This class of conditions will be called attention

requests.

Me should note that the above terminology has« for

the most part, been drawn from that associated with the

IBM 7000-serles machines, not because It Is universally

accepted, but because hardware counterparts exist for many

of these terms and, hence, the terminology has at least

some claim to priority.

-15-

SYMBOLIC INPUT-OUTPUT

Up to about five years ago, it was considered that

the best practice in handling choice of input-output units

by the object program was to include unit assignment as an

assembly parameter or to read in unit assignments as data

and initialize the program appropriately, This practice

worked pretty well when it was followed, which was seldom.

With the advent of near-universal use of supervisory sys¬

tems, including a few that cooperate with the operating

personnel in making unit assignments, it has been necessary

to find a more foolproof and flexible manner of operating.

TCie solution employed in the SHARE Operating System (SOS)

C2-8],and with variations in many later systems, has been

to reserve part of high-speed storage as a communication

region in which unit information is kept. This solution

will be covered more fully in the material on supervisors;

suffice it to say here that unit assignment and status

information is considered as part of the communication

region, accessible both to processors operating under the

supervisor and to object programs.

In SOS, input-output units are divided into three

classes on the basis of usage: those units used by the

system (library tape, peripheral input and output tapes,

and scratch tapes for use by the various processors), tapes

reserved for the use of a particular programmer or Job (i.e.,

assigned to the Job and kept in the tape vault), and tapes

-16-

whlch were on the machine and could be assigned as utility

tapes for any Job. Por each of these functional units, a

word was reserved In the communication region called an

ln£ut-out£ut unit control word (UC>f) and a symbol of the

form SYSxyz was placed Into the system symbol table to

allow reference to the control word.

The Job of the unit assignment routines, then, was to

fill the Input-output unit control word with the proper

channel and unit address when one of the units had an ab¬

solute equivalence assigned to It. At the same time, the

unit status list was updated to give the unit status now

current (detached from the machine, attached and available,

assigned as system tape, assigned as utility tape, or

assigned as reserved tape).

The Input-Output Control System for the 709 (IOCS)

has followed a slightly different approach [9]. In this

case, a unit control block (UCB) In the communication re¬

gion is permanently associated with a physical unit. The

unit control block contains the channel and unit address

as well as unit status and type Information and unit posi¬

tion Information (l.e., for tapes, the current physical

file and record numbers are kept up-to-date). There are,

In addition, file blocks associated with the buffering

system and object code. Each Information file has Its own

file block and the origin of this Is addressed by the object

code. The file block. In turn, contains the address of the

-17-

UCB for the unit to be used for the file. Additionally,

part of the UCB may be used by the buffering system, as

la the case with the UCW used by SOS.

>fhat Is grandly termed "symbolic Input-output" has

at least two characteristics: (1) object programs refer

to storage cells rather than to absolute unit addresses,

and (2) unit assignments are made by the system and need

not be known by the programmer In advance. This already

represents a considerable advance over earlier treatment

of input-output. Por Instance, it makes it possible to

run programs which use differing normal assignments of

peripheral tapes without making changes In the program or

reassembling it. It also allows, say, a program written

for a four-channel machine to run on a two-channel machine,

albeit at reduced efficiency. To be able to do the latter,

additional conventions besides the above two must be followed

by the program; the program Input-output logic must be so

arranged that a select Is not started on any given channel

before the results of the prior select on the channel are

determined, stored, and acted on. 11113 matter will be

explored more fully below.

Another way in which input-output may be "symbolic"

was referred to in the section on terminology. Not only

may the unit assignment affect addressing, it may also

affect the choice of type of unit. For instance, the in¬

formation file associated with a file block may be stored

-18-

on either tape or disc without the programmer knowing

which will be the case. Again, a card deck may be read

on-line or from a peripheral Input tape — It Is possible

to so arrange things that the program need not know which

Is the case, although the programmers may wish to take

advantage of knowledge of the normal Input-output arrange¬

ments •

Input-output on a machine equipped with Input-output

traps Is a concrete example of multiprogramming. On the

one hand, we have the trap supervisor which takes control

during trap (i.e., at the conclusion of a select) and

finally surrenders control back to the program that Is

using the Input-output system; on the other hand, we have

the subprograms which the trap supervisor calls to check

the previous select and to start the next one — these

are part of the using program although only the trap super¬

visor ever transfers control to them. "Using program" in

the above context might equally well read "buffering sys¬

tem, ' where routines in the buffering system are used as

subroutines of the programmer's object code.

A more detailed picture of the input-output control

situation is given in Pig. it is the object of the

following section to explain the picture.

We shall consider that an input-output system is

composed of the following:

1. One or more buffering systems. They maintain

the file blocks, communicate with the object

BLANK PAGE

—

C
o
n
tr

o
lli

n
g
 d

o
to

[]

C
om

m
on

 i
n
fo

rm
a
tio

n

i V
O

i

F
ig

.2
—

In
p
u
t-

o
u
tp

u
t

c
o

m
m

u
n

ic
a

ti
o

n

20-

code, put Information to be written into buffers

from main storage, taice information read out of

buffers, communicate with the input-output execu¬

tor, and provide the select routines to be used

at trap time.

2. The input-output executor (IOX). This is the

trap supervisor mentioned above.

3. Unit interpretative routines (UIR). Each of

these provides an elementary function used by

the select routines, such as compute channel

number, find absolute unit address, set up to

write, set up for a non-data select, check read¬

ing.

Coufamnication cells. File blocks and unit control

blocks are examples.

More than one buffering system may exist in storage

at the same time. It may be, for Instance, that there is

not room in storage for a massive general-purpose buffering

system such as IOCS or the SOS buffering system while there

is room for two or more special-purpose buffering systems.

It might be the case that the general buffering system in

use for most purposes will not accommodate blocking and

unblocking peripheral tapes and, hence, a special buffering

system is required for this purpose. It might also turn

out that a part of the object code is using IOX directly

to accompllah non-buffered input-output. This does not

-21-

exhaust the list of possibilities, but is indicative of

the flexibility that is often required in an input-output

system.

The unit interpretative routines (UIR) are singled

out oecause they have a well-defined function which is

not necessarily related to either the buffering system or

IOX. It is their Job to accomplish a given input-output

function for a given type of channel and/or unit. This

Job can be done by bit-picking inside the select routines,

but we have chosen to separate it out since it can be done

better this way in practice.

The buffering system knows the intimate details of how

the buffers are used, what is in the file blocks, etc. It

need not, however, know the details of input-output coding

for dealing with the particular units being used — only

how to communicate with the unit interpretative routines

and IOX. Similarly, IOX need know next to nothing about

the buffering system or the unit in use — its Job is trap

supervision and the manipulation and use of the communica¬

tion cells.

-22-

INPUT-OUTPUT EXECUTOR

lOX has the overall function of maintaining channel

activity. That is, it is entered as the result of comple¬

tion of a select and must see that the result is checked

and that a new select is started if this is possible. The

basic problem in doing this is in designing a good and

sufficient set of communication conventions, especially

under the policy that IOX should not know the details of

the buffering system(s) in use or of input-output coding

for controlling units being used. The kind of solution we

shall indicate is a slight generalization of the methods

used in 303 and IOCS. We will assume the situation in

which each controller is permanently associated with a

particular channel, as on the IBM 7090, waiting until

later to detail how changes in assumptions affect IOX. Wfe

will assume that some channels trap only at the completion

of a data select but not on completion of a non-data select

or receipt of attention signals. It should be understood

that once a trap has occurred, all other traps will be

inhibited until exit from IOX, whereupon a delayed trap

may take place.

It should also be kept in mind that the details that

follow continue to use the IBM 7090 as an example. In

particular, a storage cell in that machine can hold two

machine addresses. This is not essential to the argument,

of course, but should be kept in mind to avoid confusion.

Many of our communication conventions will be so labeled.

-23-

Therefore:

Cl. The first word of each file block will hold the

location of Its associated unit control block.

IOX will be aware of no other aspect of file

block format.

C2. The first word of each unit control block will

hold:

1. The absolute unit address.

2. The absolute channel address.

3. The absolute controller address.

4. The location of the unit Interpretation

routine list for that unit type.

(The format for 1-3 may be various, but known by the UIR

list.)

Channel Comnunlcatlon Cells

For each channel, IOX must know what select routine

Is to be used to check the current select on Its comple¬

tion and what select routine to use to Initiate the next

select on the channel. The select routine must know

whether It Is being entered at the start or end of a

select and also what file block Is Involved (and, hence,

what unit, what core area, what kind of a select, etc.).

Words containing this information (l.e., location of

select routine and location of file block) will be called

select words. SSiBCT(+) will be the generic name for the

-24-

routine that starts a select and SELECT(-) for the routine

that does the appropriate end action.

03. IOX will enter select routines with the select

word in the accumulator and an indication

(multiplier-quotient register sign, for instance)

as to whether start or end action is desired.

Select words will be stored in the channel communica¬

tion cells. There are three possibilities:

C4. A channel dispatcher preference cell, if non¬

zero, holds the select word for the next select

the dispatcher wishes to take place on that

channel.

C5. A channel system priority cell, if non-zero,

holds the select word for the next select on the

channel. If present, this will override dis¬

patcher preference.

C6. A channel activity cell, if non-zero, holds the

select word for the action to take place at the

conclusion of the current select. The activity

cell will be non-zero if and only if the channel

is active and the current select will end by

causing a trap.

The essential difference between a dispatcher preference

and a system priority is that in the latter case the object

program is being held up until the requested select is com¬

pleted. This may happen, for Instance, if the program

-25-

attempts to read (i.e., take words out of a buffer) before

a buffer has been assigned and loaded from tape. If a

priority action is to take place, we do not necessarily

wish to cancel the previous preference.

The dispatcher referred to in (C5) is a routine that

fills the dispatcher preference cells. It is, in effect,

the part of the buffering system which determines input-

output strategy as far as channel usage is concerned.

It will be considered in more detail in the next section.

Prom our present point of view (IOX, that is), we can

state two requirements :

C7• IOX must be able to call the dispatcher for

each buffering system in main storage when a

channel is free and no dispatcher preference

is set.

C8. A dispatcher preference, as opposed to a system

priority, is revocable. That is, a dispatcher

may decide that on the basis of current con¬

ditions it prefers doing other than what its

previous preference was. This implies that the

buffering system may not assume that setting a

preference will necessarily result in the re¬

quested select being accomplished.

One other point: the proper place for a dispatcher is in

the buffering system rather than in IOX. To dispatch, one

must be able to consult the file blocks. IOX, on the other

26-

hand, is oblivious of their content, being a mere slave

of the traps and the channel conmunication cells.

Prom our present point of view, then, the action of

IOX can be represented by the flow chart in Pig. 3. a

few things have been left out:

!• After determining the channel, IOX should collect

the sense data (i.e., existence of parity checks,

etc.), since this can be done by using the proper

UIR and must, in general, be done in all of the

select routines if IOX does not do it.

2. On exit from SEX<ECT(-), corrective action may

have made it necessary to issue a new select.

In this case, IOX should skip down to restore

the console and exit. This would happen, for

Instance, on a reading error where a reread has

been started.

3* IOX should clear any channel communication cell

whenever it is about to use the select word

stored there.

4. If SELBCT(+) starts a select that will not re¬

sult in a trap, it should return zero and other¬

wise return the select word to be stored in the

activity cell. In the former case, there is a

legitimate question as to whether IOX can go

back to look for a new priority or preference

-27-

Sclect end action

System priority

Dispatcher preference

Select start action

Fig. 3— IOX action

-28-

to execute before its exit — this is a matter

of whether the main frame could be held up if

it attempted to reuse the channel or controller.

The SELECT(+) routine should know this, and

could exit accordingly.

The ASSIGN Routine

Something must be provided to simulate the action

of IOX in starting a channel once it has been allowed to

idle, since IOX is entered only via a trap. It

would also seem to make sense to use the same routine,

given a select word and a particular sense of urgency,

to fill either the priority or preference cell or to wait

until the next trap on the channel and exit only when the

select is started. The possible degrees of urgency are

as follows:

1« System priority: If the channel is idle, enter

SHiECT(+) and then fill the activity cell. If

the channel is busy, fill the priority cell.

In either case, do not exit until the corres¬

ponding SELBCT('f) has been executed,

2. Strong preference: If the channel is idle,

enter SELBCT(+) and post the activity cell.

Otherwise, fill the preference cell.

3* Meak preference: Same as (2), but fill the

preference cell only if it is cleared.

-29-

A point worth making is that ASSIQN may be entered

either at trap time from a dispatcher via a SELECT or at

non-trap time from the buffering system. ASSIGN may, in

fact, be in simultaneous use in both ways. The IOX save

and restore will take care of collision of console con¬

tents. Linkage information must, however, be stored in

different places, depending on when ASSIGN was entered.

A similar remark is true of the dispatchers) and other

routines in the buffering system. This is the subject of

trap protection, which will be taken up in the next sec¬

tion.

Attention Requests

On a machine whose channels may accept attention

requests from the units (e.g., the IBM 7090), the IOX

picture is more complex than was indicated above. This

is especially the case if an attention request may occur

on a channel that was otherwise idle or if the channel

program can be interrupted by the attention request before

it has come to nomal or unusual end.* The possible cases

to be considered, then, are:

On the 7090 equipped v.!th the 7909 data channel,
unusual end or attention request will result in an inter¬
rupt (i.e., a trap in the channel program). The interrupt
program may, if it wishes, then trap the main processor
program. If interrupt occurred before completion of the
channel program, the main processor program may restart
the channel from the point at which it was interrupted.
On other machines, a trap may result directly (e.g., the
IBM 7040/44).

-30-

1. Channel was not active (i.e., nothing was posted

ln Its activity cell).

2. Channel was active and attention request came

from the selected unit.

3. Channel was active and attention request came

from a unit other than that stated.

In the last two cases, subcases arise depending on whether

or not the attention request came before normal or unusual

end. (It Is, of course, possible to have more than one

unit requesting attention at the same tlrue.)

It Is clear that our present communication conventions

are not sufficient to handle the situation In any way. The

object program or buffering system may want to get control

when particular units request attention — If this Is not

the case, then I0X must have means for dealing appropriately

with a request from that particular type of unit.

In the second case. It seems highly unlikely that an

attention request could come before normal or unusual end.

A more likely case would be, say, a request following ter¬

mination of disc access mechanism motion or a tape rewind.

The question here Is whether the activity cells should have

been posted In the first place. A reasonable supposition

Is that the 3ELECT(+) routine might know whether anything

is to be done after the attention request comes along. Por

Instance, If a disc read Is to take place and SELECT had

to accomplish a seek first, then SELECT must regain control

-31-

at completion of the aeek. If this was as the result of

a system priority, then SELBCT(+) might keep the activity

cell full to deny use of the channel to anyone else — we

will discover a better alternative below. Otherwise, how¬

ever, It should be possible for someone else to use the

channel during the seek (or rewind) so long as they are

prevented from selecting the unit that Is In seek or re¬

wind status. This would result In the third case when

the request finally came up.

In the final case. It Is pretty clear that anything

done by IOX to satisfy the attention request must not

Immediately result In starting a select. This Is true

even If the request comes at the same time that the channel

ends activity, for an error condition may make It necessary

for SELBCT(-) to restart the channel. The most, then, that

IOX can do Is permit a system priority or dispatcher pref¬

erence to be set as a result of servicing the attention

request. Now, servicing the attention request must have

fairly high priority, particularly in the case that a

select routine was entered on system priority and must be

re-entered in order to do the rest of its Job. On the

other hand, an existing system priority cannot be killed

as the result of servicing an attention request.

A possible way of handling these situations is the

following: Once IOX has collected the channel sense data

and has determined that one or more attention requests are

-32-

up, it will execute an attention recognition routine for

each unit requesting attention. This will be one of the

UIR's and will, in general, set a flag in the UCB for

later use. If this was also normal or unusual end and

the activity cell was filled, IOX will now do the SELECT(-).

If 3EXECT(-) exits saying the channel is again busy, IOX

will exit, but otherwise the channel is free and further

action can take place for the attention requests. If this

was not an end, of course, IOX must restart the channel

and exit.

Further action is necessary if the buffering system

requested IOX to report back on an attention signal from

a particular unit; this request can be made by storing a

select word in the UCB (in its second word, say) on exit

from the original S&BCT(+). In this case, the UIR would

have set the attention flag once the attention signal was

recognized. IOX, therefore, should examine all UCB's on

the channel and treat any attention select words exactly

as if they had come from an activity cell. This should

be done before setting up for a sn.ECT(+), since an input-

output action that has already been started should have top

priority for completion. This leave us with a more complete

flow chart for IOX, shown in Fig. 4.

IOX action is now broken down into six phases:

1. Collect sense data and recognize attention signals.

2. Check previous channel activity, if any.

f

blank page

I
U

J
O

J I

F
ig

.4
—

 I
O

X
 R

ev
is

ed

fl
ow

 c
ho

rt

-34-

3. Service attention flags by treating them as a

cessation of activity* Note that SELECT(-) must

exit with a select word if it wishes to start

the channel -- IOX will then treat this as a

SELECT(+).

4. Execute SELECT(+), given a select word from

saECT(-), the system priority cell, or a dis¬

patcher preference.

3* If SELECT(+) indicates an attention type of ac¬

tivity, store the select word returned in the

UCB* Otherwise, store it in the activity cell.

If there is now no activity (SYSXAC » 0), go back

to (3) to service other possible requests.

6. Restore the console and exit.

Other Assumptions

The two principal assumptions made in the foregoing

which are not true on many machines concern the existence

of traps and whether or not controllers are permanently

assigned to channels. The case with no traps is easily

disposed of: we keep our existing communications conven¬

tions and supply a routine which takes over the function

of the trap supervisor with respect to handing the channel

communication cells and entries to the select routines.

This t¿st routine will test each channel, and, for the

channels not busy, will go through the action of Pig. 3

-35-

It will be up to the buffering system and object program

to enter TEST often enough to maintain channel activity.

In the case of a machine like the Philco S-2000, it

might be more appropriate to keep only one priority and

preference cell and to use part of each UCB as the activity

cell for that unit. If it were possible, however, to dis¬

cover what channel is assigned to a given activity and

which channel Just completed its activity, then activity

cells could be kept on a channel basis. In other words,

the detailed organization of IOX on such a machine might

be quite dependent on the hardware, even though we might

expect the general organization to look very much like

that outlined above.

-36-

BUPFERINO SYSTEMS

The basic Idea behind Input-output buffering systems

is quite simple; rather than use only one area in main

storage for data to be read or written, we use several in

such a way that we can be loading one area while we are

processing the last data that came in or emptying one area

while we are producing new output data In another. In

this way, it is usually possible to avoid input-output

delays due, say, to the fact that we Insisted in reading

into only one area and, hence, could not start the next

read select until we had completely finished processing

the last set of data we read.

There are a number of buffering systems in existence

today; in fact, there are some machines for which a number

of buffering systems have been written. We will be more

interested in the following in describing some fairly

general features of these systems rather than in describ¬

ing any particular system in detail.

Alternating Buffering

This is the simplest and most generally used method

of buffering, with each read or write routine (or with

each file block, which is preferable) are associated two

buffer units, each one at least as long as the physical

record that must be read or written. That is, the length

of the buffer unit is equal to the block size. At any

given time, one of the buffers is participating in a data

-37-

select and the other Is associated with the program. Once

an output buffer Is full (i.e., ready for a write select)

and the previous write select Is ended or an input buffer

has been used and the other buffer has been read into, the

roles of the two buffers are switched.

The picture that illustrates our terminology is Pig.

5» "a" and "b" are two buffers. Input consists of load¬

ing a buffer (i.e., a read select into the buffer) followed

by taking the Information out of it; output is the act of

putting data into a buffer and later emptying it out (i.e.,

a write select).

Note that buffer A is always associated with a load

or empty and B with a put or take. This Implies that the

buffers themselves must, in effect, be treated symbolically.

That is, "A" and "b" really stand for the buffer of the pair

that currently assumes the role indicated.

To get down to cases, consider a read or input rou¬

tine programmed without using I0X, as in the flow chart

of Pig. 6. At entry to READ, the presumption is that we

are through processing the last buffer load (B) and that

the next record (A) has been loaded or is still on the way

in. Step (1) ensures that the load is completed. Step (2)

does the work of SELECT (-), causing a few reload tries in

case of parity error or a special exit from READ in case of

end of file. Step (3) alternates the role of the two buffers.

*ön Initial entry to READ, we have to do step (4) first
and then come back to (1). This action will be called priming.

UNIT BUFFER STORAGE

Fig. 5—Alternating buffering

INPUT

OUTPUT

READ

39-

Fig. 6— Alternating buffer read {no IOX)

-40-

Thls could be done by so dull a means as moving the con¬

tents of B to A. Another way Is to exchange the contents

of two addresses In the file block that point to A and B.

Step (4) Is the 3ELECT(+) action for the new buffer B.

Step (5) either moves the contents of the new A Into a

working area In main storage (transmit) or makes the loca¬

tion of A available to the program calling READ (locate).

Alternating buffering Is normally used In the locate

mode; If the transmit mode were being used9 there would

be need for only one buffer, since we can do the trans¬

mission before starting the next load or empty. In a case

where the routine calling sequence can request either lo¬

cate or transmit, however, two buffers must be used as

described above.

It has very often been the practice to associate the

two buffers with a routine, rather than with a file block.

This la expedient, especially In the absence of Input-

output comnunlcatlon conventions, but frequently rather

wasteful of space or time. Suppose, for Instance, we have

one routine for each action and only four buffers, but four

tapes to deal with. On reading, our only possible strategy

Is to assume that the tape last read will be read next. If,

on entry to READ, a new Input tape Is specified, we must

backspace the old one, since we were premature, and then

prime the routine by reading and delaying, (unfortunately,

a card reader cannot be backspacedl) In the case of input

-41-

to a processor, this strategy is fairly reasonable, but

it is costly if we switch input tapes very often. The

situation is not so bad for WRITE, so long as we are pre¬

paring output only for one unit at a time.

It is preferable, however, to associate buffers with

the file block. In this way, we may be able to get away

with one READ and one WRITE routine and yet keep several

input and/or output files open at the same time. This

takes more buffer space, but this effect can be largely

alleviated by use of buffer pools (discussed further be¬

low) .

Let us now consider how to link a read/write routine

of this type with IOX. This will require a select rou¬

tine and some way of checking that the previous select

has been completed and then starting the next one. If we

have a dispatcher, we must have a way of informing it that

this file needs action -- this could be done by storing

the select word in a specified place in the file block,

given a dispatcher that checks all file blocks for requests

each time it is entered and sets preferences for each chan¬

nel on this basis. (Two other methods of dispatching will

be mentioned later.) With this method, then, we post the

select word in the file block and call the dispatcher.

If, however, no dispatcher is available, we must enter

ASSIGN to get the select word posted in the preference

cell. We should not be so impolite as to use the system

-1*2-

prlorlty entry, because we nay be disrupting activity for

a file block that has a much higher level of activity than

the one we are now working with. It Is true that this

preference nay be clobbered before the select gets started

this Is why we should have a dispatcher around.

H>e Job of the select routine, once entered from IOX,

will be to start the channel using the UIR's and Informa¬

tion from the file block such as node, buffer origin, and

buffer length. SELBCT(-), later on, will have to check

the transmission, store Information such as end of file

or unrecoverable transmission error back In the file block

for later reference, and store an Indication In the file

block that transmission has been completed.

At the next entry to the read/write routine from the

object program, we must check the file block to see If

the transmission Is completed. If It Is not, we must

enter ASSIGN with a system priority and then wait until

the transmission complete Indication comes up In the file

block. A more detailed flow chart for the read/write

routine, assuming a dispatcher and the locate mode, appears

as Fig. 7.

Pool Buffering

As stated above. It Is good practice to associate

buffer unit, with file blocks rather than with routines.

When more than a very few file blocks are In use, however,

the total space requirement for buffer units can be

I

BLANK PAGE

I 4
?

U

l I

F
iq
 7

—
A

lte
rn

a
tin

g
 b

u
ff
e
ri
n
g
 w

ith

d
is

p
a
tc

h
in

g

-44-

considerably larger than the amount of space that Is

actually needed at any time during object program execu¬

tion. The natural solution to this problem is to estab¬

lish one or more pools of buffer units and attach a buffer

unit to a file block only when it is actually required.

More than one pool may be desired if, for instance, two

file blocks are associated with units whose block size is

28 words and others are associated with units whose block

size is 256. In such a case, the name of the pool to be

used must be stored in the file block.

Pools are generally organized in the fashion indicated

in Pig. 8. Namely, buffers are chained together like NSS

lists, each buffer containing the name of the next buffer

in the chain. The gool control word(3) contain the loca¬

tion of the first buffer in the chain assigned to the pool

(i.e., not otherwise in use) and the file blocks contain

the location of the first buffer in the chain currently

assigned to the files. The pool control word and/or the

Suffer sontrol word(s) - the first word(s) in each buffer

unit -- also contain the block size for that pool. pig. 8

shows buffers B3 and B1 assigned to the file and B2 and B4

assigned to the pool, or available for use.

The buffer control words may also contain a buffer

pointer, or the address of the next word in the buffer

into which data may be put or from which it may be taken,

and a word count which shows how many data words are

45-

file BLOCK POOL

UCB

SELECT WORD

L (POOL) B 3

Fig. 8—Buffer pool organization

-46-

actuaily ln the buffer. (Recall that physical records

may not be as long as blocks.)

Since we now have the possibility of attaching more

than two buffers to a file block. It becomes possible for

one read select to load more than one buffer (bad practice)

or to read several records ahead with several read selects.

Conversely, we can put data Into several buffers without

having to empty each out as soon as It Is full. These

possibilities were not available using alternating buffer¬

ing. Furthermore, one usage of a read or write routine

may Involve putting or taking over buffer boundaries with¬

out necessarily encountering Input-output delays. As soon

as we do this, however, new problems arise.

When discussing alternating buffering, we Indicated

that It was reasonable to store status Information In the

file blocks. Now that a buffer chain of Indefinite length

may be attached to the file block. It becomes more reason¬

able to store status Information In the buffer control

words, some of the terms used to denote buffer status are

the following:

Moving: 1M3 buffer Is currently Involved In a read

or write select.

Active: This buffer Is currently Involved In a put

or take.

âüiet: This buffer Is full of data.

Held: This buffer has been used by a locate and

hence may not be returned to the pool Just yet.

-47-

The first three terms are mutually exclusive. At any time,

only one buffer can be moving and only one can be active;

the others must be quiet. A held buffer may be active or

quiet. SELBCT(-) routines will change the buffer involved

from moving to quiet — this is the signal that transmis¬

sion is ended as far as the read/write routines are con¬

cerned.

Another problem that pool buffering introduces is the

possibility that when someone wants a buffer assigned to a

file block, the buffer pool is empty. When this happens,

there are only two possible ways of getting a buffer.

First, one or more quiet output buffers may exist which

can be emptied out. Second, one or more quiet input buf¬

fers may exist which can be used at the cost of backing up

the unit from which they were read and rereading later on.

The first process is called draining and the second flush¬

ing. Clearly, draining is preferable, if it is possible.

If neither Is possible, the program has collapsed of its

own weight.

Another problem encountered is also related to the

distinction between the logical position of the unit, as

indicated by the buffer pointer in the active buffer, and

the physical position of the unit, which is generally

different. This problem arises when we switch from read¬

ing to writing or when we wish to accomplish a logical

backspace following reading or writing. On a switch from

-48-

read to write, all quiet buffers must be flushed, and

the unit must be backed to the beginning of the active

record which will have to be rewritten. To backspace

after a read, we must also flush and then behave appro¬

priately according to the definition of logical backspace,

which may be various. To backspace after write, we must

truncate the current active buffer (i.e., ready it for a

write select and make the buffer quiet) and then drain

all buffers. The effect in all of these cases is to make

the logical and physical position of the unit equal, treat

ing the current active buffer appropriately.

Logical Flags

As we have seen, in the case of alternating buffering

a read/write routine usually handles a single physical

record at each entry and locates it for use by the calling

program. With pool buffering, the situation can become

much more complex. IOCS, for Instance, makes it possible

for the calling program to do a combination of transmits

and locates at each entry, but the format of the physical

records must be completely known by the calling program.

In the MockDonald buffering system of SOS C6], however,

it is possible for the read/write routines to work with

logical records, labels, etc. This is done, roughly speak

ing, by interspersing flags, or control words, among the

data. Flags occur in almost bewildering variety, although

there are only two basic types of flags, called block and

blank page

-49-

ÎÈïte (ale). Block flags precede blocks of Information

or data and contain the count of the length of the block,

(mis usage of the word "block" Is not to be confused

with our previous usage.) Whyte flags Indicate logical

divisions of data or data type, nie roster of flags used

in SOS Include the following:

Block flags:

IOCP ORIGIN,,COUNT

IOSPN ORIGIN,,COUNT

IOSPN SEQUENCE,,0

Whyte flags:

Logical end flags:

TCH SYSPER,,COUNT

TCH SYSLER

TCH SYSPEP,,0

TCH SYSPEP,,!

TCH SYSPEP,,2

TCH SYSPEP,,8

I0CD TYPE,,SUBTYPE

I0CT START,,0

Ordinary block flag

Symbol flag (for labels)

Sequence flag (for
serializing)

End of physical record

End of logical record

Bid of logical group

End of logical file

End of logical tape

End of physical tape

Type flag

Transfer flag

totranscrtS^ tSe '

50-

PXags are actually 709 channel commands, for a reason

which we will not discuss further than state that this

makes it possible to load the contents of tapes into

core without use of the buffering system.

One of the main Jobs of the SOS buffering system is

flag interpretation. The buffer pointers always point

to the next flag in the buffer. When reading logical

records, only block flags and logical end flags are

recognized — everything else is skipped. When using a

read routine that handles everything on a word basis,

different exits are provided for block and whyte flags;

it is up to the using program to do further interpreta¬

tion.

This buffering system is probably more elaborate

than was really Justified for its intended use — few

programmers have exercised all of its capabilities, al¬

though the supervisor in SOS does use nearly everything.

IXie to the absence of a locate mode, some programmers

have refused to use it at all on efficiency grounds.

Nevertheless, this kind of a system certainly has its

place and for many purposes is superior to a system like

IOCS. A simpler type of buffering system with flags is

very often used in connection with handling peripheral

tapes in order to achieve a reasonable information den¬

sity on tape and to allow several types of peripheral

information to be placed on a single tape that will be

handled by a satellite computer.

-51-

The idea of using logical flags has an interesting

application in using random-access media as serial files.

The way we can do this is to divide an area of the medium

(for instance, disc or main storage) into a buffer pool.

The buffer control words for each buffer will contain the

location of the previous buffer in the chain as well as

that of the next one. we must also use logical end flags.

The select routines (actually, the UIR's) will now have

the additional Job of posting the buffer control words in

the UCB's and using them to direct the controllers for

addressing purposes. The flags are used to simulate end

conditions that would have been present in the corres¬

ponding P-files using serial media. In this way, as we

stated much earlier, the buffering system can be made un¬

aware of what type of unit is in actual use. In conjunc¬

tion with this mode of operation, the UIR's must have

routines available to transfer buffer contents between

the unit buffer pool and P-files. In the case that main

storage is being used in this way, no selects actually

occur, and with a small amount of trickery, it should be

possible to use the same buffer units in both buffering

systems and thus avoid transmission of buffer contents

within the input-output system.

To return to our previous discussion, the main part

of the subroutine hierarchy within a buffering system

might look similar to that outlined below:

-52-

READ* Uses TAKE to locate buffer and flags« Trans¬

mits Information blocks to main storage or locates them

for use by the main program.

WRITE: Uses PUT to store flags and locate buffers«

Transmits data into infonnatlon blocks or locates them

for the main program. Actual transmission for READ and

WRITE may, of course, be done by PUT and TAKE.

TAKE: Locates the active buffer, takes flags and

information from it, returns buffer to pool using BTP.

TAKE will also have to use ASSIGN if it is at the end of

the buffer chain and needs a new input buffer.

PUT: Locates active buffer, uses BPP and maybe DRAIN

to get new buffers, transmits Information and flags into

the buffers. Uses ASSIGN to assign a dispatcher prefer¬

ence when a select is needed or, alternatively, posts

requirements with the dispatcher.

SELECT: In addition to actually starting the channel,

uses BPP and maybe DRAIN to get a buffer for a read select

and BTP at the end of a write select to restore the buffer

to the pool.

TRUNC: Truncates the current active output buffer,

readying it for a write select.

BTP and BPP: Transfer buffers between file block

chains and the buffer pool. Additionally, call the dis¬

patcher to reset dispatcher preferences,.

DRAIN: Performs a drain or flush action as requested,

using ASSIGN on a system priority basis.

-53-

Multlple Use of Buffers

One disadvantage of the kind of buffering systems we

have discussed above is that a buffer can be attached to

only one file at a time. In some kinds of work, one may

wish to read in a buffer, write it out on one or more

files, and maybe also hold it for use by the main program.

The MICA buffering system allows this possibility by methods

roughly similar to those to be outlined below.

Let us assume that read/write routines handle a com¬

plete buffer at each entry and for each file there is some

maximum number, M, of buffers that will ever be attached

to the block. If the buffering system employs flags, then

the read/write routine may operate on a logical record

basis, but no logical record shall extend over more than

one buffer. We will then add M words, called clues, to the

file block, and each one will hold the location of the buf¬

fer assigned (if any). Buffer control words will hold the

location of the pool, the buffer pointer, the buffer word

count, and the location of the next buffer in the pool.

Finally, if the buffer is attached to at least one file

block, the number of file blocks to which it is attached

will replace the location of the next buffer in the pool.

This is called the use count. Note that since we store

pointers to the attached buffers in the file block as

clues, it is not necessary to chain the buffers together

when they are in use.

-54-

We now proceed very much as before. Buffers get at¬

tached to a file block in one of two ways. BPP will get

the buffer from the pool and set the use count equal to

one, exiting with the clue. When a buffer is to be copied,

its clue is picked up out of the source file block and put

in place in the target file block and, at the same time,

the use count is increased by one. When a buffer is no

longer needed by a file block, we go to BTP with the loca¬

tion of the clue (BTP will reduce the count by one and

restore the buffer to the pool only if the resulting count

is zero) and then kill the clue. Note that only complete

buffers can be copied, but that this method involves no

transmission between buffers.

Select and Unit Interpretative Routines

We have seen that select routines must be rather

intimately tied to the particular buffering system with

which they are used, and we have given one example of a

method by which the select routine can be made unaware of

the type of unit with which it is working by installing a

rather simple buffering system at the unit interpretative

routine level. On machines such as the 7090 which require

special conversion of information to be used with on-line

equipment, as opposed to tape, this conversion could well be

done at the unit Interpretative level. We have also seen no

case In which the select routine or the rest of the buffering

system must be aware of the content of the UCB, so long as

-55-

unlt Interpretative routines are used* niese considera*

tlons can be very Important In the case of changing

hardware (for Instance, the Introduction of the 7909 data

channel, discs and hypertapes on the 7090, which effec¬

tively negated a large Investment In programming systems,

both on the part of the manufacturer and the customers).

It should also be pointed out that, since select routines

are properly part of the buffering system, use of a single

general-purpose select routine sharply restricts freedom

of design of the buffering systems to be used; this is

another excellent reason for using select routines tailored

to the buffering system and unit Interpretative routines

tailored to the hardware types in use on a given machine

rather than to try to design one select routine that can

deal with all possible hardware directly.

We spoke earlier of elementary functions executed by

the UIR’s, a representative list of these might run as

follows:

1. Compute the channel number, given the UCB (used

by ASSIGN and the dispatcher to get access to the

proper channel communication cells).

2. Put the unit address into the control orders.

3« Set the channel program to copy the block con¬

tained in the buffer (i.e., origin and word count).

4. Set the channel program to control, read, write,

or sense.

-56-

5* Set the channel mode* (This routine may be

entered with mode Information from the file

block — In general, file block Information is

carried into the UlR's and they may use UCB in¬

formation.)

6. Set the channel program to select the proper

controller.

7. Check conditions at end of a read, write, or

non-data select. (Exits with status information

to be Ignored or stored in the file block or

buffer or, in case of error recovery, so as to

make SELECT(-) exit for a retry.)

8. Update unit position Infonnatlon for current

type of select and control orders. (May be done

as part of another action.)

9* Start the channel.

10. Select the proper exit from SELECT.

This list, together with emendations to actually

make the process work for a given machine, may seem overly

complex. In the case of many machines, however, the whole

process may result in setting up parts of a single input-

output instruction and then executing it. In such a case,

it might be feasible to combine some of the above func¬

tions into one routine. Note, however, that the way in

which some of these functions are coded may depend on the

type of unit involved. Ihus, on the 7090, we would end

up with at least five lists of UIR's:

-57-

1. On-line card equipment, using 7607 channel.

2. 729 tapes, using 7607 channel.

3« 7631 disc file controller on 7909 channel.

4. 7640 hypertape controller on 7909 channel.

5* 1414 transmission line (etc.) controller on 7909

channel.

Some lists would correspond for most functions and others

would hardly correspond at all (e.g., (2) and (4)). Where

a particular type of hardware is not present, of course,

the related UIR's need not oe assembled into the input-

output system.

Dispatching

As we have seen, the function of a dispatcher is to

fill the dispatcher preference cells according to some

fixed strategy. The dispatcher will normally be entered

when a buffer is moved to or from an inactive buffer pool,

when PUT or TAKE reach the end of a buffer, or when I0X

has a free channel on its hands and no priority or pref¬

erence exists. Several different dispatching strategies

have been used in the pasti

In the SOS buffering system, the dispatcher is given

a list of units to be dispatched. Each entry in the list

contains the location of the UCW (which doubles as a file

block), whether input or output is being done, and how

many buffers are to be kept loaded in the case of input.

-58-

Each time the dispatcher gets control It courses through

the list once for each Idle channel, checking If the

requirement for each Item Is satisfied. If a non-satlsfled

requirement Is found, a dispatcher preference Is posted and

the dispatcher advances to the next channel. This, then.

Is a simple priority scheme with priority ordering set by

the programmer. The system also allows the programmer to

replace this dispatcher by one he has coded employing a

different strategy, but this facility seems never to have

been used In practice. This would seem to be an indica¬

tion that even a very simple-minded dispatching strategy

Is pretty good.

In the IOCS buffering system, the dispatching strategy

Is permanently welded Into the Input-output executor and

the buffering system proper. Request chains are hung onto

the UCB's, and the trap supervisor services the UCB's in

strict rotation. If a given unit has Just been serviced.

It will be serviced again as long as a request chain exists

(priorities are served immediately), and then the next UCB

on that channel Is examined. The buffering system assumes

that if N buffers were required for the last READ then a

request chain of N buffers must be loaded for the next READ.

Request chains for output buffers are set up as buffers

become quiet. This strategy is also simple and similar in

effect to that used in SOS but, in practice, seems to re¬

quire more complex bookkeeping and gives the programmer

absolutely no control over dispatching.

-59-

The MICA buffering system operates on a first-come-

first-served strategy, together with a determined attempt

to keep a fixed number of buffers attached to each input

file, regardless of file activity. The buffering system

requests a load or empty by, in effect, attaching the clue

to the end of the dispatcher request chain. The dispatcher

will then work down from the head of the request chain in

order to set preferences. This is another simple strategy

wnich appears as if it might work quite well in practice.

Although little, if any, experimentation with differ¬

ent dispatching schemes has been done, it is still not

obvious that the simplest strategy is the best -- it Just

works a lot better than no dispatching at all. tie have

observed speed Improvements of three or four to one in

programs using SOS buffering by making proper use of the

dispatcher provided and by causing PUT to automatically

set an output preference when a buffer is truncated and

no preference exists. Presumably there exist situations

in which additional speed improvements can be achieved by

employing more complex dispatching strategies.

It is clear that a dispatcher will normally have to

know something about the file block format and usage and,

hence, that the dispatcher is properly a part of each buf¬

fering system rather than part of, say, I0X. In a case

when more than one buffering system is in operation, we

have the problem of Joining the dispatchers in some way.

-60-

Thls can be done by providing I0X with the location of a

list of dispatching routines which are to be entered in

order. Since a dispatcher will normally pay no attention

to existing preferences, the dispatcher last on the list

will have priority.

Opening and Closing Piles

To open a file is to set its file block for subsequent

activity, initiate dispatching, and start activity on an

input file; to close a file is to suppress dispatching for

that file and wind up activity by restoring input buffers

to the pool and draining output buffers. Details of open¬

ing and closing files may differ considerably between

buffering systems. For instance, IOCS will not allow a

given file to be used for both input and output, although

certain types of files may be treated this way by using a

different file block for input and output and closing one

before opening the other.

The main process in file closing is called disconnect¬

ing the buffering system from the input-output unit; this

process may be required for other purposes, such as in a

buffered rewind routine. In most cases, a buffering sys¬

tem is used in conjunction with an operating system, and

the supervisor will regain control at the end of the Job.

In the case where the Job ran to normal completion, it may

be safe to assume that all files got closed out; if the

Job folded prematurely, however, this is not a safe

-61-

assumption. In order to load the supervisor. It Is neces¬

sary to make sure that all buffering systems are dead,

since the main storage area used by the supervisor may be

In use by one or more buffers being loaded. It Is safe,

but Impolite, to kill all channel activity before loading

the supervisor, but It Is better If I0X has a way of dis¬

connecting all files.

This can be done similarly to the way IOX handles

dispatching. Namely, we provide IOX with a list of dis¬

connect routines and file blocks to be disconnected. In

this way, the supervisor is protected without losing any

output that is ready to be written but otherwise would

not have made It all the way out. This is particularly

Important In the case of debugging information.

Trap Protection

On most machines with traps, it is possible to dis¬

able traps under program control, quite apart from the

automatic disable that occurs at the time a trap is exe¬

cuted. In the case of most buffering systems, particu¬

larly with pool buffering, it is necessary to use this

feature to protect subroutine linkages or data that can

be affected if a trap occurs. Por instance, the buffer

manipulation routines 3FP and FTP may be entered either

from SELECT or from other routines in the buffering system.

The dispatcher, likewise, can be entered in trap from IOX

or from BTP and BFP. Certain data in the file block or in

-62-

buffers may be picked up by one of the routines out of

trap and then be changed by the occurrence of a trap be¬

fore the data can be acted upon.

In order to protect the buffering system adequately.

It Is necessary to Identify sequences of Instructions

that can be disrupted and make sure that traps are dis¬

abled while the sequence Is being executed. In the case

of subroutines. It Is sufficient to Identify the highest

subroutines In the hierarchy that can be entered both In

and out of trap and protect all calls for these by rou¬

tines that are never executed In trap.

-63-

3MPKRVI30RY SYSTEM*?

INTRODUCTION

The supervisory system, or monitor. Is the part of an

operating system that ties the rest of the system together,

»e ha je already seen In various places during our discussion

of input-output systems that a coherent set of conventions

for designing and using a system Is of the utmost Importance.

IMS, of course. Is also true In designing and using other

subsystems, such as the processors that translate source

la.iguages Into machine code or edit Input and output data.

Above all, however, this Is true of supervisory systems,

since they must work with all of the subsystems of an op¬

erating system. In fact. It may be said that an operating

system Is much more a set of conventions than It Is a piece

of code. The success of the design of an operating system

can be measured almost entirely In terms of how good a set

of communications conventions exist and how consistently

they are adhered to In the design of the various subsystems.

The supervisory system will normally consist of a num¬

ber of pieces of code, most of which will be In main storage

only between jobs or between segments of a job. *e can make

a rough division of the system on a functional basis:

1. The supervisor. This Is responsible for sequencing,

both within and between jobs, control card Inter¬

pretation, unit assignment, job accounting, and

-64-

set-up for use of processors or execution of

object code.

2. The vigilance committee. This is a set of rou¬

tines that monitor hardware status (especially

abnormal conditions) and apply execution time

and peripheral output limits.

3. Linkage routines. These provide linkage between

the supervisor and processors, call for system

routines that are not in main storage, load and

transfer to object code, recover the supervisor,

and possibly do dynamic storage allocation.

4. Utility routines. These may provide an on-line

message writing routine, a library access routine,

a pause routine, minimal unit assignment facili¬

ties for use during program and processor execu¬

tion, emergency dump facilities, a clock reading

routine, etc.

3. Communication region. In addition to the items

mentioned under the heading of input-output sys¬

tems for use by IOX, we need to store Job data,

date and time, output limits and current output

values, processor options and variable parameters,

and various other data for use by the supervisor,

linkage routines, and the vigilance committee.

6. IPX. This will normally be assembled with the

rest of the supervisor, as is the system symbol

table.

THE SUPERVISOR

Definition of "job"

As far as the supervisor Is concerned, a job Is a

sequence of tasks tha* forms a unit for sequencing and

accounting purposes. The job Is a work unit which Is

embraced by some overall error criteria. Thus, we may

delete an entire Job because of the severity of the error

encountered, but the processing specified within every Job

will be attempted. We also guarantee that the machine and

the system are reset to a standard condition before proc¬

essing for a Job Is begun.

The Input for each Job and each task will be preceded

by a ayatern control card which Is read and Interpreted by

the supervisor. In particular. Jobs are separated by Job

~r(*a* wb^ch are system control cards that contain Job

Identification and other Information pertinent to the Job

Irrespective of the tasks to be performed within the Job.

Such information might be various of the following:

1' Job Araber. The Job identification for account¬

ing purposes -- i.e., the account to which use

of the machine will be charged.

2. Run Identification. Identification of the deck,

aubjob, or machine run for the Job. This Is used

only by the programmer.

Programmer identification, whose Job is this? 3.

-66-

4. Expected total time required.

5. Expected amount of peripheral output.

6. Time limit for execution.

7. Output limit for execution.

8. Type code (such as production, assembly, code

check, etc.).

This information will nonnally go into the communication

region and part of it will be reproduced onto any account¬

ing output the system produces.

Control Card Interpretation

System control cards should be uniquely identifiable

as such by the supervisor. They have traditionally been

punched in the same fomat as that used by the assembler^)

in the system — not that they are assembled, but that sym¬

bolic instruction format has usually seemed the most reason¬

able one to use for this purpose. Since Hollerith cards are

read by most system processors as well as by object codes,

some type of protection against system control cards being

swallowed (particularly cards for succeeding Jobs) due to

errors or improper deck make-up is required. A rather pain¬

ful alternative is to follow each task by an end of file.

A more foolproof alternative is available on machines which

allow an intermixed binary and Hollerith input stream. As

mechanized in SOS, this consists of punching the control

cards in the normal way and inserting a control punch (7-8-9

in column 1 in this case) to cause the card to go onto tape

-67-

in the binary mode and In a unique binary format. This

somewhat complicates the control card reading process, but

meets the above two requirements, especially if processors

back off after recognizing a system control card.

With the exception of the JOB card and cards which

introduce data into the system, there is a control card

for each task. A task requires a processor to work over

the data between its control card and the following one.

The information on the control card may be of three types:

1. Task name, such as LOAD, FORTRAN, DATA, COMPILE,

etc.

2. Options for the processor, such as whether to

punch a binary deck.

3» Variable parameters for the processor, such as

name of input unit.

As an example, consider the SOS control card:

SYSMOT
,SYSxUn
SYSxRn

Each Item within brackets is a possible field on the con¬

trol card, and the contents of the bracket are the possible

fle^d variants, the underlined on«, being used If no one of

the variants appears on the control card. EDIT means use

the input editor to convert the following data, while

NOEDIT means just transcribe the following data onto the

DATA
EDIT
NOEDIT

-68-

output tape* 00 means continue the Job in any case#

whereas 00IP means continue the Job only if the input

editor encounters no bad data. The third field indicates

the output tape to be used. Thus« the first and second

fields are processing options and the third« a processor

parameter. Note that with this kind of control card

analysis« a large number of options can be Indicated; but

the programmer needs to Indicate only those options that

represent a departure from the normal (underlined) case.

If the card can be designed in such a way that the same

name is not used to indicate a variant for more than one

option or parameter« then the control card scan routine

can be written in such a way that the options mentioned

need not be given in any particular order. It is possible

to use the same name for variants of several fields if the

field Itself is given a name which appears on the card with

the variant wanted« e.g.«

COMPILE INPUT-SYSAR1,PUNCH«SYSBR2

Note that a variable field format for the control

cards will normally be more convenient to use by the pro¬

grammers and keypunchers than a fixed field format, since

the options and parameters mentioned may run together with¬

out spacing over unused fields on the card.

IXirlng the course of the variable field scan of the

control card, one can either set an option flag somewhere

-69-

or execute a set-up routine. At the end of the scan, the

supervisor can then execute a routine specific to that

control card — this may wind up the action if a processor

is not required or may call a processor into core for use.

Sequencing within Joba

Normally, the action of the supervisor during a Job

is to read, interpret, and execute control cards in se¬

quence. At certain times within the Job, the supervisor

may lose control to a task processor or to object code.

It is the function of the linkage routines to get the

supervisor back into control following task completion,

at which time the supervisor must review any error indica¬

tions, print any error messages, and then decide whether

to continue the Job or to skip to the next Job. There

are several types of error indications to be considered:

1. Normal return from object code — the Job may be

continued.

2. Error return from object code, including the case

in which error flags have been set by a member

or members of the vigilance committee (such as

"unreadable record on SYSAR2"). Error flags

should now result in diagnostic messages being

printed off-line, and the Job should be terminated.

3* Exit from a processor with an error severity code

— continue to process the tasks within the Job

70-

•xo«pt the«« f#r which th« «rror ••verity liait

hat been reached (e.g.# object code execution).

*• Catastrophic error exit fron a processor — this

Is so bad that the Job should be terminated.

Note our insistence that there are two major modes of exit

to the supervisor: continue the Job and terminate the Job.

At least one operating system around today is Incapable of

doing anything else but attempting to continue the Job#

regardless of what happensl

Error severity codes reflect various types of errors

that have occurred in the course of processing and a Judg¬

ment by a processor as to whether they are probable, triv¬

ial, definite, etc., according to some error classification.

Thus, a missing address on a symbolic instruction may be

only a probable error; a missing optional field on an in¬

struction may be trivial; a multiple definition is a defi¬

nite error. A catastrophic error in processing should be

reserved for a condition that causes the processor to go

completely to pieces.

The 00-001? option on the DATA control card mentioned

above is an example of specification by the programmer of

what severity of error should be grounds for discarding the

job — this may vary according to the programmer's problem

or work habits, but in any case should not be arbitrarily

fixed by the system. If a non-zero error severity code is

presented by a processor, the supervisor should use it to

-71-

control task execution when compared against the program¬

mer's severity limit. In this way, for Instance, a number

of assemblies can be processed even though It Is known that

the resulting code will not In fact be executed.

At termination of the Job, the supervisor may have

additional duties to perform before starting the next Job.

Typically, these are the following:

1. Dlsasslgn any Input-output units In use by the

Job, as opposed to In use by the system.

2. If the Job has produced output for editing or

debugging output to be converted, call the

appropriate proces30r(s).

3. CIock the Job out and prepare the accounting

suimary for the Job.

4. Reset the system and machine to its base or

reference state.

5. Search for the next JOB card. If It has not

already been read.

Processor Supervision

*e have pointed out two types of Information from the

control card that must be conveyed to a processor -- options

and variable parameters. In addition, a processor may need

(1) variable parameters that are generated or transmitted

by the supervisor Itself (for Instance, when output from

one processor becomes Input to another or the size of avail¬

able core) and (¿) access to the system symbol table In

-72

order to locate cells In the coraraunlcatlon region or entry

points to various routines belonging to the vigilance com¬

mittee, linkage, or utility package. The best current

practice Is to provide, as one of the linkage routines,

a processor load and entry routine, which contains a call¬

ing sequence for the processor itself, once loaded. The

calling sequence will contain the variable parameters

(about eight or ten will suffice for most purposes) for

the processor, and the machine registers can contain the

option Indications on entry and the location and length

of the system symbni table on entry and can return the

severity code on exit. Given this information, the proc¬

essor can initialize itself appropriately. If too many

variable parameters are required, they can be put in a

list elsewhere in main storage with a pointer to them in

the calling sequence.

There is room for disagreement as to whether all

options should be provided by the supervisor, whether all

options should be conveyed by means of processor control

cards that are read with the input data, or whether some¬

thing in between is desirable. A good general rule to

follow Is that options which may change from run to run

should be introduced by means of system, rather than

processor, control cards.

Processors which are fairly complex, such as a com¬

piler, nay contain their own supervisory system, including

-73-

a communication region and various linkage and utility

routines for use during processing. Above all, and this

has rarely been done in practice, complex processors should

include in their supervisory system routines to assist in

^ trocesior itself. Such routines include

facilities for printing out the processor's communication

region, internal tables, contents of scratch tapes, and

the processor code, either with special conversion facili¬

ties or by using debugging facilities belonging to the

operating system. Another useful facility is a patch

interpreter. This is a routine that gets control between

each segment of the processor for the purpose of loading

the next segment either from the system library or another

source (in a case where a segment has Just been reassembled)

and applying patches to the segment. The patch interpreter

might also include the ability to stop between segments to

allow dumps to be made before proceeding or returning to

the system. In some types of processors a test problem

may be included in the debugging facilities.

In the case of many processors, a method of linkage

with the system such as we have described also allows us

to debug it as an object code by merely faking the system's

method of entering the processor. If the system contains

symbolic modification facilities, this is a much easier

way of debugging than by trying to operate the processor

in its normal environment, modifying the code by patching.

-74-

and using less than the full debugging capabilities of

the system.

Insertion of debugging facilities within a task

processor for use In debugging the processor Itself rep¬

resents a concession to the practical reality that proc¬

essors are never completely debugged, and that they con¬

tinue to evolve with the Inclusion of new features and

abilities.

Unit Assignment

For the purpose of discussion, we will make the Lame

type of distinction between units as those made In SOS.

Namely:

1. A 3X3tern unit Is a unit that Is reserved for use

by the system, such as peripheral Input and out¬

put tapes, a system library tape, or disc or drum

flies used by the system.

2. A utility unU Is a unit that Is available for

use for any purpose by the system or by object

codes, such as scratch tapes.

3» A reserve^ unit Is one holding a file or flies

belonging to a programmer. This will normally

be assigned at the beginning of a Job or object

code execution and will be removed at the end of

execution.

Somewhat different problems arise In handling each type

of unit. In the case of system units, some units will be

-75-

semiperraanently assigned, while others will not be. A

peripheral Input tape, for Instance, will be mounted on

a given unit, and the unit assignment routine must be

Informed where It Is. At the end of the stack of jobs,

the tape can be returned to the pool of available units.

A peripheral output tape can be assigned from the avail¬

able pool originally. When It Is full. It Is removed

and a new one must be assigned. The old unit Is now

unavailable until the operator has somehow Informed the

assignment routine either that a utility tape has been

mounted or a new Input or reserved tape has been placed

on the unit. Reserved units may be treated much like

peripheral Input units on assignment and peripheral out¬

put units on dlsasslgnment.

The status of each unit should be kept up-to-date

either In the UC3 for that unit or In unit status lists.

The possible states, given the above classification,

would be:

1. Detached: Not attached to the machine.

c. Attached: On the machine, but not available

for use.

3» Available: Available for assignment (especially

as a utility or peripheral output unit).

4. Utility: Assigned and In use as a utility unit.

3. Reserved: Assigned and In use as a reserved

unit.

-76-

6. System: Assigned and in use as a system unit*

Note that an attached tape unit may either have no tape

on it or may have a reserved or peripheral input tape on

it awaiting assignment. Assignment of a unit means up¬

dating its status and putting the location of its UCB in

some file block.

The unit assignment routines get information from

the operating staff via system control cards; from the

machine operator by reading cards, looking at a keyboard,

or by examining keys on the console; or from calling rou¬

tines. In SOS, reserved and utility assignment informa¬

tion is normally acquired by putting ASSIGN cards into the

deck before writing the peripheral tape. TTie operator,

however, gets a chance to review and correct or supplement

the assignments at the time they are actually made. He

may either punch and read cards or use the entry keys _

in practice, only the keys are used for this purpose.

The actual code for the unit assignment function may

actually be distributed through the system. TTie function

of saying to the operator, "l need a unit of such and such

a type assigned for file block XXXXXX -- which one shall

I use?" can be one of the utility routines. Routines that

find an available unit and assign it as system or utility,

restore a system or utility unit to the available pools,

or put a unit in attached status can go almost anywhere

-77-

(including object code). The supervisor Itself, or a

processor that loads code and sets up for execution, nay

use a fairly general and massive unit assignment and check¬

ing routine. In any case, the machine operator should be

treated as an active part of the assignment procedure rather

than as someone who Is to take Instructions from the system.

Units can go out of service In the middle of a batch of Jobs,

and tfre operator must be able to Inform the system of this,

among other things.

-78-

THE VIOILANCE COMMITTER

Hardware Monitoring

Most large machines have a number of conditions that

will cause traps or turn on Indicators other than those

with which I0X or an object code may be prepared to cope.

Instances might be: transfer traps, floating point traps,

storage protect traps, various Indications of hardware

malfunction, unexpected beginning of tape Indication, etc.

The fact that one of these conditions has occurred Is not

necessarily cause for alarm:

1. The action resulting In the condition was delib¬

erate, and the condition should be Ignored.

2. The fact that the condition has occurred Is of

no consequence.

3» The condition did not really occur -- the vigilance

committee thinks it occurred due to a wild transfer

in the object code.

The running code has tested for the conditions it

expects if all goes well, leaving it up to the

vigilance committee to haul up a flag if anything

unexpected happens.

5« The condition can occur, but corrective action is

possible.

This implies, then, that some flexibility of approach Is

required, at the option of the running code. It would be

-79-

as bad to make no provision for detection and disposal

of these conditions as It would be to turn the vigilance

committee into a lynch mob.

We do not wish to imply that the code representing

the vigilance committee should necessarily be present in

main storage at all times or that it should belong exclu¬

sively to the supervisory system, so long as it communi¬

cates with the supervisor by conventional methods. In

many systems, this function is partially or totally carried

out by code belonging to the processors and/or object pro¬

grams; in other systems, such as SOS, one or more vigilance

functions normally exercised by the supervisory system may

be assumed by a processor or the object program during part

or all of the course of the Job. TTie technique of using

system transfer points, or an equivalent technique, may be

used for achieving the type of flexibility we have described.

System Transfer Points

SOS uses the convention that all system symbols are

six characters long and begin with the characters "SYS";

these are the symbols in the system symbol table, repre¬

senting locations of system parameters, data cells in the

communication region, or entries to system routines which

may be legitimately entered from a processor or object code.

Certain of the system routines -- the members of the vigi¬

lance committee and the two linkage routines, SYSTEM and

SYSERR, for normal and error return to the supervisor —

-80-

are entered via system transfer points of the form:

SYSxyz TXH ENTRY,,EXIT

TXL xyz,,**

In the normal case, which is restored each time the super¬

visor is loaded, ENTRY and EXIT are both zero, and a trans¬

fer to SYSxyz results in transfer of control to the routine

xyz. If EXIT is set to the location of another routine,

xyz will gain control via the standard subroutine linkage

but. Instead of taking its normal exit, will transfer to

EXIT when its action is completed. If the first cell in

the transfer point is set to

TXL ENTRY,,EXIT

then a transfer to SYSxyz will result immediately in a

transfer to ENTRY. The routine at ENTRY may, if it wishes,

then transfer to SYSxyz+1, in which case "xyz" will exe¬

cute and then exit as above.

Typically, members of the vigilance committee will

exit to SYSERR unless their exit switch is set and will

also hoist a flag causing the supervisor to print an appro¬

priate error message when it gains control. Similarly,

SYSERR will normally exit to SYSTEM. Thus, by proper pre¬

setting of the system transfer points, a program or proc¬

essor may regain control for Individual conditions either

before or after an error flag has been hoisted, or may gain

control at SYSERR for the remaining conditions for which

presetting was not done, and, in addition, may regain

-81-

control prior to the termination of execution in order to

execute clean-up or dump actions.

Execution Monitoring

The Job of the execution monitoring routines, when

present in a system, is to ensure that things don't go

too far. Particularly in the case of checkout, a program

can lose its head by looping or printing reams of garbage

off-line. The machine operator may not be aware of either

condition, unless he is familiar with the program being

run or tested. Hence, a facility by which the programmer

can post a watch for too much execution time or too much

peripheral output can be quite valuable. In particular,

it might often be convenient to post time and output

limits for the Job as a whole and, under program control,

to post limits for a phase of the execution and regain

control via the transfer points if they are exceeded.

Timing is best done by a millisecond clock equipped with

a trap for interval timing; a clock that requires delib¬

erate action to read and check against the limits can be

ignored by the program if the right type of loop occurs.

Another type of execution monitoring is the collec¬

tion of statistics on the behavior of the program. A

programmer might, for Instance, wish to know where he is

in his subroutine hierarchy at the time of transfer to

SYSERR. This is fairly simple information to acquire, for

if standardized subroutine linkages are used, it is a

-82-

sImple matter to arrange to trace the subroutine tree and

print out Its structure. If subroutine entries are always

defined by standard macros In assembly languages or are

always compiled In a standardized fashion. It Is also

possible to collect other Information such as how many

times the subroutine was entered and the total (or aver¬

age) time spent within the subroutine. Other possibilities

might also suggest themselves. One would not want all of

this happening In a production code, but It could be elim¬

inated at the cost of setting a debugging mode switch

which Is tested at each entry, leaving the special code

In place even In production. (Many a program suddenly

reverts from production to checkout status'.) Much would

ordinarily be eliminated by the normal return to SYSTEM

with abnormal returns to SYSERR enabling the debugging

output.

-63-

linkage routines

Processor Llnica^e

rfe have already discussed processor linkage from the

point of view of processor supervision and comnunlcatlon

of parameters and options between the processor and the

supervisor. It Is worthwhile pointing out, In addition,

that certain processors may exist In main storage along

with an object code for use by It. In such a case, the

supervisor or the object code linkage and Initialization

routine may wish to enter the processor In the normal

manner for Initialization purposes, whereas quite another

type of linkage may be required for actual use of the

processor. Examples are buffering systems, debugging

supervisors, and complex editing and conversion processors.

The mechanics of loading a processor vary consider¬

ably among different systems. Some older cr more primi¬

tive systems rewind the system tape and then skip up a

known number of flies to reach the processor desired. More

recent systems keep a table of file names In main storage

to give position Inforroatlon. SOS even allows multiple

appearances of a system component on Its library tape and

keeps track of the current position of the tape In order

to use the closest occurrence of the desired file, 'rfith

a medium such as disc storage, there Is not any real prob¬

lem about access time, but a table of file locations Is

still required, unless we are to allow each component to

know the absolute address of any file It may wish to calli

-84-

Object Code Llnka^p

T^e Job of getting object code Into main storage and

setting the proper Initial conditions may range from a

very slniple to a very complex affair. As was noted above,

the processor linkage routine may be required to load

processors Into the machine for use by the object code.

Library subroutines may be found and linked with the code.

It may be necessary to read control cards which control

object 'unit assignment by setting up the file blocks that

will be used by the code. A large part of the Initiali¬

zation work may be done either by the supervisor or by a

separate processor, depending on the complexity of the

task. If very much code Is required to do the necessary

work. It will usually be the case that code Is written

onto a scratch unit as It Is processed for loading pur¬

poses and converted Into Its final absolute form. At this

point, control will revert to the linkage routines In order

to preset the remainder of main storage to some fixed bit

pattem (normally zeroes), load and Initialize any proc¬

essors required, and finally load and transfer to the code.

If more than one segment of code has been prepared, the

object code linkage routine will get control back for the

purpose of loading each segment as it Is required.

Supervisor Linkage

The Job of the supervisor linkage routine is to re-

cover the .up.rvl.or after object code or a proc.or has

-85-

been In control of the machine. Several things must be

done :

1. Disconnect the buffering system(s) In use.

Load the supervisor, If it is not In main storage.

3. .•'îake any accounting entries that are required.

Preset the communication region to its normal

within-Job condition (e.g., reset the transfer

points).

o. Transfer to a standard entry point In the super¬

visor if a special one was not specified when the

supervisor last relinquished control.

-86-

CONCLUDING REMARK.^

There are, of course, many other aspects of operating

systems than those which have been discussed above. Por

Instance, we have talked about the problem of communica¬

tion between the processors and the rest of the system

but not about the question of how many or what processors

should exist In an operating system. Again, we have not

brought up the subject of system maintenance, which Is any¬

thing but a merely clerical task and for which few tools

are available in most systems. Assembly systems, too,

should be discussed In detail, since the facilities avail¬

able In the assembly system will almost certainly have a

fundamental influence on design, coding, checkout, and

maintenance of the various parts of the operating system.

«n adequate description of the current state of the art in

these areas, both with regard to currently available tools

and with regard to those that could be provided, would be

at least as lengthy as the material presented in this paper

-87-

Appendlx I

INDEX OP TERMS#

Page No.

Active 46

Activity Cell ¿4

Assign Routine ¿8

Attention Recognition Routine 32

Attention Request 14

Attached 75

Available 73

Block 7

Block Flag 40

Block Size 7

Buffering System 16

Buffer Control word 44

BFP Buffer from Pool Routine 52

Buffer Pointer 44

BTP Buffer to Pool Routine 52

Buffer Unit 36

Catastrophic Error 70

Channel 8

Channel Program 11

Chain 44

Close 60

-5-
Abbreviations for terms appear In the left column.

-88-

Clue

Command H

Communication Region I5

Controller 0

Controller Program 11

Data Operation I3

Data Select I3

Detached 75

Dispatcher ¿5

Dispatcher Preference Cell 24

Disconnect 60

Drain 47

Drum-llke 5

Empty 37

End 23

End of Pile 7

Error Return 59

Error Severity Code 69

Field Variant 67

Pile 7

Pile Block 16

Plag 43

Plush Jl7

Held ¿lg

Input 37

IOCS Input-Output Control System 16

-89-

Input-Output Executor

Input-Output System

Input-Output Unit Control word

Instruction

Interrupt

Job

Job Card

Linkage Rout! es

Load

Locate

Logical Position

Moving

Non-Data Operation

Non-Data Select

Normal End

Normal Return

Operating System

Open

Option

Order

Output

Patch Interpreter

Physical Position

Pool Control word

Processor

cO

3

16

11

¿9

65

65

64

37

40

47

46

13

13

13

69

3

60

67

11

37

73

47

44

3

20
Put

-90-

PUT Routine 52

Quiet 46

READ 52

Record 7

Reserved Unit 15

Select 8

SELECT Routine ¿0

Select Word 23

SELECT (+) 23

SELECT (-) 24

Sense Data 26

SOS SHARE Operating System 15

Start 23

Supervisor 63

Supervisory System 3

SY3ERR 79

SYSTEM 79

System Control Card 65

System Priority Cell 24

System Transfer Point 79

System Unit 15

Take 20

TAKE Routine 52

Tape-like 6

Task Name 67

TEST Routine 34

-91-

Trap 13

Trap Supervisor 28

Transmit

TRUNC Routine

Truncate

Unit Assignment Routine 16

UCB Unit Control Block 16

UIR Unit Interpretative Routines 20

Unit Status List lg

Unusual End 1^

Use Count ^

Utility Routines 64

Utility Unit Ig

Variable Parameter 67

Vigilance Committee 64

Whyte Flag ^

WRITE co

-92-

RE FERENC ES

k.

1* Seiner, Alan L., "System Specifications for the

1954ACpp -^1 °f the ACM‘ VOl‘ 1’ N°* Apr11'

2. Shell, Donald L., "The SHARE 709 System: A Coopera-
tlYe Effort, Journal of the ACM. Vol. 6, No. 2,
April, 1959, ppn¿*3-l¿?.

3» Greenwald, Irvrln D., and Maureen îCane, "The SHARE 709
System: Programming and Modification," Journal of

ACM, vol. 6, No. 2, April, 1959, pp.T2B-133.

Boehm, E. M., and T. B. Steel, Jr., "The SHARE 709
System: Machine Implementation of Symbolic Program-

3¾ pp°uijt-na.the ACM' vo1- 6' No- 2* AppU'

MOrl, Vient J., and Jane E. King, "The SHARE 709
System: Input-Output Translation," Journal of the
ACM, Vol, 6, No. 2, April, I959, pp.Hl-lltlt.-

6. Mock, Owen, and Charles J. Swift, "nie SHARE 709

?ri!r'‘!..f.ro6r?,TO*<J Input-Output Buffering,” Journal
of the ACM. Vol. 6, No. 2, April, I959, pp. 11^-151.

7. Bratman, Harvey, and Ira V. Boldt, Jr., "me SHARE 709
System: Supervisory Control," Journal of the ACM.
Vol. 6, No. 2, April, I959, pp.^'J-lç;. -

8" IBf)nfir??rate0n: 2H*BP SOS Reference Manual: SHARE
Operating tystem ror the IBM 70¾. Pom’Nn» .
3^l2t2“ 55ö-ijr;. jyb-15^, 3lê-U06. 128-1213. em
Applied Programming Publications, New York, I96O-I96I

5.

9. IBÎ* Corporatiön. Reference Manual: IBM 70Q/7OQO input/ |EM Ap_ _ :---——V-a rianuaxi xon (Uv
Qy.^Put Control system. Form Uo. IBM A,
piled Programming Publications, New York, revised
January, 1962.

10. Ferguson, David E., "input-Output Buffering and FORTRAN,
journal of the ACM, Vol. 7, No. 1, January, i960, PP.

