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ABSTRACT 

Field intensification and emitting area are determined for a spheroid and a 

whisker-shaped protrusion. The effects of an inhomogeneous field around 

a protrusion on the transmission coefficient for field emission are computed, 

and examples are given. The resistive heating of an emitter is analyzed for 

a case in which both the resistivity and the emission are temperature de- 

pendent. An instability is pointed out, and the external resistance which 

stabilizes the emission of a whisker is given. The spreading of the emitted 

beam due to field distortion at the protrusion and to space-charge repul- 

sion is computed separately and given in general form. It is concluded that 

the beam spreads faster than previous hypotheses assume. The formation of 

small craters at the anode by single electron beams is questioned. 
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FIELD EMISSION IN VACUUM VOLTAGE  BREAKDOWN 

I.      INTRODUCTION 

Many authors have interpreted the prebreakdown currents in a vacuum as field emission 

coming from small sharp protrusions which intensity the field locally.    Surface contamination, 

insulating patches on U ode,   loose particles,  or avalanches of particle interchange are 

also suspected of causing breakdown.    However,   the vorks of Little    and of Tomaschke, 

as well as many earlier reports,  leave no doubt that for clean conditions the prebreakdown cur- 

rent due to field emission is somehow the cause of the breakdown. 

The emitting protrusions are usually compared with spheroids because a closed mathema- 

expression exists for the field.    We believe that a more complete mathematical analysis of pre- 

ikdown currents is possible,   but that the spheroid is not the best model for a protrusion.    The 

spheroid is neither a typical model for the shapes which hav- rved nor is it the 

efficient emitter.     In Sees. II and III we derive the field intensification ß   and emitting area   A   for 

an optimum emitter as well as for a spheroid.    This gives us the minimum height for any pro- 

trusion with known ß  and   A.    Another limit on the radius of curvature,   and hence on the size of 

any emitter,   follows from the computation of field emission in cm inhomogeneous field (Sec    IV), 

The computation of resistive heating and of beam spreading in Sees. V and VI gives arguments 

for and against several breakdown hypotheses. 

A.    Field Emission and Breakdown 

For a recent review of the hypotheses which try to explain vacuum voltage breakdown,  see 
3 4 5 

Hawl< nhausen,   and Little.     One hypothesis is that the field emission heats (lie anode 

and evaporates it locally,  thus initiating a gas discharge.     The final temperature in the middle 

of ;i bombarded circle on the anode surface may be expressed as follows: 

i  UQd 

This is the limit for I = «o of the general equation given in the literature.      The product i   UQ is 

the bombarding power density in calories per square centimeter.    We can write instead 

T    =  5L». (2) 

where   I  is the total bombarding current and i    is the bombarding current density.    Equation (2) 

shows that the product of total current and current density determines the anode temperature. 



g 
Ch<   current density at the anode can be computed from the emission density'   whJ 

with the total current,   is determined by eathodic processes.    We see that we need to con.^ 

the tota] emission and the emission density as equally Impoi ikdown,   1 e .   if J2q. (2) 

applies 

Another hypothesis is that a microscopic protrusion a1 the cathode is heated by the field 
9 

emission current,   so thai it evaporates and ignites the arc.    This was first proposed by Ah< 

in 1936 and has been supported by his experimental results.    Ahearn used cylindrical gaps in 

sealed tubes with thin tungsten-wire cathodes — mostly thoriated.    Tuczek      observed the emis- 

sion of protrusions in large gaps under high voltages (up to 600kv) and different pulse lengths. 

He interpreted some of the photographs as protrusions in various stages of temperature-field 

emission.    Schwabe      also gave some support for this hypothesis,  and showed that there is a 

eakdown material transfer from cathode to anode as well as the larger transfer from anode 

to cathode.    Dyke      has proven thai the temperature rise of an emitting protrusion ignites an 

arc under certain conditions.    Alpert      recently showed that this eathodic process may also ex- 
14 plain the results of Boyle.       Alpert remarked,  however,   that an analysis of what really happens 

when the emitter ignites the arc is still missing. 

The emission density depends on the local field,   i.e..  on the shap protrusion but not 

on its absolute size (in a parallel field).    The radius of the emitting area is proportional to the 

absolute dimensions of the emitter;  the current  is there-fore proportional to the square of the 

size for any given shape. 

For a detailed investigation of the field emission,  we must choose a suitable family of shapes 

for a protrusion,   which allows us to reach any field intensification we want.    Of course,   any 

"sharp" corner will give a very high field intensification.    But the field strength which actually 

occurs is limited by the mechanical strength of the cathode material.    Obviously,   we must always 

consider a protrusion with a finite radius of curvature - however small that may be. 

II.     FIELD INTENSIFICATIONS 

A.    Sphere 

any given height and given emitting area,  a sphere on the tip of an Infinites im ally thin 

wire should give the highest possible field intensification     We can approximate this field with a 

suitably charged sphere in a homogeneous field.    The potential distribution is 

«=E.(« + h-R)-      2    
Ef\i/2- 

q (3) 
o * 

as shown schematically in Fig. 1      The surface which has the same potential as the sphere is not 

exactly a plane.    We could eliminate the distortion in the plane by adding the mirror image of 

the sphere,   but this would then distort the sphere,   making necessary further mirror images of 

a higher order.    We neglect the distortion of the electrode surface (* = 0) which is permissible 

as long as  h  is several times larger than  R.' 

*The height of the distortion 6 of the electrode plane approximates the radius R of the sphere: 

^♦(«-h + io.J, L__ 
'<» l(h/R)-l] 
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Fig. 1.    Potential distribution of a sphere 
on an infinitesimally thin wire. 

The condition 

-JxZ + y2 + zl      R <t>     0      at     \' x 

determines the charge of the sphere 

(h- K) 4ff€   R * o 

From Eqs. (3) and (5),   the field intensification at the tip (x = y = 0,   z - R) is 

E a    ,<l'    i. ( J + h;,'; i 

■  ,   b 0 2    +     ^ • 

(4) 

(5) 

(6) 

(7) 

• cation is dependent on the ratio of dimensions only and not on absolute size. 

B. Rounded Wire (Whisker) 

A less idealized shape of a protrusion is a wire with a spherical cap.    No closed expression 

is known for such a field,  but we have computed it numerically by distributing a number (e.g.,   20) 

of charges along the line from /      -h + R to z = 0 (cf.   Fig. 1) and adding the mirror charges along 

z = — 2h f 21 —h t R.    For a number of points (e.g..,  40) along the contour of the protrusion, 

the induced potential is computed, and the charges are determined so that the sum of the squared 

potentials at the contour- points becomes a minimum. This amounts to the inversion of a 20 by 20 

matrix.    A standard routine of the 7090 computer was used.    To check the val computed 

the potential half way between the contour points. 

The shape   of such a body is shown in Fig. Z,  with the deviation from the ideal much exagger- 

ated.    The deviations are less than 0.07 percent at the cap. 

An example with h  -  10 and R -  1 is given in the Appendix.    The field intensification is 

ß      11.81,   compared with a sphere for which Eq. (7) gives ß = 12.    We see from the table in the 

ndix thai the field on the rounded whisker is very similar to that of a sphere.    Tl 

we are justified in using the mathematically simpler sphere as a model for a very pointed and 

strongly emitting protrusion. 

C. Spheroid 

Still anothi . of a protrusion is a spheroid which is often used as a reference. 
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Fig. 2.    Shape of a protrusion (wire with a spherical cap). 
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Fig. 3.    Field intensification at apex of both a sphere and spheroid ß = E        /EM vs p = b/a and h/R. 



The equatorial plane of the spheroid is an equipotential plane and represents the electrode 

surface.    The field intensification at the tip of the spheroid is given by the expression: 

■ ■*-*   •   N = V 
P -i J7^ 

In  (p f Jp2 - 1 j- t (8) 

The number  N  is known as the demagnetizing or depolarizing factor;  p = b/a is the ratio of axes 

(b = major axis).    Here again the field intensification is independent of the absolute size of the 

spheroid. 

To make a comparison, we have plotted (Fig. 3) the field intensification for both a sphere 

and a spheroid vs the height normalized with the radius of curvature.    The radius of curvature 

at the apex of the spheroid is R = a  ,/b.    The ratio of the axis for the spheroid p = b/a is shown 

as a second scale on the abscissa. 

III.   EMITTING AREA OF A SPHEROID AND SPHERE 

Now we can determine the total emitted current or the emitting area.    First we need to know 

how the field strength varies around the tip.    The field perpendicular to the surface of a dielectric 

spheroid is E,  = E,c cos 9 (Fig. 4).    The conducting spheroid is characterized by e - «*>.   E, — 0, 

while Eye remains finite and independent of 9.    With Eq. (8),  the field on the surface of the con- 

ducting spheroid becomes 

Ei = h E~cose = h E~ ' 2     z <9> 
i + - x"    b 

for the sphere: 

2 a    - x     a 

E.   -  3E     cosei  h D
R  E     =  3E     cos 9 + (fl - (10) 

where  9  is the angle between the surface normal and the axis of the protrusion.    The relative 

field distribution vs the normalized lateral distance x/R is plotted in Fig. 5.    We see that the 

emitting area of the sphere must be larger than that of the spheroid whose field decreases rap- 

idly with the distance from the axis.    We see also that the curves for different spheroids are 

very close together for (h/R) :> 25,  and that the first 20 percent of the decrease of the field is 

practically the same for all spheroids with (h/R) >. 25.    This is the only area of interest for us 

since a decrease of the field by 20 percent decreases the current density by orders of magnitude, 

according to the Fowler-Nordheim equation.    The coincidence of the curves in Fig. 3 allows us 

to normalize the emitting area of a spheroid so that it only depends upon the intensified field at 

the tip [as long as (h/R) > 2 5]. 

The ring-shaped surface element where a certain field applies has the area (see Fig. 4) 

The element of current from this area is 

dI=iem(E).   Z„x-   c-^g       . (12) 



!  43-74«?! 

E, HOMOGENEOUS   FIELD 

E.,-0^ CONDUCTING 
E   ~0J SPHEROID 

Fig. 4.    Geometry of the spheroid. 
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Fig. 5.    Relative field strength cos 0 = E/E vs distance/radius of curvature x/R 
for both a sphere and spheroid. 



The Fowler-Nordheim equation determines i      (E).    Values given by Dyke      are used to plot 

Fig. 6.    A work function of <p = 4.5 ev (e.g.,  clean copper electrodes) is always used. 

We can integrate Eq. (12) numerically if we take E(x) and cos 9 from Eq. (9) and i(E) from 

Fig. 6. The result is plotted in Fig. 7 as the normalized radius of a mean emitting area vs the 

field at the apex.    The mean emitting area is defined by 

I  =   7TX    1 (13) 

where i is the emission density at the apex. 

For the sphere,  we can replace (l/cos9) x dx by R sin 9 d9 and the total current becomes 

.90° 
I - \ i(9) ZirR    sin 9 d9 

Jo 

For the field emission,  we use the approxin 

nE 
ref 

(14) 

(15) 

where  n and i     f are constants which we must choose to fit the range over which Eq. (15)  is in- 

tended to be valid.    We insert Eqs.(10) and (15) into Eq. (14). 

I = -27rR2i    f ref 

n(/3-3)E     ro    3ncos9E 

{ d cos 9 

,   R2. "('<-3)I<:~  e3nE* 
~3^E 

- 1 (16) 

We introduce the surface of the emitting semisphere: 

Asph 

and the maximum current density at the top of the protrusion 

max = Vef e 

and write 

-3nE 

1= Ai ^ max 

(17) 

(18) 

(19) 

The quantity n  is a constant for each evaluation of the integral in Eq. (16) because the approxi- 

mation covers two orders of magnitude of the current density.    In Eq. (lf>).   however,   n   is still 

a function of E E   ß.    Suitable values of n  \ are plotted in Fig. 8.    They are deter- max        °o^ max 7 

mined  so  thai   Eq.(15)  represents  the  chord of log i vs  E  between   E and E — 10   . 1 ' & max max 
Figure 9 g. 

3nE vs ßK 

-3nE 
3nE 

3nE 
1       / -™^\ 
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field strength E for a work function 
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vature x/R vs the intensified field strength at apex of 
spheroid E for a work function of <b - 4. 5 ev. 
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Fig. 9.    Determination of radius x of mean emitting area for a whisker-shaped protrurion. 



This diagram allows us to determine the relative emitting area 

A 
em 

A     u "   I sph        max 

For comparison with Fig. 7,  x/R can be read with a second scale.    The application of the diagram 

is shown in Fig. 9 for an example where Ew = 2.5 •   10    and ß - 20 are given;  and Emax =5.10   , 

A      /A    ,  = 0.6,  and x/R = 1.1 are found. env    sph ' ' 

IV.   FIELD EMISSION IN AN INHOMOGENEOUS  FIELD 

As Lewis first pointed out,      the field emission is affected by the inhomogeneity of the field 

because the field intensity may drop appreciably within the length of the potential barrier,  thus 

modifying the tunnel effect.    We compute the transmission coefficient by looking at one electron 

which leaves the apex of our spherical protrusion.    The mathematical solution of the wave me- 

chanical problem is given,  e.g..   in the Encyclopedia of Physics,     and we will only show where 

our analysis deviates from the standard sol 

The transmission coefficient   I)  is given as 

-lnD=  C'2    I ^ |V<z) - Wjdz (20) 

where  V   is the potential energy of the electron 

The potential field in which the electron moves is represented by Eqs.(3) and (5) (x = y = 0). 

but we must add the potential of the mirror image (at z     = R /z) of the electron 

We introduce 

l - iffS UZ) 

and insert Eqs.(3)#  (5),   (7),  and (21) into Eq. (20).    Thus,  the transmission coefficient becomes: 

-l»D»f*2    Kf-E   Rj  ,J<"t)M2-_ • r  +  !wARd4 (23) 
J* t   J   (h/2irr   \      °° (l+*> 8«0R(2«   + 4   ) e/ 

where 4     and 4 _ are the values for which the radicand is zero.    With Eq. (23),  we compute the 

transmission coefficient numerically (Simpson's Rule) for given sets: 

Radius of curvature of protrusion R (cm) 

Field intensification of protrusion ß 

Homoger • Id away from protrusion EM (v/cm) 

I W I Work function <r> =   LULL (v) 
e 

In order to integrate over the product of supply function and transmission coefficient,   we need 

D as a function of W  or at least the derivative dD/dW.    Instead of coding a second function,   it 

is advantageous to compute  D for two nearly equal values W. and W'      and to approximate D(W) 

by the linear expression: 

to 



lnD(W) = InDfWj) + 
lnD(W2) -lnD(Wt) 

W2"W1 
(W-Wj) (24) 

This equation corresponds to Eq. (5.10) of Ref. 17.    Now we can integrate in order to find the 

number of emitted electrons. 

*-&y—l •lnD2- -InD 
exp 1    W2" 

-W, V 

(W-Wt) * lnD1 [<P - W) dW 

(25) 

where e is the charge of the electron.    The results of numerical computation for two work func- 

tions (2 and 4.5 ev) and several radii of curvature vs the intensified field are plotted in Fig. 10. 

The field intensification was assumed to be ß - 100.    As Lewis      has already explained,  only the 
o 

emission of very small protrusions (radius of the order of 10 A) is affected.    We see also that 

the emission lags mainly for smaller currents so that the current rises more abruptly with 

voltage. 

Figure 10 is computed for a spherical protrusion,  but it represents an approximation for 

other protrusions whose radii of curvature and field gradient are similar.    For a spheroid,  the 
18 field along the axis is given by Lewis      (watch the misprint:   in Fq. (5) the last term must be 

raised to the minus first power| from which we derive the gradient at the tip:   d/s/dz «-2#/R. 

[We have assumed (a /b ) « 1.]   We find a similar expression for the gradient in front of the 

sphere if we differentiate Eq.(3) twice:   d/j/dz = -2/3/R. 

IO* 

£ tv/cm) 

Fig. 10.    Field emission current density vs local  field strength for protrusions with field 

intensification ß = 100, work functions of $ = 2 and 4. 5 ev, and several radii of curva- 

ture R. 

M 



By looking at Figs. 7 and 9, we can say that Fig. 10 applies to spheroids with ß = 100 if we 

assume that   R  is about twice the radius of the emitting area. 

Let us append a proof that the field gradient at the tip of any protrusion essentially depends 

on  R and ß,  so that Fig. 10 is generally valid. 

The potential around the tip is represented by 

2 -        , 
$ = Ez + E'  y- + A(x    + y ) 

where x,  y,  z are Cartesian coordinates counting from the tip.    The third and higher powers of 

distance from the tip are neglected,  and the rotational equipotential surface * = 0 with a maxi- 

mum atx = y=z = 0 has been taken into account.    The contour of the protrusion in the plane 

y = 0 is given by 

z2 2 Ez + E1  Y + Ax    = 0 

The radius of curvature at the tip is 

R = . [[1  f (dz/dx)2]3/2! _E 
.2   / .  2 ~     2Ä d z/dx Ix-0 

With this and Laplace's equation A* = 0,  we establish the relationship: 

E' =  3*  =   2 ^ Q.E.D. 
3z2 R 

V.    RESISTIVE HEATING OF THE  PROTRUSION 

A.    Temperature of the Emitting Protrusion 

The steady-state temperature of an emitting spheroid can be found in closed form.    We 

assume the equatorial plane is held at a constant temperature.    The heat conduction equation for 

steady state is 

where  q is the flow of heat generated between the heights z and z. (Fig. 11).    From z. on,  the 

emission becomes important,  the current is no longer confined to the spheroid,  and we neglect 

the heat produced between z = z. and z = b.    This avoids formal difficulties with infinite current 

density at the apex.    The heat generated by a current   I  is 

*h. 7TX 

u>dz (27) 
7TXJ 

where Q = 0.239 cal/watt-sec,  and w = resistivity of cathode material.    We insert 

x2 = a2 --£=■ a2 (28) 

and integrate successively Eqs. (27) and (26) to obtain 

T(xt) - T(0) =   !  f*\>    (arc lanh ^f\ (29) 
2?r  a X 

12 



Fig. 11.    Current distribution in a spheroid. 

2   n,2   f, 1 + (z./b)l I 
(30) 

The first factor represents the temperature at the end of a wire of length b,   radius a,   heated 

by current  I. 

Now we identify x. with the radius of the mean emitting area  x  of Eq. (13) and write 

x.  = x = a  — 1 p (31) 

where a  lies between 0.25 and 0.6 as we see from Fig. 7.    We apply the equation of the ellipse, 

inserting Eq. (31): 

1        /.      .     / .2      .       la? la 
(32) 

Since we assumed previously that p ^ 5 and a < 0.6,  the third term of Eq. (32) becomes negligible 

(«10'4). 

We insert Eq. (32) into Eq. (30) 

«*y»l» .. 2M 
" =  [l ln l-(z,/b)J    " (ln -S;) 

The temperature rise at the tip of the spheroidal protrusion becomes 

2jr   a  \ 

(33) 

(34) 

where  I can be found as shown previously [Eq. (13),  Fig.7],  and  a   is a byproduct of the deter- 

mination of I. 

For a = 0.25 ...  0.6 and p = 5 . . .   15,   <p  has the range 

<p = 5 . . .   20       . (35) 

While this report was in preparation,  Tomaschke    published a similar analysis.    Due to some- 
2 what different simplifications his result represents essentially a fixed value of <p - 8 for p   »1. 

13 
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Fig. 12.    Steady-state temperature of emitting whisker tip for temperature-independent resistivity 

and for temperature-dependent resistivity u(l + aT) vs normalized current density. 

Fig. 13.    Parameter irk/d vs  E  for work 

functions of q> = 4. 5 and 2. 7 ev. 

E (v/cm) 
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B.    Breakdown as Thermal Instability of the Emitting Protrusion 

he wire-shaped body with a rounded tip,  protruding out of an infinite plane. 

The current density in the body is approximately equal to the emission density.    The protrusions 

observed by Little and Whitney      are probably between a spheroid and a whisker     The ten 

ature at the tip of a whisker is |for steady state,   of.   Fq.(30)] 

T-To=   !g£ hV (36) 

where CJ = res; Q = 0.239 cal/watt-sec.  \ = heat conductivity,  and i - current density, 

v percent of this temperature increase is reached in the time 

,= £ (37) 

• k =  heat diffus: 

stivity is temperature dependent,  we write 

w(T) = w(l  * aT) (38) 

c solution of the heat conduction problem is given by Carslaw.     For steady state 

• mperature becomes 

T-T    = —  ( * - 1 ) (39) 
° \      -iJWu>Q«A        / 

From the full (time-dependent) solution we can see that 90 percent of this temperature diff- 

is reached in the 

,2 
Y HO) 

for tungsten (a  -0.005,  T —T    = 1000°K).    According to Eq. (39).   th< rent 

ity is plotted in Fig. 12 for a = 0.005 and 0.0025.    Most metals have values of  a   in this range. 

The v nt density is given for our condition by the simple relation 

where k  is Boltzmann's constant, and d  is a complicated functi I  E and the •■ 
function <s>. 

77   •   10H   ttg-   l(E,<p)        . M2) 

The function  t   is defined and tabulated on pi :  Ref. 17.    The paran E   is 

plotted in Fig. 13 for two work functions  |4.5ev (tungsten).   2.7ev (thoriated tungsten)].    The 

3 

6 
it dens it i< al n-k/d usually lies between 10"    and I      10      as 

the most extreme values.     It  is safe,   however,   to consider only current between 
• _} 

and 10   am eans that the factor irk  <l is practically a constant which is «1.5      10 

for thoriated tungsten and =1 •   10~    for tung 

If the resistivity and the current are temperature dependent,  we determine the steady-state 

15 



»n/d ■ IO"3,K"' 
343-T45? 

wk/6 « 2«I0"3 "K"' 

wk/a < IO"5°K"' 

. «j   :«M 

MM 

\V 300°K 

* 600«KN 

hi 

3 
wk/6 *2-IO~3,K"' 

«X    MX» 
at 
UJ >v^300'K 
5 
H 600*KJ 

MO 

1 

(b) 

Fig. 14. Temperature at top of emitting whisker (temperature-enhanced emission) 
vs normalized emission of cold whisker. Temperature coefficient of resistivity: 
(a) a = 0. 005 (1/°K), (b) a - 0. 0025 (1/°K). 
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i =   arc cos  ,    _      . . (43) 
hs/wQa/X U       V a + l 

Inserting this into Eq. (41) we have 

•        8/rr     n»      simrkT/d       1        /   \      a„„ „   1  IAAX lo = 1(T = 0) =     *kT/d      *   h  *   J ^ arC COS  (T - To) o + 1       • (44) 

With this equation, we can compute the temperature T at the tip as a function of the current 

density of the cold protrusion,  which in turn is given by the temperature-independent Fowler- 

Nordheim equation: 

T(iQ) = T (i(E)| 

The temperature vs this current density is plotted for several  a,  T      and 7rk/d in Fig. 14.    By 

inserting T(i ) into Eq.(44),  we obtain i vs i    as plotted in Fig. 15.    These curves represent the 

condition of thermal equilibrium:   the heat produced by the current equals the heat conducted 

toward the bulk of the cathode.    Since we do not know the time-dependent solution of our problem, 

we make an estimate of the time necessary to reach equilibrium and compare Eqs. (37) and (40). 

In Eq. (40) the rise time is larger because we start with low energy dissipation, and only as the 

temperature and resistance rise,  the heat production increases.    This effect will be even more 

pronounced if the current also increases with the temperature,  and we may set some limits for 

the rise time: 

t. = h /k if T  is small and the rise 
of resistance is negligible. 

t? > t,,   e.g.,   t, = 5 •   h /k       ,        if  T  is higher and the rise 
of resistance is important. 

t3 > t, if T  is still higher so that 
the temperature enhanced 
emission is also important. 

We can see these three phases by comparing Fig. 14 with Fig. 12.    First the temperature rises 

with i   ,  then increases faster according to Eq. (39),  but rather than approaching an asymptote, 

the curves reach an infinite slope and go into a second branch which must be unstable because 

the temperature and current increase while the voltage drops (i    is a monotonic function of the 

applied field or voltage).    If no external stabilization is used,  the current must rise to infinity 

as soon as the infinite slope is reached and breakdown presumably occurs.    The apexes of the 

curves in Figs. 14 and 15 thus show where breakdown occurs if the gap voltage is independent of 

prebreakdown current.    Any larger current destroys the protrusion and causes breakdown im- 

mediately since no thermal equilibrium is possible. 

C.   Influence of Circuit Parameters on Instability 

We consider small changes of current,  etc., and the consequent changes of all other varia- 

bles in the gap and in the supply network.    If we specify that the emitting protrusion remains in 

thermal equilibrium,  that is,  any change follows the curves given in Figs. 14 and 15,   then we can 

specify only one variable (i,  i  ,  E,  or T) and all others are fixed by the equilibrium condition. 

Whether this equilibrium is stable or unstable can be found by comparing small changes in the 
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Fig. 15.    Temperature enhanced emission vs cold whisker emission (both normalized). 

Temperature coefficient of resistivity:   (a) a = 0. 005 (1/°K), (b) a = 0.0025 (1/°K). 
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gap with the corresponding changes in the supply network.    Since we have only one independent 

variable,  we can introduce chains of any differential quotients we like,  e.g., 

aE _   3E        di_       ^o 
aT      ai      aiQ '   aT 

although ai /<$T may at first seem surprising since i    is the emission at zero temperature.    The 

partials are taken as symbols for changes in thermal equilibrium. 

In an experiment,  we have a resistor R in series with the spark gap and a stray capacity 

C parallel to it.    The supply voltage is  U,   the gap voltage is Ur,  and the gap spacing is  D.   The 

field in the gap is 

E =   V-=^ (45) 

where 

I-A-  i(i0) 

We approximate the Fowler-Nordheim equation by 

i    -- i    f e^E (46) o      ref 

dF " 'o""    ■ (47) 

We now let the current increase by a small amount di.    On the unstable branch of the  i vs i J o 
curve,  this implies a decrease of necessary field dE given by 

di =   |p-  i   /JndE      . (48) dio    o 

Because of the series resistor,  the decrease of field will be 

dE = -^ Adi (49) 

where A  is the emitting area.    Equation (49) inserted into Eq. (48) gives the resistance for which 

both changes compensate,  so that the unstable curve is now an indifferent equilibrium: 

R = -^ÄrWär   • <*» 

As long as ai/ai    is positive,   even a negative resistance is allowed.    When ai/ai   = °°,   only an 

infinitesimal resistance is needed for stabilization. 

Another important parameter is the stray capacity C.    Obviously,   if C  is large enough,  no 

stabilization is possible.    Let us assume we have stabilized the field emission current at a cer- 

tain value  I by an infinite resistor and with an infinite supply voltage,  in other words,  by an ap- 

propriate current supply.    Now let us see whether it is still stable with a stray capacity added. 

We assume an accidental increment of current di,.during a small time interval dt; the resulting 

temperature change of the emitting tip is 

dT = <rdiAdt       . (51) 
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The emission after dt has increased by 

di ■ wo w
dT   • (52) 

This increase of emission is counteracted by a decrease of field strength and a decrease of cold 

emission current 

di    dUr 

^o-äi-ir   • <»> 

Since dUp comes from the discharge of the capacity by Adi.dt coulombs, 

di AdiA • dt 
dio= d# • ~ic~ (54) 

or with Eq. (47) 

AdiA •  dt 
di-   £-o- «nio • DC ■ <55> 

Equations (52) and (51) inserted into Eq. (55) give the stationary condition, where the equilibrium 

is indifferent, just between stability and runaway of temperature and current. The limiting con- 

dition is thus 

n/?i A 

We determine a by assuming volume heating only and neglecting any heat conduction.    The 

temperature rise is under such conditions: 

£ = ^a (57, 
dt cp x     ' 

=   d^T  =   uQ 
dtdi       cp l     ' 

Equation (56) becomes 

r -  1<D        Angcp ,_ . 
c " T ZDCüQ aio/9T     • {59) 

This is the maximum allowed capacity,  beyond which the upper branch in Fig. 14(a) is unstable 

even with an infinite resistor in 

very large capacity is allowed. 

We 

Fig. 14: 

even with an infinite resistor in series.    Again the point 9i /$T - <* is easy to stabilize since a 

We can write Eq. (59) in another form because we can read only d(i  h \1 o;Q/\)/dT from 

inßcp N/OJQ/X 
 -    ————   - •   hA       . (60) 

i2Du>Q d(iQh -s/wQ/JO/dT 

Since with Eq. (7), 
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A   « 7TR      *  IT   — 

ß 

we see that  C depends upon the third power or the size of the protrusion.    This fact is a ci. 

harge of the capacity,   and it makes  C  very un- 

: solute size of the protrusion is unknown and may vary within wide limits. 
-4 

In any case,   the first factor in Eq, (60) is roughly of the order of one,  whereas  h  is about 10     ; 

consequently,  the ust be very small if we want to go along the unstable branch. 

This analysis is not yet complete because,   in a spark gap,   ther» if protrusions 

emitting simultaneously,  as many observers have reported (see Refs. 10,   11,  and 19 — 11).   Some 

authors give a Fowler-Nordheim diagram of current vs field,   implying that there is only one 

ie 
25 

23 
protrusion.    '        Boyle,  et al.,  explicitly state that their pit-breakdown current followed the 

Fowler-Nordheim equation and therefore only one protru its.    However,  Tomasehke 

•.: ly showed analytically that a sample of emitters with random distribution of emitting area 

and field intensification gives a current which follows the Fowler-Nordheim equation so closely 

thai n ment so far could ence. 

is look at  m  emitters which arc still stab] cool (ai/ai    Ä 1) and one (ind< 

which is reaching unstable emission.    Equation (50) now becomes 

-»--a; 'hs    • «»« 
~~  nß  A  l      +    Z     n/J, A, i  . 3i ' e   e oe      .    ,    ^k   k ok 
" oe k= 1 

assumed that  n   is the same for all emitters,  which is a good approximation.    If 

we introduce the total prebreakdown current   I and an average field b .tion. 

-      S gkAk'ok       S Vok ,,.,. 
ß =     ZA,i. I - I (b^' k ok e 

w e ol 

_R=_ 2Z2  (63) 

oe 

Now we let ai/ai      go through infinity to nejj (unstable emission) and see that the 

resistance   R   required for stabilization is larger than that for the single protrusion because 

0l-/?Ie is F 

infinite for 

ßl —ßl    is positive and makes the denominator smaller.    The necessary resistance becomes 

- sr- Voe = 5(1 - y   . (64) 
oe 

Under minions,   the unstable protrusion robs the current from those which are stable 

without change of external current so that the resistor does not help.    But this process is limited. 

The current I - I    of the cold protrusions diminishes until Eq. (63) is satisfied,  as long as the 

resistance is larger than 

R    =      ■  D/n . (65) 

'■   ß   I 
9ieo    e oe 
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If R > R ,  we should observe a jump in the current of that protrusion which becomes unstable. 

Breakdown may or may not occur.    If  R  is smaller than the stabilizing resistance of the single 

protrusion,  the protrusion should explode,  after ai/ai   = «° is reached,  and breakdown should 

occur more easily. 

We may speculate that,  with a sufficiently large resistor  R and other circumstances per- 

mitting,  we can avoid the breakdown up to higher voltages by conditioning the gap with the pre- 

breakdown discharge, burning away one protrusion after the other.    The protrusion may be torn 

off as a liquid droplet or evaporate,  and at the same time local heating and melting may occur 

at the anode.    If the protrusion is destroyed without liberating too much energy,   nothing may be 
-6 -8 visible since we have to expect flashes of 10"    to 10"    second of thermal radiation from micro- 

scopic or submicroscopic areas.    Only the traces of anode material on the cathode and cathode 

material on the anode may be found afterward as reported by Schwabe.       This prebreakdown 

conditioning may continue until we reach either a protrusion of so low a ß  that too high a series 

resistance is required,   or a protrusion of so large an area that too much prebreakdown current 

flows,  which causes disaster somewhere else,  e.g.,  at the anode. 

VI.    ELECTRON  BOMBARDMENT OF THE  ANODE 

A.    Spreading of the Electron Beam 

Next we consider the spreading of the electron beam which is emitted by the protrusion. 

There are three causes for the spreading of the beam: 

(1) Transversal initial velocity 

(2) Space-charge repulsion 

(3) Field distortion around the protrusion. 

The initial velocity of field-emitted electrons is approximately 5ev.    The first cause is 

negligible. 

The shape of the electron beam under acceleration and space-charge repulsion is given by 

Moss.       The equation of motion of the electrons in a circular electron beam (radius   r)   is 

A = —| l  (66) 
dt2        e^m  _e   £t +  . 

m o 

-if'2*V   ■ <67> 
In our case,  the initial velocity (m/2) z    = 5 ev is given,  and the choice of the initial condition 

(dr/dt)    Q = 0 . . .   1 does not affect the result.    We take (dr/dt)    _ = 0.    Under these conditions, 

we can eliminate the field  E  as an independent parameter by introducing a new time scale 

T = Et into Eqs. (66) and (67): 

(68) 

(69) 

d2r e            I/E2 

dr2  " *0
2*m ± r + z m            o 

zE   = e      2 A . 
-z    T      + Z   T 2m              o 
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Fig. 16.    Normalized current density f 
vs normalized beam length (or anode — 
potential) for several emission densi- \ 
ties (space-charge effect). 

/E (volts) 

8 We have computed the beam shape according to a recent analysis.     Figure 16 shows the 

normalized current density vs the normalized beam length (or anode potential) for several emis- 

sion densities. 

In order to find the influence of the field distortion,  we determine the trajectories of elec- 

trons coming from a spherical protrusion.    The electrons have the following equation of motion, 

if we normalize the coordinates with R: 

m d z  _   a*  _ E 
e   dt2   "   9z - 

m  d  r       a* 

dt ar = E 

I-VB 

ZX|+  (P-3) 

(fl - 3) z 
3 

P 
(70) 

(71) 

where 

r = ^77? /  2  L    2 A    2 = N/ x    + y    + z 

The above field components are found by differentiation of Eq. (3) with Eqs. (5) and (7)  inserted. 

We see that only ß  remains as a parameter since we can regard (e/m) •   E    as a factor attached 

to the time scale which has no importance here.    An example of the trajectories thus computed 

is given in Fig. 17.    It is interesting to note that the beam radius at a large distance (e.g.,  z = 

10   R)  is less than proportional to the initial angle.    This means that the current density in- 

creases toward the border of the bombarded area.    This effect will partially compensate for 

the drop of emission density away from the center.    The result of our computation is summarized 

in Fig. 18 as relative current density vs relative beam length for several ß.    This beam spreading 
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Fig. 17. Trajectories of electrons, 

starting from   a  = 0,   30,   and  60 

degrees latitude,  of the emitting 

sphere. 

Fig. 18. Decrease of current density due to 

inhomogeneous field around emitting pro- 
trusion. Space charge neglected. (Relative 

current density vs relative gap length.) 

11 f 
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seems to prevail slightly over the space-charge effect for most practical cases.    Therefore, 

let us further discuss the effect of the field distortion.    This field distortion is a necessary con- 

sequence of the field intensification which we need in order to have emission.    The electron first 

moves in a radial field (radial in spherical coordinates centered at the protrusion).    It acquires 

a radial velocity component while it is close to the protrusion.    Then the parallel field takes 

over,   and the electron approaches a parabolic trajectory.    Neglecting the transition part of this 

motion,  we approximate the radial velocity by 

^-v~ --  (*(r = R) -*(r = «)] e (72) 

where *(r) is the radial potential distribution of the protrusion, 

" o 

or with Eqs. (5) and (7), 

*(r) = 
EJ/3 - 3)  RZ 

Now Eq. (72) becomes 

vt =  I?  EJß ~ V R       • <73) r       m      °° 

The parabolic trajectory (obhque throw) is given by 

where 

-z = rtgo 2 z~ <74) 

2v    cos   a r 

E«e 

b = —— (75) 

is the constant acceleration.    Equations (73) and (75)  inserted into Eq. (74) give: 

2R(fl — 3)   = sin a cos a ± J sin a cos a + cos   a   R(R7- 3) ^7^ 

Since the gap width z  is much greater than the radius of the protrusion,  e.g.,  z/R = 10   , we can 

write 

2R(/-3)   =COSaJwf=T)       ' (77) 

If we insert z/R = 105, ß -  100 we obtain r/R = 1.61 •   103 for a = 75°,   and r/R = 6.2 •   103 for 

a - 0°.    To compare with the numerical trajectory computation,  r/R - 1.45 .   10    and r/R - 

5.9 •   10   ,  respectively.    It is understandable that our simplification gives a somewhat larger 

value since we overestimate the lateral displacement for three reasons: 

(1) vr is overestimated in Eq. (72) by taking *(°°). 

(2) vr is assumed to exist from the start,  whereas it builds up at the 
beginning of the trajectory. 

(3) At some distance from the protrusion,  the increments of vr are no 
longer in the initial direction,   rather they correspond to a larger  or. 
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But we see from the example that for ß ^ 100 the error is no more than 10 percent. The higher 

the ß the shorter the distance over which v ^ is acquired and the better our approximation. The 

current distribution in the beam is 

J_   __  R2desin0 e = 90°-a       . 
i rdr em 

With Eq. (77) and its derivative,  we obtain 

l     _ R 
iem       4z(j8 - 3) cos 9 

(78) 

B.    Variation of Anode Temperature vs Emitter Temperature During Conditioning 

We determine how the temperature of the protrusion and the temperature of the bombarded 

spot at the anode change for some variations of parameters. 

Case 1.   Temperature of a Whisker and a Spheroid 

We keep the emitting area constant,  as well as ß (ß - 100),  so that the temperature at the 

anode does not change.    We obtain the following temperatures of the emitter. 

Whisker: 

(79) 

hr 
1          1   R4 

hl 

with R « \\Jß from Eq. (7). 

Spheroid: 

T    = C    —— 
a 

c4 
q, = -\  ■   8.5 • 

hl 

104 (80) 

Equation (80) has been obtained with h2 = 3h., in order to compensate for the smaller emitting 

area of the spheroid (compare Figs. 6 and 9), and with </? = 15, and a = h?/l5 for ß - 100 (com- 

pare Fig. 3).    index 1 refers to the whisker,  and index 2 to the spheroid. 

Case 2.   Temperature of Different Whiskers 

Emitter with Eq. (36): 

T        ~ h2i2      . (81) em o 

Anode with Eqs.(l) and (78) and (0 - 3) «0: 

Ta~U^/y~U^/IIV^ • (82) 

We compare a whisker before and after conditioning and assume that ß  has decreased while the 

gap voltage   U has increased so that E   ß remains unchanged as well as i  .    If the height  h  is 

constant,  we have R ~ i/ß,   I ~ \/ß   ,  and U ~ i/ß: 

T , 
~/T3       . (83) T em 
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If the emitting area remains unchanged,  we have h ~ ß,  and U ~ 1//3: 

Ta -7/2 
(84) 

The real conditioning effect is,  of course,  not so neatly defined,  but we see that the anode tem- 

perature rises quickly relative to the emitter temperature if we destroy the sharpest protrusion 

and decrease ß  accordingly (case 2), or if ß  remains almost constant but the persisting pro- 

trusions are less pointed (case 1). 

C.    Beam Spreading Compared with Anode Craters 

The spreading of the electron beam by field distortion alone,  as well as space charge alone, 

is much larger than the result given in a previous analysis by Maitland.     Therefore, we are 

going to look at the hypothesis that craters at the anode of a spark gap are due to small individ- 

ual electron beams.    Our argument applies with special force to small craters     The smallest 
27 

spots at the anode have been observed by Hawley      who later   with the help of an interference 
28 microscope.     identified them as craters.    These craters have a diameter of 1.5 microns or 

more.    They appear before breakdown, and must be due to the prebreakdown field emission. 

•^ wiy /200 k» 

V 1 /      1 
l/      i          i          l          i          i          1 

Fig. 19.    Surface temperature of copper under 1-Mw/cm    electron bombardment. 

After weak prebreakdown discharges,  we have observed similar spots,  sometimes around 

a few larger craters (e.g.,   10 microns in diameter).    These small spots of about a t-micron 

diameter seemed to be craters,  but there was lack of optical resolution.    In order to melt a 

small circular area of copper, we need a certain power density.    The temperature reached by 

copper under 1 Mw/cm   for several beam diameters is taken from Ref. 29 and shown in Fig. 19. 

The curves ending in horizontal lines represent surface heating of spots of different diameters; 

the 50- and 200-kv curves represent the heating of large diameters (—<*>) with the energy dissi- 

pation vs depth taken into account.    To heat a 2-micron-diameter spot to 1000*C we need about 
8 2 5 

4 ■   10   w/cm   .    Hawley made his observations with 24 kv,  0.38-mm gap,  and 6.3     10   v/cm. 
8 2 Thus,  4 •   10   w/cm    corresponds to a bombarding current density of 
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We must satisfy the equations: 

i     = 1.7 •   104 amp/cm2 (85) 

z = 3.8 •   10"2 cm (86) 

/_em = io"4cm       . (87) 
lA 

We assume field distortion only and neglect the space charge.    Thus,   Fig. 18 gives the relation- 

ship: 

fZ  =   f*  <|) (88) 
o o 

(ß  must be about 100 or more).    The only solution of the simultaneous equations (Eqs. (85) through 

(88) ] is 

Ft - • 10'9cm 
for ß - -- 100 

i em -  1.7 •   1014 amp/cm 

Larger ß  gives an even more unreasonable  R and i In other words,  the electron beam 

spreads so fast that it must come from an extremely small area with an extremely high initial 

current density in order to produce a single,   2-micron-diameter crater.    The values of R and 

i are of course out of the question.    This casts some doubt on the theory that each shallow cra- 

ter at the anode is formed by an individual electron beam. 

VII.    SUMMARY 

We have derived a relatively simple expression for the field intensification and emitting area 

of an "optimum emitter," that is, an emitter of the smallest possible height.    The influence of 

the strong divergence of the field near the protrusion upon the field emission is computed.    No 

observations of this effect are known to the author.    An analysis of the heating of the protrusion, 

and of the bombarded area of the anode,  shows that the thermal instability of the protrusion occurs 

at a much lower temperature than previously thought.    Local heating of the anode is much less 

than previous calculations have suggested, but conditioning the cathode increases the anode 

heating.    The computation of anode bombardment leads to an argument against the hypothesis 

that observed craters at the anode are produced by individual electron beams. 
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APPENDIX 

COMPUTATION OF THE   FIELD AROUND A WHISKER 

We use a coordinate system x - x',  z = z' + h — R,  where x' and z' are the coordinates as 

shown in Fig. 1      We put the sources* q. at the points: 

x. = 0      z. = ±(h - R) i = n + 1 

For the surface points,  we choose the following coordinates: 

j n      J j = l.-.n 

r» j -n, x. = Rcos(|^ -)      z. = h - R + R sin{£ ± -)      j = n + i. .. 2n 
J J 

At the surface point j,  the potential component due to source i (and its mirror image) is 

*ij = V» ■ 
■i'zj - «/ +"/ 7<zj - «/+ */ 

The sources are determined so that the sum of the squares of the potentials becomes a minimum 

B(«   )2 

8q. 

n+1   2n 2n 

Y     Y   H     ■ H     q. 4    X   E   z.H       =0 

i>l   j=1 3=1 

These n + 1 linear equations (m =  1. . . n + 1) determine the n + 1 sources q. (i -  In •  i),    We 

check the result by computing the induced potential half way between tl e points and divide 

by the potential of the parallel field: 

1 +<■    - 
P 

n+1 

-v z p 
z E   z 

'   P *   P   i=i I    /(z    - z.)2  i x2 L v     p 1 p V<ZP + «i>2 ♦ *2 
p J 

where 

P 
-R+Rsin(fP    "     2) 

f        relative error of approximation 

* A source q  corresponds to a charge e (amp/sec) = q/4-irc   . 

M 



Finally we compute the induced field components F = E  , G = E  , and ß: 

Sy = ■tf.j - zi( [Cj - zf ♦ x/]-3/2   - qi(z.  ♦ Z;> |Uj - z/ ♦ Xj
2f3'2 

°ij 

2n 

i=l 

2n 

Oj •   Z otj    . 
i=l 

For comparison, we write also the induced components of a sphere: 

F = sin(* ^p) [0-3 + 3 cos(| IlZJ)] 

G - cos(| ^LZi) [ß -3 + 3 cos(| ^J)J- 1 
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TABLE A-l 

VALUES COMPUTED FOR h = 10R, E^-l, ANDn=20 

1 +« 
p 

P 1 + e 
P 

P qJ i 

1.262965 1 1.003059 21 -3.698786 1 
0.979036 2 1.000914 22 3.610933 2 
1.012559 3 0.999595 23 -3.790578 3 
0.991043 4 0.998867 24 3.531658 4 
1.006992 5 0.998549 25 -3.901717 5 
0.994234 6 0.998504 26 3.476452 6 
1.004941 7 0.998629 27 -4.040855 7 
0.995678 8 0.998851 28 3.434476 8 
1.003851 9 0.999116 29 -4.183174 9 
0.996541 10 0.999389 30 3.370235 10 
1.003140 11 0.999647 31 -4.298493 11 
0.997150 12 0.999877 32 3.256939 12 
1.002610 13 1.000072 33 -4.376460 13 
0.997619 14 1.000232 34 3.092160 14 
1.002188 15 1.000357 35 -4.448883 15 
0.998044 16 1.000452 36 2.961954 16 
1.001649 17 1.000520 37 -4.838017 17 
0.998975 18 1.000567 38 3.872433 18 
0.999647 19 1.000596 39 -8.810995 19 
1.003132 20 

F(j) 

1.000610 40 

G(i) 

18.837837 
-20.341918 

20 
21 

Whisker Sphere Whisker Sphere 

-7.434622 -9.00 0.631334 1.0 20 
-8.130501 -9.35272 -0.442111 -0.48042 22 
-8.554745 -9.44122 -1 .819855 -2.06766 24 
-8.626121 -9.23262 -3 .379312 -3.70423 26 
-8.311287 -8.70778 -4.999279 -5.32660 28 
-7.612921 -7.86400 -6.568195 -6.86400 30 
-6.560654 -6.71671 -7.988472 -8.24472 32 
-5.204164 -5.29944 -9 . 1 78735 -9.40078 34 
-3.607761 -3.66287 -10.074983 -10.27308 36 
-1.846012 -1.87138 -10.631209 -10.81582 38 
-0.000000 0.0 -10.819704 -11.0 40 

Whisker      ß = 11.819704 
Sphere        ß = 12.0 
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